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Abstract

Using resurgent analysis we offer a novel mathematical perspective on a curious bijection (duality)
that has many potential applications ranging from the theory of vertex algebras to the physics
of SCFTs in various dimensions, to q-series invariants in low-dimensional topology that arise e.g.

in Vafa-Witten theory and in non-perturbative completion of complex Chern-Simons theory. In
particular, we introduce explicit numerical algorithms that efficiently implement this bijection. This
bijection is founded on preservation of relations, a fundamental property of resurgent functions.
Using resurgent analysis we find new structures and patterns in complex Chern-Simons theory on
closed hyperbolic 3-manifolds obtained by surgeries on hyperbolic twist knots. The Borel plane
exhibits several intriguing hints of a new form of integrability. An important role in this analysis is
played by the twisted Alexander polynomials and the adjoint Reidemeister torsion, which help us
determine the Stokes data. The method of singularity elimination enables extraction of geometric
data even for very distant Borel singularities, leading to detailed non-perturbative information from
perturbative data. We also introduce a new double-scaling limit to probe 0-surgeries from the
limiting r →∞ behavior of 1

r surgeries, and apply it to the family of hyperbolic twist knots.
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1. Introduction and Summary

An alternative title for this paper could be “Analysis meets mathematical physics and
quantum topology.” Indeed, one of our main goals is to employ the methods of analysis
— resurgence analysis, to be precise — to tackle problems that arise at the intersection of
quantum topology and mathematical physics.

One large class of such problems emerged recently almost around the same time in several
different areas of mathematics and mathematical physics: trace formulae, low-dimensional
topology, quantum algebra, and BPS state counting. All these different disciplines provide
their own interpretation and shed a new light on the following phenomenon that we first
illustrate by a concrete example. Imagine that we are given a q-series (a “counting function”)
of the form

f(q) = q∆
(
c0 + c1q + c2q

2 + . . .
)
∈ q∆Z[[q]] (1.1)
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with integer-valued coefficients cj ∈ Z, and such that f(q) converges inside the unit disk,
|q| < 1, possibly except at a finite set of points.1 For concreteness, let us take the following
example

f(q) = q
1
2

(
1− q − q5 + q10 − q11 + q18 + q30 − q41 + . . .

)
(1.2)

= q
1
2

∞∑

n=0

(−1)nq n(n+1)
2

(qn+1; q)n

where (x; q)n :=
n−1∏
i=0

(1 − xqi−1) is the q-Pochhammer symbol. The last equality in (1.2)

expresses the q-series in a q-hypergeometric form. In this form, imagine replacing q by q−1 in
each term in the sum over n, and then multiplying both the numerator and denominator by
a power of q, so that the result is also naturally a q-series (rather than a series in q−1). In
our example, we get

f(q)( = q−
1
2

(
1 + q + q3 + q4 + q5 + 2q7 + q8 + 2q9 + . . .

)
(1.3)

= q−
1
2

∞∑

n=0

qn
2

(qn+1; q)n

It is easy to see that the “dual” q-series (1.3) is also of the form (1.1) and converges inside
the unit disk, |q| < 1.2

What makes this operation fascinating is that a priori it had no right to exist, meaning
that for a randomly chosen q-series f(q) the “dual” q-series f(q)( might not exist and might
not be well-defined (unique). For example, it is clear that we do not wish to restrict this
phenomenon only to special q-hypergeometric forms — that we used in the above example for
illustration purposes — since a q-hypergeometric form may not exist or may not be unique.
Yet, it is remarkable that in so many different contexts the operation

f(q)
“q ´ 1/q”
←−−−−−−−→ f(q)( (1.4)

not only carries a non-trivial meaning, but also leads to the same dual f(q)( for a given f(q):

• In low-dimensional topology, the operation (1.4) is simply the operation of orientation
reversal (i.e. parity operation). It describes how q-series invariants of 3-manifolds and
4-manifolds behave under orientation reversal.
• In quantum algebra, the operation (1.4) can be interpreted as the relation between
characters of logarithmic Vertex Operator Algebras (VOAs) in positive and negative
Kazhdan-Lusztig zones.

1This latter condition can be generalized further by requiring convergence only outside the set of measure
zero in |q| < 1, with respect to the flat Euclidean metric on the q-plane.

2In this example, the q-series f(q)∨ is the order 7 mock theta function conventionally denoted F0(q)
[GM12]. Also note that, while the small q expansions of f(q) and f(q)∨ both have integer-valued coefficients,
the expansion of f(q) has the further special property of being a unary q-series, with coefficients taking only
the values ±1 and 0. Neither this property nor mock modularity will play any role in our analysis, which
aims to develop tools applicable to more general dual pairs f(q) and f(q)∨. In fact, from the perspective of
BPS state counting / 3-manifold invariants, such properties are extremely special, as one can easily see from
many examples in the following sections and references provided.
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• In 3d N = 2 quantum theories with 2d N = (0, 2) boundary conditions, the operation
(1.4) describes a non-trivial duality of 2d N = (0, 2) boundary conditions that
accompanies the parity reversal in 3d N = 2 theories.

The first and the last items on this list are related by the 3d-3d correspondence. We provide
further context and describe each of these applications more fully in Section 4. For now,
we just remark that each of these contexts offers its own method (or, in some cases, several
methods) for computing f(q)( starting with a given f(q), see e.g. [CCFGH] for a method
based on Rademacher sums or e.g. [Park21] for a method based on surgery formulae. The
existing methods, however, have various limitations and, as a result, provide little insight to
the question: What should one mean by the operation (1.4) ?
In other words, the operation (1.4) is clearly asking for a pair of q-series, f(q) and f(q)(,

that have the form (1.1) and converge inside the unit disk, |q| < 1. However, how does one
formulate “q ´ 1/q” mathematically? As a first approximation to the answer, one can say
that f(q)( is supposed to be the unique continuation of f(q) across its natural boundary,
such that certain additional conditions are met (and, ideally, specify f(q)( unambiguously).3

Identifying these additional conditions is, in a sense, the key element in addressing this
question and understanding the deeper meaning of the magical operation (1.4).

The way we described it here, the operation (1.4) of going to the other side of the natural
boundary is clearly a kind of problem that should be well suited to resurgent analysis. Indeed,
as anticipated earlier [CCFGH], in this paper we use resurgent analysis to formulate more
precisely the sought after additional properties of f(q)( and the deeper structure represented
by (1.4). Along with this conceptual understanding comes strong computational power which,
among many other applications, allows to settle the following long-standing question that we
later review from the perspectives of topology, quantum algebra, and physics.

Question 1.5. Does an infinite family of false theta-functions Ψ̃
(a)
p (q), defined in (4.25),

and labeled by integers p and a, enjoy the property (1.4)? If so, what is the explicit form of

Ψ̃
(a)
p (q)(?

Our first example (1.2) is actually a linear combination of four Ψ̃
(a)
p (q)’s, namely

q
83
168

(
Ψ̃

(1)
42 − Ψ̃

(13)
42 − Ψ̃

(29)
42 + Ψ̃

(41)
42

)

In fact, the majority of examples (1.4) that appeared in various areas of mathematics and

mathematical physics involve a linear combination of several Ψ̃
(a)
p (q)’s. For instance, characters

of log-VOAs and BPS q-series invariants typically involve pairs, such as Ψ̃
(a)
p (q) + Ψ̃

(p−a)
p (q),

as illustrated in Section 4 with an infinite family of dual pairs (1.4) that come from surgery
formulae for 3-manifold invariants. Hence, based on the previous work in any of the fields —

topology, algebra, and physics — it was not clear whether Ψ̃
(a)
p (q) individually should have a

dual in the sense of (1.4), for general a and p.
In this paper, we answer Question 1.5 in the affirmative and provide a systematic way to

compute as many terms in the q-expansion of Ψ̃
(a)
p (q)( as the computer power allows. The

method is numerical and, therefore, does not give a closed form of the dual q-series. But,

3Since in all of the above mentioned contexts f(q) and f(q)∨ have interpretation as “counting functions,”
integrality of the coefficients and integrality of the powers (up to an overall shift ∆) should certainly represent
part of the conditions. It would be nice, however, if integrality is not part of the primary conditions, but
rather emerges as a consequence of more fundamental properties that are to be identified.
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on the other hand, it does not rely on any special properties (e.g. any type of modularity)
of the original q-series f(q). As such, it can be applied in a variety of different contexts: to
q-series invariants of 4-manifolds and 3-manifolds, characters of log-VOAs, etc.
In this paper, we mainly focus on one application of our method, to the BPS q-series

invariants that provide a non-perturbative completion for the complex Chern-Simons theory.
Other applications are briefly discussed in Section 4, though. Below we present a more
detailed account of the questions from BPS state counting and complex Chern-Simons theory
that motivated our work, introducing along the way some of the key notations used in the
rest of the paper, and summarizing the main results and surprises that we found.

1.1. Resurgence at 228 loops. One motivation for our work comes from Quantum Field
Theory in general, and gauge theory in particular. While the perturbative formulation of
such quantum theories is available (though in many cases not readily computable), the
non-perturbative formulation of a general QFT / gauge theory remains one of the major
challenges in modern theoretical physics.
This state of affairs is well illustrated by complex Chern-Simons theory, which arguably

is the simplest non-trivial representative in this class. As in more general quantum field
theories, its perturbative formulation starts with the Feynman path integral,∫

A
DAe−

1
ℏ
S(A) (1.6)

which can be systematically evaluated by the saddle point method to produce a (formal)
power series in the small (“coupling constant”) parameter ℏ:

Zpert
α (ℏ) =

∞∑

n=0

aαnℏ
n+cα (1.7)

Here, ³ denotes the choice of a critical point of the action functional S(A) and aαn are the
so-called perturbative coefficients. In a general QFT, their explicit computation relies on
Feynman diagrams and becomes exponentially difficult with the perturbative order (“loop
number”) n. However, if one can compute sufficiently many perturbative coefficients aαn,
then the magic of resurgent analysis allows to extract detailed quantitative information
about other saddle points ´ ≠ ³ from a finite set of aαn’s. In other words, it provides an
opportunity to understand the non-perturbative structure (and, hopefully, one day can lead
to a mathematical definition) of the Feynman path integral (1.6).
One of the key elements of the resurgent analysis is the analytic continuation, Bα(À), of

the Borel transform4 of the perturbative series

Bpert
α (À) = BZpert

α (À) (1.8)

In resurgent (path) integrals, the function Bα(À) is expected to have singularities only at Sα,
the critical values of the action functional. What makes complex Chern-Simons theory a good
model for testing this, and other predictions of resurgent analysis, is that it is possible to
compute perturbative coefficients aαn to relatively high loop order with relatively little work.
In particular, for closed 3-manifolds in this paper we typically truncate the perturbative
expansion at the order n = 228.
Another aspect well illustrated by complex Chern-Simons theory is that, in general, in

gauge theories the integration domain A in (1.6) is not simply-connected. It consists of gauge

4For a series
∑

∞

n=0 anℏ
n+c the Borel transform is defined as

∑
∞

n=1
an

Γ(n+c)ξ
n+c−1.
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connections on M3 modulo gauge equivalence, and the latter quotient is responsible for the
non-trivial Ã1(A) ∼= Z. For example, in Chern-Simons theory with gauge group G, the action
functional S(A) is the Chern-Simons functional

CS(A) =
1

4Ã

∫

M3

tr

(
A ' dA+

2

3
A ' A ' A

)
(1.9)

and its critical points are G-flat connections

dA+ A ' A = 0 (1.10)

If we work with the universal cover of A, gauge equivalent connections can have different
actions so it is important to differentiate between an element

α ∈ Ã0(Mflat(M3, G))× Z

and its gauge equivalence class

³ ∈ Ã0(Mflat(M3, G)).

With this notation,
α = (³,CS(α)), CS(α) ∈ Z+ CS(³) (1.11)

remembers the exact Chern-Simons value in R, whereas ³ remembers it in R/Z.

1.2. Non-perturbative complex Chern-Simons. When the gauge group G is compact,
Chern-Simons theory admits a non-perturbative [Wit89] — in fact, a mathematically rigorous
[RT90] — formulation, in part due to the fact that the spaces of states H(Σ) are all finite-
dimensional and allow exact computations via cutting-and-gluing of 3-manifolds. On the
other hand, when G is complex, e.g. G = SL(2,C) that will be our default choice in this
paper, the spaces H(Σ) are infinite-dimensional, as in most QFTs of physical interest.
The detailed computations in complex Chern-Simons theory go back at least 20 years

[Guk05], when they were used to explain and generalize the volume conjecture and the
analogues of the MMR expansion [MM, Roz1] around complex SL(2,C) flat connections. This
quickly led to a variety of exact perturbative techniques that allow to compute (1.7) at all loops,
and even to non-perturbative calculations for cusped 3-manifolds. However, the quantitative
non-perturbative formulation of the theory that extends to arbitrary closed 3-manifolds
and behaves well under cutting-and-gluing remained elusive until recently. A candidate for
non-perturbative complex Chern-Simons proposed in [GPV, GPPV] comes from embedding it
into string theory, building on a large body of prior work [Wit92, BT, BSV, GV, OV, GSV],
and formulating the problem in terms of Q-cohomology or, equivalently, BPS state counting.
It associates to a closed 3-manifold M3 a collection of q-series of the form

Ẑb(M3, q) = q∆b

(
c
(b)
0 + c

(b)
1 q + c

(b)
2 q2 + . . .

)
∈ q∆bZ[[q]] (1.12)

that behave well under cutting-and-gluing (surgery) formulae and, moreover, have integer

coefficients c
(b)
i ∈ Z that have enumerative meaning and are expected to admit a categorifica-

tion. Unlike the formal series (1.7), its non-perturbative counterpart (1.12) is conjectured to
be an actual function, well-defined inside the unit disk |q| < 1, such that the variables in the
two expansions are related via

q = eℏ (1.13)

when q → 1. While the physical definition of the invariants (1.12) applies, at least in principle,
to arbitrary 3-manifolds, various mathematical definitions have been proposed — e.g. based
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on quantum groups at generic q [Park20, Park21], on the geometry of affine Grassmannian
[GHNPPS], on curve counting [EGGKPS], and even on resurgent analysis combined with
other tools [GM] — some of which are fully developed for large infinite classes of closed
3-manifolds. In particular, some of these alternative perspectives and definitions make it clear
that the set of labels b in (1.12) should be the set of Spinc structures on M3; in other words,
as a non-perturbative theory, complex Chern-Simons is a Spin-TQFT [CGP, Chae, Jag].
This conclusion is noteworthy because the naive formulation of the Feynman path integral
(1.6) as well as the perturbative version of the theory (1.7) do not require a choice of Spin or
Spinc structure on M3.
In light of these developments, another natural motivation for our work is the study of

a precise and quantitative relation between the perturbative ℏ-series (1.7) and the non-
perturbative q-series (1.12) for complex Chern-Simons theory on closed 3-manifolds. As noted
earlier, such 3-manifolds present a greater challenge than a much better understood class
of 3-manifolds with toral boundaries (that include knot and link complements). Since on a
complex q-plane, the expansions (1.12) and (1.7) are around q = 0 and q = 1, respectively,
resurgent analysis is a natural tool to study their relation. It has been successfully employed
for studying this relation for various closed 3-manifolds [GMP, Chun17, CCFGH, CFG19,
Wu20, FP20], including some infinite families [Chung20, AM22]. Clearly, the relation between
the perturbative ℏ-series (1.7) and the non-perturbative q-series (1.12) is intimately related
to our main problem of developing systematic methods for going to the other side (1.4).

In various parts of our analysis we also aim to be fairly general and, in particular, perform
the analysis for infinite families of closed hyperbolic 3-manifolds, that we choose to be
surgeries on twist knots:

M3 = S3
p/r(KN) (1.14)

In other words, this class of examples is labeled by three integer numbers (p, r,N), such that
p and r are relatively prime and defined up to an overall sign change (p, r) ∼ (−p,−r). Even
though for small finite set of values of p

r
∈ Q and N ∈ Z the resulting 3-manifolds in (1.14)

are non-hyperbolic,5 we still include them in our analysis since many questions that we study
exhibit (sometimes unexpected) regularity in p

r
and in N .

Including in this family of surgeries a special value p
r
= 0 brings us to another motivation,

which also highlights the role of closed 3-manifolds and involves the 0-surgeries on knots

S3
0(K) (1.15)

that play an important role in topology, including the generalized property R, the smooth
Poincaré conjecture in 4 dimensions, the slice-ribbon conjecture, etc. In order to understand
these challenging problems via 0-surgeries, it would help to connect categorifiable quantum
invariants of 3-manifold with cobordism / concordance invariants. Curiously, a candidate for
such relation can come precisely from a relation between the perturbative ℏ-series (1.7) and
the non-perturbative q-series (1.12) in complex Chern-Simons theory.
Indeed, as noted earlier, the invariants (1.12) are associated with quantum groups at

generic |q| < 1 and are conjectured to be categorifiable for a general 3-manifold M3. On
the other hand, in section 2.2 we establish a new explicit relation between the perturbative
ℏ-series (1.7) for surgeries on a knot K and the twisted Alexander polynomial of K. In a
nutshell, the relation comes from a closer look at the perturbative ℏ-series (1.7) which, for a

5These are called exceptional surgeries.
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general complex flat connection ³ is conjectured to take the following form [Guk05, GM08]:

e−
1
ℏ
SαZpert

α (ℏ) = e−
4π2

ℏ
CS(α)

√
ÄadjM3

(³) ℏδ
(α)/2

(
1 +

∞∑

n=1

aαn ℏ
n

)
(1.16)

This is the complex Chern-Simons analogue of the Witten’s conjecture [Wit89] for Chern-
Simons theory with compact gauge group.6 Here, CS(³) is the value of the functional (1.9),

ÄadjM3
(³) sometimes abbreviated as Ä (³) is the adjoint torsion twisted by ³, and ¶(α) = h1− h0

is a simple cohomological invariant of a complex flat connection that depends on its stabilizer,
StabG(³) ¦ G. Specifically, for G = SL(2,C), ¶(α) = 0 if the connection ³ is irreducible,
¶(α) = 1 if ³ is abelian, and ¶(α) = 3 if ³ is central [GM08]. As we explain in section 2.2,

for 3-manifolds given by surgeries on knots, cf. (1.14)–(1.15), ÄadjM3
(³) is determined by the

twisted Alexander polynomial of K. Besides potential applications to topology, this has
important direct applications to resurgence that we discuss next.

1.3. Symmetries and integrability from the Borel plane. In resurgence, one of the most
important pieces of data is that of the Stokes coefficients, which in our problem we denote by
Sβ

α . Specifically, starting with a perturbative expansion near a saddle point α, a lift of ³ to the
universal cover in the space of fields described around (1.11), in a resurgent (path) integral
we expect to see other critical values Sβ as singularities of Bα(À), the analytic continuation
of the Borel transform BZpert

α (ℏ). Therefore, generically, near À = −Sβ = −4Ã2CS(β) we
expect

Bα(À) =
Sβ

α

À + 4Ã2CS(β)
+ less singular terms (1.17)

Our first group of results in this paper is to verify the following conjecture that follows
directly from the structure of (1.16).

Conjecture 1.18.

Sβ
α ∈

1

2Ãi

√
Ä(´)

Ä(³)
Z (1.19)

Based on this, we can define

mβ
α := 2ÃiSβ

α

√
Ä(³)

Ä(´)
(1.20)

which is expected to be an integer.
Unlike the standard Picard-Lefschetz theory — where Stokes coefficients can be interpreted

as intersection numbers between Lefschetz thimbles and, therefore, are (skew) symmetric —
this is no longer the case in gauge theory. In particular,

Theorem 1.21 ([GMP]). In complex Chern-Simons theory the Stokes coefficients in general
are asymmetric in α and β; in particular,

Sβ
α = 0 whenever dim StabG(α) < dim StabG(α) (1.22)

while Sα
β does not need to vanish.

6The two versions are especially close when α = 0 is the trivial flat connection. However, even in that case
a careful argument is needed to show that both versions have the same right-hand side.
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This general vanishing theorem does not prevent non-degenerate (Gaussian) saddles to
appear as transseries in the Borel resummation of a degenerate (non-Gaussian) saddles.
(It says the converse cannot happen.) Therefore, in fairly generic examples, like the ones
considered in this paper, one might expect all non-degenerate saddles to behave similarly
and, in particular, “light up” as singularities on the Borel plane for a degenerate saddle.7

When this does not happen, it certainly draws our attention to such special instances, and so
we give them a name.

Definition 1.23 (phantom saddles). We call a saddle β a phantom saddle (relative to α)
when Sβ

α = 0 that is not enforced by the Theorem 1.21.

In other words, phantom saddles are the true saddles of the path integral (1.6) that do not
show up on the Borel plane.
Curiously, we find strong (numerical) evidence for such saddles already in the simplest

members of the family (1.14). It would be interesting to uncover the precise condition that
trigger this phenomenon; clearly, it must be more subtle than (1.22). We do not address
this question in the present paper, but expect that such phantom saddles can be explained
by an extra grading (“height”) assigned to saddle points that is not directly visible in the
path integral formulation (1.6). Then, Sβ

α = 0 would be a consequence of a strict inequality
between the gradings of α and β, much as in (1.22). That should lead to a new vanishing
theorem, a refinement of Theorem 1.21.

In the process of studying the Borel plane we find an array of new and somewhat surprising
structures that point to some kind of “integrability” of complex Chern-Simons theory on
hyperbolic manifolds. First, in section 2.4 we observe a number of surprising relations among
Chern-Simons values and among values of the adjoint torsion that appear to hold in general
(for a general 3-manifold). These relations can be viewed as a first hint that the Borel plane
has more hidden structure than one could have expected.
In contexts that are mathematically well understood, two phenomena that point to

integrability are: (i) the decoupling of singularities, and (ii) the absence of “expected” Borel
plane singularities.
Singularity decoupling is simply illustrated in the world of ODEs by the basic equation

y′′ − y − x−1 = 0. Its Borel plane singularities, ∓1
2
(p ± 1)−1, are decoupled: the Laurent

expansions at either singularity has infinite radius of convergence and does not “see” the other
singularity. As a result, this second order ODE decouples: the general solution is 1

2
(y+ + y−)

where y± are the general solutions of 1st order equations: y′ ± y = x−1. In quantum field
theory a very familiar example of this decoupling is the Euler-Heisenberg effective action
[Hei36, Dun04], where the Borel transform is meromorphic, and all pole singularities are
decoupled but are in fact identical up to a simple rescaling. A possibly related structure has
been found in recent work [Ma21, Baj21] analyzing the resurgent structure of the Bethe ansatz
solution to certain integrable 2d QFTs, where the leading singularity is ”pure” (without
fluctuations) and so can be cleanly separated from the others.

Vanishing of singularities (more generally exact compensation of the effects of singularities
on the Stokes phenomenon) plays a crucial role in eigenvalue problems. A simple example is
the QM time-independent harmonic oscillator in one dimension, −1

2
È′′ + 1

2
x2È − EÈ = 0,

7In the context of SL(2,C) Chern-Simons theory on M3 = S3
p/r(K) with |p| = 1, the only degenerate

saddle is the trivial flat connection, usually denoted α = 0. In gauge theory literature, it is also sometimes
denoted α = θ.
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where, for simplicity, we take E ∈ (0, 3/2). Formal WKB shows that the Écalle critical time8

is t = x2/2. The equation becomes −tu′′ − 1
2
u′ + u(t− E) = 0.

To Borel analyze the series part of the transseries, we make the further substitution
u = e−tt1/2v (t1/2 chosen for convenience), followed by a Borel transform, V = Bv to get

p(p+ 2)V ′ +
1

2
(p+ 2E + 1)V = 0

with general solution V (p) = Cp−
m
2
− 1

4 (p + 2)
m
2
− 1

4 . For general E, the Borel plane of V
exhibits two coupled singularities, 0 and −2, but for the special value m = 1/2 we simply get
V (p) = Cp−1/2, hence v = CÃ1/2t−1/2. After undoing the changes of variables, this yields the

first eigenvalue E1 = 1/2 and eigenfunction (2Ã)−1/2e−x2/2. Writing the equation as a second
order system, a change of variables at m = 1/2 splits the system into two independent first
order equations. (A similar analysis yields the full spectrum of the problem.) A more general
version of this phenomenon occurs for Schrödinger equations with reflectionless (or more
generally, finite gap) potentials [DMN76], for which the Schrödinger operator factorizes and
the generic factorial divergent asymptotic expansions of energy levels reduce to convergent
expansions. This, in turn, is closely related to the ”Cheshire Cat” phenomenon in which a
Borel singularity appears and disappears when an external parameter is tuned to a special
(e.g. integer) value [Dun16, Koz16]. Another interesting example appears in the analysis of
the large-order terms of the Weyl expansion for quantum billiards, where certain geodesics
are not seen in the large order behavior of the Weyl series [BeHo94, HoTr99, Tr98].

In the realm of q-series dependent on parameters one may also find cases where Borel plane
singularities vanish when an external parameter is tuned to special values. For example, in
the study of mock modular forms, one encounters the family of Appell-Lerch sums [Zwe08]

Sq(a, z; q) =
∑

n∈Z

e−t(n2−anz)

cosh(t(n− z)) , q := e−t (1.24)

depending on two parameters: a and z. The value a = 2 is special: the Borel plane becomes
independent of z. This can be seen from a straightforward Poisson summation argument.
Following the expectation that this is a sign of of integrability, we look first for symmetries
and then use them to extract integrals of motion.
Indeed, we discover that Sq(2, z; q) is an eigenfunction of two commuting operators:

F (t; z) 7→ F (t; z + 1) and F (t; z) 7→ F (t; z + Ãi/t).9 Defining S1 = e−tz2Sq(2, z; q), we
get (a) S1(t; z+1) = S1(t; z) and (b) S1(t; z+Ãi/t) = −S1(t; z). We first seek entire functions
F of z in the form

∑
k∈Z ck(t)e

2πikz satisfying (a) and (b). Identifying the Fourier coefficients,

we see that their general form is F (z; t) = B(t)ϑ3(Ã(z+1/2), e−π2/t). Proceeding by variation

of parameters, we look for S1 in the form ϑ3

(
Ã(z + 1/2), e−π2/t

)
g(t; z). Some further algebra

and analysis at singular points give S1(t, z) = a(t)− (2Ãt)−1eπ
2/(4t)℘(z, 1, Ãi/t), where ℘ is

the Weierstrass elliptic function. All in all, we get the conserved-quantity relation

S(t; z)

ϑ3

(
Ã(z + 1

2
), e−

π2

t

) +
eπ

2/(4t)

2Ãt
℘(z, 1, Ãi/t) =

S(t; 0)

ϑ3

(
π
2
, e−

π2

t

) +
eπ

2/(4t)

2Ãt
℘(0, 1, Ãi/t) (1.25)

8The variable we have to pass to in order to do a proper Borel analysis [Ec81, Co08].
9Note that, up to changes of variables, these are SL(2,Z) transformations.
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In particular, (1.25) shows that z necessarily belongs to the purely nonperturbative terms,
and, also as expected, it appears in closed form.

This conclusion receives further support in section 3 where we perform detailed numerical
analysis of the Borel plane for various hyperbolic surgeries. In particular, in section 3.1.4
we find a peculiar decoupling of the leading singularity that is more subtle than (1.22). In
Section 5.5 we observe a set of curious integrality properties that appear to hold for surgeries
on all twist knots, and that may or may not be directly related to the decoupling and
“integrability” discussed above. We expect these interesting integrality properties to be related
to the integrality of BPS invariants in the physical realization of the mathematical problem
at hand. It would be interesting to study whether integrality is related to integrability, and
extending the analysis of Section 5.5 to a larger class of knots could be a very useful step in
this direction.

1.4. A trace formula for complex Chern-Simons. A seemingly different line of motivation
for this work comes from the Selberg trace formula, its many variants, and resurgent analysis
for the heat kernel. In particular, in a recent work [Dun21] it was shown that the Borel
plane for the heat kernel has a very distinct form. Quite surprisingly, we will find the
same structure of the Borel plane in a completely different problem in the context of the
complex Chern-Simons theory, cf. Figure 30. The heat kernel enjoys various symmetries,
also discussed in [Dun21], including the short-time vs. long-time behavior, t → 4π2

t
, and

the analytic continuation t → −t relating heat kernels on spaces of negative and positive
curvature. Curiously, we find analogs of all these symmetries in the context of complex
Chern-Simons theory, where the role of t is played by ℏ.
In general, on a manifold M , the trace of the heat kernel K(t, x, y) can be expressed in

terms of (the discrete part of) the spectrum of the Laplace operator,

Tr e−t∆ =

∫

M

K(t, x, x) dx =
∑

λj

exp(−¼jt) (1.26)

where ∂
∂t
K = −∆xK and K(0, x, y) = ¶(x− y). For example, on a real line, M = R, we have

KR(t, x, y) = 1√
4πt

exp
(
− |x−y|2

4t

)
, and on a circle KS1

(t, x, x) =
∑

n∈ZK
R(t, x + n, x). The

deep insight of Selberg, later extended by R. Langlands in various directions, is that on a
symmetric space of the form M = H/Γ the spectrum (1.26) can be expressed as a sum over
geodesics on M or, equivalently, as a sum over hyperbolic conjugacy classes in Γ.
The Selberg trace formula has many generalizations and applications, which range from

representation theory to dynamical systems. All such variants schematically look like
∑
{spectral terms} =

∑
{geometric terms} (1.27)

In physics, one can think of a problem that involves the motion of a free particle on M .
The quantum Hamiltonian of this system is precisely the Laplace operator ∆ on M , and
its spectrum gives the partition function, which is the spectral (quantum) side of the trace
formula. In the (semi-)classical approach to the same problem, the partition function is given
by the sum over classical trajectories (cf. geodesics, or saddles) and gives the geometric
(classical) side of the trace formula. A well-known concrete example is the heat kernel for the
motion of a particle moving on a compact Lie group manifold [Schul68, Dowk70].
Already at this stage, the reader can probably recognize a parallel between the trace

formula and the relation between the perturbative expansion (1.16) in complex Chern-Simons
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Topology Resurgence

flat connection path integral saddle

Chern-Simons invariant Borel singularity

Adjoint Reidemeister torsion residue

Table 1. Identification of the topological data with that obtained from the
Chern-Simons path integral.

theory and its non-perturbative formulation (1.12) given by the sum over a BPS spectrum.
In this parallel, the sum over complex flat connections (saddles) is clearly an analogue of the
sum over classical/geometric terms (geodesics), whereas the spectral side corresponds to the
BPS spectrum. This nice parallel, though, is only the tip of a much richer iceberg.
Further work on trace formulae, that led to many above-mentioned generalizations, high-

lighted several important features. First, it re-established a symmetry between the two sides
of the trace formula. Although this symmetry is not at all manifest in the standard way of
writing the trace formula à la (1.27), it can in fact be traced back to the simplest instance of
the trace formula, namely to Poisson summation. Indeed, if M is a torus, i.e. a quotient
of Rn by a lattice Γ, then the corresponding theta-function can be written in two different
ways, which are precisely the two sides of the trace formula for M = Rn/Γ. The Poisson
summation indeed relates perturbative and non-perturbative complex Chern-Simons for a
large class of 3-manifolds [GPPV], called plumbed manifolds. In Section 4 we explain the
origin of this relation in terms of resurgent analysis.

Moreover, the work of Langlands on generalizations of the trace formula led him to several
deep (and still largely open) conjectures and ideas, which include the principle of functoriality,
theory of endoscopy, and what we now call the Langlands program. In the Langlands program,
the Galois side is usually compared to the representation of the fundamental group, the idea
that is fully realized in the geometric version of the Langlands program and that in the
context of complex Chern-Simons theory would correspond to a representation

Ä : Ã1(M3)→ G (1.28)

The other side of the Langlands correspondence involves automorphic representations or,
more precisely, the so-called L-packets of automorphic representations of the Langlands
dual group G(. This subtle but important feature parallels an equally delicate phenomenon
in complex Chern-Simons theory which, in part, is due to Theorem 1.21. Namely, under
ℏ→ −1

ℏ
, which is indeed related to the geometric Langlands program [KW], the complex flat

G-connections map to linear combinations (a superposition) of complex flat connections for
the Langlands dual group G( [DG, GPV]. The precise map is not known for a general flat
G-connection ³, but in the abelian case was conjectured to be of the form [GPPV, eq.(2.67)]:

Äa 7→ Ä(a =
∑

b
abelian

Sab
(
Äb +

∑

c
non-abelian

mc
b Äc
)

(1.29)

where mβ
α are the transseries coefficients that we saw earlier and Sab is a very explicit matrix

of coefficients, which happens to coincide with the S-matrix of a logarithmic vertex algebra.
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This structure plays an important role in the relation between different types of “partition
functions” on M3, namely Zα(M3, q), which can be understood as transseries (integrals over

Lefschetz thimbles in complex Chern-Simons theory), and the q-series invariants Ẑb(M3, q):

Ẑb =
∑

a
abelian

Sab
(
SZpert

a +
∑

β
non-abelian

mβ
a SZpert

β

)
(1.30)

On the right-hand side, we tacitly suppressed the sum over integral lifts of ´, which makes mβ
a

into the generating q̃-series of the Stokes coefficients. We shall return to this later and make
it explicit e.g. in the case of homology spheres (4.41), where the first sum on the right-hand
side of (1.30) simplifies.

To summarize, the parallel with the trace formula, Poisson summation, and the Langlands
program tells us to view the relation between perturbative complex Chern-Simons and its
non-perturbative completion as another instance of the (generalized) trace formula.

2. Expected Borel plane from knot polynomials

The main goal of this section is to describe the basic topological invariants of closed
3-manifolds M3 = S3

p/r(K) that we expect to match with the position and strength of
singularities on the Borel plane.

The computation of these invariants echoes the construction ofM3 = S3
p/r(K) itself; namely,

the relevant invariant of a closed 3-manifold is obtained via a suitable surgery formula from
the corresponding invariant of the knot complement, S3 \K, and the surgery coefficient p

r
.

The invariant of a knot complement, in turn, can be expressed in terms of a suitable knot
polynomial. For the position of singularities on the Borel plane and their associated Stokes
coefficients, the relevant knot polynomials are respectively the A-polynomial and the twisted
Alexander polynomial. While the former has already appeared in the study of complex
Chern-Simons theory, the twisted Alexander polynomial so far did not play a prominent role
in the non-perturbative formulation of the theory, based on Q-cohomology and BPS spectra,
and one of our main goals here to bring it into the spotlight.
The significance of relating the non-perturbative complex Chern-Simons theory with the

twisted Alexander polynomial is that they belong to two different worlds, yet both are
related to 4-dimensional topology in a non-trivial way. The non-perturbative formulation of
complex Chern-Simons theory via Q-cohomology and BPS spectra provides a path toward
categorification of quantum group invariants for general 3-manifolds, a major open problem
in quantum topology that is expected to provide a generalization of Rasmussen’s s-invariant
and its use in a purely combinatorial proof of the Milnor conjecture [Ras]. Any such
homological invariants and spectral sequences that they enjoy are naturally related to smooth
4-manifold topology. Twisted Alexander polynomials also provide obstructions to sliceness
[HKL, KL99a, KL99b, FV], though in a somewhat different way; in particular, unlike deeply
quantum and non-perturbative BPS q-series, twisted Alexander polynomials are almost
“classical.” In our story they determine the first term in the perturbative expansion (1.7).
To the best of our knowledge, there are no direct connections between these two types of
invariants. One of our main results is that the resurgent analysis provides such a connection.

Through surgeries (1.14), deep 4-dimensional questions about knots (such as sliceness) can
be translated into analogous questions about 3-manifolds and 4-manifolds. As mentioned
above and will be discussed further in Section 5, among such questions those involving
0-surgeries (1.15) often turn out to be some of the most subtle and non-trivial ones.
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2.1. Position of singularities from the A-polynomial. As already mentioned in the
introduction, the critical points of the Chern-Simons functional (1.9) are G-flat connections
(1.10). This follows directly from the Euler-Lagrange equations and holds true for any gauge
group G which, in particular, can be either compact or complex. One should remember,
though, the lifts to the universal cover (1.11).
Cutting and gluing along a 2-manifold Σ in this theory is controlled by the “Hilbert

space of states” H(Σ) which, in turn, is obtained by quantizing the theory on R× Σ. Since
the action functional (1.9) is first order in derivatives, in particular, in the time derivative
parametrizing R here, the space H(Σ) is obtained by (geometric) quantization of the space
of classical solutions on R× Σ, invariant under translations along R. These are again the
flat G-connections,Mflat(Σ, G), this time on Σ. The space of flat G-connections on Σ comes
equipped with the Atiyah-Bott symplectic form that also follows directly from (1.9). It is
easy to see thatMflat(Σ, G) is finite-dimensional, which means that quantization of (complex)
Chern-Simons theory is a simple quantum mechanical problem, with the classical phase space
Mflat(Σ, G).

From the view point of the quantization ofMflat(Σ, G), the only difference between complex
and compact gauge group is that in the latter case the classical phase spaceMflat(Σ, G) is
also compact and, hence, the space of states H(Σ) is finite-dimensional. On the other hand,
when G is complex, the phase spaceMflat(Σ, G) is non-compact and, correspondingly, H(Σ)
is infinite-dimensional. This is the key feature of complex Chern-Simons theory that makes it
both interesting and very non-trivial at the same time.

Of particular interest is Σ = T 2. Indeed, according to a Theorem of Lickorish and Wallace,
any 3-manifold can be obtained by performing a sequence of cutting-and-gluing (surgery)
operations along knots and links in S3. Since a complement of every knot (resp. link) has T 2

as its boundary (resp. disjoint copies of T 2), this cutting and gluing construction involves
only manifolds with toral boundaries. This, in part, is the motivation why in the present
paper we are especially interested in infinite families of surgeries (1.14) on various knots.

The case Σ = T 2 is also special from the quantization perspective. Indeed, this is the only
instance of Σ, such that Ã1(Σ) is non-trivial and abelian. As a result, the corresponding space
of representations, analogous to (1.28), is essentially flat. More precisely, the (holomorphic)
Atiyah-Bott symplectic form is flat in the logarithmic coordinates, which for SL(2,C) takes a
simple form

É =
dy

y
' dx
x

(2.1)

expressed in terms of the holonomy eigenvalues for the two generators of Ã1(T
2) = Zl · Zm

called the longitude and the meridian,

HolA :Ã1(M3)→ G

l 7→


y ∗
0 y−1




m 7→


x ∗
0 x−1



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To summarize,Mflat(T
2, SL(2,C)) = C∗×C∗

Z2
, where the quotient by Z2 is associated with the

Weyl symmetry of SL(2,C), which acts on (x, y) ∈ C∗ × C∗ as (x, y) 7→ (x−1, y−1).
Now, for every 3-manifold with a toral boundary we can consider the image of its repre-

sentation variety to that of the T 2 boundary. In particular, for a knot complement, S3 \K,
the flat SL(2,C) connections on the T 2 that can be extended to the knot complement are
described by an algebraic curve [CCGLS],

AK = {(x, y) ∈ (C∗)2 | AK(x, y) = 0} (2.2)

which plays the role of a “spectral curve” in complex Chern-Simons theory [Guk05] and is
analogous to the Seiberg-Witten curve of the corresponding supersymmetric QFT related to
the knot complement via 3d-3d correspondence [GGP14].
Conceptually, the affine variety10 AK ¢ (C∗)2 should, in fact, be thought of as the

holomorphic Lagrangian subvariety. That way, it naturally represents the classical limit of a
state in H(T 2) associated with the knot complement. Indeed, one can explicitly verify that
É vanishes when restricted to the image ofMflat(M3, G) inMflat(Σ, G), for more general M3

with boundary Σ = ∂M3 and for G of higher rank. Therefore, in the WKB approximation,
the state associated to the knot complement is a function (more precisely, a half-density)
on AK ¢ (C∗)2 obtained by integrating the primitive 1-form d−1É|AK

along a path on AK

that connects the point of interest (x, y) to some reference point. This has been discussed in
great detail throughout the history of the subject, see e.g. [KK, GM08, GMP] and references
therein.
In particular, for a general surgery à la (1.14), flat connections on S3 \ K that extend

to S3
p/r(K) satisfy yrxp = 1 since the Dehn filling has the effect of annihilating the element

lrmp in homology. In practice, almost all points in the intersection of AK(x, y) = 0 and
yrxp = 1 correspond to true extendable flat connections, and the WKB integral along a path
on the A-polynomial curve provides an easy method that allows to compute all Chern-Simons
invariants CS(³) for simple surgeries.

Lemma 2.3. Let Ä1 : Ã1(S
3 \K)→ SL(2,C) be a non-parabolic representation which extends

to a flat connection ³ on S3
p/r(K). Then there exists a path Ät of non-parabolic representations

with Ä0 = 1 and

2Ã2CS(³) =

∫

γ

log(y)

x
dx+

vp

2
log((Ä1)x)

2 +
sr

2
log((Ä1)y)

2 (2.4)

− vr log((Ä1)x) log((Ä1)y)

where v, s is a pair of integers satisfying ps− rv = 1.

Note that, due to branching, µ should be thought of as a path in the Riemann surface
associated to the map (x, y) 7→ (log(x), log(y)). Specifically, for 0-surgeries this formula
simplifies to

CS(Ä1) =
1

2Ã2

(∫

γ

log(y)

x
dx+ log((Ä1)x) log((Ä1)y)

)
(2.5)

10As long as one remembers the Z2 quotient, and all the ingredients are properly invariant under the Weyl
group action, it sometimes can be omitted at the intermediate stages to avoid clutter.
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and for the so-called “small” 1
r
-surgeries it gives

CS(Ä1) =
1

2Ã2

(∫

γ

log(y)

x
dx+

j

2
log((Ä1)y)

2

)
. (2.6)

The strength of Lemma 2.3 is that given a path in AK , provided a lift to a path in the
representation variety of S3 \K exists, we can apply equation (2.4) without ever having to
explicitly construct the lift. For small knots, these lifts will always exist and so the problem of
computing Chern-Simons values boils down to finding appropriate paths in AK . One minor
caveat is that different paths µ between Ä0 and Ä1 may lead to (Ä1)x and (Ä1)y ending on
different branches of log and this can produce different CS values. Thus this method requires
a careful treatment of branches.
As we want to start all paths at the trivial flat connection A = 0, i.e. at (x, y) = (1, 1),

the first problem we encounter is how to travel off the abelian branch Aab
K = (C∗)x × {1} that

arises from abelian representations which behave identically for all knots as H1(S
3 \K) = Z.

Indeed, the variety AK decomposes into the union of two subvarieties, Aab
K and Airred

K , called
the abelian and irreducible branches, respectively. The irreducible branch is the closure of

what remains after the abelian branch is removed, Airred
K = AK\Aab

K . Correspondingly, the
A-polynomial factors into polynomials representing the two branches

AK(x, y) = (y − 1)Airred
K (x, y). (2.7)

While points connecting the abelian and irreducible branches in AK are easy to find,11 the
issue is that we need to find a branch point which, when lifted to the representation variety
of the knot complement, lifts to a path connecting the abelian and irreducible branches.

Lemma 2.8 ([CCGLS]: Section 6). In the representation variety of the knot complement,
the abelian and irreducible branches meet along non-abelian reducible representations. In
AK , these reducible representations map surjectively to points (x, 1) where x2 is a root of the
Alexander polynomial of the knot K.

We provide a brief sketch of the proof here. Non-abelian reducible representations are
representations Ä : Ã1(S

3 \K)→ SL2(C) landing in the upper triangular subgroup. Given
such an element

Ä(g) =


xg zg

0 x−1
g




the path from the abelian branch to the irreducible branch is given by

Ät(g) =


xg tzg

0 x−1
g


 . (2.9)

It remains to understand when Ä exists.
If we project Ä onto AK we find that the image is heavily constrained. As the longitude l

lies in the second commutator subgroup of Ã1(S
3 \K) and all second commutators of 2× 2

upper triangular matrices are trivial, Ä projects onto a point (x, 1). Then through careful

11They correspond to solutions of Airred
K (x, 1) = 0.
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analysis [DR] it can be shown that Ä exists if and only if x2 is a root of the Alexander
polynomial.12

Altogether, this discussion guarantees that we can always move off the abelian branch and
onto the irreducible branch. From here, we move along the irreducible branch until we reach
our desired point, taking care when moving between different sheets of the irreducible branch.

2.2. Residues from the twisted Alexander polynomial. Based on the earlier work
in complex Chern-Simons theory summarized around eq.(1.16), we expect the residues Sβ

α

in (1.17) to be related to a 3-manifold invariant called torsion. (See also Conjecture 1.18.)
This invariant has both an algebraic and analytic description. The analytic description
is directly relevant to the way it appears in (1.16), as a ratio of one-loop determinants in
complex Chern-Simons theory. However, it is not as computationally friendly as the algebraic
formulation [Fre, Por15], which will be our main focus here.

Given two bases ³, ´ of a vector space V over a field F, let ¸ be the unique change of basis
matrix satisfying ³i =

∑
j ¸ij´j. Define

[³, ´] = det(¸) ∈ F×.

Definition 2.10 (Reidemeister Torsion). Let

C∗ : 0→ Cn
∂−→ Cn−1

∂−→ · · · ∂−→ C1
∂−→ C0 → 0

be a chain complex of finite-dimensional vector spaces over F with homology H∗(C∗, ∂). Fix a
pair of bases, c for the chain complex and h for the homology such that ci and hi are bases
of Ci and Hi respectively. Let kj be the rank of ∂ : Cj → Cj−1 and choose a collection of kj
elements sj = {sj,i} ¢ Cj such that ∂sj = {∂sj,i} spans Im(∂). For each homology basis hj,

choose a lift ĥj ¢ Cj. Then the Reidemeister Torsion, ÄC∗,c,h is given by:

ÄC∗,c,h =
n∏

j=0

[{
∂sj+1, sj, ĥj

}
, cj

](−1)j+1

∈ F×

There are a couple of observations to make:

• Despite appearances, choices of sj and ĥj do not affect the value of Ä .
• If we change our basis for C∗ and H∗, then Ä changes as

ÄC∗,c′,h
′

ÄC∗,c,h

=
∏

i

(
[c′i, ci]

[h′
i,hi]

)(−1)i

(2.11)

Currently, this discussion is purely algebraic but there is a natural link to geometry. Let

X be a CW space, X̃ its universal cover and Ä : Ã1(X)→ GL(Vρ) a linear representation. By

construction, X̃ has an induced CW structure upon which Ã1(X) acts freely. Hence each

term of the cellular chain complex C(X̃,Z) is a free Z[Ã1(X)] module and so we can define
the twisted chain complex

C∗(X;Vρ) = C(X̃)¹Z[π1(X)] Vρ

12This is a special case of a more general representation deformation problem which is solved by the twisted
Alexander polynomial [Wada94].
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There is a canonical13 basis for Cj(X;Vρ) of the form

c = {Ã1 ¹ v1, Ã1 ¹ v2, · · · , Ãkq ¹ vn}.
where {v1, · · · , vn} is a basis of Vρ and Ã1, · · · Ãkq are q-cells giving a basis (as a module) of

C(X̃,Z). Additionally, if there is homology, pick a basis h.

Definition 2.12. The Reidemeister torsion ÄX,h(Ä) is

ÄX,h(Ä) = |ÄC∗(X;Vρ),c,h|.
While there are choices in the basis c, it is well known [Joh, Mil66] that

Theorem 2.13. ÄX,h(Ä) is a piecewise linear invariant of X,h and Ä.

Observe that for a given group homomorphism Ä : Ã1(X)→ SL(2,C), there is a family of
Reidemeister torsions corresponding to the family of irreduicble representations of SL(2,C).
In the literature the majority of attention has been on studying the Reidemeister torsion
corresponding to the standard representation but it is essential here that we work with the
adjoint one. To distinguish this choice, we will label Ä as Ä st or Äadj depending on the context.

Often14, after quotienting by the conjugation action, the space of representations Ã1(X)→
SL(2,C) is finite and for each representation Ä, C∗(X;Vρ) is acyclic. In these cases, we get
a finite collection of C-valued torsion invariants for X which are algebraic and so can be
assembled into an rational polynomial called the torsion polynomial ÃX(t) by

15

ÃX(t) =
∏

ρ:π1(X)→SL(2,C)

(t− ÄX(Ä)) ∈ Q(t). (2.14)

In the literature, Ãst
X(t) has been computed for surgeries on torus knots and the 41 knot

[Joh, Kit2016] but Ãadj
X (t) has not appeared.

Given a surgery manifold S3
p/r(K), the particular Reidemeister torsion relevant to the

residues Sβ
α is expected to be the adjoint torsion Äadj

S3
p/r

(K)
(Ä). Ideally we would like to find a

method to compute this systematically for surgeries p
r
as opposed to attempting to proceed

via first principles in each case. To do this we need to study the torsion associated to knot
complements. In the literature [Kit15, Tra15], this problem has mainly been studied in the
standard representation however there is a marked difference between the standard and
adjoint representations in this case as the adjoint representations do not lead to acyclic
complexes.

For knot complements16 S3 \K, a general description of the twisted homology groups was
given by Porti [Por15].

Lemma 2.15 ([Por15], Appendix B). For a generic representation Ä : Ã1(S
3\K)→ SL(2,C),

let V denote the adjoint representation of SL(2,C) and Vρ the induced representation of

13Naively, this basis is not canonical as it depends on the chosen cellular structure and a basis for the
representation space, but the torsion is independent of both these choices.

14In particular this is the case for manifolds which are surgeries on knot complements.
15It is conventional to remove denominators to get a non-monic polynomial in Z(t).
16Sometimes in the literature it is also denoted as S3 \N(K) or S3 \ νK, where N(K) or νK denotes the

tubular neighborhood of K. Of these different notations, we choose the most compact one.
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Ã1(K). Then

Hi(S
3\K;Vρ) =

{
C i = 1, 2

0 i = 0, 3
.

These groups can be realised as

H1(S
3\K;Vρ) = ïi∗(a¹ [µ])ð and H2(S

3\K;Vρ) = ïi∗(a¹ [T 2])ð
where i∗ : H1(T

2, Vρ)→ H1(S
3 \K,Vρ) is the map induced from the boundary inclusion map,

[T 2] is a fundamental class, [µ] is any non-zero element in H1(T 2), and a is the unique
invariant vector in Vρ|T2 .

Hence a choice of [µ] ∈ H1(T 2) determines the adjoint torsion and so we define

ÄadjS3\K, [γ](Ä) = ÄadjS3\K, {i∗(a¹[γ]),i∗(a¹[T 2])}(Ä).

For comparison, in the standard case we simply have Ä stS3\K(Ä) as the twisted complex is

acyclic. We prove the following lemma relating Äadj
S3
p/r

(K)
(Ä) and ÄadjS3\K,[l](Ä).

Lemma 2.16. Let x and y denote eigenvalues of Ä(m) and Ä(l) viewed in the standard
representation corresponding to a common eigenvector. Then17

Äadj
S3
p/r

(K)
(Ä) =

(
p y
x
dx
dy

+ r
)
ÄadjS3\K,[l](Ä)

2− y2 − y−2
.

We start by computing the adjoint torsion in the simple cases, S1 and T 2.

Proposition 2.17. For a generic representation Ä, H∗(S1, Vρ) ∼= H0·H1
∼= ï[a¹ p], [a¹ x]ð

where p, x are generators of H0(S
1), H1(S

1) and a ∈ Vρ is an invariant vector. Then

ÄadjS1 (Ä) = ÄadjS1, {[a¹p],[a¹x]}(Ä) =
1

2− y2 − y−2

where y is an eigenvalue of Ä(x) ∈ SL(2,C) viewed in the standard representation. Similarly
for T 2, H∗(T

2, Vρ) ∼= ï[a¹ p], [a¹m], [a¹ l], [a¹ T 2]ð and
ÄadjT 2 (Ä) = ÄadjS1, {[a¹p],[a¹m],[a¹l],[a¹T 2]}(Ä) = 1.

Proof. We explicitly demonstrate the case of S1. Choosing a basis which diagonalizes Ä(x)
we find

Ä(x) =


y 0

0 y−1




and so, passing to the adjoint representation of SL(2,C), Ä acts as

Äadj(x) =




1 0 0

0 y2 0

0 0 y−2


 .

17It is interesting to compare this to the corresponding surgery formula for the standard torsion:

τ stS3

p/r
(K)(ρ) =

τ stS3\K(ρ)

2− y − y−1
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The invariant vector is clearly a =
(

1
0
0

)
and so the induced map ∂∗ : C1(S1, Vρ)/ïa¹ xð →

C0(S1, Vρ)/ïa¹ pð is given by

∂∗ = I2 − Äadj(x)|{2,3} =


1− y2 0

0 1− y−2


 .

Hence

ÄadjT 2 (Ä) =
1

det(∂∗)
=

1

2− y2 − y−2
.

The proof for ÄadjT 2 (Ä) is identical. □

The main tool we need to prove Lemma 2.16 is the following Theorem of Milnor:

Theorem 2.18 ([Mil66]: Theorem 3.2). Suppose that

0→ C ′
∗

i−→ C∗
j−→ C ′′

∗ → 0

is a short exact sequence of chain complexes giving rise to the long exact sequence of homology

H∗ = · · · → H1(C
′′
∗ )

∂−→ H0(C
′
∗)

i−→ H0(C∗)
j−→ H0(C

′′
∗ )→ 0.

For each k, choose compatible18 volume elements in C ′
k, Ck, C

′′
k such that the torsion of the

short exact sequence is 1. Then
ÄC = ÄC′ÄC′′ÄH .

Given a surgery S3
p/r(K) = (S3 \K)∪T 2 (S1×D2) we have a corresponding Mayer-Vietoris-

like sequence

0→ C∗(T
2, Vρ)

i−→ C∗(S
3 \K,Vρ)· C∗(S

1, Vρ)
j−→ C∗(S

3
p/r(K), Vρ)→ 0

and the above theorem yields

Äadj
S3
p/r

(K)
(Vρ) =

ÄadjS3\K,h(Vρ)Ä
adj
S1,h′(Vρ)

Äadj
T 2,h′′(Vρ)Ä

adj
H

=
ÄadjS3\K,[γ](Vρ)Ä

adj
S1 (Vρ)

ÄadjH

.

With a careful choice of µ, we can force ÄH = 1 yielding

Proposition 2.19 ([Por15]: Proposition 4.23). Fix a group homomorphism Ä : Ã1(S
3
p/r(K))→

SL(2,C). Then

Äadj
S3
p/r

(K)
(Ä) = ÄadjS3\K, p[m]+r[l](Ä)Ä

adj
S1 (Ä)

As H1(S
3 \K) is one-dimensional, equation (2.11) shows

ÄadjS3\K, p[m]+r[l](Ä) = p ÄadjS3\K,[m](Ä) + r ÄadjS3\K,[l](Ä)

and we can express ÄadjS3\K,[m](Ä) in terms of ÄadjS3\K,[l](Ä) via the following lemma.

Lemma 2.20 ([Por95]). Let x and y denote eigenvalues of the meridian and longitude in the
standard representation. Then

ÄadjS3\K,[m](Ä) = ±
y

x

dx

dy
ÄadjS3\K,[l](Ä).

18Denoting the chosen elements as c′k, ck, c
′′
k , compatible means that ck = i(c′k) ' bk with j(bk) = c

′′
k .
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This ± disappears if we force x, y to be eigenvalues of a common eigenvector. Combining
this all with our previous computation of adjoint torsion for the circle completes the proof of
Lemma 2.16.
Let us turn now to studying how to explicitly compute these torsions, illustrating the

computations with examples of surgeries on hyperbolic knots 41 and 52. The main difficulty
is in computing ÄadjS3\K,[l](Ä) for which we will need to take a brief detour to discuss twisted

Alexander polynomials.

2.2.1. Twisted Alexander Polynomials. Let ³ : Ã1(S
3\K)→ Z = ïtð denote the abelianization

homomorphism. Then any linear representation Ä : Ã1(S
3 \K)→ SL(n,C) can be lifted to a

representation Ä¹ ³ : Ã1(S
3 \K)→ GL(n,C(t)).

Definition 2.21 ([Kit96]). For generic t, C∗(S
3 \K,Vρ¹α) is acyclic letting us define

∆K,ρ(t) = ÄS3\K(Ä¹ ³).
This family of invariants are known as the twisted Alexander polynomials.

When Ä(g) = 1 is the trivial representation, (1− t)∆K,1(t) is the Alexander polynomial,
justifying the name. These invariants were initially described in a different context in
[Lin01, Wada94] before being related to the Reidemeister torsion in [Kit96]. Assuming that
Ä lands in a non trivial irreducible representation n of SL(2,C), consider what happens in
the limit as t→ 1.

Theorem 2.22 ([Yam08]). There are two possible cases

• If H∗(S
3 \K,Vρ) = 0, then

lim
t→1

∆n

K,ρ(t) = ÄnS3\K(Ä)

• If H∗(S
3 \K,Vρ) ̸= 0, then

lim
t→1

∆n

K,ρ(t)

t− 1
= ÄnS3\K,[l](Ä) (2.23)

Hence, we can compute ÄadjS3\K,[l](Ä) via the computation of ∆adj
K,ρ(t). This is easier as the

acyclic situation is far simpler to work with. Computations of ∆n

K,ρ(t) have been done
for certain knots and representations in the literature [Tra13, Tra2015], and here we show
explicitly how it works for the adjoint representation for our class of manifolds. First, recall
the definition of the Fox derivative.

Definition 2.24. Given a free group F with generators gi the Fox derivative is the function
∂
∂gi

: Z[F ]→ Z[F ] defined by

∂

∂gi
gj = ¶ij

∂

∂gi
e = 0

∂

∂gi
(uv) =

∂

∂gi
(u) + u

∂

∂gi
(v)
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Fix a Wirtinger presentation19 of the knot group

Ã1(S
3\K) = ïg1, · · · , gn | r1, · · · , rn−1ð

where each gi is a meridian and, given a representation Ä : Ã1(S
3 \K) → SL(2,C), denote

Xi = Ä(gi). Then it is well known that S3 \K retracts onto a 2-complex with one 0-cell,
n 1-cells labelled g1, · · · , gn and (n − 1) 2-cells with attaching maps given by r1, · · · , rn−1.
From this we can compute the chain complex C∗(S

3 \K;Vρ) to be

0→ V ·(n−1) ∂2−→ V ·n ∂1−→ V → 0

where20

∂2 = A =




Ä(∂r1
∂g1

) · · · Ä( ∂r1
∂gn

)
...

. . .
...

Ä(∂rn−1

∂g1
) · · · Ä(∂rn−1

∂gn
)




and

∂1 =




Ä(g1)− I
...

Ä(gn)− I




Let Ai denote the square matrix where we have removed the i’th column from A. Then a
careful computation shows21

Theorem 2.25 (Johnson). Assuming C∗(S
3 \K;Vρ) is acyclic, there exists an i such that

det(Xi − I) and detAi are both non-zero and, using this, Reidemeister torsion is given by

Ä(S3 \K,Vρ) =
det (Ai)

det(Ä(gi)− I)
.

This is independent of choice of i, up to overall factors of t.

This is easy to compute for any knot and is particularly simple when the knot group admits
a presentation with 2 generators and 1 relation, as is the case for the 41 and 52 knots which
we consider next.

2.2.2. Riley polynomials. The Kn twist knot has knot group

ïg, h | h−1ÉngÉ−nð É = hg−1h−1g

where h, g are two meridians and the longditude is

¼ =←−É nÉn where ←−É = gh−1g−1h.

Given a representation Ä : Ã1(S
3 \Kn)→ SL(2,C), as the generators are conjugate we can

assume that, up to conjugation

Ä(g) =


x x−1

0 x−1


 and Ä(h) =


 x 0

−xu x−1


 .

19With a little care this definition can be extended to work with any deficiency 1 representation.
20Note that ρ( ∂ri∂gj

) means computing ∂ri
∂gj

in Z[F ] and then taking the natural quotient Z[F ]→ Z[G] before

applying ρ.
21While this was initially proven by [Joh], a clearer proof was given by Kitano in [Kit94], Theorem 2.1.
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Twist Knot Rolfsen Table Label Alexander Polynomial

K0 01 1

K1 31 t−1 − 1 + t

K−1 41 t−1 − 3 + t ‘

K2 52 2t−1 − 3 + 2t

K−2 61 2t−1 − 5 + 2t

K3 72 3t−1 − 5 + 3t

K−3 81 3t−1 − 7 + 3t

Table 2. Twist knot conventions.

If we compute Ä(Éng)− Ä(hÉn) we find that

Ä(É−1g)− Ä(hÉ−1) =


 0 x−1ϕn(x, u)

ux ϕn(x, u) 0




for a polynomial ϕn(x, u) known as the Riley polynomial [Ril]. To simplify notation, let

¹m := x+ x−1

denote the trace of the meridian, and

¹m,j := xj + x−j

be higher order functions of the trace. Then, for the knots 41 and 52 we have n = −1 and
n = 2, respectively, so that

ϕ−1(x, u) = u2 − (u+ 1)(¹m,2 − 3)

ϕ2(x, u) = u3 + (3− 2¹m,2)(u
2 + 1) + (6− 3¹m,2 + ¹m,4)u.

Similarly, we can compute the longitude in each of these cases to get

Ä(l41) =


y41(x, u) −

θm(θm,2−3−2u)

x

0 y41(x
−1, u)




y41(x, u) =
1− 2x2 − ux2 − x4 + x6 + ux6

x4

and

Ä(l52) =


y52(x, u)

θm(uθm,8−(2+2u+u2)θm,6+(1+2u)θm,4−θm,2−1)

x

0 y52(x
−1, u)




y52(x, u) = 1− x2(1 + u)(2− x4 + x6) + (1 + u)2x4 − u2x8 + ux10
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Note that y(x−1, u) = y(x, u)−1. (One needs the corresponding Riley polynomial to realise
this relation.) From this we can read off the torsion corresponding to the gluing torus (for
y ̸= ±1) to be

ÄadjS1,41
=

1

2− y241 − y−2
41

=
1

(¹m,2 + 2)(¹m,2 + 1)(¹m,2 − 2)(¹m,2 − 3)

and

ÄadjS1,52
=

1

2− y252 − y−2
52

=
(
− u¹m,20 + (2 + 3u+ u2)¹m,18 − (3 + 3u+ u2)¹m,16 − (3u+ u2)¹m,14

+ (7 + 8u+ 3u2)¹m,12 − (4 + u− u2)¹m,10 − 3(2 + 3u+ u2)¹m,8

+ (6 + 3u− u2)¹m,6 + (2 + 5u+ u2)¹m,4 − 2(2 + u)¹m,2

)−1

We can also compute the derivative dx
dy
. In practice, it is easier to compute dy

dx
, which can

be done in the following two-step process. We first use the Riley polynomial to compute du
dx

and then we can differentiate the expressions y(x, u) given above. We get

du41
dx

= −2(x− x−1)¹m(1 + u)

x(¹m,2 − 3− 2u)

du52
dx

= − 2(x− x−1)¹m(2u¹m,2 − 2− 3u− 2u2)

x(¹m,4 − (3 + 4u)¹m,2 + 3(2 + 2u+ u2))

and, using this we find22

y41
x

dx

dy41
=

3 + 2u− ¹m,2

2(2¹m,2 − 1)

y52
x

dx

dy52
=

19 + 29u+ 5u2 − (19 + 11u+ u2)¹m,2 − (2 + u)¹m,4 + 2¹m,6

2(39 + 105u+ 7u2)− 2(58 + 49u+ 21u2)¹m,2 + 2(21u− 4)¹m,4

Finally we need to compute the twisted Alexander polynomial in both these cases. Passing
to the adjoint representation, we find that our matrices become

Äadj(g) =




1 0 x−2

−2 x2 x−2

0 0 x−2


 and Äadj(h) =




1 ux2 0

0 x2 0

−2u −u2x2 x−2


 .

in the basis {h, e, f}. For the generic twist knot Kn,

A2 = Ä

(
∂(h−1ÉngÉ−n)

∂g

)
= Ä

(
−h−1 + (h−1 − 1)

∂Én

∂É
(1− hg−1h−1)

)
.

where
∂Én

∂É
=

{
1 + É + · · ·+ Én−1 n g 0

−É−1 − · · · − É−n n < 0.

22There are many equivalent expressions here, depending on different simplification procedures. This one
is chosen for simplicity and to make the x→ x−1 Weyl symmetry manifest.
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For our two examples of 41 and 52 knots, this simplifies to

A41
2 = Ä

(
−h−1 + (h−1 − 1)(g−1 − É−1)

)

A52
2 = Ä

(
−h−1 + (h−1 − 1)(1 + É)(1− hg−1h−1)

)

and applying Theorem 2.25 we get

∆adj
41,ρ

(t) = (1− t)(2t(¹m,2)− 1 + t− t2)
∆adj

52,ρ
(t) = (1− t)

(
2(1 + t2)(¹2m,2u− ¹m,2 − (1 + ¹m,2)(1 + u+ u2))

+ (3 + (4 + ¹m,4)u+ (1− ¹m,2)(2 + 3u+ u2))t
)

Therefore, eq.(2.23) gives

ÄadjS3\41,[l](Ä) = (2¹m,2 − 1)

ÄadjS3\52,[l](Ä) = 1− 10¹m,2 + (11− 7¹m,2 + 5¹m,4)u− (3 + 5¹m,2)u
2

Putting it all together we find

Äadj
S3
p/r

(41)
(Ä) =

p
2
(3 + 2u− ¹m,2) + r (2¹m,2 − 1)

(¹m,2 + 2)(¹m,2 + 1)(¹m,2 − 2)(¹m,2 − 3)
(2.26)

Äadj
S3
p/r

(52)
(Ä) =

p
y52
x

dx
dy52

ÄadjS3\52,[l](Ä) + r ÄadjS3\52,[l](Ä)

ÄadjS1,52

(2.27)

2.3. Examples: surgeries on small twist knots. Combining the previous two subsections
we end up with a simple algorithm to compute the Chern-Simons values and torsions
corresponding to each flat connection on a general knot surgery M3 = S3

p/r(K) and for

surgeries on twist knots (1.14) in particular.

(1) Find all intersections between the curves Airred
K (x, y) = 0 and yrxp = 1 with x, y ̸=

0, 1,−1. These come in pairs (x, y), (x−1, y−1). For the sake of consistency, pick
solutions so that Im(x) > 0 or Im(x) = 0 and |x| > 1.

(2) For each solution (x∗, y∗) determine u by solving ϕ(x∗, u) = 0, y(x∗, u) = y∗ and use

this to compute Äadj
S3
p/r

(K)
.

(3) Fix a root of ∆41(x
2); the choice is irrelevant but for simplicity we choose the root Ç

which minimises | log(Ç)|.
(4) For each solution (x, y), find a path from (Ç, 1), the intersection with the abelian

branch, to (x, y). This will involve computing which sheet (x, y) lies on and may
involve passing through intersection points. Additionally, determine the appropriate
continuous extension of the Log function.

(5) Apply (2.4) to determine the Chern-Simons value and normalise to get an answer in
the interval [−1

2
, 1
2
].

After computing the complete set of invariants for a given knot, we additionally give
normalisations which are important for comparisons to numerical results in the Borel Plane.

• The normalized CS invariants are given by CSα
CSleading

where CSleading denotes the smallest

invariant. These give a clearer picture of the relative magnitude of these invariants.
This is important when identifying the CS invariants with Borel singularities, as their
relative distance from the origin is an important physical consideration, the closest ones
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being related to more dominant non-perturbative effects, whereas the non-perturbative
influence of more distant Borel singularities is exponentially suppressed.
• The residues corresponding to Borel Singularities, (Stokes Constants, Sα := Sα

0 ), are
related to the Adjoint Reidemeister Torsion Äα via:

Sα
0 =

1√
4ÃÄα (−4Ã2CSleading)3

(2.28)

2.3.1. Surgeries on the 41 knot. To illustrate the computational procedure, we start with the
41 knot, the simplest hyperbolic knot. The irreducible A-polynomial is

Airred
41

(x, y) = (−x4 + (1− x2 − 2x4 − x6 + x8)y − x4y2) (2.29)

As this is quadratic in y, it forms a 2 sheeted branched covering space over (C∗)x with
local23 sections y1(x) and y2(x). In this simple case, at each root of ∆41(x

2), both irreducible
branches meet the Abelian branch. This means we can always choose straight line paths
from roots of ∆41(x

2) to our desired points and we will not have to move between different
irreducible branches. From the 41 Alexander polynomial

∆41(x
2) = −x2 − x−2 + 3

we set our intersection point with the abelian branch to be (x, y) =
(

1+
√
5

2
, 1
)
.

Let us start by looking at the 0-surgery. Setting y = 1, we find

Airred
41

(x, 1) = x2(1 + x2)2(x2 + x−2 − 3) = −x2(1 + x2)2∆41(x
2). (2.30)

Hence there is a single interesting pair of roots located at (±i, 1) with multiplicity 2. Vi-
sualising our branches y1(x), y2(x) along the straight line from x = 1

2
(1 +

√
5) to x = i

produces Figure 1. While in A41 it appears that these branches join at (1, i), when lifted to
the representation variety these branches separate. Hence, the two possible CS values for the
0-surgery correspond to travelling to (1, i) along each branch. As both of the loops in Figure
1 do not contain 0, we stay on the initial logarithm branch and so the boundary term in (2.5)
vanishes. Thus we find24 that the Chern-Simons invariants of the upper and lower branches
are −1

5
and +1

5
, respectively, cf. [KK].

Let us now move to the more interesting case of −1
2
surgery. This surgery enforces x = y2

and so flat connections correspond to roots of

A41(y
2, y) = y(1 + y)2 × (2.31)(

1− 2y + 3y2 − 4y3 + 4y4 − 4y5 + 4y6 − 5y7 + 4y8 − 4y9 + 4y10 − 4y11 + 3y12 − 2y13 + y14
)

The x values of these roots are plotted in Figure 2. Note that several flat connections
land almost directly on an intersection with the abelian branch. Modding out by the Weyl
symmetry, there are 7 pairs of intersection points and a fixed point of multiplicity 2 at (1,−1).
From here we simply apply the remainder of the algorithm described at the start of this
section to compute all CS and torsion invariants. The results are shown in Table 3.
Let us illustrate the computational procedure using the example of the leading Chern-

Simons invariant, which corresponds to x = 1.622, as in the first row of Table 3. As in Section
2.2.2, define ¹leadingm,2 ≡ (xleading)2+(xleading)−2 = 3.012. Then the A-polynomial expression (2.6)

23It is impossible to continuously extend y1(x) and y2(x) to all of (C∗)x as the roots of a polynomial
equation form an unordered set.

24Up to a precision of 10−100.
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0
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0.6

0.8

1.0

Figure 1. Branches of A41 along the line x(t) = 1−t
2
(1 +

√
5) + t i. The

colour indicates the t value and the position is the complex value of y1(x(t))
or y2(x(t)). Intersection points where the colours align correspond to sheet
intersection points in A41 and so this diagram shows two distinct paths from
(1−t

2
(1 +

√
5), 1) to (i, 1).

7

7

6

6

4

5

5
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3
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2

2

11
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-0.5
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Figure 2. Intersections of the irreducible branch with y2 = x for the 41 knot.
Intersections with the abelian branch are in black.

for the Chern-Simons invariant can be expressed25 (after some simple integrations-by-parts)

25While in general the integration contour needs to stay on A41 , for small contours like this one it doesn’t
matter.
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as:

CSleading =
1

8Ã2

([
log
(
xleading

)]2
(2.32)

−1

2

∫ θleadingm,2

3

d¹ log

(
¹ +
√
¹2 − 4

¹ −
√
¹2 − 4

)
2(2¹ − 1)√

(¹ + 1)(¹2 − 4)(¹ − 3)

)
(2.33)

= −0.0029434014775824953.... (2.34)

This is the CS invariant value listed in the first row of Table 3. The lower limit on the ¹
integration comes from the chosen reference intersection point, xref = 1

2
(1 +

√
5), for which

¹refm,2 ≡ (xref)2 + (xref)−2 = 3, as described in Section 2.1.
Similarly, from the Adjoint Reidemeister torsion analysis in Section 2.2.2, we use expression

(2.26) with p = −1, q = 2, u evaluated at the vanishing of the Riley polynomial, ϕ−1(x, u) = 0,

all evaluated at ¹leadingm,2 :

Äadj
S3
−1/2

(41)
(leading) =

[
−1

2

√
(¹m,2 − 3) (¹m,2 + 1) + 2(2¹m,2 − 1)

(¹m,2 + 1)(¹m,2 + 2)(¹m,2 − 2)(¹m,2 − 3)

]

θm,2=θleadingm,2

(2.35)

= 41.6374502692239... (2.36)

This is the Torsion value listed in the first row of Table 3. Note that both of these invariants
can be evaluated to any desired precision and the procedure is similar for the other intersection
pairs in Table 3.

Note that since 41 is an amphichiral knot, for +1
2
surgery on 41 the corresponding results

for the Chern-Simons and torsion invariants only differ by simple overall minus signs.
As a brief cross check, the intersections lying on the unit circle (labelled ³ = 2, 3, 6, 7

in Table 3) can be realised in SU(2) and in those cases our CS results match [KK]. The
Chern-Simons invariants for the other saddles ³ in Table 3 are new. More discussion of
observations from these computations can be found below in Section 2.4. We also note that
this example of the 41 knot is representative of a large class of hyperbolic twist knots, as
discussed in Section 5.

2.3.2. Surgeries on the 52 knot. Surgeries on another interesting class of hyperbolic twist
knots is illustrated by surgeries on the 52 knot. For the 52 knot we have

Airred
52

(x, y) = x14+(x4−x6+2x10+2x12−x14)y+(−1+2x2+2x4−x8+x10)y2+y3 (2.37)

and so Airred
52

forms a 3 sheeted branched covering space over (C∗)x with local sections
y1(x), y2(x), y3(x). There are now several types of intersection points in A52 :

• Exactly two sheets of the irreducible branch intersect26.
• A single sheet of the irreducible branch intersects the abelian branch.
• All three sheets of the irreducible branch intersect.
• All three sheets of the irreducible branch intersect the abelian branch.

We focus on the first two possibilities as the last two are either all spurious or correspond to
parabolic representations. This leaves us with a collection of points where exactly 2 sheets of
A52 meet, as shown in Figure 3. As

∆52(x
2) = 2x2 + 2x−2 − 3

26These also occur the 41 case but were not important there.
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³ x y CS Invariant Torsion
Normalized
CS Invariant

Stokes
Constant

1 1.622270086 1.273683668 −0.002943401 41.637450 1 1.1036698

2 0.48 + 0.88i −0.86− 0.51i −0.485874320 5.7891940 165.072391 2.9598667

3 −0.42 + 0.91i −0.54− 0.84i 0.053933576 2.6968674 −18.323554 4.3366204

4 −1.44 + 0.04i −0.02− 1.20i 0.123303626
±0.03542464i

−1.975859
∓0.076259i

−41.891542
∓12.03527i

−0.097680
±5.06362i

5 −0.69 + 0.02i −0.01− 0.83i

6 −0.19 + 0.98i 0.64 + 0.77i 0.235159766 3.5102399 −79.893881 3.8011307

7 0.16 + 0.99i 0.76 + 0.65i −0.171882873 6.3179654 58.3960000 2.8333002

Table 3. Chern-Simons and Adjoint Reidemeister Torsion invariants for −1
2

surgery on the 41 knot. The normalized CS invariants are the CS invariants
divided by the CS invariant of smallest magnitude, and the Stokes constants
are related to the torsions via expression (2.28). See also Section 2.4. These
invariants can be evaluated to essentially any degree of precision.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

Figure 3. A plot of the x values of branch points where exactly 2 sheets meet,
for the 52 knot. Branch points involving the abelian branch are in red. The
lines show three paths from the abelian branch to the point (1, i) each arriving
on a different sheet of the irreducible branch.

we set our intersection point with the abelian branch to be
(

1
2

√
3 + i

√
7, 1
)
=
(

1
2
√
2
(
√
7 + i), 1

)
.

We again start with analysing 0-Surgeries as this gives a simpler setting to explain the
differences from the 41 case. Setting y = 1 the polynomial for the irreducible branch factors
as

Airred
52

(x, 1) = x4(1 + x2)3∆52(x
2) (2.38)

and so we get three Chern-Simons values corresponding to approaching the point x = i along
each of the three sheets. As only one of the irreducible sheets intersects the abelian branch
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Figure 4. Plots of the three branches along respectively the red, blue and
black paths in Figure 3. Intersection points where colours line up correspond
to intersections of irreducible sheets. The shading is the same as in Figure 1,
with green corresponding to t close to 0, and red to t close to 1.

we need to use some intersection points to shift between the irreducible sheets. The simplest
path for arriving on each sheet is shown in Figure 3, and the plot of what the three sheets
look like along these paths is given in Figure 4.

Looking at Figures 3 and 4, we see that along the red and black paths, y circles 0 once so
log((Ä1)y) = 2Ãi, and along the blue path it circles twice Equation (2.5), we find that the
three CS values are −1

7
,−2

7
and −4

7
, cf. [CGPS].

Finally we move on to the more interesting example, ±1
2
-surgery on the 52 knot. Using

the work in the preceding subsections, it is straightforward to extend our algorithm to the
±1

2
-surgeries. Intersection points of the irreducible branch with the curves x = y∓2 correspond

to roots of the polynomials

Airred
52

(y−2, y) =

= y−28(1 + y)3
(
1− 4y + 9y2 − 16y3 + 25y4 − 34y5 + 43y6 − 52y7 + 61y8 (2.39)

−68y9 + 74y10 − 79y11 + 83y12 − 86y13 + 87y14 − 86y15 + 83y16 − 79y17 + 74y18

−68y19 + 61y20 − 52y21 + 43y22 − 34y23 + 25y24 − 16y25 + 9y26 − 4y27 + y28
)

Airred
52

(y2, y) =

= −y2(1 + y)3(1− y + y2 − y3 + y4)(1− 2y + y2 − y4 + y6 − 2y7 + y8) (2.40)

(1− y + 2y2 − 2y3 + 2y4 − 3y5 + 3y6 − 3y7 + 2y8 − 2y9 + 2y10 − y11 + y12)

These are shown27 in Figure 5 along with the branch and sheet intersection points. From
this we find that there are 12 and 14 pairs respectively. Using these intersection points and
applying the general algorithm described above, we obtain the Chern-Simons invariants and
Adjoint Reidemeister torsions summarized in Tables 4 and 5. Note that these invariants can
be computed to essentially any desired precision.

2.4. Curious observations. Looking at the complete set of geometric invariants for ±1
2

surgery for the 41 and 52 knots, as shown in Tables 3, 4 and 5, some interesting structures
emerge:

27Ignoring spurious points located at x = 1.
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Figure 5. Intersections of the irreducible branch of the 52 knot with x = y2

(−1
2
surgery) and x = y−2 (+1

2
surgery), respectively. Red and black points

are sheet intersection points as in Figure 3. The corresponding CS values and
Adjoint Reidemeister Torsions appear in Tables 4 and 5.

• While the Chern-Simons values in Tables 3, 4 and 5 appear to be generically irrational,
we observe numerically that if we take the sum of all the Chern-Simons values (for a
given surgery) we get a rational number (to several hundred digits of precision):

S3
± 1

2
(41) :

7∑

α=1

CS(³) = ±1

8

S3
+ 1

2
(52) :

14∑

α=1

CS(³) = − 5

12
(2.41)

S3
− 1

2
(52) :

12∑

α=1

CS(³) =
3

4

This hints at some form of integrability. Recall, that Chern-Simons values for a
surgery on a knot are given by integrals of a Liouville 1-form along open paths on the
A-polynomial curve. In general, there are many inequivalent homotopy types of paths
that correspond to different integral lifts of the flat connections and the corresponding
Chern-Simons values. Consistency of the theory imposes stringent constraints on
period integrals of this 1-form along closed 1-cycles on the A-polynomial curve, which
basically express independence on the lift for SU(2) Chern-Simons theory and other
similar specializations [Guk05]. We expect the relations (2.41) to be of a similar
nature. In other words, we expect that the sum over flat connections in (2.41) can be
expressed as a concatenation of paths on the A-polynomial curve, so that the total
integral has especially simple form.
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³ x y CS Invariant Torsion
Normalized
CS Invariant

Stokes
Constant

1 0.71 + 0.70i −0.92− 0.38i −0.41474938 34.60612077 −266.36303 3.14638085

2 0.31 + 0.95i −0.81− 0.59i −0.17678762 17.97484582 −113.53768 4.36571281

3 −0.20 + 0.98i −0.63− 0.77i 0.302315372 16.00200688 194.154930 4.62701090

4 −0.47 + 0.88i −0.51− 0.86i 0.034034396 7.362013101 21.8577894 6.8216504

5 −1.26 + 0.36i −0.16− 1.14i −0.03760350
∓0.0609846i

−1.86400966
∓1.3885247i

−24.149960
∓39.16589i

3.82037990
±11.52378i

6 −0.73 + 0.21i −0.12− 0.86i

7 −0.99 + 0.17i −0.08− 1.00i −0.14661662 9.505081961 −94.161070 6.00357329

8 −0.86 + 0.51i 0.27 + 0.96i −0.09186365 6.260695062 −58.997265 7.39735522

9 −0.35 + 0.94i 0.57 + 0.82i 0.101277095 3.284475775 65.0428294 10.2130326

10 1.29 + 1.36i 1.26 + 0.54i 0.126589040
±0.0255284i

−6.30070938
∓2.4528860i

81.2988306
±16.39501i

1.31374918
±6.995940i

11 0.37 + 0.39i 0.67 + 0.29i

12 0.07 + 1.00i 0.73 + 0.68i −0.45846249 24.92967061 −294.43674 3.70705884

13 0.17 + 0.99i 0.76 + 0.65i 0.257772219 14.36839939 165.548138 4.88296436

14 0.94 + 0.33i 0.99 + 0.17i −0.00155708 267.5361287 −1 1.13160936

Table 4. Chern-Simons invariant and Adjoint Reidemeister Torsion for +1
2

surgery on the 52 knot. The normalized CS invariants are the CS invariants
divided by the CS invariant of smallest magnitude, and the Stokes constants
are related to the torsions via expression (2.28). See also Section 2.4. These
invariants can be evaluated to essentially any degree of precision, as discussed
in the text.

• It is clear from their definition that torsions are algebraic numbers and so can be
encoded as the roots of an integral polynomial, the torsion polynomial (2.14):

Ãadj

S3

−
1
2

(41)
(t) = −7215127 + 2828784t2 − 417832t3 − 272624t4 + 83296t5 − 7168t6 + 128t7

(2.42)

Ãadj

S3

+1
2

(52)
(t) = 5554214481270856813− 833790268928570748t2 − 163953024020455456t3

+ 128473842183215536t4 − 11213038799872672t5 − 2369935480771328t6

+ 398092105583488t7 + 8781117136640t8 − 6166471077376t9 (2.43)

+ 584070450176t10 − 26306131968t11 + 607559680t12

− 6316032t13 + 16384t14
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³ x y CS Invariant Torsion
Normalized
CS Invariant

Stokes
Constant

1 e
2πi
5 e

9πi
5

1
6

5 94.4345662 6.85952149

2 e
4πi
5 e

3πi
5

1
6

5 94.4345662 6.85952149

3 2.57746915 0.62287839 5
48

2
(
7− 2

√
2
)

59.0216038 5.31023704

4 0.57 + 0.82i −0.89 + 0.46i −19
48

2
(
7 + 2

√
2
)
−224.28209 3.45956754

5 −0.98 + 0.19i 0.09− 1.00i 5
48

2
(
7− 2

√
2
)

59.0216038 5.31023704

6 −0.07 + 1.00i 0.68− 0.73i −19
48

2
(
7 + 2

√
2
)
−224.28209 3.45956754

7 0.22 + 0.98i −0.78 + 0.63i −0.13406551 21.59143663 −75.962512 3.30094321

8 −0.33 + 0.94i −0.58 + 0.82i 0.388460431 7.558096488 220.104554 5.57920869

9 −1.45 + 0.36i 0.10− 0.81i 0.211341064
∓0.0564034i

−1.67330521
∓0.6108315i

119.747410
∓31.95860i

2.00099436
±11.31681i

10 −0.65 + 0.16i 0.15− 1.22i

11 −0.21 + 0.98i 0.63 + 0.78i 0.321158064 7.764552467 181.970534 5.50453463

12 0.93 + 0.38i 0.98− 0.19i 0.001764890 171.9325248 1 1.16976818

Table 5. Chern-Simons invariant and Adjoint Reidemeister Torsion for −1
2

surgery on the 52 knot. The normalized CS invariants are the CS invariants
divided by the CS invariant of smallest magnitude, and the Stokes constants
are related to the torsions via expression (2.28). See also Section 2.4. These
invariants can be evaluated to essentially any degree of precision, as discussed
in the text.

Ãadj

S3

−
1
2

(52)
(t) =

(
− 5 + t

)2(
164− 28t+ t2

)2
(2.44)

(
44241255 + 32803272t+ 695124t2 − 2966904t3 + 386592t4 − 13152t5 + 64t6

)

Intriguingly, in each of these cases, the torsions are all algebraic half-integers. This
follows immediately from observing that the leading term has the form 2itj for i f j.
• Additionally, observe that the sum of the inverse torsions vanishes. Writing the
polynomial as

∑
i ait

i we see that in all of these cases

αmax∑

α=1

1

Ä(³)
=
a1
a0

= 0 (2.45)

From the perspective of the Borel plane, this translates to a relation between the
squares of the monodromies.
• In general, SL(2,C) flat connections naturally split into 3 categories, SL(2,R), SU(2)
and full SL(2,C) connections. Given a point (x, y) ∈ AK , the flat connection lies in
SL(2,R) if x, y ∈ R and in SU(2) if x, y ∈ S1. We stress that the properties described
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above only hold when we consider all 3 categories together. In particular, for each
knot surgery we find that

∑

SU(2)

1

torsion
+
∑

SL(2,R)

1

torsion
= −

∑

SL(2,C)

1

torsion
(2.46)

• For connections in SL(2,R) or SU(2), the corresponding torsions are positive real
numbers. Hence in order for the sum of the inverse torsions to be 0, the SL(2,C)
contribution, needs to cancel the SL(2,R) and SU(2) contributions. For some surgeries
(such as −1 on the 41 knot), all torsions lie in SL(2,R) or SU(2). Hence for these
surgeries the sum of the inverse torsions must be non-zero. That being said, the sum
appears to always be integral. We explore this further in Appendix B.
• In the case of the −1

2
surgery on 52, half the CS invariants are simple rational numbers,

with corresponding closed-form torsions. These simple values are associated with the
factorization (for −1

2
surgery) of the irreducible A-polynomial A52(y

2, y) in (2.40),

and of the torsion polynomial Ãadj

S3
−1/2

(52)
(t) in (2.44). As can be seen in Appendix B,

this turns out to be the first indicator of a more general structure concerning the − 1
n

surgery on the Kn twist knots.

In the next section we show how the Chern-Simons and Torsion values in Tables 3, 4 and
5 can be obtained numerically via resurgent analysis applied to a truncated perturbative
expansion of the Chern-Simons partition function. The basic strategy is to explore the Borel
plane using as input this truncated perturbative expansion of the Chern-Simons partition
function in powers of ℏ. We convert this to a truncated Borel transform, and then explore its
singularity structure. The singularities of the Borel transform describe the non-perturbative
physics. The goal is to find: (i) the location, (ii) the exponent, and (iii) the strength, of each
singularity. As explained above, each of these has a physical meaning. In increasing order of
precision we can do the following:

(1) Simple ratio tests, combined with Richardson acceleration, can provide information
about leading Borel singularities.

(2) To probe subleading (i.e., more distant) Borel singularities, a useful (but rough)
picture can be easily obtained using a Padé approximant for the Borel transform of
the truncated series.

(3) Given this rough picture, a more precise analysis can be achieved by making a suitable
conformal map, and then making a Padé approximation. Even if this conformal map
only takes into account the leading singularities, this step still leads to significant
improvements in precision [CD20a].

(4) Much more precise information can be achieved using a suitable uniformizing map
instead of the conformal map. The method of singularity elimination provides
a powerful method to probe any given singularity with extremely high precision
[CD20b].

We provide explicit examples of these numerical methods in the next Section.

3. Resurgent analysis for hyperbolic surgeries

From the perspective of complex Chern-Simons theory, our analysis in section 2 is essentially
classical, or at best semi-classical, as it relies on the Gaussian approximation near each saddle
point of the Feynman path integral (1.6). The goal of this section is to probe deeper into the
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structure of the full quantum theory by applying powerful techniques of resurgent analysis to
a very high loop order of the perturbative expansion (1.7). This should teach us about the
non-perturbative formulation of the theory, in particular allowing a direct comparision with
the BPS q-series (1.12) that provides a candidate for the non-perturbative completion that
behaves well under cutting-and-gluing operations.
For a given choice of the 3-manifold (1.14), the starting point of this analysis is the

analytic continuation, Bα(À), of the Borel transform of the perturbative series (1.7). For a
generic choice of the SL(2,C) flat connection ³, the computation of (1.7) can be carried out
by a variety of different methods (such as the explicit computation of Feynman diagrams,
topological recursion, etc.), but for ³ = 0 we can use a shortcut. Indeed, at the perturbative
level, the Feynman path integral (1.6) is analytic in A, so that all perturbative coefficients in
(1.7) should be the same in theories with gauge groups SU(2) and SL(2,C). This important
feature was discussed in detail in [Guk05], where it was also used to explain the volume
conjecture and to produce its various generalizations. In particular, one consequence of this
non-trivial fact is that the perturbative expansion in complex Chern-Simons theory near the
trivial flat connection ³ = 0 is given by the “Laplace transform” (cf. [BBL, GMP]):

Zpert
α=0(S

3
p/r(K)) ≃ L(0)

p
r

(
(x

1
2r − x− 1

2r ) (x
1
2 − x− 1

2 )
∞∑

m=0

Cm(K; q)(qx)m(qx
−1)m

︸ ︷︷ ︸
F (q,x)

)
(3.1)

where q is related to ℏ as in (1.13), Cm(K; q) are the cyclotomic coefficients for the knot K,

and the operation L(a)
p
r

is defined as

L(a)
p
r
(qixj) =

{
qi−j2 r

p rj − a ∈ pZ
0 otherwise.

(3.2)

It is not an accident that the same structure appears in the computation of the non-
perturbative invariants (1.12). For this reason, in (3.1) one can replace F (q, x) by its
non-perturbative counterpart [GM], re-expanded in ℏ. Either way, for ³ = 0 the computation
of the perturbative series in complex Chern-Simons theory drastically simplifies and can be
expressed in terms of simpler objects familiar from the SU(2) Chern-Simons theory.28 For
example, the cyclotomic coefficients can be written explicitly for a general twist knot Kn

[Mas]:

Cm(Kn; q) = qm
m∑

j=0

(−1)jqj(j+1)n+j(j−1)/2(1− q2j+1)
(q; q)m

(q; q)m+j+1(q; q)m−j

(3.3)

and in the special cases p = −1 and p = 2 reduce to rather compact expressions for the knots
41 and 52, which we use as our prime examples to peform surgeries on29

K−1 = 41 : Cm(41; q) = (−1)mq−m(m+1)
2 (3.4)

28Clearly, this can not be the case for more general α; after all, even the notion of a complex flat connection
itself may not be meaningful in a theory with SU(2) gauge group.

29It is currently not known whether there is a way to express the BPS q-series of a knot complement,

FK(x, q) :=
∑

b∈Z
Ẑb(S

3 \K; q), in terms of cyclotomic coefficients, for a general knot K.
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K2 = 52 : Cm(52; q) = qm
m∑

j=0

(−1)jqj 3+5j
2 (1− q2j+1)

(q; q)m
(q; q)m+j+1(q; q)m−j

(3.5)

Substituting these into (3.1) gives an efficient way of computing the perturbative series to a
very high loop order. This provides perturbative data from which we use resurgent analysis
to extract non-perturbative information about the Chern-Simons theory. Therefore, our next
goal is to analyze the corresponding Borel plane for hyperbolic surgeries on twist knots.30

3.1. Surgeries on 41 knot. For the figure-eight knot K = 41, the surgeries (1.14) with
opposite coefficients +p

r
and −p

r
are directly related to our main question (1.4) since the

resulting 3-manifolds are related by orientation reversal. Indeed, in general the orientation
reversal of M3 = S3

+ p
r
(K) also admits a surgery presentation S3

− p
r
(K̄) on the mirror knot K̄.

Since the figure-eight knot is amphichiral, it suffices to flip the sign of the surgery coefficient
to reverse the orientation of M3. In Section 4 we discuss the effect of this operation on the
BPS q-series, relating (3.1) and (3.9) below, and proposing an answer to the general question
(1.4).

For −1
2
surgery on the figure-eight knot K = 41, using the procedure outlined above we

expand the perturbative partition function (3.1) to order ℏ228. The first few terms are given
here:

Zpert
α=0(S

3
− 1

2
(41)) = 1 +

97ℏ

8
+

33985ℏ2

128
+

24726817ℏ3

3072
+

30753823105ℏ4

98304
+

58360349239777ℏ5

3932160
+ . . .

:=
∞∑

n=0

an ℏ
n (3.6)

The coefficients an are all rational and positive. The full set of perturbative coefficients is
presented in an accompanying supplementary data file. As mentioned above, the 41 knot is
amphichiral, and so the perturbative series for the +1

2
surgery can be obtained simply by

replacing ℏ→ −ℏ:

Zpert
α=0(S

3
+ 1

2
(41)) = 1− 97ℏ

8
+

33985ℏ2

128
− 24726817ℏ3

3072
+

30753823105ℏ4

98304
− 58360349239777ℏ5

3932160
+ . . .

:=
∞∑

n=0

(−1)nan ℏn (3.7)

While the two perturbative expansions (3.6) and (3.7) are related by an obvious symmetry,
their respective non-perturbative completions can be obtained from the surgery formulae
[GM, Park21] and the results turn out to be highly asymmetric, as functions of q:

Ẑ
(
S3
− 1

2
(41)

)
= −q−1/2(1− q + 2q3 − 2q6 + q9 + 3q10 + q11 + . . .

+2335418615q1600 + . . . ) (3.8)

Ẑ
(
S3
+ 1

2
(41)

)
= q3/2(1− 2q2 + q3 − 3q4 + 4q5 − q6 + q7 + 5q8 + . . . ) (3.9)

30In the special case of − 1
2 surgery on the figure-eight knot, the resurgent analysis around the saddle α = 0

(trivial flat connection) was independently carried out in the recent work [Whee]. It is not clear, though,
what non-perturbative completion, if any, was assumed in [Whee] and how it relates to the Spinc decorated
TQFT that provides a non-perturbative completion based on Q-cohomology (BPS spectra).
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In a similar way, one can obtain explicit expressions for surgeries on twist knots as well as
general positive braid knots [Park20], satellite knots [Chae23], and connect sums [Chae21].

3.1.1. Leading Borel structure from the Perturbative Coefficients. Given these formal series
(3.6)-(3.7), the first interesting physical observation is that they are factorially divergent.
This can be seen clearly from a simple ratio test, which shows that

an+1

an
∼ (8.6058 . . . )×

(
n+

3

2

)
(3.10)

See Figure 6, which illustrates that the leading growth rate of this ratio is
(
n+ 3

2

)
, rather
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n
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Figure 6. Ratio test for the coefficients an of the perturbative series expansion
of the Chern-Simons partition function Zpert

α=0(S
3
− 1

2

(41)) in (3.6). The curves

plot the ratios an+1

an (n+ 1
2)

[blue dots], an+1

an (n+ 3
2)

[orange dots], and an+1

an (n+ 5
2)

[green

dots], as a function of the perturbative order n. The 1/
(
n+ 3

2

)
factor is clearly

preferred, as can be confirmed by further Richardson accelerations. This carries
information about the nature of the leading Borel singularity.

than some other offset from n. The overall constant factor in (3.10) can be determined to
extremely high precision using high order Richardson extrapolation [BO] of the ratio an+1

an (n+ 3
2)
.

The inverse of this overall constant gives the radius of convergence of the corresponding Borel
transform (discussed below in Section 3.1.2):

radius41 = 0.11620083270928446726565248388502115693767811655351206400791649983959 . . .

(3.11)

With our 228 coefficients an as perturbative input, this radius of convergence can be computed
to 140 stable digits. This determines to very high precision the Chern-Simons invariant (with
conventional normalization) for the leading non-trivial saddle:

CS(³1) = −radius41
4Ã2

(3.12)
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= −0.0029434014775824953073213809724952529218074079609198 . . . (3.13)
This agrees to all 140 stable digits with the leading Chern-Simons invariant computed using
the A-polynomial method in the previous Section: see the first row of Table 3.

The leading factorial divergence of the expansion coefficients is therefore of the form:

an ∼ S41
Γ
(
n+ 3

2

)

(radius41)
n

, n→∞ (3.14)

The Stokes constant S41 , can also be determined to extremely high precision using high order
Richardson extrapolation. We find

S41 = 1.1036697620938896715472771709343445316179658869626659342 . . . (3.15)

This Stokes constant agrees to all 140 stable digits with the Stokes constant associated
with the leading Chern-Simons invariant listed in Table 3. Recall that in Table 3 this value
was derived from the Adjoint Reidemeister torsion using the A-polynomial method, with
the identification in (2.28), and can be computed to arbitrary precision. This is the first
confirmation of the identifications (as shown in Table 1) of the geometric data, the Chern-
Simons invariant and the Adjoint Reidemeister torsion, with the perturbative data derived
directly from the formal perturbative expansion of the partition function. The perturbative
expansion is an expansion about the trivial saddle point, but the simple analysis above
demonstrates that this expansion encodes precise information about the location of, the
exponent of, and the strength of the closest (most dominant) non-perturbative Chern-Simons
saddle. We show below that information about more distant saddles may also be decoded
from the perturbative series, but that this requires more sophisticated methods than simple
ratio tests.
With 228 terms of the formal series it is also possible to extract subleading power-law

corrections to the leading large-order factorial growth in (3.14):

an ∼ S41
Γ
(
n+ 3

2

)

(radius41)
n

[
1− (0.0572609835...)(

n+ 1
2

) + . . .

]
+ . . . , n→∞ (3.16)

It is straightforward to extract further subleading power-law corrections and this has important
applications, as discussed below in Section 3.1.4.

3.1.2. Padé-Borel and Padé-Conformal-Borel Analysis. In fact, we also expect further ex-
ponentially suppressed corrections to the large order growth in (3.16). These exponentially
suppressed corrections are associated with more distant Borel singularities, which in turn
are identified with Chern-Simons invariants of greater magnitude. These are difficult to
resolve with ratio tests and root tests, because the exponentially suppressed corrections are
swamped by the power-law corrections. However, some of these further Borel singularities
can be resolved using simple Padé and conformal mapping methods in the Borel plane. Due
to the large values of the Chern-Simons invariants in Table 3, to resolve the most distant
Borel singularities we need to use more refined techniques, such as singularity elimination
[CD20b], described below in Section 3.1.3.

The first step is to regularize the divergent formal series (3.6) by transforming to the Borel
plane. We define the Borel transform by dividing out the factorial growth of the coefficients:

B41(À) :=
∞∑

n=0

an
Γ(n+ 1)

(radius41)
n Àn (3.17)
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This is now a convergent series. We choose to multiply the Borel variable À by a factor of
(radius41), as this leads to a convenient normalization in which the Borel radius of convergence
is 1. The formal perturbative series (3.6) is reconstructed term-by-term by the Laplace-Borel
integral

Z41(ℏ) =
(radius41)

3/2

Γ(3/2)ℏ3/2

∫ ∞

0

dÀ
√
À e−radius41ξ/ℏB41(À) (3.18)

The non-perturbative features of the Chern-Simons partition function Z41(ℏ) are encoded in
the singularities of the Borel transform B41(À) in (3.17). Given only a finite number of terms
of the perturbative series for Z41(ℏ) (and therefore also for B41(À)), the technical challenge
is to extract as much information as possible about the physical Borel singularities. This
information can be extracted with remarkable precision using appropriate combinations of
elementary methods such as Padé approximants, conformal maps, and uniformizing maps
[CD20a, CD20b].
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Figure 7. The Padé-Borel poles from an order [114, 114] diagonal Padé
approximant to the 228 term truncated Borel transform in (3.17). The Borel
variable À is normalized so that the leading singularity is at +1. Figure 8 shows
a zoomed-in view of the poles accumulating to À = 1 on the positive Borel axis.

Padé approximants [BGM, BO] provide a simple rough overview of the singularity structure
in the Borel plane. Given our 228 term truncation of the Borel transform, we first construct
a diagonal Padé approximant of order [114, 114], and compute its poles in the Borel plane.31

The Padé-Borel poles are shown in Figure 7, and a zoomed-in view of the neighborhood of
the leading singularity is shown in Figure 8. This simple Padé analysis confirms that the
leading Borel singularity is indeed at À = 1, consistent with our normalization convention
in (3.17). Recall that since Padé is by construction an approximation by rational functions,
its only possible singularities are poles. Padé represents branch points as the accumulation
points of arcs of poles, according to the electrostatic interpretation of Padé as a minimizer of
an associated capacitor [GS58, St97, Sa10, CD20a, CD20b].

31We also compute near-diagonal Padé approximants, to filter out spurious Padé poles.
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Figure 8. A zoomed-in view of the Padé-Borel poles accumulating on the
positive Borel axis, from Figure 7. We see a line of poles accumulating to À = 1,
which is how Padé attempts to represent a branch cut, with a branch point at
the accumulation point.

Thus, this elementary Padé-Borel construction decodes the leading Chern-Simons invariant,
and by plotting the Padé-Borel transform as it approaches the leading singularity we can
also extract a rough numerical estimate of the associated Stokes constant, which tells us
the associated Adjoint Reidemeister torsion. However, to obtain higher precision, and more
importantly to decode the other Chern-Simons invariants, and their associated Reidemeister
torsions, we need further tools, beyond Padé-Borel. Here we can take advantage of the
fact that the other Chern-Simons invariants have much larger magnitude (see column 6 in
Table 3). Hence we expect the other Borel singularities to be far separated from the leading
one. This means that the Borel branch cut starting at À = 1 is dominant, and we can
therefore build an approximate conformal map based on it. This conformal map significantly
improves the precision of the Padé analytic continuation of the truncated Borel transform
(this improvement can be quantified [CD20a]). This enables a more precise numerical probe
of the leading singularity, but more importantly it resolves more cleanly the more distant
Borel singularities. Concentrating on this leading cut in the Borel plane we map the cut
plane into the unit disk via the invertible conformal map

À =
4z

(1 + z)2
←→ z =

1−√1− À
1 +
√
1− À (3.19)

The Padé-Conformal-Borel procedure is to re-expand the mapped truncated Borel series

B
(

4z
(1+z)2

)

to the same order (this is optimal [CD20b]) in z, and then make a Padé approximant

in z, and finally to map back to the original Borel À plane. The resulting landscape of
singularities in the Borel plane is shown in Figure 9. Here the black dots show the Padé poles
in the conformal z plane when they are mapped back to the original Borel À plane. The red
dots show the Chern-Simons invariants computed from the A-polynomial approach, as listed
in Table 3. Compared to the Padé-Borel results in Figure 7, we now see much more clearly
and precisely the complex conjugate pair of singularities at À = −41.8814± 12.0371i, and
we also resolve a singularity at À = 58.3754..., close to an exact Chern-Simons invariant at
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Exact
CS Invariant

Normalized
CS Invariant

Padé-Borel
Padé-Conformal

-Borel
Singularity
Elimination

−0.002943401 1 1 1 1

−0.485874320 165.072391 not resolved not resolved 161.05

0.053933576 −18.323554 not resolved absent absent

0.123303626
±0.03542464i

−41.891542
∓12.03527i −42∓ 12i −41.8814

∓12.0371i
−41.891542
∓12.03527i

0.235159766 −79.893881 not resolved not resolved −79.89
−0.171882873 58.3960000 not resolved 58.3754 58.3960000

Table 6. CS Invariants for −1
2
surgery on the 41 knot, obtained from different

analysis methods using the same perturbative input. The first column has the
exact CS invariants, from Table 3. All subsequent columns list the normalized
values, which are obtained from the exact ones by dividing by the leading CS
invariant −0.002943401. These subsequent columns show the CS invariants ex-
tracted using the Padé-Borel, Padé-Conformal-Borel, or singularity elimination
methods to analyze the Borel transform based on the finite order perturbative
expansion in (3.6). Note that the more precise methods exclude, with very
high numerical precision, the existence of a Borel singularity near −18.323554.
This illustrates the power of the singularity elimination method in resolving
even very distant singularities.

58.3960000. These values are shown in Table 6. We stress that these Padé-Conformal-Borel
results are obtained from exactly the same perturbative input used for the Padé-Borel results
shown in Figure 7, but just processed differently.

However, this Padé-Conformal-Borel analysis is still not able to resolve the expected more
distant singularities at À = −79.893881 and À = 165.072391. Nevertheless, it is interesting to
note that this analysis does rule out the existence of a Borel singularity at À = −18.3236 to a
high degree of precision (this is made even more precise in the next subsection below, using
the singularity elimination method). This leads to the prediction that this Chern-Simons
invariant (labelled pair number 3 in Table 3) is disconnected from the perturbative saddle.

3.1.3. Singularity Elimination Analysis of the Borel Structure. A more refined method to
probe the Borel singularities is to use “singularity elimination” [CD20b]. The essential
idea underlying this method is to note that an isolated singularity (in this context a Borel
singularity) can be removed by a suitably chosen sequence of maps. The first map is an
invertible linear operator (essentially a fractional derivative) that converts the exponent of
the singularity to 1

2
. A second map, À → 2z − z2 for example, makes the function analytic

at the location of the original singularity (assuming À has been normalized to place the
singularity at À = 1). In this current problem we are fortunate because each singularity
already has a half integer exponent [GMP, GM]. Thus, only the second map is needed. This
singularity elimination procedure is extremely sensitive, in part because there are simple
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Figure 9. Padé-Conformal-Borel analysis of the Borel singularities for −1
2

surgery for the 41 knot case. The black dots show the inverse conformal map
images of the poles of the Padé approximant made in the conformal z plane.
The opaque red dots show the Chern-Simons invariants (see Table 3) for this
−1

2
surgery on the figure-eight knot 41, computed using the A polynomial

method in Section 2.1. Notice that the Borel singularity near À = 59 is now
resolved: compare with Figure 7 where this singularity is not resolved.

procedures to distinguish analyticity from non-analyticity. For example, if the location of the
original singularity is only known approximately, this location can be iteratively tuned so
that the singularity is fully removed, in the sense that the residue at the mapped location
truly vanishes.

The procedure for the second map is as follows. Suppose the function F (À) under consid-
eration has a regular expansion about À = 0 with a finite radius of convergence, due to a
square root non-analyticity at a point that we normalize to lie at À = 1:

F (À) =
√

1− À A(À) + B(À) , À → 1 (3.20)

=
√

1− À
∞
∑

k=0

ak(1− À)k +
∞
∑

k=0

bk(1− À)k (3.21)

Here A(À) and B(À) are analytic at À = 1. Now compose with the map À = 2z − z2. Then,
since À = 0 maps to z = 0, F (2z − z2) is also analytic at z = 0, and since À = 1 maps to
z = 1, the location of the non-analyticity is not moved. However, now F (2z − z2) is analytic
at z = 1. In fact, near z = 1:

F (2z − z2) = b0 + a0(1− z) + b1(1− z)2 + a1(1− z)3 + b2(1− z)4 + . . . (3.22)

The coefficients ak and bk in (3.22) are exactly those in the original expansion (3.21). These
can be determined for example by making a Padé approximation to the re-expansion of
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F (2z − z2) about z = 0, to the same order as the original expansion (this truncation order is
optimal [CD20b]). The coefficient a0 determines the Stokes constant at À = 1, and the an
coefficients determine the fluctuations about the leading singularity.
Applying this to the new leading singularity (after elimination of the closest singularity,

normalized to be at À = +1) we now obtain 19 digits of precision, compared to 2 digits of
precision from Padé-Borel, and 5 digits of precision from Padé-Conformal-Borel. Note that the
input data is exactly the same, but the singularity elimination method is much more precise
[CD20b]. Furthermore, from the local behavior near the removed singularity we can extract
the Stokes constant to much higher precision, and we can also analyze more cleanly the more
distant singularities. For example, applying this procedure to probe the more distant Borel
singularities associated with the Chern-Simons invariants at À = −41.891542 ± 12.03527i,
and at À = 58.396, we find the following leading singular behavior in the neighborhood of
each Borel singularity:

B41(À) ∼
(0.0976802126206∓ 5.0636173816082 i)Γ

(

3
2

)

((−41.891542± 12.03527i)− À)3/2 + . . . (3.23)

B41(À) ∼
(2.833300156162 i)Γ

(

3
2

)

(58.396− À)3/2 + . . . (3.24)

This analysis simultaneously determines the location of the Borel singularity and its Stokes
constant to very high precision. The values in (3.24) are obtained to a relative error O(10−21).
The even more distant singularities at −79.89 and 165 are obtained with relative errors of
0.3% and 3%, respectively.

To summarize: applying the singularity elimination method to the Borel transform of the
perturbative series (3.6) we resolve all the remaining (normalized) Chern-Simons invariants,
as shown in the last column of Table 3, except for the one at −18.323554.... We are able to
rigorously rule out (to more than 100 digits of precision) the appearance of a Borel singularity
near −18.323554.... This numerical result strongly suggests that this Chern-Simons saddle is
disconnected from the others, for a symmetry reason that remains to be understood.

3.1.4. Numerical Evidence for Decoupling of the Leading Borel Singularity. We conclude this
Borel analysis of the 41 knot case by presenting two pieces of numerical evidence that the
leading Borel singularity ”decouples” from the other Borel singularities. This evidence is
two-fold:

• We computed the first 20 subleading power-law corrections to the leading factorial
growth of the perturbative expansion coefficients shown in (3.16). This only requires
elementary methods of Richardson extrapolation. Invoking resurgence [Ec81, Co08,
MS16, ABS19], these subleading coefficients encode the fluctuations about the leading
Borel singularity, and in a typical Borel landscape this fluctuation expansion would
itself be divergent. However, these 20 subleading coefficients indicate that this
fluctuation expansion is in fact convergent, not divergent. Therefore, the fluctuations
about the leading Borel singularity are not resurgently coupled to the other Borel
singularities.
• Using the more advanced method of singularity elimination, as described above, we
computed 50 terms of the expansion of the Borel transform function about its leading
singularity, and an analysis of these coefficients shows even stronger evidence of
convergence, even hinting at potentially being entire.
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Moreover, we numerically explored, with reliably high numerical accuracy, two further
sheets of the Borel plane Riemann surface, and determined that neither has new singularities.
This is a fingerprint of linear problems and an indicator of integrability. The singularity
separation noted above is another hallmark of linearity (and integrability). One can simply
subtract out the Laplace transform of the decoupled singularity which then becomes a
standalone transseries term (one which must be an exact solution of the homogeneous part
of the underlying problem). After subtraction, the new Borel plane is freed of this particular
singularity and, as a result, the underlying equation factors, a strong form of integrability.
Together, these pieces of numerical evidence suggest on the geometric side that the flat
connection corresponding to this leading Borel singularity is special. This deserves to be
studied further, both from the geometric and topological perspective and from the quantum
field theory perspective.

3.2. Surgeries on 52 Knot. We now apply the same numerical procedures to the ∓1
2

surgeries on the 52 knot. The 52 knot is interestingly different from the 41 knot, so it is
not clear in advance what to expect. In particular, since the 52 knot is not amphichiral, its
+1

r
and −1

r
surgeries are not related by the orientation reversal32 and represent completely

different 3-manifolds. Therefore, the formal ℏ series of the partition function for the ∓1
2

surgeries will be different. Indeed, we show below that the Borel plane structure is quite
different for the ∓1

2
surgeries.

As before, we expand the partition function as a perturbative series in powers of ℏ. The
first terms are for the ±1

2
surgery are:

Z
−

1
2

52
(ℏ) = 1− 191ℏ

8
+

107137ℏ2

128
− 127522367ℏ3

3072
+

261703390465ℏ4

98304
− 822656668343231ℏ5

3932160
+ . . .

:=
∞
∑

n=0

b
−

1
2

n ℏ
n (3.25)

Z
+ 1

2
52

(ℏ) = −1− 183ℏ

8
− 122577ℏ2

128
− 56438733ℏ3

1024
− 133022451595ℏ4

32768
− 477942803207261ℏ5

1310720
− . . .

:=
∞
∑

n=0

b
+ 1

2
n ℏ

n (3.26)

The full list of expansion coefficients is contained in accompanying supplementary data files.
For −1

2
surgery we generated 228 terms, while for +1

2
surgery we generated 188 terms. Note

that the perturbative expansion for the −1
2
surgery case is alternating in sign, while for the

+1
2
surgery case it is non-alternating.33

3.2.1. Leading Borel structure from the Perturbative Coefficients. We observe that the formal
series (3.25) and (3.26) are factorially divergent. Ratio tests combined with Richardson
extrapolation determine the leading growth as:

b
−

1
2

n ∼ (− 1)n S
5
−

1
2

2

Γ
(

n+ 3
2

)

(radius
5
−1/2
2

)n
, n→∞ (3.27)

32Instead, for K = 52 we have S3

+1/r(K) = −S3

−1/r(K̄) and S3

+1/r(K̄) = −S3

−1/r(K).
33This sign pattern correlates with the sign of the surgery in the opposite way compared to the 41 case.

This sign pattern change is characteristic of the two different classes of hyperbolic twist knots: see Section 5.5.
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b
+ 1

2
n ∼ −S

5
+1

2
2

Γ
(

n+ 3
2

)

(radius
5
+1/2
2

)n
, n→∞ (3.28)

The offset 3
2
of the factorial growth term is clearly seen in a ratio test. Therefore the expansion

coefficients b
∓

1
2

n of both series have the same factorial divergence Γ
(

n+ 3
2

)

, which is also the

same as for the ±1
2
surgeries on 41 discussed in Section 3.1.

From (3.27) and (3.28) we can extract the radii of convergence of the associated Borel
transforms:

radius
5
−1/2
2

= 0.06967508334205362331643137281436160974803084178134507 . . . (3.29)

radius
5
+1/2
2

= 0.06147117938868975855184395044865487683233400560419384 . . . (3.30)

These Borel radii of convergence are close in magnitude, but clearly distinct, for the two ∓1
2

surgeries. They are also approximately half the magnitude of the Borel radius of convergence
for the 41 knot case in (3.11). These features may be understood from the A-polynomial
perspective: see Section 5.2.

This defines, for each surgery, the leading Chern-Simons invariant:34

CS(³2)5−1/2
2

=
radius

5
−1/2
2

4Ã2
(3.31)

= 0.0017648904786488511307396258970947779330492530820971 . . .(3.32)

CS(³2)5+1/2
2

= −
radius

5
+1/2
2

4Ã2
(3.33)

= −0.0015570831638881308832537780298728018909607838655340 . . .(3.34)
These leading Borel singularities match precisely the Chern-Simons invariants of smallest
magnitude derived using the A-polynomial method: compare with the last row of Tables 5
and 4.
The Stokes constants S

5
∓1/2
2

, the overall coefficients in (3.27) and (3.28), can also be

extracted with very high precision:

S
5
−1/2
2

= 1.16976817659921816048007806514112639659319054525915404 . . . (3.35)

S
5
+1/2
2

= 1.13160935822828864782306399594919914503998537214989941 . . . (3.36)

The Stokes constants in (3.35) and (3.36) agree to more than 100 digits of precision
with the corresponding Stokes constants in Tables 5 and 4, based on the identification of
the Stokes constant with the Adjoint Reidemeister torsion in (2.28). Note that these two
Stokes constants for the ∓1

2
surgery cases have a similar order of magnitude, but are clearly

distinct. Furthermore, they also have a similar order of magnitude compared to the Stokes
constant of the leading singularity for the 41 knot in (3.15). Similarly to the Chern-Simons
invariants, these features of the associated Stokes constants may also be understood from the
A-polynomial perspective: see Section 5.2.

Thus, this elementary series analysis once again determines to very high precision three
important physical and geometric quantities: (i) the leading power factor in the growth rate,

34Recall the normalization convention that the Chern-Simons invariant is equal to minus the Borel
singularity.
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which determines the location of the leading Borel singularity, which in turn determines
the leading non-trivial Chern-Simons invariant; (ii) the offset of the factorial growth, which
determines the nature of the leading Borel singularity; (iii) the overall Stokes constant
which determines the Adjoint Reidemeister torsion associated with the leading Chern-Simons
invariant. This non-perturbative information about more distant Borel singularities (and
therefore about other nontrivial flat connections) is indeed encoded in the formal asymptotic
expansions about the trivial flat connection/Chern-Simons saddle.
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Figure 10. The Borel plane structure for the −1
2
surgery on the 52 knot,

resolved by the Padé-Conformal-Borel method. The black dots show the
inverse conformal map images of the poles of the Padé approximant made in
the conformal z plane. The opaque red dots show the Chern-Simons invariants
computed using the A-polynomial method, shown in Table 5.

3.2.2. Padé-Conformal-Borel Analysis. To probe this more deeply, we now turn to the
higher-precision method of Borel analysis. Given the similar form of the leading growth of
the coefficients, compared to the 41 knot case discussed in the previous section, we define
analogous Borel transforms

B
5
∓1/2
2

(À) :=
∞
∑

n=0

b
∓1/2
n

Γ(n+ 1)

(

radius
5
∓1/2
2

)n

Àn (3.37)

from which the formal perturbative series (3.25) and (3.26) are reconstructed by the Laplace-
Borel integral as in (3.18). Note that we have normalized with the appropriate radius of
convergence, so that the leading Borel singularity is at À = ∓1 for the ∓1

2
surgeries. As

described in Section 3.1, we use the Padé-Conformal-Borel procedure to extract information
about the Borel plane singularities.35 The results of this Padé-Conformal-Borel analysis are
shown in Figures 10 and 11. In the plots the black dots show the Padé poles in the conformal
z plane when they are mapped back to the original Borel À plane. The red dots show the
Chern-Simons invariants computed from the A-polynomial approach, as listed in Tables 5
and 4. Note that in Figures 10 and 11, the Borel plane variable À has been normalized by

35We omit the lower-resolution Padé-Borel method.
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Figure 11. The Borel plane structure for the +1
2
surgery on the 52 knot,

resolved by the Padé-Conformal-Borel method. The black dots show the
inverse conformal map images of the poles of the Padé approximant made in
the conformal z plane. The opaque red dots show the Chern-Simons values
computed using the A-polynomial methodshown in Table 4.

the radius of convergence in order to place the leading Borel singularity at À = ∓1 for the
∓1

2
surgery.

In Figure 10 we see that for the −1
2
surgery, the Padé-Conformal-Borel procedure identifies

with good precision the leading singularity, together with 2 more distant ones on the negative
Borel axis, in addition to another complex conjugate pair with negative real part. More
distant Borel singularities at À ≈ −182 and À ≈ −220 are not resolved with the available data.
However, this analysis rules out a singularity near À ≈ 76, implying that the corresponding
flat connection is decoupled from the trivial flat connection.

In Figure 11 we see that for the +1
2
surgery, the Padé-Conformal-Borel procedure identifies

with good precision the leading singularity, together with a more distant one near 59 on the
positive Borel axis, in addition to another complex conjugate pair with negative real part.
There are hints of singularities at À ≈ 94 and À ≈ 113, as well as at À ≈ −165. Furthermore,
this analysis rules out singularities near À ≈ −22 and À ≈ −65, as well as a complex conjugate
pair near À ≈ 24± 39i, implying that the corresponding flat connections are decoupled from
the trivial flat connection.
It is interesting to note that the +1

2
surgery case has a more complicated Borel plane

structure, consistent with the fact that the associated A-polynomials and torsion polynomials
in (2.39) and (2.43) do not factorize like they do for the −1

2
surgery cases in (2.40) and (2.44).

These differences, as well as the patterns of decoupled flat connections, deserve further study
with more perturbative data and using more advanced analysis methods [CD20b].

3.2.3. Evidence for Decoupling of the Leading Borel Singularities. It is straightforward to
extract subleading power-law corrections to the large-order factorial growth in (3.27) and
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(3.28):

b−1/2
n ∼ (− 1)n S

5
−1/2
2

Γ
(
n+ 3

2

)

(radius
5
−1/2
2

)n

[
1− (0.10941587902...)(

n+ 1
2

) + . . .

]
, n→∞ (3.38)

b+1/2
n ∼ −S

5
+1/2
2

Γ
(
n+ 3

2

)

(radius
5
+1/2
2

)n

[
1− (0.09757544883...)(

n+ 1
2

) + . . .

]
, n→∞ (3.39)

Analysis of the first 20 subleading corrections to this large-order growth indicates that for
the each of the ∓1

2
surgeries in this 52 knot case, these subleading coefficients do not grow

factorially. This suggests, as in the 41 case, that the flat connections associated with these
leading Chern-Simons invariants are special. This observation deserves to be studied more
closely in future work.

4. Resurgent continuation to the other side

Recent work on q-series in the 3d-3d correspondence suggests a canonical “duality” operation
on BPS q-series (“orientation reversal”): where under q → 1

q
both F (q) and its dual F (q)(

are q-series with integer powers of q (up to an overall factor q∆) and with integer coefficients
(up to an overall normalization factor). Furthermore, the functions F (q) and their duals
F (q)( have the “same” perturbative expansions near q = eℏ ≈ 1, that only differ by a factor
of (−1)n in the perturbative coefficients

∑
n ℏ

nan, i.e. an 7→ (−1)nan. Since these expansions

are generally divergent, it is natural to use Borel-Écalle methods of resurgent asymptotics
[Ec81, Co08].

In this Section we argue that the Borel representation encodes all the information necessary
to construct an explicit and unique mapping relating F (q) and its dual F (q)( across the
boundary. This argument relies on the fact that the expansions on both sides of the boundary
are divergent, and when these are expressed in terms of resurgent transseries using Borel-
Écalle methods, one can invoke uniqueness of continuation (in the Borel plane) and the
associated preservation of properties for resurgent functions.
Example: We illustrate the problem with a simple and well-known example. Consider

M3 =M(−2; 1
2
, 1
3
, 1
2
). This manifold has two Spinc structures modulo Z2 and, therefore, two

BPS q-series invariants Ẑb(M3, q) for which “going to the other side” (1.4) has been studied

in detail [CCFGH]. Specifically, one of the BPS q-series Ẑb(M3, q) can be written as

Ẑ0(M3, q) =
1

2
q1/24F (q) (4.1)

where F (q) is the false theta-function:36

F (q) = 1−
∑

ng1

(−1)nq n(n−1)
2

(−q; q)n
= 2(1− q + q2 − q5 + q7 − q12 + q15 − q22 + q26 + . . .) (4.2)

This example is special because we have an explicit q-hypergeometric expression for F (q),
which means that one can formally perform the map (1.4) in one line. Indeed, replacing q

36The standard q-Pochhammer symbol is defined as (z; q)n :=
∏n−1

j=0
(1− z qj).
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by q−1 in every term and multiplying both numerator and denominator by the same overall
power of q, for the manifold with reverse orientation, we find

Ẑ0(−M3, q) =
1

2
q−1/24F (q)( (4.3)

where F (q)( can be expressed in q-Pochhammer form:

F (q)( = 1−
∑

ng1

(−1)nqn
(−q; q)n

(4.4)

= 1 + q − 2q2 + 3q3 − 3q4 + 3q5 − 5q6 + 7q7 − . . . (4.5)

We recognize this q-series for F (q)( as that of the celebrated order-3 mock theta-function f(q)
of Ramanujan [Wat, GM12]. This result can also be confirmed by more advanced techniques,
e.g. with the use of Rademacher sums.

Comment: We would like to identify a unique pair of q-series:

unary q-series F (q) ←→ integer-coefficient q-series F (q)( (4.6)

Uniqueness is clearly important, both physically and mathematically. However, note that
even the simple example above is delicate, because there exists a different q-Pochhammer
expression for F (q)( which generates the same q-series as in (4.5), but under the formal
term-by-term replacement q → q−1 in the reverse direction it generates a different q-series for
F (q):

F (q)( =
∞∑

n=0

qn
2

(−q; q)2n
(4.7)

= 1 + q − 2q2 + 3q3 − 3q4 + 3q5 − 5q6 + 7q7 − . . . (4.8)

F (q) =
∞∑

n=0

qn

(−q; q)2n
(4.9)

= 1 + q − q2 + 2q3 − 4q4 + 5q5 − 6q6 + 7q7 − . . . (4.10)

In particular, note that the q-series for F (q) in (4.10) has integer coefficients, but is not
unary, in contrast to (4.2). The difference between two such F (q) expressions can be written
in terms of theta functions [HM14, BFR12].

Goal: In general we are interested in developing a method for (uniquely)
mapping F (q) ´ F (q)( which does not rely on knowledge of explicit q-
Pochhammer representations, and furthermore which does not rely on explicit
knowledge of modular properties.

4.1. The other side of log-VOAs. At this point, it may be helpful to interrupt our
discussion with the explanation of the meaning of the operation “going to the other side” in
physics, vertex algebra, and low-dimensional topology, elaborating on numerous connections
to other subjects briefly mentioned in the introduction. Not only this clarifies our motivation,
but such alternative perspectives on the problem can tell us what should be expected.
We start with the interpretation of (1.4) in algebra, based on the Kazhdan-Lusztig

correspondence. The latter relates representation theory of quantum groups to that of affine
Lie algebras and vertex operator algebras (VOAs). It is usually formulated for negative
values of the “level,” see e.g. [KT1, KT2]. Among many variants of this correspondence
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that have been studied over the years, of particular interest to us is the one that involves
quantum groups at roots of unity and logarithmic VOAs, log-VOAs for short. Characters of
such VOAs are linear combinations of false theta-functions (4.25) and other functions of q
that are relevant to us here.

3d

Figure 12. Vertex operators of a 2d VOA (CFT) are end-points of line
operators in 3d theory. A monodromy of vertex operators in 2d corresponds to
braiding of line operators in 3d.

Since in such algebras (think of a lattice VOA/CFT) the level defines the overall magnitude
of the quadratic form, a naive change of its sign leads to a disaster because energy becomes
unbounded from below. For characters, this operation looks as if q is replaced by q−1. Up to
charge conjugation, the braiding structure is expected to remain37 the same, however, much
like in vertex algebras with complementary central charges c + c̄ = 26 [FZ] that describe
“matter” and “gravity.” A natural question, then, is whether there exists a less naive version
of logarithmic VOAs in the positive Kazhdan-Lusztig zone:

Problem 4.11. Construct counterparts of the familiar log-VOAs, such as triplet and singlet
log-VOAs, in the positive KL zone.

We hope that applying (1.4) to characters of familiar log-VOAs using the tools of resurgence
can help solving this problem. We hope it will connect to the interesting recent work
[AG, Gai, Liu, Fu] where the semi-infinite cohomology plays an important role.

4.2. Low-dimensional topology. In applications to low-dimensional topology, more pre-
cisely to TQFTs in dimensions d = 3 and d = 4, the operation (1.4) corresponds to orientation
reversal on the underlying d-manifold,

Md → −Md (4.12)

Perturbatively, in complex Chern-Simons theory and its close cousins (such as the Te-
ichmuller TQFT), orientation reversal on a 3-manifold M3 is equivalent to ℏ→ −ℏ, which
then implies (1.4) via (1.13). This is an important and highly non-trivial step. What makes

37This can be justified via a connection between Q-cohomology in 2d-3d coupled systems and logarithmic
VOAs, initiated in [CCFGH]. See also section 4.3.
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it possible in complex Chern-Simons theory, is the interpretation of the non-perturbative
completion as a BPS counting problem, where q rather than ℏ plays a primary role.
There are other important TQFTs that admit interpretations as BPS counting problems

and where the orientation reversal (4.12) is equivalent to (1.4), e.g. Vafa-Witten theory and
its variants.

In all such theories, we can imagine an independent definition of (1.4) by considering BPS
q-series invariants Z(Md) of manifolds Md and −Md:

Z(Md; q) = f(q)
“q ´ 1/q”
←−−−−−−−→ f(q)( = Z(−Md; q) (4.13)

In this paper, we mainly consider applications to the BPS q-series invariants Ẑb(M3, q) of
3-manifolds, but it would be interesting to consider other topological invariants. We leave
this to future work.
In the context of the BPS q-series Ẑb(M3, q), it was observed early on that the invariants

of M3 and −M3 appear rather different and, in particular, one is usually much harder to
compute than the other. For example, the general formula for negative-definite plumbed
manifolds [GPPV] heavily relies on the negative-definite condition and the situation is similar
for surgeries on knots and links [GM]. Recently, various proposals to extend the formulation
of these invariants to positive definite manifolds started to emerge, including positive surgery
formulae proposed by Park [Park21]. It allows to construct many interesting families of
examples of (4.13). Here we consider only one such infinite family, based on the simplest
version of the surgery formula, namely the version for +1 surgeries.

There exists an infinite class of q-series for which the duals are known, based on a particular
linear combination of two particular false theta functions. This result is motivated from
topology. We have

Proposition 4.14. For a 2-parameter family of functions,

Fa,b(q) = Ψ̃
(4a+b)

4a2+2ab − Ψ̃
(b)

4a2+2ab (4.15)

parametrized by a, b ∈ Z+, we have

Fa,b(q)
( =

q
4a+3b
8a+4b

(q)∞

∑

j≥0
|k|>j

(−1)kq b
8a

(2j+1)2+ k
2
(3k+1) (q−j2 − q−(j+1)2)È

(1)
4a (2j + 1) (4.16)

Proof. Follows from [Park21] and [GM, Lemma 7.3] (In the notations of [GM], the family in
question is obtained by setting c = 2a and r = 1, so that d = 1, e = 2ab, and v = − b

8a+4b
.)

Namely, the (−1)-surgery formula applied to

F (x, q) =
1

2

∞∑

m=0

(
x

m
2 − x−m

2

)
fm(q) (4.17)

with fm(q) = qv+
e

4c2
m2

, gives a linear combination of false theta-functions

Ψ̃
(4a+b)

4a2+2ab − Ψ̃
(b)

4a2+2ab = L
(0)
−1

[(
x

1
2 − x− 1

2

)
F (x, q)

]
(4.18)

where L(0)
−1 is the Laplace transform (3.2) familiar from (3.1). This is precisely the right-

hand side of (4.15). To obtain Fa,b(q)
(, we apply the (+1)-surgery formula proposed in

[Park21]. □



GOING TO THE OTHER SIDE VIA THE RESURGENT BRIDGE 52

Comments:

(1) The functions Fa,b(q) and their duals Fa,b(q)
( have the “same” perturbative expansions

near q = eℏ ≈ 1 that only differ by (−1)n factor in the perturbative coefficients∑
n ℏ

nan, i.e. an 7→ (−1)nan.
(2) The combination of two false theta-functions (4.15) appears as a building block in

many examples, including surgeries on torus knots, see e.g. [GMP, CCFGH, GM].

What was unclear, however, is whether individual functions Ψ̃
(a)
p for all a and p should

have duals “on the other side.” Low-dimensional topology did not offer any insights,
possibly suggesting that the answer might be “no” because this entire family does
not come up as q-series invariants of any known class of 3-manifolds.

(3) This question is also motivated by the work of Cheng and Duncan on optimal Mock
Jacobi theta functions [Ch20].

(4) Heuristic methods for obtaining q → 1/q dualities, using Appell-Lerch sums, have
been studied in [HiMo14, Mort14].

Interesting invariants of smooth 4-manifold are expected to be very asymmetric under
orientation reversal:

M4 ←→ −M4 (4.19)

b−2 ←→ b+2

4.3. Physics of 2d-3d coupled systems. Both incarnations of ‘going to the other side’
in algebra and in topology, described in sections 4.1 and 4.2 respectively, can be put under
one umbrella of BPS state counting (Q-cohomology) of 3d supersymmetric theories with 2d
(0, 2) boundary conditions. This will give us yet another interpretation of this phenomenon
and will provide an independent justification to some of the claims made in the previous two
subsections.

3d N = 2

Figure 13. A coupled system of a 3d N = 2 theory and a 2d (0, 2) boundary
condition.

Consider a 3d N = 2 theory with a 2d N = (0, 2) boundary condition B. In the context

of 3d-3d correspondence and Ẑ-invariants, the 3d N = 2 theory is T [M3] and the boundary
condition is a very particular one, labeled by Spinc structure on M3. Similarly, in the context
of 4-manifolds glued along 3-manifolds, the 3d N = 2 theory is also T [M3], while the boundary
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condition (or interface) is T [M4]. In either of these situations, as well as in their close cousins,
reversing orientation on M3 and M4 is equivalent to the parity operation in 3d N = 2 theory.
For the “bulk” theory itself, this is usually not a complicated operation; it basically flips the
signs of all Chern-Simons levels. However, its effect on the 2d N = (0, 2) boundary condition
is a lot more interesting.

On a 2d boundary of a 3d theory, parity should result in exchanging left and right sectors of
the 2d boundary theory. However, in our setup the left and right sectors are very asymmetric:
the left sector is non-supersymmetric, whereas the right sector enjoys N = 2 supersymmetry,
which in particular includes supercharge Q whose cohomology gives the invariants we are
interested in. Therefore, the effect of the 3d parity operation on boundary conditions is a
rather non-trivial bijection / duality:

Parity : B ←→ B( (4.20)

that, roughly speaking, exchanges left and right sectors, while supersymmetrizing the former
and de-supersymmetrizing the latter:

Left

N = 0

supersymmetrize
.. Right

N = 2desupersymmetrize

nn

Depending on the precise nature of these two “parity-dual” boundary conditions, one may
find that

Q-cohomology(B) ̸= Q-cohomology(B() , (4.21)

whereas the braiding of vertex operators and modular data are the same. This usually
happens when B and B( are Lorentz-invariant boundary conditions that transform well under
SL(2,Z) modular group, as e.g. in the large class of T [M4] theories.

38 Then, via anomaly
inflow, B and B( cancel same anomalies (up to a sign) of the 3d N = 2 theory and, together,
define a consistent 2d N = (0, 2) theory obtained by placing 3d N = 2 theory on a slab with
boundary condition B on one side and B( on the other, as illustrated in Figure 14.
A prototypical example of such pairing is realized in 2d N = (0, 2) SQCD. In that case,

the left sector is a WZW model, whereas the right sector is the N = 2 Kazama-Suzuki coset
model. They can be paired together to produce a modular-invariant partition function via a
non-trivial automorphism (level-rank duality). This suggests that other dual pairs of B and
B( might be related in a similar way.
To gain some intuition about the physics of ‘going to the other side’ in the context of 2d
N = (0, 2) boundary conditions, let us consider a couple of toy examples. In fact, as a our
first example, let us consider a 1d quantum system rather than 2d quantum field theory. A
copy of a free harmonic oscillator (one quantum boson) has spectrum En = n+ 1

2
, illustrated

in Figure 15. Its contribution to the elliptic genus is a q-series
∑

n q
En that under (1.4)

transforms as
q1/2

1− q ←→ q−1/2

1− q−1
= − q1/2

1− q (4.22)

38Note that most boundary conditions used in the study of 3d indices and Ẑ-invariants, such as Nahm
pole boundary conditions and boundary conditions labeled by complex flat connections, are not of this type.
As the other extreme, however, there can be boundary conditions B and B∨ with the same Q-cohomology, or
even such that B and B∨ coincide as 2d N = (0, 2) theories. In the context of T [M4] theories this happens
e.g. when M4 has a boundary M3, such that M4 = −M4 and M3 = −M3.
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3d

Figure 14. 3d N = 2 theory on a slab with 2d (0, 2) boundary conditions B
and B(.

Since the result is invariant up to a sign, it tells us that a bosonic oscillator is almost self-dual.
In particular, it did not turn into a fermion, but it did experience a shift in the homological
grading, resulting in the extra minus sign on the right-hand side of (4.22). This can be
considered as a first indication that the operation (4.20) is best understood in the derived
setting.
We can easily upgrade this 1d toy example to a simple 2d boson. Its contribution to the

elliptic genus is given by the (inverse) Dedekind eta-function, which under (1.4) transforms as

1

¸(q)
←→ 1

q−1/24
∏∞

n=1(1− q−n)
=

1

¸(q)
(4.23)

where we used ·-function regularization for the sum 1 + 2 + 3 + . . .. As in our previous
toy example, we find that 2d chiral boson is simply self-dual under (4.20). More precisely,
Q-cohomology is self-dual, if we wish to promote this statement to the level of 2d N = (0, 2)
theories. Either way, we learn that bosons did not turn into fermions, and we would come to
a similar conclusion had we started with fermions.

Figure 15. Energy states of a harmonic oscillator.
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Note, for resurgent analysis, which is our main tool in this paper, it is in fact helpful that
functions f(q) and f(q)( have non-trivial ℏ-expansions near q = eℏ ≈ 1:

∑

n

anℏ
n (4.24)

These expansions, up to an → (−1)nan, are equal for both f(q) and f(q)( and serves as a
bridge in relating the two functions. In physical applications to the 3d-3d correspondence, the
non-triviality of this “perturbative” expansion is often directly related to the non-triviality
of the 3d N = 2 “bulk” theory, which controls the failure of the half-index of the combined
system to be modular. In other words, for the techniques of this paper, it is actually helpful to
have f(q) lacking classical modular properties. For this reason, we expect that, in applications
to Vafa-Witten theory and to T [M4], the techniques of this paper can be more useful for
4-manifolds with b+2 = 1 (or, b−2 = 1). It would be interesting to explore these applications
further.

4.4. Example: false theta-functions. An important special class of examples is the false
theta functions [Bring15, GMP, CCFGH, HLSS22], for p, a ∈ Z:

Ψ̃(a)
p (q) :=

∞∑

n=0

È
(a)
2p (n)q

n2

4p ∈ q a2

4p Z[[q]] (4.25)

È
(a)
2p (n) =




±1, n ≡ ±a mod 2p ,

0, otherwise.

Conjecture: There exists a unique dual pair

Ψ̃(a)
p (q)

“q ´ 1/q”
←−−−−−−−→ Ψ̃(a)

p (q)( (4.26)

Goal: For each given p and a, write an explicit q-series Ψ̃
(a)
p (q)( which is dual

to Ψ̃
(a)
p (q) under q → q−1.

In certain cases, an approach to this question, and to finding F (q)( more generally, is based
on Rademacher sums. For example, with this approach one can reproduce Ramanujan’s
classical example (an order 7 mock theta function):

F (q) = q
1

168

∑

ng0

(−1)nq n(n+1)
2

(qn+1; q)n
(4.27)

= q
1

168 (1− q − q5 + q10 − q11 + q18 + q30 − q41 + q43 − q56 − q76 + q93 − q96 + . . . )

F (q)( = q−
1

168

∑

ng0

qn
2

(qn+1; q)n
(4.28)

= q−
1

168 (1 + q + q3 + q4 + q5 + 2q7 + q8 + 2q9 + q10 + 2q11 + q12 + 3q13 + . . . )

The pair (F (q), F (q)() in (4.27)-(4.28) are related by the formal replacement q → q−1 in
each term of the explicit q-hypergeometric expressions. However, as noted above, this formal
replacement operation suffers from ambiguities. The Rademacher sum approach, as well as
other techniques available at present, resolve this ambiguity but are quite labor-intensive. In
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particular, they allow to construct F (q)( in a systematic manner, but the amount of work is
substantial and only allows to treat one function F (q) at a time.

Comment: F (q) in (4.27) can be expressed as a linear combination of four different false
theta functions:

F (q) = Ψ̃
(1)
42 (q)− Ψ̃

(13)
42 (q) + Ψ̃

(41)
42 (q)− Ψ̃

(29)
42 (q) (4.29)

The first two terms in this expression form an example of Proposition 4.15, for (a, b) = (3, 1),
in which case 4a2 + 2ab = 42, and 4a+ b = 13:

−F3,1(q) ≡ Ψ̃
(1)
42 (q)− Ψ̃

(13)
42 (q) (4.30)

= q
1

186 (1− q + q30 − q41 + q43 − q56 + q143 − q166 + q170 − q195 + . . . ) (4.31)

The remaining two false theta functions in (4.29) give the remaining terms in the expansion
(4.27):

Ψ̃
(41)
42 (q)− Ψ̃

(29)
42 (q) = q

1
186 (−q5 + q10 − q11 + q18 − q76 + q93 − q96 + q115 − q231 + . . . )(4.32)

Note that the upper indices in (4.32) are 41 = 42− 1 and 29 = 42− 13. In this sense, the
q-series of Fa,b(q) in (4.15) is roughly speaking “half of” the large q expansion of a mock
theta function.
In the next Section we will discuss how resurgence and Borel summation can be used to

address “going to the other side” for more general q-series, for example for a single false

theta function Ψ̃
(a)
p (q).

4.5. Going to the other side with resurgence. Consider a Borel-Laplace integral of the
form

J(ℏ) = −1

ℏ

∫ ∞

0

B(u) eu
2/ℏ du (4.33)

where ℏ < 0, so that q = eℏ < 1. Modulo a change of integration variable u2 = ·, J(ℏ) is a
Borel-Laplace representation with Borel kernel ·−1/2B(

√
·). When no confusion is possible,

we will speak of the Borel plane in either variable, u or ·.
The small u expansion of the Borel transform function B(u) generates a formal small ℏ

expansion of J(ℏ). If the Maclaurin series of B(u) has a non-zero finite radius of convergence
then this small ℏ expansion is divergent. Given the Borel integral (4.33), we can also
immediately deduce an expansion for large ℏ. This follows from the basic Fourier identity
[Grig98]:

eu
2/ℏ = 2

√
−ℏ
Ã

∫ ∞

0

dv ev
2
ℏ cos(2vu) (4.34)

Therefore we obtain a dual integral representation for J(ℏ)

J(ℏ) =
1√
−Ã ℏ

∫ ∞

0

dv ev
2
ℏ B̃(v) (4.35)

where ℏ < 0 and B̃(v) is the Fourier transform of B(u), assuming it exists. Expression (4.35)
is just the familiar Fourier-Poisson transformation.39

39This asymptotic analysis can also be approached using Mellin transforms: see Appendix C.
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This defines a new Borel plane, the v plane, associated with the large ℏ expansion of J(ℏ),

coming from the small v expansion of the Fourier transform B̃(v). If the Maclaurin series of
B(v) has a non-zero finite radius of convergence then the large ℏ expansion is also divergent.
This phenomenon where both the small ℏ and large ℏ expansions are divergent40 occurs

for example for the class of Borel functions B(u) that are rational functions of e−u. We refer
to this as the Mordell-Borel class, since the Borel integrals can be decomposed into a sum
of Mordell integrals. The Mordell-Borel class is particularly interesting because the Fourier

transform B̃(v) is also a rational function of e−v, so the dual integral (4.35) is again within
the Mordell-Borel class. A specific concrete class of such problems involves:

B
(s)
(p,a)(u) =

sinh((p− a)u)
sinh(pu)

(4.36)

B
(c)
(p,a)(u) =

cosh((p− a)u)
cosh(pu)

(4.37)

for p, a ∈ Z and a ∈ 1, 2, ..., (p − 1). The corresponding Borel integrals appear in the
construction of Mock Theta functions [Wat, GM12] and the False theta functions in (4.25).
We focus on the sinh kernels since the analysis of the cosh ones is very similar. These will be
discussed in detail below in Section 4.6.
Comments:

(1) In terms of q, the transformation between small and large ℏ corresponds to:

q = eℏ ←→ q̃ = e
Ã2

ℏ (4.38)

(2) The dual Borel integral (4.35) is significant because it plays an important role in the
decomposition of the Borel integral (4.33) into q-series and q̃-series, as is explained
below.

(3) We stress that the mapping from small to large ℏ via the dual integral representation
is not restricted to the Mordell-Borel class, where B(u) is a rational function of e−u.

It is sufficient for the Fourier transform B̃(v) to exist and for the dual Borel integral
to be well-defined. Therefore, it is possible to use these duality methods (for example,
numerically) beyond the Mordell-Borel class of integrals.

The natural starting point of the resurgent analysis of the Borel integral J(ℏ) is the
neighborhood of a Stokes line, where ℏ ∈ R

+. This is perhaps counter-intuitive, because this
is where the integral (4.33) appears to break down. However, this is the most delicate regime
and is precisely the regime in which resurgent analysis is most powerful. Near the Stokes line,
J(ℏ) has a unique decomposition into a q-series and a linear combination of q̃-series. This
uniqueness is crucial because it implies that one can uniquely identify a unary q-series F (q)
with the real part of the Borel integral on the Stokes line. This separation into q-series and
q̃-series on the Stokes line is preserved under Borel analytic continuation, thereby leading to
a unique separation into q-series and q̃-series after q → 1

q
. This therefore leads to a unique

dual q-series F (q)( for F (q).
Note that the Borel integral representation of a function (when it exists) is unique,

when properly normalized and written in terms of the Écalle critical variable [Ec81, Co08].
Fundamentally this is due to the injectivity of the Laplace operator. Moreover, two Borel

40In many other examples in quantum field theory, quantum mechanics and string theory, the weak
coupling expansion is divergent while the strong coupling expansion is convergent, or vice versa [LeG90].
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integral representations (written in terms of the Écalle critical variable) coincide iff they agree
trivially, that is, iff the Borel functions are identical. This is unlike q series decompositions of
Mordell integrals, among which there exist nontrivial identities, leading to non-uniqueness,
for example as noted above in the difference between (4.2) and (4.10).
To analytically continue J(ℏ) to the Stokes line we rotate ℏ through the upper (or lower)

half plane and simultaneously rotate the contour of the u integration through the lower (or
upper, resp.) half plane. When ℏ reaches the fourth quadrant, the contour of u integration
of J(ℏ) will thus be in the second quadrant. We write

J(ℏ) =
1

2
(J + J−) +

1

2
(J − J−) = PV[J ] + Ãi res (4.39)

where J− is the same integral through the second quadrant, PV is the Cauchy principal value
and res are the residues of the integrand along R

+.
Comments on Uniqueness:

(1) The expression (4.39) gives a unique decomposition of the Borel integral J(ℏ) into
a real and imaginary part when we continue to the Stokes line ℏ ∈ R

+. This is
also a unique decomposition into unary q-series and unary q̃-series, up to numerical
prefactors and prefactor powers of q and q̃, respectively.

(2) The real part follows from a residue analysis of the dual Borel integral (4.35), while
the imaginary part follows from a residue analysis of the original Borel integral (4.33).

(3) In terms of analytic properties, for ℏ > 0 we have

√
ℏ J(ℏ+ i0) = g1(q) + i

√
Ã

ℏ
g2(q̃) (4.40)

where g1 and g2 are real-valued and have convergent Puiseux series. The decomposition
into a pair (g1, g2) with these properties is manifestly unique. The continuation is
smooth and unique, even though g1 and g2 separately have ℏ ∈ iR as a natural
boundary.

(4) We note that J is a Borel sum of a resurgent asymptotic series. Assume that for
ℏ < 0 there also is a unique pair (f1(1/q), f2(1/q̃)) such that f1(1/q) +

√
Ã
−ℏ
f2(1/q̃) =√

−ℏ J(ℏ) and f1, f2 have convergent Puiseux series with the same structure as those
of (g1, g2). When such a decomposition exists and is unique it is natural to identify
f1, f2 as the continuation of g1, g2 across the boundary. Uniqueness and the properties
of Borel summation guarantee that the continuation map across the boundary is
property-preserving (an extended isomorphism).

(5) In Section 4.9 we present an explicit proof of uniqueness for the class of order 3 Mock
Theta functions, and conjecture that a similar approach should yield uniqueness more
generally.

(6) The decomposition produces unary series because they arise from a residue analysis
of the Borel and dual Borel functions.

In what follows we will see many instances41 of the decomposition (4.40) which, in turn, is
a special instance of (1.30). When M3 is a homology sphere the first sum on the right-hand
side of (1.30) simplifies and we can write it more explicitly as

41See e.g. (4.57), or (4.73), or (4.95).
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Ẑ0(M3, q) =
∑

³

S³
0 (q̃) SZpert

³ (q) =
∑

³

c³

(
∑

n

mα

0 q̃
n+CS(³)

)
SZpert

³ (q)

= SZpert
0 (q) +

∑

³ ̸=0

S³
0 (q̃) SZpert

³ (q) = SZpert
0 (q) +

∑

³ ̸=0

c³

(
∑

n

mα

0 q̃
n+CS(³)

)
SZpert

³ (q)

(4.41)

where α = (³, n) denotes the integral lift of ³. In the context of non-perturbative complex

Chern-Simons theory, (4.41) describes the transseries structure of the BPS q-series Ẑ0(M3, q)
in the case H1(M3,Z) = 0. The second line is the exact copy of the first line, with the
contribution of the trivial flat connection ³ = 0 singled out.

4.6. Resurgent transseries for the Mordell-Borel class. In this section we concentrate
on the sinh-like Mordell-Borel class, and summarize various important identities for the Borel
transform and dual Borel transform functions, which are important for the decomposition of
the Borel integrals into q-series and q̃-series. In the following Sections we show how these
decompositions can be achieved numerically.

We introduce the following notation for the relevant Mordell-Borel building blocks [GM12]:

J(p,a)(ℏ) :=
1

(−ℏ)

∫ ∞

0

du epu
2/ℏ sinh[(p− a)u]

sinh[pu]
(4.42)

where p, a ∈ Z, with 1 f a < p. Note that in this defining expression ℏ < 0, corresponding to
q = eℏ < 1. We will subsequently analytically continue by rotating to ℏ > 0. The Fourier
transform is known, giving the dual Borel integral [GM12]:

J(p,a)(ℏ) =
sin
(

aÃ
p

)

√
pÃ(−ℏ)

∫ ∞

0

dv epv
2
ℏ/(Ã2) 1

cosh[2v]− cos
(

aÃ
p

) (4.43)

Notice the ℏ → Ã2

ℏ
transformation in the exponent of the Gaussian factors in the Borel

integrands. We also note the following basic trigonometric identities relating the Borel
transform and its dual:

sinh[(p− a)u]
sinh[pu]

=
1

p

p−1∑

b=1

sin

(
abÃ

p

) sin
(

bÃ
p

)

cosh[u]− cos
(

bÃ
p

)

sin
(

aÃ
p

)

cosh[u]− cos
(

aÃ
p

) = 2

p−1∑

b=1

sin

(
abÃ

p

)
sinh[(p− b)u]

sinh[pu]
(4.44)

These identities imply that under the duality transformation ℏ→ 4Ã2/ℏ we obtain a finite
linear combination of exactly the same Mordell-Borel building block integrals:

J(p,a)(ℏ) =

(
2Ã

(−ℏ)

)3/2 √
2

p

p−1∑

b=1

sin

(
abÃ

p

)
J(p,b)

(
4Ã2

ℏ

)
(4.45)
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Note, the duality transformation here is implemented by a discrete Fourier transform with
the kernel (“S-matrix”):

Sab =
2√
p
sin

(
abÃ

p

)
(4.46)

which has eigenvalues ±1. It is equal to the modular S-matrix in a rational CFT (WZWmodel)
and, as argued in [GPV], determines the transformation of flat connections under the action
of SL(2,Z) modular group, cf. (1.29). It also has interpretation in 3d-3d correspondence,
namely in terms of the category of line operators MTC[M3] in 3d N = 2 theory [CCFGH].
The Borel integrals (4.42)-(4.43) are initially defined for ℏ < 0, but can be analytically

continued to positive ℏ via the rotated Borel integrals, valid for ℏ > 0:

J
(±)
(p,a)(ℏ) := ∓i e±iϵ

∫ ∞

0

du e−p(e±iϵu)2ℏ sin[(p− a)(e±iϵu) ℏ]

sin[p (e±iϵu) ℏ]
, ϵ→ 0+ (4.47)

Note that the sinh functions are replaced by sin functions. Therefore, we find that under
analytic continuation from ℏ < 0 to ℏ > 0 the Mordell-Borel integral (4.42) acquires a real
and imaginary part. By straightforward contour deformation these ℏ > 0 expressions can be
written as:42

Re

[√
−4 p ℏ
Ã

J(p,a) (ℏ)

]
=

√
4pℏ

Ã

i

2

(
J
(+)
(p,a) (ℏ)− J

(−)
(p,a) (ℏ)

)

= e
−(p−a)2ℏ

4 p

∞∑

k=0

e−p ℏ(k+ 1
2)

2 (
e(p−a)ℏ(k+ 1

2) − e−(p−a)ℏ(k+ 1
2)
)
(4.48)

Im

[√
−4 p ℏ
Ã

J(p,a) (ℏ)

]
=

√
4 p ℏ

Ã

1

2

(
J
(+)
(p,a) (ℏ) + J

(−)
(p,a) (ℏ)

)

=

√
4Ã

pℏ

Floor[ p2 ]∑

b=1

sin

(
abÃ

p

)
e−

b2Ã2

pℏ

[
1 +

∞∑

m=1

(−1)am
(
e−

Ã2(m2p+2mb)
ℏ − e−

Ã2(m2p−2mb)
ℏ

)]

(4.49)

The real part yields a unary q-series with an overall factor of a rational power of q, while the
imaginary part yields a linear combination of different unary q̃-series, each with an overall
factor of a rational power of q̃ and a simple trigonometric coefficient. The real part follows
from a residue analysis of the dual Borel integral (4.43), while the imaginary part follows
from a residue analysis of the original Borel integral (4.42).

Comment: Recalling that q = eℏ, we recognize that the real part (4.48) can be expressed
in terms of the False Theta function in (4.25):

e
−(p−a)2ℏ

4 p

∞∑

k=0

e−p ℏ(k+ 1
2)

2 (
e(p−a)ℏ(k+ 1

2) − e−(p−a)ℏ(k+ 1
2)
)
= Ψ̃(a)

p

(
1

q

)
(4.50)

42For notational clarity we specialize here to expressions for p odd. And it is convenient to extract a

normalization factor of
√

−4 p ℏ

π
.
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4.7. Numerical resurgence on the unary side. In this Section we confirm that the decom-
position into unary q-series and q̃-series when ℏ > 0 can be achieved numerically, directly
from the analytically continued Borel integral, without invoking the analytic expressions
(4.48)-(4.49). We demonstrate this with several examples.

4.7.1. Numerical Resurgence Example: Order 3 Mock Thetas. Consider (p, a) = (3, 1), corre-
sponding to one of the original examples of Ramanujan [Wat, GM12], for which the Borel
and dual Borel integrals are (for ℏ < 0):

J(3,1)(ℏ) = −1

ℏ

∫ ∞

0

du e3u
2/ℏ sinh[2u]

sinh[3u]
(4.51)

=
sin
(
Ã
3

)
√
−3Ãℏ

∫ ∞

0

dv e3v
2
ℏ/(Ã2) 1

cosh[2v]− cos
(
Ã
3

) (4.52)

We analytically continue these integrals, as in (4.47), and form the ± linear combinations
appropriate for the real and imaginary parts, as in (4.48) and (4.49). Plotting the real part

as ℏ→ +∞, it is straightforward to identify the leading e−
ℏ

12 behavior. After factoring out
this leading exponential, we plot as a function of q = eℏ, and study the large q behavior. The
Mathematica command InterpolatingPolynomial identifies this as a unary series in e−2ℏ:

Re

[√
−12ℏ
Ã

J(3,1) (ℏ)

]
=

√
12ℏ

Ã

i

2

(
J
(+)
(3,1) (ℏ)− J

(−)
(3,1) (ℏ)

)

∼ e−
ℏ

12

(
1− e−2ℏ + e−4ℏ − e−10ℏ + e−14ℏ − e−24ℏ + . . .

)
(4.53)

See Figure 16. With our identification q = eℏ, we recognize the large ℏ limit in (4.53) as the

large q expansion of the false theta function Ψ̃
(1)
3

(
1
q

)
[recall (4.25]):

q
1
12 Ψ̃

(1)
3

(
1

q

)
= 1− q−2 + q−4 − q−10 + q−14 + . . . (4.54)

For the imaginary part, plotting for ℏ→ 0+, we can similarly identify the leading behavior√
Ã
ℏ
e−

Ã2

3ℏ , and then use interpolation in q̃ to find

Im

[√
−12ℏ
Ã

J(3,1) (ℏ)

]
=

√
12ℏ

Ã

1

2

(
J
(+)
(3,1) (ℏ) + J

(−)
(3,1) (ℏ)

)

∼
√
Ã

ℏ
e−

Ã2

3ℏ

(
1 + e−

Ã2

ℏ − e− 5Ã2

ℏ − e− 8Ã2

ℏ + e−
16Ã2

ℏ + e−
21Ã2

ℏ + . . .
)

(4.55)

Recalling that q̃ = e
Ã2

ℏ , we recognize the q̃-series part of this expression as
[
q

1
3 Ψ̃

(2)
3

(
1

q

)]

q→−q̃

= 1 + q̃−1 − q̃−5 − q̃−8 + q̃−16 + q̃−21 − . . . (4.56)

These results for the real and imaginary part are shown in Figures 16 and 17, respectively.
Comments:

(1) The numerically derived unary q-series for the real part and the unary q̃-series for
the imaginary part agree precisely with the analytic residue expressions in (4.48) and
(4.49).
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Figure 16. The blue dots denote the real part of
√
−12ℏ/ÃJ(3,1)(ℏ), computed

from the analytically continued Borel integral as in the first line of (4.53). The
orange and green curves show the first and second corrections to the large q
behavior (ℏ→ +∞) in (4.53). The red dashed line shows the corresponding
real quantity for q < 1 (ℏ < 0), from the original Borel integral (4.51).
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Figure 17. The blue dots denote the imaginary part of
√
−12ℏ/ÃJ(3,1)(ℏ),

evaluated numerically from the analytically continued Borel integral as in the
first line of (4.55). This vanishes for q < 1 (ℏ < 0) but is non-zero for q > 1
(ℏ > 0). The orange curve shows the leading term of the imaginary part in

(4.55), namely
√

Ã
ℏ
e−Ã2/(3ℏ). The green curve shows the effect of including also

the next exponentially suppressed term:
√

Ã
ℏ
e−Ã2/(3ℏ)(1 + e−Ã2/ℏ).

(2) The expansions (4.53)-(4.55) agree with the analytic continuation of the known mock-
modular relation connecting the order 3 Mock theta functions f and É via a Borel
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integral [Wat, GM12]:
√
−12ℏ
Ã

J(3,1) (ℏ) = e−
ℏ

12
1

2
f(e2ℏ)−

√
4Ã

−3ℏ sin
(Ã
3

)
e

2Ã2

3ℏ É
(
e

Ã2

ℏ

)
(4.57)

To see this, recall the expansions of the order 3 mock theta functions f and É:

f(q) := 1−
∞∑

n=1

(−1)nqn
(−q; q)n−1

(4.58)

= 1 + q − 2q2 + 3q3 − 3q4 + 3q5 − 5q6 + . . . , q → 0 (4.59)

= 2

(
1− 1

q
+

1

q2
− 1

q5
+

1

q7
− 1

q12
+

1

q15
+ . . .

)
, q →∞ (4.60)

É(q) :=
∞∑

n=0

qn

(q; q2)n+1

(4.61)

= 1 + 2q + 3q2 + 4q3 + 6q4 + 8q5 + 10q6 + . . . , q → 0 (4.62)

= −1

q
− 1

q2
+

1

q6
+

1

q9
− 1

q17
− 1

q22
+ . . . , q →∞ (4.63)

The expansions (4.53)-(4.55) can be identified with the unary large q expansions of
1
2
f(q2) and −q É(q).

These results confirm that the resurgent medianization and Stokes phenomenon for the
rotated integrals generates the correct unary q-series and q̃-series after rotation to the Stokes
line (ℏ > 0).

4.7.2. Numerical Resurgence Example: Order 10 Mock Thetas. A similar analysis applies
for order 10 mock theta functions, with an interesting new feature. Consider the choice
(p, a) = (5, 1):

J(5,1)(ℏ) = −1

ℏ

∫ ∞

0

du e5u
2/ℏ sinh[4u]

sinh[5u]
(4.64)

=
sin
(
Ã
5

)
√
−5Ãℏ

∫ ∞

0

dv e5v
2
ℏ/Ã2 1

cosh(2v)− cos
(
Ã
5

) (4.65)

Analytically continuing from ℏ < 0 to ℏ > 0, from the rotated integrals (4.47) and the
general expression for the real part (4.48) we deduce that for ℏ > 0:

Re

[√
−20ℏ
Ã

J(5,1) (ℏ)

]
=

√
20ℏ

Ã

i

2

(
J
(+)
(5,1) (ℏ)− J

(−)
(5,1) (ℏ)

)
(4.66)

∼ e−
ℏ

20

(
1− e−4ℏ + e−6ℏ − e−18ℏ + e−22ℏ − e−42ℏ + . . .

)
, ℏ→ +∞ (4.67)

See Figure 18. With our identification q = eℏ, we recognize the large ℏ limit in (4.67) as the

large q expansion of the false theta function Ψ̃
(1)
5

(
1
q

)
[recall (4.25]):

q
1
20 Ψ̃

(1)
5

(
1

q

)
= 1− q−4 + q−6 − q−18 + q−22 + . . . (4.68)
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Figure 18. The blue dots denote the real part of
√
−20ℏ/ÃJ(5,1)(ℏ), computed

from the analytically continued Borel integral as in (4.66). The orange and
green curves show the first and second corrections to the large q behavior
(ℏ→ +∞) in (4.67). The red dashed line shows the corresponding real quantity
for q < 1 (ℏ < 0).

For the imaginary part in the ℏ > 0 region there are two distinct q̃-series. These q̃-series are
unary and follow directly from the residue analysis of the analytically continued integrals
(4.47). See the general expression (4.49) for the imaginary part when ℏ→ 0+:

Im

[√
−20ℏ
Ã

J(5,1) (ℏ)

]
=

√
20ℏ

Ã

1

2

(
J
(+)
(5,1) (ℏ) + J

(−)
(5,1) (ℏ)

)
(4.69)

∼
√

4Ã

5ℏ

[
sin
(Ã
5

)
e−

Ã2

5ℏ

(
1 + e−

3Ã2

ℏ − e− 7Ã2

ℏ − e− 16Ã2

ℏ + . . .
)

+sin

(
2Ã

5

)
e−

4Ã2

5ℏ

(
1 + e−

Ã2

ℏ − e− 9Ã2

ℏ − e− 12Ã2

ℏ + . . .
)]

(4.70)

See Figure 19. With our identification q̃ = e
Ã2

ℏ , we recognize the ℏ→ 0+ limit in (4.70) as a

linear combination of the false theta function Ψ̃
(2)
5 and Ψ̃

(4)
5 [recall (4.25]):

[
q

1
5 Ψ̃

(2)
5

(
1

q

)]

q→−q̃

= 1 + q̃−3 − q̃−7 − q̃−16 + q̃−24 + q̃−39 − . . . (4.71)

[
q

4
5 Ψ̃

(2)
5

(
1

q

)]

q→−q̃

= 1 + q̃−1 − q̃−9 − q̃−12 + q̃−28 + q̃−33 − . . . (4.72)

As in the mock 3 case, these large q and large q̃ expansions can be deduced numerically,
for example using the InterpolatingPolynomial command in Mathematica. The resulting
unary series match the general analytic forms in (4.48)-(4.49). These results for the real and
imaginary parts are shown in Figures 18 and 19.

These results also demonstrate that the resurgent expansions and the analytic continuation
from ℏ < 0 to ℏ > 0 preserve the form of the known mock modular relation: see (4.73).
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Figure 19. The blue dots denote the imaginary part of
√
−20ℏ/ÃJ(5,1)(ℏ),

evaluated numerically from the analytically continued Borel integral as in
(4.69). This vanishes for q < 1 (ℏ < 0) but is non-zero for q > 1 (ℏ > 0). The
orange curve shows the leading term of the imaginary part in (4.70), namely√

4Ã
5ℏ

sin
(
Ã
5

)
e−Ã2/(5ℏ). The green curve shows the effect of including the next ex-

ponentially suppressed term:
√

4Ã
5ℏ

[
sin
(
Ã
5

)
e−Ã2/(5ℏ) + sin

(
2Ã
5

)
e−4Ã2/(5ℏ)

]
. This

green curve is indistinguishable on this scale from the full q̃ dependence in
(4.73).

For q < 1, (i.e. ℏ < 0) this mock-modular relation [GM12] can be written in the form
(4.40)–(4.41):

√
−20ℏ
Ã

J(5,1) (ℏ) = e−
ℏ

20 X(e2ℏ)

−
√
−4Ã

5ℏ

[
sin
(Ã
5

)
e−

Ã2

5ℏ È
(
e

Ã2

ℏ

)
+ sin

(
2Ã

5

)
e

Ã2

5ℏ ϕ
(
e

Ã2

ℏ

)]
(4.73)

where X(q2), È(q) and ϕ(q) are order 10 Mock theta functions. The structure is similar to
the (p, a) = (3, 1) case (4.57) of the previous section, but with the new feature that the RHS
of (4.73) involves one q-series, the order 10 mock theta function X(q2), but two different
q̃-series, the order 10 mock theta functions È(q̃) and ϕ(q̃). Compare (4.67) and (4.70) with
the small and large q expansions of the relevant order 10 mock theta functions. All these
expansions have integer-valued coefficients, and furthermore the large q expansions are all
unary q-series.

X(q) =
∞∑

n=0

(−1)nqn2

(−q; q)2n
(4.74)

∼ 1− q + q2 + q4 − 2q5 + q6 − q7 + . . . (4.75)

∼ 1− 1

q2
+

1

q3
− 1

q9
+

1

q11
− 1

q21
+ . . . (4.76)
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Note that the large q expansion of X corresponds to the false theta function in (4.68):

X(q2) = 1− q−4 + q−6 − q−18 + q−22 + . . . = q
1
20 Ψ̃

(1)
5

(
1

q

)
(4.77)

We will see below in Section 4.8 that the small q expansion of X is related to the dual of a
false theta function:

X(q2) = 1− q2 + q4 + q8 − 2q10 + . . . = q
1
20 Ψ̃

(1)
5 (q)( (4.78)

The q̃-series in (4.73) are related to two other order 10 mock theta functions. We have

È(q) =
∞∑

n=0

q
1
2
(n+1)(n+2)

(q; q2)n+1

(4.79)

∼ q + q2 + 2q3 + 2q4 + 2q5 + . . . (4.80)

∼ −1− 1

q3
+

1

q7
+

1

q16
− 1

q24
+ . . . (4.81)

ϕ(q) =
∞∑

n=0

q
1
2
n(n+1)

(q; q2)n+1

(4.82)

∼ 1 + 2q + 2q2 + 3q3 + 4q4 + 4q5 + . . . (4.83)

∼ −1

q
− 1

q2
+

1

q10
+

1

q13
− 1

q29
− . . . (4.84)

∼ −1

q

(
1 +

1

q
− 1

q9
− 1

q12
+

1

q28
+ . . .

)
(4.85)

We can identify the large q expansions of È and ϕ with false theta functions, as in (4.71)-(4.72):

−È
(
−1

q

)
= 1− q3 + q7 − q16 + q24 − q39 + · · · = q

1
5 Ψ̃

(2)
5 (q) (4.86)

1

q
ϕ

(
−1

q

)
= 1− q + q9 − q12 + q28 − q33 + · · · = q

4
5 Ψ̃

(4)
5 (q) (4.87)

We will also see below in Section 4.8 that the small q̃ expansions of È and ϕ are related to
duals of false theta functions.

4.7.3. Numerical Resurgence Example: Beyond Mock. In this Section we show that this
behavior extends also to higher values of p, for which there is no known mock-modular
relation. However, the resurgence argument shows that the Borel integral encodes all the
necessary information to go to the other side. We choose (p, a) = (7, 1) and take as our input
the Borel integral, and its dual Borel integral representation, initially defined for ℏ < 0:

J(7,1)(ℏ) = −1

ℏ

∫ ∞

0

du e7u
2/ℏ sinh[6u]

sinh[7u]
(4.88)

=
sin
(
Ã
7

)
√
−7Ãℏ

∫ ∞

0

du e7u
2
ℏ/(Ã2) 1

cosh(2u)− cos
(
Ã
7

) (4.89)

This is a clear generalization of (4.51)-(4.52) and (4.64)-(4.65). However, for (p, a) = (7, 1)
there is no known mock-modular relation, such as (4.57) or (4.73), with which to compare.
Nevertheless, from the Borel integrals (4.88)-(4.89) it is straightforward to analytically
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Figure 20. The blue dots show the numerical analytic continuation values of

the real part of
√

−28ℏ
Ã
J(7,1)(ℏ) for q > 1 (i.e. ℏ > 0). The orange and green

curves show the first and second corrections to the large q behavior (ℏ→ +∞)
in (4.91). The red dashed line shows the corresponding real quantity for q < 1
(ℏ < 0). Compare with Figures 16 and 18.

continue to ℏ > 0 (i.e., q > 1), and obtain unique decompositions into unary q-series and
q̃-series. This analytic continuation produces one unary q-series for the real part, and a
linear combination of three different q̃-series for the imaginary part, as in the general (p, a)
expressions (4.48) and (4.49). For (p, a) = (7, 1), numerical fitting for ℏ→ +∞ leads to the
following large q expansion for the real part:

Re

[√
−28ℏ
Ã

J(7,1) (ℏ)

]
=

√
−28ℏ
Ã

i

2

(
J
(+)
(7,1) (ℏ)− J

(−)
(7,1) (ℏ)

)
(4.90)

= e−
ℏ

28

(
1− e−6ℏ + e−8ℏ − e−26ℏ + e−30ℏ − e−60ℏ + . . .

)
(4.91)

See Figure 20. With our identification q = eℏ, we recognize the large ℏ limit in (4.91) as the

large q expansion of the false theta function Ψ̃
(1)
7

(
1
q

)
[recall (4.25]):

q
1
28 Ψ̃

(1)
7

(
1

q

)
= 1− q−6 + q−8 − q−26 + q−30 + . . . (4.92)

Similarly, numerical fitting for ℏ → 0+ leads to the following large q̃ expansion for the
imaginary part:

Im

[√
−28ℏ
Ã

J(7,1) (ℏ)

]
=

√
−28ℏ
Ã

1

2

(
J
(+)
(7,1) (ℏ) + J

(−)
(7,1) (ℏ)

)
(4.93)

∼
√

4Ã

7ℏ

{
sin
(Ã
7

)
e−

Ã2

7ℏ + sin

(
2Ã

7

)
e−

4Ã2

7ℏ + sin

(
3Ã

7

)
e−

9Ã2

7ℏ

}
(4.94)

See Figure 21. In the last line (4.94), for each trigonometric coefficient we have kept just
the leading term in the large q̃ limit (i.e. ℏ → 0+ and q → 1+). In Figure 21 we plot
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the successive inclusions of these first three contributions, sin
(
Ã
7

)
e−

Ã2

7ℏ , sin
(
2Ã
7

)
e−

4Ã2

7ℏ and

sin
(
3Ã
7

)
e−

9Ã2

7ℏ , shown as the orange, green and red curves. These are expansions generated
about q = 1+, and yet they are remarkably accurate at large values of q. At extremely large
values of q we require the further large q̃ exponential terms in (4.49).
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Figure 21. The blue dots denote the imaginary part of
√

−28ℏ
Ã

J(7,1)(ℏ), eval-

uated numerically from the analytically continued Borel integral as in (4.93).
This vanishes for q < 1 (ℏ < 0) but is non-zero for q > 1 (ℏ > 0). The
orange curve shows the leading term of the imaginary part in (4.94), namely√

4Ã
7ℏ

sin
(
Ã
7

)
e−Ã2/(7ℏ). The green and red curves show the effects of including

successively the next exponentially suppressed terms in (4.94). Compare with
Figures 17 and 19.

4.8. Numerical q-series decomposition on the other side.

4.8.1. Resurgence and Preservation of Relations. Having verified that the unary q-series and
q̃-series may be decoded numerically from the original Borel integral (4.33), analytically
continued from ℏ < 0 to ℏ > 0, we now turn to the more difficult problem of numerically
extracting q-series and q̃-series on the original side, where ℏ < 0. Here the Borel integral is
real, and the fact that the small and large ℏ expansions are both divergent implies that it is
not possible to expand the real part purely as a q-series or a q̃-series; it must contain both.
The challenge is to uniquely disentangle these q-series and q̃-series parts. Naive attempts
to do this immediately face ambiguities. However, by invoking resurgence, the analytic
continuation of the Borel-Écalle resummed expressions preserves the structure of the non-
trivial decomposition of the integral into q-series and q̃-series parts. We can therefore use
this fact to write down the form of the decomposition and then use numerical fitting to deduce
the actual coefficients of the q-series and q̃-series.
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Given the fact that Borel-Écalle summation preserves relations under continuation, the
basic strategy is simple: we fit the form of the expansion of the Borel integrals (and dual
Borel integrals) in various parametric regimes. In practice, it is important that we can use
Fourier-Poisson transformations to go back and forth between the large and small |ℏ| regimes,
on both sides of the |q| = 1 boundary.

To be very explicit, we consider the Mordell-Borel class of Borel integrals (4.42). Based on
the information deduced near the Stokes line, ℏ ∈ R

+, we can write symbolically the unique
decomposition of the Borel integral into q-series and q̃-series as informed by (4.40)–(4.41):

√
4 p (−ℏ)

Ã
J(p,a) (ℏ) = q∆aFa(q) + i

√
Ã

ℏ

Floor[ p2 ]∑

b=1

Sab q̃
∆̃b Wb(q̃) (4.95)

Here Sab is the S-matrix (4.46), and the exponents ∆a and ∆̃b are known from the decompo-
sitions on the Stokes line. Any integer part of the exponents can be absorbed into Fa(q) and
Wb(q̃), which are q-series and q̃-series that need to be determined. Note that (4.95) has both
a real and imaginary part on the unary side (ℏ > 0), but is purely real when ℏ < 0.
Continuation to the other side relies on: (i) resurgence; and (ii) unique continuation, as

follows. First note that J(ℏ) is analytic in the upper half plane, and that (4.95) shows that
it decomposes uniquely into a pair of functions of q and q̃, each of them ramified-analytic
for small argument. Eq. (4.95) also shows that q∆aFa(q) is resurgent at q = 1, with J the
Borel sum of its asymptotic series. A similar statement holds for Wb with Borel kernel equal
to the Fourier transform of the Borel kernel of J . By preservation of relations – a property
characteristic of analytic functions, and more generally of resurgent functions [Ec81], we
expect the same type of unique decomposition to hold for ℏ < 0 as well, thereby providing a
(similarly unique) continuation for F and W . We mathematically prove that this is indeed the
case for order 3 mock theta functions (see Section 4.9), and provide strong numerical evidence
for a wider class of Mordell integrals. Ultimately this approach relies on the fundamental fact
that all the information about the transseries is encoded in the behavior at the Stokes line,
where we know the unary series decomposition. We furthermore demonstrate by a number of
examples that the unique continuation can be achieved effectively by numerical methods. We
defer further mathematical details for more general cases to another paper.
Given this perspective, we can isolate different parts of the relation (4.95) by taking

different limits, and this can be used to determine information about the q-series and q̃-series
expansions. This is numerically possible because the Borel integral J(p,a) (ℏ) can be evaluated
to high precision as ℏ → −∞ (i.e. q → 0+ and q̃ → 1−) and also as ℏ → 0− (i.e., q → 1−

and q̃ → 0+). This is because the dual Borel integral can be evaluated using the Fourier
transform of the Borel transform.
We first describe a very simple numerical method which is able to determine the first

few coefficients of these q-series and q̃-series expansions, under the assumption that they
are integers. We introduce this numerical procedure by some examples. In Section 4.10 we
describe more sophisticated numerical methods which demonstrate to very high precision
that these coefficients are indeed integers, and which can generate many more coefficients.
These numerical methods also provide an alternative independent approach to a proof of
uniqueness and of the fact that the coefficients are integer-valued.

4.8.2. Numerical Example: Mock Order 3 on the Other Side. Consider our first example,
(p, a) = (3, 1), corresponding to one of the original examples of Ramanujan [Wat, GM12],
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for which the Borel and dual Borel integrals are in (4.51) and (4.52). By the principle of
preservation of relations and the uniqueness of continuation of resurgent transseries, this
Borel integral must have a unique decomposition of the form (4.40)–(4.41):

√
−12ℏ
Ã

J(3,1)(ℏ) = q∆ F (q)−
√

Ã

−ℏ q̃
∆̃W (q̃) (4.96)

where the exponents are uniquely determined (from the Borel integral and its dual) by
information near the Stokes line ℏ ∈ R

+:

∆ = − 1

12
, ∆̃ =

2

3
(4.97)

To probe the expansions of F (q) and W (q̃) for small q and small q̃, we re-express the
fundamental relation (4.96) in two different ways:

F (q) = q
1
12

(√
−12ℏ
Ã

J(3,1)(ℏ) +

√
Ã

−ℏ q̃
2
3 W (q̃)

)
(4.98)

W (q̃) = q̃−
2
3

(
ℏ

Ã

√
12 J(3,1)(ℏ) +

√
−ℏ
Ã
q−

1
12 F (q)

)
(4.99)

In the limit ℏ→ −∞, q → 0+, it is easy to see numerically from (4.98) that withW (q̃) ∼ 1, we
find F (q) ∼ 1

2
. Furthermore, subtracting this leading behavior, one observes that the further

corrections to F (q) are exponentially small, in powers of q2. With this simple procedure,
using just the leading behavior W (q̃) ∼ 1, the first 4 coefficients of the small q2 expansion of
2F (q) appear to be 1, 1, −2 and +3, assuming they are integers:

2F (q) ≈ 1 + q2 − 2q4 + 3q6 + . . . (4.100)

See the dashed curves in Figure 22. Indeed, these coincide with the first 4 terms of the small
q expansion of the order 3 mock theta function f(q2) in (4.59).

This fitting procedure can be improved by considering also the small q̃ expansion of W (q̃)
in (4.99). This is the ℏ→ 0− limit. In this limit we find (as a consistency check) that the
leading behavior of F (q) is indeed 1

2
. Furthermore, this leading term is sufficient to deduce

that the first 4 coefficients of W (q̃) appear to be 1, 2, 3 and 4, assuming they are integers:

W (q̃) ≈ 1 + 2q̃ + 3q̃2 + 4q̃3 + . . . (4.101)

See the dashed curves in Figure 23. Indeed, these coincide with the first 4 terms of the small
q expansion of the order 3 mock theta function É(q) in (4.62).
Now we can combine these numerical results, inserting these subleading corrections for

W (q̃) back into the RHS of (4.98), thereby obtaining significantly higher precision for the
coefficients of 2F (q) – see the solid curves in Figure 22. Similarly, inserting the subleading
corrections for F (q) back into the RHS of (4.99), we obtain greater precision for the expansion
coefficients of W (q̃) – see the solid curves in Figure 23. We note that if an incorrect integer
fit is made at a given order, then the next order fitting fails dramatically.

Using these expansions, valid in the 0 < q < 1 region, we can combine them with the q > 1
results on the unary side, to make a combined plot for the q dependence of F (q) in (4.98).
See Figure 24. This procedure can be bootstrapped into a combined algebraic fitting method,
simultaneously solving for the expansions of both F (q) and W (q̃). This can be shown to
be convergent and it reveals that the coefficients are integers to extremely high precision.
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Figure 22. For (p, a) = (3, 1), the coefficients of the small q2 (i.e. ℏ→ −∞)
expansion of 2F (q) in (4.98) [as shown in (4.100)] are indicated by the blue,
orange, green and red curves, respectively. The dashed curves use just the
leading q̃ behavior of W (q̃) in the RHS of (4.98), while the solid curves include
two further correction terms deduced from analysis of (4.99), as shown in the
accompanying Figure 23. This simple fitting procedure can be iterated to
obtain more coefficients and with higher precision.
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Figure 23. For (p, a) = (3, 1), the coefficients of the small q̃ (i.e. ℏ → 0−)
expansion of W (q̃) in (4.99) are indicated by the blue, orange, green and red
curves, respectively. The dashed curves use just the leading q behavior of F (q)
in the RHS of (4.99), while the solid curves include two further correction
terms deduced from analysis of (4.98), as shown in the accompanying Figure
22. This simple fitting procedure can be iterated to obtain more coefficients
and with higher precision.

See also Section 4.10 below. This perspective provides an alternative and complementary
approach to proving uniqueness, as will be described in detail in a future paper.
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Figure 24. For (p, a) = (3, 1), the full q dependence of the RHS of (4.98).
The blue dots give the numerical values, and the orange curve gives the exact
result using the known order 3 mock-modular relation [GM12]. The green curve
shows the first 4 terms of the small q expansion of F (q) derived by numerical
fitting in the 0 < q < 1 region, while the red curve shows the first 4 terms of
the large q expansion of F (q) derived by numerical fitting in the q > 1 region.

In summary, we have shown that the Borel integral J(3,1)(ℏ) contains all the information,
and provides a rigorous, unique and numerically accessible continuation across the natural
boundary.

(1) The Borel integral and its dual, obtained by Fourier-Poisson transformation, give the
unique q-series and q̃-series decomposition on the unary side, at the Stokes line, using
straightforward residue analysis.

(2) Invoking the preservation of relations for Borel-Écalle transseries, we obtain a precise
skeleton structure (4.95) for the q-series and q̃-series decomposition on the non-unary
side.

(3) Numerical asymptotics of the Borel integral and its dual can be used to determine
the integer-valued coefficients of the resulting q-series and q̃-series.

4.8.3. Numerical Example: Mock Order 10 on the Other Side. A similar analysis works for
higher order mock theta functions. The main complication is an increase in the algebraic
complexity of the fitting procedure. For example, for (p, a) = (5, 1), associated with order
10 mock theta functions, the structure on the unary side, derived from the behavior at the
Stokes line where ℏ > 0, suggests an expansion of the form
√
−20ℏ
Ã

J(5,1)(ℏ) = q−
1
20 F (q)−

√
Ã

−ℏ
2√
5

[
sin
(Ã
5

)
q̃−

1
5 W1(q̃) + sin

(
2Ã

5

)
q̃−

4
5 W2(q̃)

]

(4.102)

where the exponents are inherited from the unary side. There are now 3 series to be
determined: one q-series, F (q), and two q̃-series, which we denote as W1(q̃) and W2(q̃). As
above, we can probe the small q and small q̃ expansions by considering both the ℏ→ −∞
and ℏ → 0− limits. For example, using just the leading behavior of W1(q̃) and W2(q̃), we
deduce that at small q, F (q) has an expansion in powers of q2, with integer coefficients:
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Figure 25. For (p, a) = (5, 1), the coefficients of the small q2 (i.e. ℏ→ −∞)
expansion of F (q) in (4.102) are indicated by the blue, orange, green and red
curves, respectively. The dashed curves use just the leading q̃ behavior of
W1(q̃) and W2(q̃) in (4.104)-(4.105), while the solid curves include two further
correction terms deduced from analysis of the ℏ→ 0− limit. This simple fitting
procedure can be iterated to obtain more coefficients and with higher precision.

F (q) = 1− q2 + q4 + 0 · q6 +O(q8) (4.103)

See Figure 25. Note that the coefficient of q6 is zero. Similarly, the leading integer-valued
coefficient expansions of W1(q̃) and W2(q̃) give:

W1(q̃) = q̃ + q̃2 + 2q̃3 + . . . (4.104)

W2(q̃) = q̃ + 2q̃2 + 2q̃3 + . . . (4.105)

These results are in agreement with the expansions (4.74)-(4.82) of the order 10 mock theta
functions X(q), È(q) and ϕ(q) entering the known mock modular relation (4.73) for 0 < q < 1
[GM12], identifying F (q) = X(q2), W1(q̃) = È(q̃), and W2(q̃) = q̃ ϕ(q̃):
√
−20ℏ
Ã

J(5,1) (ℏ) = q−
1
20 X(q2)−

√
Ã

−ℏ
2√
5

[
sin
(Ã
5

)
q̃−

1
5È (q̃) + sin

(
2Ã

5

)
q̃

1
5ϕ (q̃)

]
(4.106)

Furthermore, using these numerically extracted expansions, valid in the 0 < q < 1 region, we
can combine them with the q > 1 results on the unary side, to make a combined plot for the
q dependence of F (q) in (4.102). See Figure 26.

4.8.4. Numerical Example: Beyond Mock on the Other Side. As a first example beyond the
mock theta functions, we consider (p, a) = (7, 1). Here there is no known mock-modular
relation with which to compare. However, the main difference from the previous cases is
simply an increase in algebraic complexity of the fitting procedure. We choose as our input
the Borel integral (4.88), and its dual Borel integral representation (4.89), initially defined for
ℏ < 0. The structure on the unary side, derived from the behavior at the Stokes line where
ℏ > 0, suggests an expansion of the form, cf. (4.40)–(4.41):

√
−28ℏ
Ã

J(7,1)(ℏ) = q−
1
28 F (q)
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Figure 26. For (p, a) = (5, 1), the full q dependence of F (q) extracted from
(4.102). The blue dots give the numerical values from the RHS of (4.102),
and the orange curve gives the exact result using the known order 10 mock-
modular relation [GM12]. The green curve shows the first 3 terms of the small
q expansion of F (q) derived by numerical fitting in the 0 < q < 1 region, while
the red curve shows the first 3 terms of the large q expansion of F (q) derived
by numerical fitting in the q > 1 region.

−
√

Ã

−ℏ
2√
7

[
sin
(Ã
7

)
q̃−

1
7 W1(q̃) + sin

(
2Ã

7

)
q̃−

4
7 W2(q̃) + sin

(
3Ã

7

)
q̃−

9
7 W3(q̃)

]
(4.107)

where the exponents are inherited from the unary side. There are now 4 series to be
determined: one q-series, F (q), and three q̃-series, which we denote as W1(q̃), W2(q̃), and
W3(q̃). As above, we can probe the small q and small q̃ expansions by considering both
the ℏ→ −∞ and ℏ→ 0− limits of the Borel integral and its dual. For example, numerical
asymptotics of the small q (i.e. ℏ→ −∞) limit shows that the leading behavior is:

F (q) =

e
ℏ

28

[√
−28ℏ
Ã

J(7,1) (ℏ) +

√
Ã

−ℏ
2√
7

(
sin
(Ã
7

)
e

19π2

14ℏ + sin

(
2Ã

7

)
e

13π2

14ℏ + sin

(
3Ã

7

)
e

3π2

14ℏ

)]

∼ 1− e2ℏ + 2e4ℏ − 2e6ℏ + . . . (4.108)

This is the “dual” of a false theta, that in our other notation we write as

Ψ̃
(1)
7 (q)( = q−

1
28

(
1− q2 + 2q4 − 2q6 + . . .

)
(4.109)

This provides an explicit answer to the Question 1.5, beyond the previously known cases.
The first four coefficients, +1, -1, +2, -2, are shown as the dotted curves in Figure 27. Note
that the q̃ exponents in (4.108) differ from those on the unary side by a common shift:

e
19π2

14ℏ = e
3π2

2ℏ e−
π2

7ℏ , e
13π2

14ℏ = e
3π2

2ℏ e−
4π2

7ℏ , and e
3π2

14ℏ = e
3π2

2ℏ e−
9π2

7ℏ . The small q expansion of F (q)
suggests that it is an expansion in q2, with the first four integer-valued coefficients being
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Figure 27. For (p, a) = (7, 1), the coefficients of the small q expansion of
F (q), as an expansion in q2, obtained by fitting to the ℏ→ −∞ limit in the
decomposition (4.107), are indicated by the blue, orange, green and red curves,
respectively. The dashed curves use just the leading q̃ behavior of Wj(q̃) as
shown in (4.108), while the solid curves include one further correction term
deduced from analysis of the ℏ→ 0− limit. This simple fitting procedure can
be iterated to obtain more coefficients and with higher precision.

+1, -1, +2, -2. Further fitting of the decomposition (4.107)-(4.108) suggests that the next
corrections to Wj(q̃) are:

W1(q̃) ∼ q̃
3
2 (1− q̃ + . . . ) (4.110)

W2(q̃) ∼ q̃
3
2 (1 + 3q̃ + . . . ) (4.111)

W3(q̃) ∼ q̃
3
2 (1 + q̃ + . . . ) (4.112)

Including these higher corrections Wj(q̃) leads to more precise fitting of the first coefficients
of F (q), as shown as solid curves in Figure 27. Further correction terms can be obtained
by a more systematic unified algebraic fitting procedure, along the lines of the discussion in
Section 4.10 below, as will be described in detail in a future paper.

Furthermore, using these numerically extracted expansions, valid in the 0 < q < 1 region,
we can combine them with the q > 1 results on the unary side, to make a combined plot
for the q dependence of F (q) in (4.107). See Figure 28. Note that unlike the analogous
examples plotted in Figures 24 and 26, in the case of (p, a) = (7, 1) we do not have an
exact mock-modular relation to plot, so there is no orange curve in Figure 28. However,
the numerical values (blue dots) match smoothly across the boundary, and also match the
asymptotic small and large q behavior inidcated by the green and red curves.
Comment: we re-iterate that this numerical procedure is extremely simple:

(1) The Borel integral, when taken to its Stokes line, has a unique splitting into a q-series
and a linear combination of q̃-series. These are easily obtained from a residue analysis
of the Borel integral and its dual (which in turn is obtained from the Fourier transform
of the original Borel transform).

(2) We then rotate back again and seek a decomposition of the Borel integral into a
q-series and a linear combination of q̃-series which has the same overall structure, and
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Figure 28. For (p, a) = (7, 1), the full q dependence of F (q) extracted
numerically from (4.107). The blue dots give the numerical values. The green
curve shows the first 3 terms of the small q expansion of F (q) derived by
numerical fitting in the 0 < q < 1 region, while the red curve shows the first 3
terms of the large q expansion of F (q) derived by numerical fitting in the q > 1
region.

for which the actual series coefficients can be deduced by numerical fitting under the
assumption that they are integers.

It is somewhat surprising that such a simple and crude numerical fitting procedure is able to
‘discover’ known mock modular relations, and also to go beyond the known cases. In Section
4.10 we introduce a more sophisticated numerical method which can achieve much higher
precision and also find many more coefficients. A full description of this extended method
is deferred to a future publication. But first we give an explicit proof of uniqueness of the
procedure, as this also helps to motivate the more precise numerical methods.

4.9. Uniqueness proof. In this Section we present a proof that the resurgent analytic
continuation procedure is unique. The proof is given here for the order 3 mock theta function
case, but we conjecture that it can be extended to more general Borel integrals, even beyond
the mock theta function class of problems.

By Section 4.12, any one of the Borel J functions in a Mock Theta class generates all the
others by repeated applications of the SL(2,Z) maps q 7→ q̃ and q → −q (see also [GM12]).
In other words, these functions are merely values of one of them in various limits. Hence, to
show uniqueness of the q, q̃ series decompositions it suffices to do so for one integral in each
given class.

For example, the transformation q 7→ −q maps the integral J3,1 = J(B
(s)
3,1) into the function

2J
(c)
3,1 ; it effectively turns the sinh-like Borel functions into cosh-like Borel functions.43 For

the sake of comparison with the mock-modular literature, for example as in the review paper
[GM12], in this subsection we adopt the common notation:

q = e−α ; q̃ = e−
π2

α (4.113)

43It is simpler to consider the action of SL(2,Z) on the Borel transforms than on the q-series themselves.
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Thus, ℏ is replaced by −³. Then the unary relations (4.48) and (4.49) map to the known
[Wat, GM12] mock modular relations for ³ > 0:

q2/3É(−q) = −
√
Ã

³
q̃2/3É(−q̃) +

√
12³

Ã
W3(³) (4.114)

and

q2/3É(q) =

√
Ã

4³
q̃−1/12f(q̃2)−

√
3³

Ã
W2(³/2) (4.115)

Here f and É are the standard order 3 mock theta functions, and W3(³) := J3,1(−³), and
W2(³/2) := 2J

(c)
3,1(−³) [Wat, GM12].

Theorem 4.116 (Uniqueness of É). There is a unique É satisfying (4.114) such that q−2/3É(q)
is analytic in the unit disk D and É(q)q̃1/12 is bounded as q → 1.

The proof is given below.
Comments:

(1) The bounds coming from the behavior of W3 under q 7→ −q are necessary to en-
sure uniqueness. By itself, the identity (4.114) is insufficient. Indeed, the function
q2/3É̃ = q2/3É − (2−5/3)[¼(1 − ¼)]2/3ϑ3(q)

(
1
2
− ¼(q)

)
, where ¼ = ¼(Ä) is the elliptic

modular lambda functions, also satisfies (4.114) as can be shown by a straightforward
calculation.

(2) By this uniqueness theorem, there is one and only one choice of É for |q| > 1 ensuring
preservation of properties with respect to the integral W2 and the action of SL(2,Z).

(3) This proof of uniqueness for the function É can be straightforwardly adapted to give
a proof of uniqueness of the function f , which satisfies

q−1/24f(−q) = −
√
Ã

³
q̃−1/24 f(−q̃) +

√
24³

Ã
W (³) (4.117)

The function W (³) is a linear combination of two cosh-like Borel integrals, defined in
[GM12]. This is another way to see that it is sufficient to prove uniqueness for just
one of the Borel integrals.

Proof. Let É1 be another function that satisfies the assumptions of the theorem and Éf =
É1 − É. Then Éf satisfies the same assumptions, except that it solves

q2/3Éf (−q) = −
√
Ã

³
q̃2/3Éf (−q̃) (4.118)

We let w(q) = Éf (−q) and define h = (q2/3w(q))6/ϑ6
3(q). This has the effect of removing the

rational exponent. Then h(Ä), where q = eiπτ , satisfies

h(Ä + 2) = h(Ä); h(−1/Ä) = h(Ä) (4.119)

Let ¼ = ¼(Ä) be the elliptic modular function defined in the upper half plane, and ¼q
the inverse nome function; we have ¼(Ä) = ¼q(e

iπτ ). To avoid complicating the notation
we will omit the subscript q whenever it’s clear what we mean. Since h(−1/Ä) = h(Ä),
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¼(Ä) = 1− ¼(−1/Ä) and ¼ is a Hauptmodul for Γ(2) we have44

h(q) = q2w6(q)/ϑ6
3(q) = F (¼(q)), (4.120)

and F ◦¼ is analytic in D since h is. We now examine the function F itself. By the conformal
map properties of ¼, eπiτ 7→ ¼ is a biholomorphism at any point Ä in the upper half plane.
Since the only avoided values of ¼ are 0, 1, F (·) is analytic except possibly at zero and 1.
Properties of F for · ∈ {0, 1}. At q = 0, ¼q(q) is biholomorphic. It only remains to

examine q → 1. We have, by the properties of h,

h(q) = F (¼(q)) = F (1− ¼(q̃)) = h(q̃) = F (¼(q̃)); hence F (1− s) = F (s)

Thus F is analytic at 1 as well. Since ¼(D) = C \ {1}, and F is analytic in D and at 1, F is
entire.

End of the proof: Now q 7→ −q is equivalent to Ä 7→ Ä + 1. Hence

¼(−q) = ¼(q)

¼(q)− 1
= 1− 1

¼(q̃)
(4.121)

Hence, using the series of ¼ at q = 0 we get

F

(
− 1

16q̃
+

1

2
+ · · ·

)
= (q2/3w(−q)/¹3(−q))6 = O[(q̃−1/12−1/4)6] = O(q̃−2) (4.122)

which, combined with the easily checked fact that q̃−1 covers a neighborhood of the ∞ on
the Riemann sphere as q → −1, means that F (x) = O(x2) for large x, implying F is a

quadratic polynomial. Since P =
√
F is analytic (as being q2w(q)/¹3(q)

3), P is polynomial
of degree 1, P (x) = Ax+ B. Now, P (q = 0) = 0 implies B = 0 and thus P (x) = Ax. But,
for small q, O(q2) = q2w(q)/¹3(q)

3 = P (q) = A¼(q) = 16Aq + O(q2) implies A = 0. Hence
F = w = 0. □

4.10. Precise numerical fitting. The uniqueness theorem in Section 4.9 suggests that the
(q, q̃) decomposition is generated by the Borel kernel and should be fully recoverable from it,
both theoretically and numerically. Here we discuss one such procedure. We illustrate with
the example in Section 4.9, which has a symmetry under q ´ q̃, but we stress that this just
simplifies the algebraic procedure and is not a fundamental restriction. We can make the
q ´ q̃ symmetry of the problem explicit by dividing equations (4.114) and (4.115) through by
¹3(q), using the familiar property of ¹3(q) under q → q̃. Then the best numerical matching

44A direct argument using the conformal properties of λ [Ahlfors, pp, 279–282] is the following. In the
fundamental domain Ω of λ, [Ahlfors, Fig 7-3] λ takes all values in the UHP exactly once, while in Ω′, the
reflection of Ω across iR, it takes all values in the LHP exactly once. Using these facts and analyticity of h
in Ω ∪ Ω′ = Ωt, it follows that h = G(λ) in Ωt. On the left boundary iR, λ is purely real and one-to-one
onto (0, 1). Furthermore, on iR we have, by the action of the inversion −1/τ on λ, λ(it) = 1 − λ(i/t).
Since h(it) = h(i/t), we have G(λ) = G(1 − λ) for λ ∈ (0, 1. If µ = 1/2 − λ we have F (µ) = F (−µ) for
µ ∈ (−1/2, 1/2) hence F (µ) = F (−µ) for all µ where analyticity is preserved. We now continue from τ = i
(where µ = 0), through, say, the lower circular boundary of Ωt into −1/Ωt =: Ω2, and we have to show
that the construction F (µ(s)) := h(s) is consistent. Since h(s) = h(−1/s), and the biholomorphism µ
satisfies µ(s) = −µ(−1/s), analytically continuing along a path γ through the right arccircle is equivalent
to performing the continuation along the inverted path −1/γ through Ω′, where we have already shown
consistency.
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point between Mordell-Borel integrals and their (q, q̃) decompositions is near q0 = e−π where
q = q̃ and q0 is small.45

Procedure. We illustrate the approach on the function É(−q) which satisfies (4.114). The
Mordell-Borel (q, q̃) decomposition is calculated by expanding the Mordell-Borel integral and
a sum

∑n
k=0 ck(q

k+2/3 + q̃k+2/3) in a 2n-order Taylor series at q0. Because of the underlying
symmetry of the problem, we only need the even coefficients. The condition that the two
expansions be equal translates into an algebraic equation Ânc = m, where c = (c1, ..., cn),
and m = (m1, ...,mn) are the Taylor coefficients of the integral. For n = 100, we get the
following values for the coefficients ck:

coeff: c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

value: 1 −2 3 −4 6 −8 10 −14 18 −22

error: 10
−22

10
−21

10
−19

10
−18

10
−17

10
−17

10
−16

10
−15

10
−14

10
−14

c10 c11 c12

29 −36 44

10
−13

10
−13

10
−12

c13 c14

−56 68

10
−12

10
−11

c15 c16 c17 c18 c19 c20 c21 c22 c23

−82 101 −122 146 −176 210 −248 296 −350

10
−11

10
−10

10
−10

10
−9

10
−9

10
−8

10
−8

10
−7

10
−7

c24 c25

410 −484

10
−7

10
−6

c26 c27

566 −660

10
−6

10
−6

Note that these coefficients are integers to very high precision, and furthermore these integer
values coincide with the expansion of É(−q): see (4.62).

Checking convergence. Here we give an empirical argument that Â−1
n m converges,

leaving a theoretical analysis (based on relatively delicate norm estimates) for another paper.

We replace m by the Taylor coefficients of a general expansion of
∑N

k=0 dk(q
k+2/3 + q̃k+2/3),

with N significantly greater than n (we took N = 2n, as higher coefficients dk, k > 2n
contribute negligibly to the outcome). We bounded the size of the error, which comes from
the “residual coefficients”, dn+1, ...d2n, ..., by placing absolute values on all terms in the
error expression. This bound should be realistic, as the matrix controlling the error has
non-alternating coefficients. In Figure 29 we took for dk asymptotic approximations that
represent the generic behavior of modular forms and modular theta functions: cn ∝ econstπ

√
n.

For É, this constant is given by const = 3−1/2 ≈ 0.577, while the possible freedom in (4.114)
has const g 2. All these calculations were done numerically, see Figure 29, but the procedure
is amenable to rigorous estimates. This means that the procedure converges for our Mordell
integral but, in general, convergence depends on the rate of growth of the coefficients of the
right hand side. This can be estimated in terms of exponential growth, for the following
reason:
Theorem: Assume f is analytic in D and bounded by ea

2/d, d = |1− z| for z ∈ D. Then,

|cn| f
aC√
n
ea

2/2 e2a
√
n const (4.123)

45Even without an explicit q ´ q̃ symmetry it is still true that a “central point” is an effective location to
self-consistently match both small and large q expansions.



GOING TO THE OTHER SIDE VIA THE RESURGENT BRIDGE 80

Figure 29. Accuracy (number of exact digits) of c0 as a function of the
order of the system; see discussion in the text about the way the accuracy was
determined. The accuracy curves of ck, k > 0 are nearly perfectly parallel to
that of c0, with an offset which gets worse with the order.

Conversely, assume that the Maclaurin coefficients of f are bounded by naeb
√
n, and for

simplicity take f(0) = 0. Then f is analytic in D and bounded by

|f(z)| f 2−2ab2a+1
√
Ã|z|−2a− 3

2 e
b2

4|z| (4.124)

Proof. Using Cauchy’s formula to calculate the Maclaurin coefficients of f we get

|cn| =
∣∣∣∣
1

2Ãi

∮

|z|=1−d

f(s)ds

sn+1

∣∣∣∣ f ea
2/d(1−d)−n f inf

d∈(0,1)
ea

2/d(1−d)−n = ea
2/2e2a

√
nconst (4.125)

For the second part we use the integral test to see that

|f(z)| f
∫ ∞

0

naeb
√
n−nt dn

= t−a− 3
2

(√
tΓ(a+ 1) 1F1

(
a+ 1;

1

2
;
b2

4t

)
+ bΓ

(
a+

3

2

)
1F1

(
a+

3

2
;
3

2
;
b2

4t

))
(4.126)

The rest of the argument follows directly from the asymptotics of the special functions
involved. Alternatively, and rather straightforwardly, one can obtain the asymptotics from
the integral representation and Laplace’s method. □

If a ⪅ 2 the bound is valid down to n = 1 with const ∼ 1.025, and const → 1 for large n.

Similarly, if the bound is Cd1/2ea
2/d, as it is in (4.114) (since 1/³ = 1/ ln(q) ∼ d if q = 1− d)

the bound becomes (4.123). The asymptotics of the matrix Ân is extremely rich and contains
detailed information about modular forms and mock theta functions, which will be described
in a future paper.
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4.11. Self-dual decompositions. The numerical fitting procedure in the previous section
was optimized for situations where the Borel integral has a precise duality symmetry under
q ´ q̃, in which case the numerical fitting is extremely sensitive to an expansion about
the self-dual point q0 = e−π ≈ 0.043, where q = q̃ and q0 is small. This duality symmetry
essentially halves the algebraic complexity of the fitting problem, which is not essential but
can be a numerical advantage. In this Section we point out that this kind of duality symmetry
is a feature of the Mordell-Borel integrals J(p,a)(ℏ), not just for the order 3 mock theta case
discussed in Section 4.10.

First, recall this order 3 example. For (p, a) = (3, 2), the Borel (4.42) and dual Borel (4.43)
integrals are (recall that q = eℏ, and 0 < q < 1 for ℏ < 0)

J(3,2)(ℏ) = −1

ℏ

∫ ∞

0

du e3u
2/ℏ sinh(u)

sinh(3u)
(4.127)

=
sin
(
2π
3

)
√

3Ã(−ℏ)

∫ ∞

0

dv e3v
2
ℏ/(π2) 1

cosh[2v]− cos
(
2π
3

) (4.128)

These have an additional symmetry because from the identities (4.44) we see that the Borel
transform function is proportional to its dual

sinh(u)

sinh(3u)
=

1

2

(
1

cosh(2u)− cos
(
2π
3

)
)

(4.129)

Therefore, J(3,2)(ℏ) transforms in a simple way under ℏ → π2

ℏ
:

J(3,2)

(
Ã2

ℏ

)
=

(−ℏ

Ã

)3/2

J(3,2)(ℏ) (4.130)

The corresponding mock-modular relation [Wat, GM12] can be written as, cf. (4.40)–(4.41):
√

−12ℏ

Ã
J(3,2) (ℏ) = e

2ℏ
3 É
(
−eℏ

)
+

√
Ã

−ℏ
e

2π2

3ℏ É
(
−eπ2

ℏ

)
(4.131)

This has the consequence that when fitting the q-series and q̃-series decompositions of the
Mordell-Borel integral J(3,2) (ℏ), there is only one q-series to be determined: É(−q). This is
the example proved rigorously in Section 4.9, and analyzed numerically in Section 4.10.

A similar decomposition exists for higher p values. To see this, recall the duality expression
(4.45). This can be further reduced to an identity for the duality transformation ℏ → Ã2/ℏ,
with details depending on the parity of p and a. For example, if a = 2r is even:

J(p,2r)(ℏ) =

(
Ã

−ℏ

)3/2
2√
p

Floor[ p2 ]∑

b=1

sin

(
2rbÃ

p

)
J(p,2b)

(
Ã2

ℏ

)
(4.132)

This has a direct consequence on the q-series and q̃-series appearing on the unary side. For
example, when the parameter a is even, the q̃-series appearing in the imaginary part (4.49)
are exactly the same as the q-series appearing in the real part (4.48). This is because for
a = 2r, with r = 1, 2, . . . ,Floor

[
p
2

]
, we have:

e−
r2π2

pℏ

[
1 +

∞∑

m=1

(−1)2rm

(
e−

π2(m2p+2mr)
ℏ − e−

π2(m2p−2mr)
ℏ

)]
(4.133)
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=

{
e−

(p−2r)2ℏ
4 p

∞∑

k=0

e−p ℏ(k+ 1
2)

2 (
e(p−2r)ℏ(k+ 1

2) − e−(p−2r)ℏ(k+ 1
2)
)}

ℏ→π2

ℏ

(4.134)

This remarkable relation between the q-series and q̃-series (when ℏ > 0 and the a parameter
is even) is a manifestation of the ℏ < 0 duality identity (4.132), which is preserved under
analytic continuation of ℏ to ℏ > 0 in the Borel integrals (4.42):

Im

[√
−4 p ℏ

Ã
J(p,2r) (ℏ)

]
=

√
Ã

ℏ

Floor[ p2 ]∑

b=1

2√
p
sin

(
2rbÃ

p

)
Re

[√
−4 p Ã

ℏ
J(p,2b)

(
Ã2

ℏ

)]
(4.135)

The real and imaginary parts are coupled because of the
√

π
ℏ
factor.

This means that for larger p values, we have a closed matrix system of duality relations.
For example, for p = 5, we have the 2× 2 matrix structure:

√
−20ℏ

Ã


J(5,2)(ℏ)
J(5,4)(ℏ)


 =

√
Ã

−ℏ

2√
5


sin

(
2π
5

)
sin
(
4π
5

)

sin
(
4π
5

)
sin
(
8π
5

)



√

20Ã

−ℏ


J(5,2)

(
π2

ℏ

)

J(5,4)

(
π2

ℏ

)


 (4.136)

Correspondingly, we have a closed 2-component q-series relation of the following form:
√

−20ℏ

Ã


J(5,2)(ℏ)
J(5,4)(ℏ)


 =


e−

4ℏ
20 W1

(
eℏ
)

e
−16ℏ
20 W2

(
eℏ
)




+

√
Ã

−ℏ

2√
5


sin

(
2π
5

)
sin
(
4π
5

)

sin
(
4π
5

)
sin
(
8π
5

)




e−

4π2

20ℏ W1

(
e

π2

ℏ

)

e
−16π2

20ℏ W2

(
e

π2

ℏ

)


(4.137)

WhereW1(q) andW2(q̃) have the unary expansions in (4.48) and (4.49) when ℏ > 0, and which
can be determined numerically when ℏ < 0. Note that there are two equations in (4.137) and

there are two series to determine. The eigenvalues of the S-matrix 2√
5


sin

(
2π
5

)
sin
(
4π
5

)

sin
(
4π
5

)
sin
(
8π
5

)




are ±1, and by diagonalizing this matrix we obtain two different linear combinations of
J(5,2)(ℏ) and J(5,4)(ℏ), which are self-dual, and anti-self-dual, under ℏ → π2

ℏ
, respectively. We

can now apply the high-precision numerical procedure described in Section 4.10 for the order
3 mock self-dual case. This reveals that

W1(q) ∼ −q + q2 − 2q3 + 2q4 − 2q5 + . . . (4.138)

W2(q) ∼ −q + 2q2 − 2q3 + 3q4 − 4q5 + . . . (4.139)

We recognize these expansions as those of the order 10 mock theta functions È and ϕ in
(4.79) and (4.82), respectively:

W1(q) = −È(−q) and W2(q) = q ϕ(−q) (4.140)

This is in complete agreement with the known order 10 mock modular relations [GM12],
which can be written as

√
−20ℏ

Ã


J(5,2)(ℏ)
J(5,4)(ℏ)


 =


 e−

4ℏ
20

[
−È

(
−eℏ

)]

e−
16ℏ
20

[
eℏϕ

(
−eℏ

)]



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+

√
Ã

−ℏ

2√
5


sin

(
2π
5

)
sin
(
4π
5

)

sin
(
4π
5

)
sin
(
8π
5

)




 e−

4π2

20ℏ

[
−È

(
−eπ2

ℏ

)]

e−
16π2

20ℏ

[
e

π2

ℏ ϕ
(
−eπ2

ℏ

)]


 (4.141)

Once these are determined, SL(2,Z) transformations can be used to generate all the other
mock 10 q-series expressions. Further details of this numerical procedure will be described in
a future paper.
This approach can be extended to higher p values, beyond the mock theta functions.

For example, for (p, a) = (7, 2), (p, a) = (7, 4) and (p, a) = (7, 6), we postulate a closed
3-component ”mock-modular relation”:

√
−28ℏ

Ã




J(7,2)(ℏ)

J(7,4)(ℏ)

J(7,6)(ℏ)


 =




e−
4ℏ
28W1

(
eℏ
)

e−
16ℏ
28 W2

(
eℏ
)

e−
36ℏ
28 W3

(
eℏ
)




+

√
Ã

−ℏ

2√
7




sin
(
2π
7

)
sin
(
4π
7

)
sin
(
6π
7

)

sin
(
4π
7

)
sin
(
8π
7

)
sin
(
12π
7

)

sin
(
6π
7

)
sin
(
12π
7

)
sin
(
18π
7

)







e−
4π2

28ℏW1

(
e

π2

ℏ

)

e−
16π2

28ℏ W2

(
e

π2

ℏ

)

e−
36π2

28ℏ W3

(
e

π2

ℏ

)


 (4.142)

Here Wj , for j = 1, 2, 3, are 3 different functions which appear both as q-series and as q̃-series
in this expression. This symmetric form of the expansion is consistent with the duality (4.132)

under ℏ → π2

ℏ
, and matches the structure of the ℏ → −ℏ analytic continuation of the Borel

integrals J(7,2)(ℏ), J(7,4)(ℏ) and J(7,6)(ℏ) on the unary side. We can diagonalize the coupling
matrix of sine factors, leading to 2 linear combinations of J(7,2)(ℏ), J(7,4)(ℏ) and J(7,6)(ℏ)

which are self-dual under ℏ → π2

ℏ
, and 1 linear combination of J(7,2)(ℏ), J(7,4)(ℏ) and J(7,6)(ℏ)

which is anti-self-dual under ℏ → π2

ℏ
. Note that we have 3 different relations and we need to

determine 3 different q-series. The same series appear on both sides, so these combinations
can be precisely probed near q0 = e−π in order to determine the integer-coefficient expansions
of Wj(q). Finally, given these expansions, SL(2,Z) transformations generate all the further
q-series with p = 7. These numerical methods will be described in more detail in a future
paper.

4.12. SL(2,Z) action on Borel transforms. The Borel functions are the primary building
blocks, and in each group of Mock Theta functions, one Borel kernel generates all the others
via the action of SL(2,Z). Furthermore, Laplace transforming these generated kernels, one
obtains all special q-series in the group. The Laplace transform of the Borel function is
analytic across |q| = 1. On the other hand, there is a unique q-series representation on
each side of the boundary, and these series are a continuation of each other by virtue of the
analyticity of the Borel integral and the aforementioned uniqueness.
The analysis of the transformations of the Mordell-Borel integrals of the mock theta

functions is more conveniently done for ℏ > 0 where the real part of the Mordell integral
simply equals one q-series rather than a combination of q and q̃ series. We note that none of
the sinh or cosh integrals can equal a pure q series (for ℏ < 0), because of the divergence of
their transseries at both limits ℏ → 0− and ℏ → −∞.
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The action of ℏ to 1/ℏ (equivalently, q to q̃) is given by a Fourier transform. We note the
following identities (for ℏ < 0):

∫ ∞

0

sinh(ax)

sinh(px)
epx

2/ℏ =

√
Ã(−ℏ)

p

∫ ∞

0

sin(Ãa/p)

cos(aÃ/p) + cosh(2Ãx)
epx

2
ℏsdx (4.143)

∫ ∞

0

cosh(ax)

cosh(px)
epx

2/ℏ = 2

√
Ã(−ℏ)

p

∫ ∞

0

cos(Ãa/(2p)) cosh(Ãx)

cos(aÃ/p) + cosh(2Ãx)
epx

2
ℏdx (4.144)

The action of ℏ to ℏ+ Ãi (equivalently, q to −q) is given by a Weierstrass transform. The
effect of these transformations is calculated conveniently for ℏ > 0 using the identities (here
we write q = eℏ = e−s)

∞∑

k=0

(
e−

(a+(−2k−1)p)2

4ps − e−
(a+2kp+p)2

4ps

)
= 2

√
ps

Ã
PV

∫ ∞

0

e−pv2s sin(av)

sin(pv)
dv (4.145)

∞∑

k=0

(
(−1)ke−

(a+(−2k−1)p)2

4ps + (−1)ke−
(a+2kp+p)2

4ps

)
= 2

√
ps

Ã
PV

∫ ∞

0

e−pv2s cos(av)

cos(pv)
dv (4.146)

For example, consider the action of SL(2,Z) on the order 3 mock theta functions. We denote
as usual the elements of the group SL(2,Z) as S corresponding to Ä → −1/Ä , or in our
normalization, ℏ → Ã2/ℏ, and T corresponding to Ä → Ä + 1, for us q → −q. Using the
results above, and denoting by v the column vector with components (W ,W1,W2,W3) in

the notations of [GM12], we get the action of the group (the matrices are denoted by Ŝ and

T̂ ) as:

Ŝ =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




; T̂ =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




; T̂ Ŝ =




0 0 1 0

1 0 0 0

0 0 0 −1

0 −1 0 0




(4.147)

Proposition T̂ 2 = Ŝ2 = (T̂ Ŝ)4 = 1. The eigenvalues of T̂ Ŝ are ±1,±i. The group generated

by T̂ , Ŝ is isomorphic to the dihedral group D4.The representation induced by Ŝ and T̂ is
reducible, and the space generated by the vectors (−1, 0, 0, 1), (0, 1, 1, 0) is invariant under

Ŝ, T̂ . However, each basis vector (1, 0, 0, 0), ..., (0, 0, 0, 1) is cyclic for T̂ Ŝ, hence any of the
W ′s generates the whole set W ,W1,W2,W3.

As another example, consider the action of SL(2,Z) on the order 10 mock theta functions.
The analysis is similar, but the results are different. In the notation of [GM12] there are 8
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fundamental functions, denoted K4, ..., K7, J4, ..., J7, and the matrices are

Ŝ =




0 0 0 0 0 −a 0 b

0 0 0 0 0 b 0 a

0 0 −a b 0 0 0 0

0 0 b a 0 0 0 0

0 0 0 0 −b 0 a 0

−a b 0 0 0 0 0 0

0 0 0 0 a 0 b 0

b a 0 0 0 0 0 0




; T̂ =




0 0 0 0 −1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

−1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0




(4.148)

Here b/a = ϕ = 1
2
(1+

√
5) and a2+ b2 = 1. Again each of the basis vectors is cyclic w.r.t. T̂ Ŝ,

as follows from the analysis below. The eigenvalues of are T̂ Ŝ are (e
iθ
2
+ 3iπ

8 , e
iπ
8
− iθ

2 , −e iθ
2
+ 7iπ

8 ,

−e 5iπ
8

− iθ
2 , e

iθ
2
+ 7iπ

8 , e
5iπ
8

− iθ
2 , −e iθ

2
+ 3iπ

8 , −e iπ
8
− iθ

2 ) where eiθ = a+ ib, all distinct. The eigenvalues

of (T̂ Ŝ)8 are (3
5
+ 4 i

5
, 3

5
− 4 i

5
, 3

5
+ 4 i

5
, 3

5
− 4 i

5
, 3

5
+ 4 i

5
, 3

5
− 4 i

5
, 3

5
+ 4 i

5
, 3

5
− 4 i

5
), from which it

follows that T̂ Ŝ is of infinite order. Passing to the basis of T̂ Ŝ it is easy to see that there is
no nontrivial invariant subspace for the group, hence the representation is irreducible, and
that the original basis vectors are cyclic w.r.t. T̂ Ŝ.
This approach can in principle be generalized to higher orders.

5. Exploring new limits: small surgeries

As briefly mentioned in the Introduction, in low-dimensional topology 0-surgeries (1.15)
play a rather special role among general surgeries, cf. (1.14). They appear at the core of some
of the most challenging questions. For example, “Property R” conjecture (proved by D. Gabai
in 1983 [Gab83]) states that if the 0-surgery on K ¢ S3 is homeomorphic to S1 ×S2, then K
is the unknot. In that same series of works Gabai showed that the trefoil and figure-8 knots
are likewise characterized by their 0-surgeries [Gab87]. Since then, many generalizations of
the Property R conjecture have been studied. One such generalization, closely related to the
slice-ribbon conjecture — another major open problem in low-dimensional topology — asks
to identify links (up to handle slides) that produce connected sums of S1 × S2 via surgery
[GST].

Furthermore, 0-surgeries offer a strategy to disprove the famous smooth Poincaré conjecture
in dimension four (SPC4), which is false as soon as anyone finds a pair of knots with the same
0-surgery, such that one is slice and the other is not. See [MP21, Nak22, GHMR] for some
recent work. Another manifestation of the connection between knot sliceness, 0-surgeries, and
smooth 4-manifold topology is the recent result [Tru] that establishes a bound on the topology
of a two-handlebody M4 (i.e. two-handles attached to a 4-ball) bounded by a 0-surgery on a
slice knot K, ∂M4 = S3

0(K),

b2(M4) g
10

8
|Ã(M4)|+ 5 (5.1)

such that b2(M4) ̸= 1, 3, or 23.
While all 0-surgeries on knots in the 3-sphere have homology of S1×S2, the converse is not

true and there are many 3-manifolds with the homology of S1 × S2 that are not surgeries on
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any knot in the 3-sphere. Thus, for M3 = S3
0(K) at least one of Rokhlin invariants vanishes.46

Therefore, if M3 is integral homology S1 × S2 with two non-trivial Rokhlin invariants, then
M3 ̸= S3

0(K). See [HKMP] for an infinite family of such 3-manifolds.
Curiously, despite their prominent role in low-dimensional topology, 0-surgeries on knots are

not as prominently used as examples in quantum topology and, to the best of our knowledge,
even the perturbative expansion Zpert(ℏ) appears to be not so well studied. One difficulty
in studying the 0 = 0

1
surgery is that some of the simpler techniques do not apply, e.g.

those which require M3 to be a homology sphere. In particular, the BPS q-series invariants

Ẑb(S
3
0(K), q) are not known for general K. In part, these difficulties are related to the fact

that the space of flat connections has a component of dimension 1 (the abelian branch),
which makes the resurgent analysis and the surgery formulae more delicate.

In this section, we make a step toward addressing this problem via a sequence of better-
understood p

r
̸= 0 surgeries with small surgery coefficients gradually approaching the limit

p
r
→ 0. Although we find that some topological properties and quantum invariants behave

discontinuously in this limit, there are certain aspects for which this is a smooth limit. In
particular, we find that the following double-scaling limit is especially effective in capturing
such aspects and the regularities as r → ∞ and ℏ → 0, with the double-scaling parameter t
kept fixed,

double-scaling parameter: t :=
ℏ r

p
(5.2)

We mostly focus on ±1
r
surgeries (called “small surgeries”) here but the analysis extends to

the general case.

5.1. Physics of the double-scaling limit from 3d-3d correspondence. The behavior
of the Chern-Simons invariants for 1

r
surgeries can be understood from the perspective of the

3d-3d correspondence and the theory T [M3]. Let us recall a few basic elements of the 3d-3d
correspondence that will be useful to us below:

• G flat connections on M3 are the supersymmetric vacua of T [G,M3], a 3-dimensional
N = 2 supersymmetric quantum field theory defined on the manifold M3, and the
corresponding values of the twisted superpotential are the Chern-Simons invariants:

CS(³) = W
∣∣
α

(5.3)

In particular, SL(2,C) Chern-Simons values on M3 are precisely the values of the
twisted superpotential in 3d N = 2 theory T [SU(2),M3], which we denote simply by
T [M3] to avoid clutter (and because we do not discuss other choices of the “gauge
group” G).

• Next we recall how the theory T [M3] and its superpotential W behave under cutting
and gluing (see e.g. [GGP16]):

WT [S3
p/r

(K)] =
(
WT [S3\K] +

p

2r
(log x)2

)
extremize
w.r.t. x

(5.4)

where p
r
is the surgery coefficient, and the extremization is understood in the standard

“K-theory” sense of the 3d Bethe ansatz equations that involves the exponential of the

46This follows from the general surgery formulae µ(Y0(K), s0) = µ(Y ) and µ(Y0(K), s1) = µ(Y ) + Arf(K)
for an integral homology sphere Y .
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log-derivative:

exp

[
∂

∂ log x

(
WT [S3\K] +

p

2r
(log x)2

)]
= 1 (5.5)

• In general, for a knot K the superpotential WT [S3\K] as function of x is given by the
integral of a 1-form differential on the A-polynomial curve47

WT [S3\K] =

∫
log y d log x (5.6)

These (and other) rules of the 3d-3d correspondence can be implemented explicitly for
many simple knots and the “knot complement theory” T [S3 \K] is also known for many
knots. In particular, this makes manifest several aspects of the r-dependence for 1

r
-surgeries.

In tracking particular flat connections (= vacua of T [M3]) we should keep in mind that
the total number of such flat connections / vacua is actually increasing with r. So, what we
really mean is a smooth behavior of a subset of vacua / flat connections that can be traced
all the way to r = 2 or r = 1. Another important aspect — that is more subtle than the
existence of a limit r → ∞ — is whether this limit agrees with 0-surgery. In other words,
matching (or, even a relation) between the limit 1

r
→ 0 and the 0-surgery is not as obvious

from the above 3d-3d perspective as the existence of a limit itself. There could be “jumps”
between different branches.

The “smoothness” of the behavior in r in this 3d-3d setup is ultimately a consequence of
the fact that W is a nice function in both x and r, if we treat r as a continuous variable. In
particular, the extremization with respect to x returns a nice continuous function in r; jumps
between branches can only occur at particular values of r. This explains why away from
these points we observe continuous behavior.

Also, note that, since WT [S3\K] is a linear combination of at most dilogarithms, its derivative
involves only logs and so the exponentiated Bethe ansatz equation (5.5) is an algebraic
equation. This is the basic reason why, for integer r, the solutions are algebraic integers and,
therefore, the Chern-Simons invariants (5.3) are sums of logs and dilogs evaluated at these
algebraic integers.

Another interesting feature of this physical perspective is that p
r
(or, more precisely, integers

in its continued fraction expansion) have a clear physical meaning as coupling constants: they
are supersymmetric Chern-Simons levels in the 3d N = 2 theory T [M3]. In particular, this
provides a well-defined physical framework for interpreting rℏ as a double-scaling parameter
in the double expansion of Zpert(S

3
−1/r(K), ℏ) as ℏ → 0 and r → ∞.

According to the rules of 3d-3d correspondence, the limit ℏ → 0 means that the Q-
cohomology that implements the holomorphic twist (a.k.a. Omega-background) turns into
the usual BRST cohomology of a partial topological twist in 3d N = 2 theory [GHNPPS].
In other words, in this limit the supercharge Q becomes the BRST differential of a partial
topological twist. Therefore, from the perspective of 3d-3d correspondence, one might expect
that the double-scaling limit (5.2) could be achieved by considering a partial topological
twist of 3d N = 2 theory T [M3] with M3 = S3

0(K). In the rest of Section 5, we provide
further support to this preliminary conclusion. Note that topologically twisted observables
in 3d N = 2 theories are usually much simpler in structure than the observables in the

47This is the Liouville 1-form in quantization of complex Chern-Simons theory [Guk05] and can be
interpreted as an analogue of the Seiberg-Witten differential in 3d N = 2 theory. In turn, the A-polynomial
curve plays the role of the Seiberg-Witten curve in 3d N = 2 theory T [M3].
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backgrounds S1 ×q D
2 and S1 ×q S

2, in perfect agreement with the fact that we find drastic
simplifications in the double-scaling limit (5.2) reducing quantum invariants to much simpler
invariants reminiscent of the classical torsion. This also agrees with the conclusion that
the double-scaling limit (5.2) is directly related to the partial topological twist of T [S3

0(K)]
since the latter indeed computes [GHNPPS] the Alexander polynomial of K and its various
generalizations.

5.2. Small surgery limit via A-polynomial. We start with considering this problem
algebraically by looking at the A polynomial curve. Recall that we can associate flat
connections on the p

r
surgery to intersections between the affine varieties A and {y = x−

p
r }.

The overarching idea is that for surgeries that are “close”, in the sense that |p
r
− p′

r′
| << 1,

we are able to estimate some CS invariants for the p
r
surgery from corresponding the CS

invariants on the p′

r′
surgery. To illustrate this technique we focus on the case where p′

r′
= 0.

In this case we find a collection of flat connections with CS invariant 0 and these naturally
link to flat connections with minimal CS invariants.

5.2.1. CS values from roots of the Alexander Polynomial. Fix a square root x∗ of the Alexander
polynomial ∆K(x

2) and note that this additionally forces the A-polynomial to vanish:
A(1, x∗) = 0. Then for ¹ = p

r
∈ Q close to 0 we expand

x(¹) = x∗ + c1¹ + · · ·+ cn¹
n + · · · (5.7)

Enforcing the surgery condition, y(¹)) = (x(¹))−θ, we find a collection of choices

y(¹;n) = x(¹)−θ = 1− (log(x∗) + 2nÃi)¹ +

(
2c1
x

+ (log(x∗) + 2nÃi)2
)
¹2

2
+ · · · (5.8)

labelled by choice of log branch. As ¹ → 0 all branch choices appear as intersection points.
Imposing that the A-polynomial vanishes, A(x(¹), y(¹)) = 0, we can solve for ci by looking
at the coefficient of ¹i. Note that there can be multiple solutions along different branches if
multiple irreducible branches of A meet at (x∗, 1).

Next, recall the formula for the CS invariant given in Equation (2.4). Provided ¹ is small,
we can ignore the branching of log and simplify this to

CS(¹, n, x∗) =
1

2Ã2

(∫

γ

log(y)

x
dx+

1

2¹
log(y(¹))2

)
= a0 + a1¹ + a2¹

2 + · · · (5.9)

The higher terms a2, · · · depend on the specific knot but the first 2 terms admit a more general
description. For |¹| << 1, the integrand is analytic in a small region around µ ¢ A ¢ C2 and
so ∫

γ

log(y)

x
dx =

∫ θ

0

¹
log(x(¹))

x(¹)
x′(¹)d¹ = O(¹2). (5.10)

Hence the integral does not contribute to the first 2 terms and so

CS(¹, n, x∗) =
1

4Ã2¹
Log(y(¹)) +O(¹2)

=
(log(x∗) + 2nÃi)2

4Ã2
¹ +O(¹2).
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This is a universal prediction for all knots and all roots x∗ of ∆K(x
2). Due to symmetry, if

x∗ is a root, so are {−x∗, (x∗)−1,−(x∗)−1}. Hence choosing a unique element from this set,
we have a collection of CS values given approximately by

(log(x∗) + nÃi)2

4Ã2
¹ n ∈ Z. (5.11)

Observe that all of these CS invariants go to 0 as ¹ → 0. Hence for small ¹, if we choose x∗

to minimise | log(x∗)|, then the minimal CS invariant is CS(¹, 0, x∗).
Let us apply this theory to our two examples, the 41 and the 52 knots.

5.2.2. 41 Knot. For the 41 knot the universal small ¹ estimate (5.11) is already an excellent
approximation as, due to the amphichirality of the 41 knot, the ¹2n terms in the expansion

vanish. Setting x∗ = 1+
√
5

2
, we find that for the ¹ = −1

2
surgery we get three predicted CS

invariants,

(
−1

2

)
(log(x∗) + nÃi)2

4Ã2
=

{
−0.0029328 , n = 0

0.1220672∓ 0.0382936i , n = ±1
(5.12)

These Chern-Simons invariants compare well to ³ = 1, 4, 5 in Table 3. We can further
improve the approximation by computing higher corrections. Let xn = enπix∗ denote the
solution on the branch log(xn) = log(x∗) + nÃi. Then including the next terms in equations
(5.7) and (5.8) in A41(x(¹), y(¹)) = 0 we find that

xn(¹) = xn + (−1)n
5 +

√
5

100
log(xn)

2¹2 +O(¹)4

yn(¹) = xn(¹)
−θ = 1− log(xn)¹ +

1

2
log(xn)

2¹2 −
(
log(xn)

2

10
√
5

+
log(xn)

3

6

)
¹3 +O(¹4)

Then, assuming ¹ is small, we can compute the CS invariant integral in (5.9) to O(¹3):

CS41(n; ¹) =
log(xn)

2

4Ã2
¹ +

√
5 log(xn)

3

300Ã2
¹3 −O(¹)5. (5.13)

Again specialising to the ¹ = −1
2
case, this improves our earlier predictions to

CS41

(
n;−1

2

)
=

{
−0.0029433 n = 0

0.1234017∓ 0.0355726i n = ∓1

Comparing again to Table 3 we see improved accuracy.
Another useful observation from these calculations is that if we normalize the smallest

magnitude Borel singularity to be at ±1, then for small ¹ we find a family of poles which do
not move much as ¹ changes. Explicitly these occur at

(log(x∗) + nÃi)2

log(x∗)2

and become a dominant family of subleading poles as ¹ → 0. The closest and most visible
poles correspond to n = ±1, occurring at (−41.62± 13.06i) in this normalization. We analyze
this phenomenon further in Section 5.4.
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5.2.3. 52 Knot. The same analysis can be applied to the roots of the Alexander polynomial for
the 52 knot. In this case, since the 52 knot is not amphichiral there will also be ¹2 corrections
to the universal approximation in Equations (5.11) and (5.13). Following the same procedure
we find

xn(¹) = xn +
xn
8

log(xn)¹ +
xn
896

log(xn)(14 + (7− 2
√
7i) log(xn))¹

2 +O(¹)3

Here xn = enπix∗ = enπi 1
2
√
2
(
√
7 + i) is defined similarly as before. From this we compute a

family of predicted Chern-Simons invariants:

CS52(n; ¹) =
log(xn)

2

4Ã2
¹ − log(xn)

2

32Ã2
¹2 +

log(xn)
2(21− 2

√
7i log(xn))

5376Ã2
¹3 +O(¹)4. (5.14)

Despite appearances, these are strictly real as log(xn) is imaginary. Setting ¹ = ±1
2
we

find the following approximate values for ∓1
2
surgery for 52, compared here with their exact

numerical values from Tables 4 and 5:

CS52

(
n;−1

2

)
=





0.0017643 n = 0

0.1662666 n = 1

0.1041303 n = −1

CS
(− 1

2
)exact

52
=





0.001764890...
1
6
= 0.16666666...

5
48

= 0.1041666...

CS52

(
n;

1

2

)
=





−0.0015575 n = 0

−0.1468403 n = 1

−0.0918932 n = −1

CS
(+ 1

2
)exact

52
=





−0.00155708...

−0.14661662...

−0.09186365...

(5.15)

We observe that for ¹ = ∓1
2
surgery these simple estimates closely reproduce the three

smallest magnitude exact Chern-Simons invariants in Tables 4 and 5.

5.3. Perturbative series expansions in the double-scaling limit. Consider applying the
procedure in Section 3 to produce perturbative expansions around the trivial flat connection
with p

r
kept generic. The key observation is that even with generic p

r

L p
r

(
(x

1
2 − x

−1
2 )(x

1
2r − x

−1
2r )CK;m(q)(qx; q)m(qx

−1, q)m

)
= O(ℏm+1) (5.16)

and so we will end up with a series in ℏ, r and 1
p
. We first illustrate this with examples.

5.3.1. Perturbative Series Expansions in the Double-Scaling Limit for 41 Knot. Specializing
to the 41 knot we find the formal perturbative series:

Zpert
0 (S3

− p
r
(41)) =

1

p
+

(
− 1

2p
+
r−1 + 25r

4p2

)
ℏ

+

(
− 11

12p
− r−1 − 25r

8p2
+

3r−2 + 250 + 6483r2

96p3

)
ℏ
2 +O(ℏ3) (5.17)

Already, even for these low orders of the expansion we can see one of the general features
of this series. Writing the coefficient of ℏi as a Laurent series in r and a polynomial in 1

p
,

there is a unique monomial with largest r power, ai,i+1
ri

pi+1 , and |ai,i+1| is the largest absolute

coefficient.
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For small surgeries where |r| k |p|, the polynomials are dominated by this term:

Zpert
0 (S3

− p
r
(41)) ∼

1

p
+

25rℏ

4p2
+

2161r2ℏ2

32pn+1
+

391945r3ℏ3

384p4
+

121866721r4ℏ4

6144p5
+O

(
1

p

(
rℏ

p

)5
)

(5.18)

This fact makes it natural to define a double-scaling limit, r
p
→ ∞ and ℏ → 0 such that

the parameter t = ℏ r
p

defined in (5.2) is fixed, by selecting the kth power of r/p in ak(r).

We choose p = 1 to simplify the notation, concentrating on −1
r
surgery, with r → ∞. This

defines the following sequence of coefficients:

bn :=

{
1,

25

4
,
2161

32
,
391945

384
,
121866721

6144
,
11578044773

24576
,
38999338931281

2949120
, ...

}
(5.19)

For +1
r
surgery, since the 41 knot is amphichiral, the only difference is that the expansion

coefficients alternate in sign. So we can define two new perturbative sums, for the double-
scaling limit for ∓1

r
surgery for the 41 knot:

T
(∓)
41

(t) :=
∞∑

n=0

(±1)nbn t
n , t := ℏ r (5.20)

Studying the large order growth of the coefficients reveals that:

bn ∼ 1√
5Ã

Γ
(
n+ 3

2

)
[
ln
(

1+
√
5

2

)]2n+2 (1 + exponentially small corrections) , n→ ∞ (5.21)

Therefore, the weak coupling double-scaling expansion in (5.20) is an asymptotic expansion.
Note that with about 100 coefficients in the double-scaling expansion we have enough data to
extract numerically the exact large order growth of the coefficients, which tells us the exact
Borel radius of convergence and also the corresponding exact Stokes constant shown in (5.21).
The fact that the first sub-leading corrections to the leading large-order growth in (5.21) are
exponential rather than power-law tells us that the associated leading Borel singularity is a
pole. These numerical observations are confirmed analytically below (see Section 5.4).

The radius of convergence of the Borel transform of the double-scaling expansion in (5.20)

is
[
ln
(

1+
√
5

2

)]2
≈ 0.231564820577. Surprisingly, this is remarkably close to the radius of

convergence for the ±1
r
= ±1

2
surgery, even though r = 2 is very far from the r → ∞ limit.

If we re-instate the factor of 1/r (in order to compare the double-scaling expansion in powers
of (r ℏ) with an expansion in powers of ℏ), as well as the 1

4π2 normalization, then with r = 2,
we can compare with the exact leading Chern-Simons invariant (see the first row of Table 3)
and also with the numerical Borel evaluation in (3.13):

CSleading

41,∓ 1
2

4Ã2
= ∓0.0029434... (5.22)


∓1

r

[
ln
(

1+
√
5

2

)]2

4Ã2



r=2

= ∓0.0029328... (5.23)
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In fact, this identification can be made even more precise using the large r expansion
introduced in Sections 5.2 and 5.2.2 to probe the approach to the small surgery limit.
Furthermore, from the leading large-order growth in (5.21) we extract the leading Stokes

constant as

1√
5Ã

1
[
ln
(

1+
√
5

2

)]2 = 1.089600966040975... (5.24)

Once again, this is remarkably close to the exact value for the associated Adjoint Reidemeister
torsion in Table 3, and the numerical Borel Stokes constant (3.15) computed in Section 3.1,
which were derived for the ±1

r
= ±1

2
surgery:

S41 = 1.10366976209388967... (5.25)

5.3.2. Perturbative Series Expansions in the Double-scaling Limit for 52 Knot. A similar
analysis for −1

r
surgery for the 52 knot yields the formal expansion:

Zpert
0 (S3

− 1
r
(52)) = 1 + ℏ

(
−47r

4
+

1

4r
− 1

2

)
+ ℏ

2

(
7201r2

32
+

1

32r2
− 241r

8
− 1

8r
− 45

16

)
+O(ℏ3)

∼ 1− 47(ℏr)

4
+

7201(ℏr)2

32
−O((ℏr)3) (5.26)

The double-scaling limit (ℏ → 0 and r → ∞, with ℏr fixed) leads to:

T
(∓)
52

(t) :=
∞∑

n=0

(∓1)nbn t
n , t := ℏ r (5.27)

where the first coefficients are:

bn =

{
1,

47

4
,
7201

32
,
2316047

384
,
1276975681

6144
,
1075667467247

122880
, . . .

}
(5.28)

In the double-scaling limit the only difference between the ∓1
r
surgeries is in the sign

alternation pattern of the coefficients. However, note that the sign alternation pattern is the
opposite in (5.20) and (5.27). This matches the corresponding difference between the sign
patterns for ∓1

2
surgery in the 41 and 52 cases: compare (3.6)-(3.7) and (3.25)-(3.26).

The leading large order growth of these coefficients is:

bn ∼ 1√
14Ã

Γ
(
n+ 3

2

)
[
ln
(√

7+i
2
√
2

)]2n+2 (1 + exponentially small corrections) , n→ ∞ (5.29)

So the weak coupling double-scaling expansion in (5.27) is also asymptotic. As in the 41 case,
the exact Borel radius of convergence and the exact Stokes constant can each be deduced
numerically. Also, the fact that the first sub-leading corrections to the leading large-order
growth are exponential rather than power-law tells us that the associated leading Borel
singularity is a pole. These numerical observations are confirmed analytically below (see
Section 5.4).

From the large order growth (5.29) we estimate the leading Chern-Simons invariant to be
(
∓1

2

)
1

4Ã2
log2

(√
7 + i

2
√
2

)
= ±0.00165389... (5.30)
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However, recall that unlike the 41 knot, the 52 knot is not amphichiral, so the radii of
convergence for the ∓1

2
surgeries are different for the 52 case. As discussed in Section 5.2.1,

after including the further large r corrections (5.14), the symmetry in (5.30) is broken, yielding
values in (5.15), which are in close agreement with the exact numerical values in Tables 4
and 5.

5.4. Exact Borel analysis of the small-t double-scaling limit. The fact that the first
corrections to the leading growth in (5.21) and (5.29) are exponential, rather than power-law,
suggests defining a modified Borel transform that divides out the exact leading large-order
factorial growth:

B(·) :=
∞∑

n=0

bn ·
n

Γ
(
n+ 3

2

) (5.31)

Here we divide by Γ
(
n+ 3

2

)
instead of by Γ (n+ 1). The formal expansion for T (t) is

recovered by the formal Laplace integral (note the extra
√
· factor)

T (t) =
1

t3/2

∫ ∞

0

d· e−ζ/t
√
· B(·) (5.32)

We will be more precise about subtleties concerning the contour of the Borel · integration in
Sections 5.4.1 and 5.4.2 below.

In particular, we have the following integral

Ẑ
(
S3
−1/r(K)

)
=

∫

|x|=1

dx

2Ãix
(x

1
2r − x−

1
2r )FK(q, x)

∑

n∈Z

qrn
2

xn (5.33)

The semiclassical (ℏ → 0) limit of the integrand is e
1
ℏ
W(x)+..., where W(x) is the twisted

superpotential of the 3d N = 2 theory. In this limit, we also have

FK(x, q) =
1

2

∑

mg1
odd

fm(q) · (x
m
2 − x−

m
2 ) −→ x1/2 − x−1/2

∆K(x)
(5.34)

Here ∆K(x) is the Alexander polynomial for the associated knot. This is the first term in
the MRR expansion (see Appendix A). Let us illustrate this expansion first by specializing
to the 41 and 52 knots.

5.4.1. Exact Borel Analysis of the double-scaling Limit: 41 Knot. Evaluating the integral
(5.33) for the figure-8 knot K = 41, we get

Ẑ
(
S3
−1/r(K)

)
=

∞∑

m=1

q
(mr−1)2

4r (qm − 1)fm(q) (5.35)

In the conventional normalization we divide by (q− 1) and then take the double-scaling limit:

ℏ → 0 , r → ∞ , t := rℏ = fixed (5.36)

This leads to the following formal expansion:

G(t) =
∞∑

m=1

met
m2

4 fm =
∞∑

n=0

bn t
n (5.37)
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where fm refers to fm(1), which for the 41 knot are all finite. This is basically an Eichler

integral (“half-derivative”) of the Laplace transform applied to x1/2−x−1/2

∆K(x)
, where the Alexander

polynomial of the 41 knot is

∆41(x) = −x− x−1 + 3 (5.38)

Therefore:
∞∑

m=1

et
m2

4 fm =

∫

|x|=1

dx

2Ãix

x1/2 − x−1/2

(−x− x−1 + 3)

∑

n∈Z

etn
2

xn (5.39)

Using (5.37), we can express the new expansion coefficients bn via fm. For example, the

limit t→ 0 is given by the logarithmic derivative of x1/2−x−1/2

−x−1+3−x
at x = 1:

b0 = 1

The next term b1 is equal to the third logarithmic derivative of x1/2−x−1/2

−x−1+3−x
at x = 1:

b1 =
25

4

and so on. Compare with (5.19). For general n, we have

bn =
1

n!

d2n+1

d(log x)2n+1

(
x1/2 − x−1/2

−x−1 + 3− x

) ∣∣∣
x=1

(5.40)

Thus, in order to obtain the coefficients bn we need to evaluate at t = 0 the (2n+ 1)-th
derivative of

es/2 − e−s/2

−es + 3− e−s
= s+

25

24
s3 +

2161

1920
s5 + . . . (5.41)

Therefore, the closed-form Borel transforms are (compare with (5.19)):
√
Ã

2
B

(−)
41

(·) =
sinh

(√
·
)

√
·
(
3− 2 cosh

(
2
√
·
)) (5.42)

= 1 +
25·

6
+

2161·2

120
+

78389·3

1008
+

121866721·4

362880
+ . . . (5.43)

√
Ã

2
B

(+)
41

(·) =
sin
(√

·
)

√
·
(
3− 2 cos

(
2
√
·
)) (5.44)

= 1− 25·

6
+

2161·2

120
− 78389·3

1008
+

121866721·4

362880
− . . . (5.45)

The leading Borel singularities are therefore at

·(∓) =





[
1
2
arccosh

(
3
2

)]2
=
[
log
(

1+
√
5

2

)]2
= 0.231565...

[
1
2
arccos

(
3
2

)]2
= −

[
log
(

1+
√
5

2

)]2
= −0.231565...

(5.46)

Dividing by the normalization factor 1
4π2 and multiplying by the surgery factor 1

2
we obtain

±0.0029328, in agreement with the numerical result in Section 5.3.1. This value is also very
close to the leading Chern-Simons values for the ±1

2
surgeries studied in Sections 2.3.1 and

3.1, in agreement with the small surgery expansion result (5.11).
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Figure 30. Poles of the small t double-scaling limit Borel transform for the
(−/+)1

r
surgery (upper/lower plots) for r → ∞ in the 41 knot case. See Eq.

(5.47). Note that the dominant pole lies on the real axis, and is positive for −
surgery and negative for + surgery: See Eq. (5.46). Contrast with the 52 case
in Figure 31.

The Borel transform functions in (5.43) and (5.45) are meromorphic functions of the Borel
variable ζ, with simple poles:

ζ
(∓)
k = ±

[

ln

(

1 +
√
5

2

)

+ i π k

]2

, k = . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

= ∓{. . . , 88.5949 + 9.07063i, 39.2469 + 6.04709i, 9.63804 + 3.02354i,−0.231565,

9.63804 − 3.02354i, 39.2469 − 6.04709i, 88.5949 − 9.07063i . . . } (5.47)

See Figure 30. Note the parabolic shape of the complex poles. This is analogous to the complex
Borel poles, associated with complex geodesics, for the short-time asymptotic expansion of the
Laplacian heat kernel on the two dimensional hyperbolic plane H

2 [McK72, Grig98, Dun21].
We comment further on this analogy below.

Normalizing by the leading singularity we find the first subleading Borel singularities at:

±

[

ln
(

1+
√
5

2

)

± iπ
]2

[

ln
(

1+
√
5

2

)]2 = ∓ (41.621346267± 13.05700521 i) (5.48)

As noted previously, these are very close to the first subleading normalized Chern-Simons
invariants for ∓1

2
surgery, as for α = 4 and 5 in Table 3.
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5.4.2. Exact Borel Analysis of the double-scaling Limit: 52 Knot. A similar analysis for the
double-scaling limit of the 52 knot case relies on the Alexander polynomial of the 52 knot:

∆52(x) = 2
(

x+ x−1
)

− 3 (5.49)

Then an analogous argument leads to the generating function for the expansion coefficients
in (5.28):

es/2 − e−s/2

2es + 2e−s − 3
= s− 47

24
s3 +

7201

1920
s5 − 2316047

322560
s7 + . . . (5.50)

We therefore deduce the double-scaling limit Borel transform functions (compare with (5.28)):

√
π

2
B

(−)
52

(ζ) =
sinh

(√
ζ
)

√
ζ
(

−3 + 4 cosh
(

2
√
ζ
)) (5.51)

= 1− 47ζ

6
+

7201ζ2

120
− 2316047ζ3

5040
+

1276975681ζ4

362880
− . . .

√
π

2
B

(+)
52

(ζ) =
sin
(√

ζ
)

√
ζ
(

−3 + 4 cos
(

2
√
ζ
)) (5.52)

= 1 +
47ζ

6
+

7201ζ2

120
+

2316047ζ3

5040
+

1276975681ζ4

362880
+ . . .

Note once again the opposite sign-alternation pattern for ∓ surgery compared to the 41 knot
case in (5.43)-(5.45). The leading Borel singularities are therefore at

ζ(∓) =



















[

1
2
arccosh

(

3
4

)]2
=
[

log
(√

7+i
2
√
2

)]2

= −0.130586...

[

1
2
arccos

(

3
4

)]2
= −

[

log
(√

7+i
2
√
2

)]2

= 0.130586...

(5.53)
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Figure 31. Poles of the small t double-scaling limit Borel transform for the
(−/+)1

r
surgery (upper/lower plots) for r → ∞ in the 52 knot case. See Eq.

(5.55). Note that all poles, including the dominant pole, are negative/positive
for the −/+ surgery. Contrast with the 41 case in Figure 30.
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The double-scaling limit Borel transform functions in (5.51)-(5.52) are meromorphic
functions of the Borel variable ζ, with simple poles at:

ζ
(∓)
k = ±

[
ln

(√
7 + i

2
√
2

)
+ i π k

]2
, k = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (5.54)

= ±{−0.130586198,−7.72965400,−12.27072720,−35.0679306,−44.1500770, . . . }(5.55)

In contrast to the 41 knot case in the previous section, for the 52 knot case these double-
scaling limit Borel poles are all real. Furthermore, apart from the leading pole, each pole
has degeneracy 2, corresponding to the two possible signs for k in (5.55). For the negative
surgery double-scaling limit they all lie on the negative Borel ζ axis, while for the positive
surgery double-scaling limit they all lie on the positive Borel ζ axis. See Figure 31. Contrast
with the 41 case shown in Figure 30.

If we normalize these poles by dividing by the magnitude of the leading singularity at

ζ0 = ±
[
ln
(√

7+i
2
√
2

)]2
≈ ∓0.130586198, then we obtain a picture of the relative distances from

the origin of the various poles:

ζ
(∓)
k

|ζ0|
= ±{1.000000000, 59.191967, 93.966494, 268.54240, 338.09145, 629.05129, ...}

This shows that the subleading poles are very far from the origin compared to the distance of
the leading pole from the origin. Hence the corresponding subleading effects will be strongly
suppressed. This pattern is consistent with what we observed in Section 3.2 for the first two
subleading Borel singularities in the Borel plane for ∓1

2
surgery in the 52 knot case.

5.5. Double-scaling limit for hyperbolic twist knots. Hyperbolic twist knots form a
class of knots with Alexander polynomials of a similar form compared to those of the 41 and
52 knots. We denote the twist knots as KN , labelled by an integer N , taking positive and
negative values. Except for N = 0 and N = 1, the twist knots are hyperbolic. The Alexander
polynomials ∆N(x) are (see also Table 7 for ∆N(x

2))48 :

∆N(x) = −N

(
x+

1

x

)
+ (2N + 1) (5.56)

Taking N = 1 we obtain the Alexander polynomial of the 41 knot, while N = −2 gives that
of the 52 knot. Therefore, since the Alexander polynomial governs the double-scaling limit,
we expect this limit for the manifolds S3

± 1

r

(KN) to be very similar to the cases of 41 (for

positive values of N) and 52 (for negative values of N), as discussed in the previous sections.
The poles of the corresponding Borel transform functions are given by the roots of ∆N(x

2):

∆N(x
2) = 0 ⇒ x±(N) :=

√
4N + 1± 1

2
√
N

(5.57)

Comments:

(1) Observe that in all cases x+(N)x−(N) = 1.
(2) For N g 0 the roots x±(N) are real, while for N < 0 the roots x±(N) form a complex

conjugate pair of pure phases: see Table 7.

48In this Section it is more convenient to use a different labelling convention for the twist knots compared

to those in Table 2. This of course does not affect any of the results.
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N Alexander polynomial ∆N(x
2) Twist Knot hyperbolic x±(N)

0 1 01 no –

1 −1 (x2 + x−2) + 3 41 yes 1
2
(
√
5± 1)

2 −2 (x2 + x−2) + 5 61 yes 1
2
√
2
(3± 1)

3 −3 (x2 + x−2) + 7 81 yes 1
2
√
3
(
√
13± 1)

4 −4 (x2 + x−2) + 9 101 yes 1
4
(
√
17± 1)

...
...

... yes
...

−1 1 (x2 + x−2)− 1 31 no 1
2
(
√
3± i)

−2 2 (x2 + x−2)− 3 52 yes 1
2
√
2
(
√
7± i)

−3 3 (x2 + x−2)− 5 72 yes 1
2
√
3
(
√
11± i)

−4 4 (x2 + x−2)− 7 92 yes 1
4
(
√
15± i)

−5 5 (x2 + x−2)− 9 112 yes 1
2
√
5
(
√
19± i)

...
...

... yes
...

Table 7. Alexander polynomials ∆N(x
2) for the twist knots, together with

the roots x±(N), as in (5.57). Except for N = 0 and N = −1, the twist knots
are hyperbolic, and they naturally generalize the 41 and 52 knots studied in
earlier sections of this paper.

(3) We note the identities:

1

2

(
x±(N)2 + x±(N)−2

)
=

2N + 1

2N
(5.58)

(
x±(N) + x±(N)−1

)
=

√
4N + 1

N
(5.59)

.

5.5.1. Double-Scaling Limit Expansions for Hyperbolic Twist Knots at Small t. In this Section
we discuss the small t double-scaling limit expansions for hyperbolic twist knots. We
distinguish between the negative and positive surgery cases, ∓1

r
, in the large r double-scaling

limit:

T
(−)
N (t) =

2√
π t3/2

∫ ∞

0

dζ e−ζ/t

(
sinh

(√
ζ
)

−2N cosh
(
2
√
ζ
)
+ (2N + 1)

)
(5.60)

T
(+)
N (t) =

2√
π t3/2

∫ ∞

0

dζ e−ζ/t

(
sin
(√

ζ
)

−2N cos
(
2
√
ζ
)
+ (2N + 1)

)
(5.61)
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Note that these integrals are well defined for − surgery for negative knots (N < 0) and for +
surgery for positive knots (N > 0), but require analytic continuation and contour deformation
for − surgery with positive twist knots (N > 0), and for + surgery with negative twist knots
(N < 0). These Borel integrals lie in the Mordell-Borel class so the analytic continuation
methods discussed in Section 4 apply. We also note the curious feature that in the N → ∞
limit T

(−)
N (t) reduces (up to an overall factor) to the diagonal heat kernel trace on the 2

dimensional hyperbolic manifold H
2 [Grig98, Dun21]:

K(t) =
e−t/4

2(πt)3/2

∫ ∞

0

dζ e−ζ/(4t)

(
1

sinh
(√

ζ
)
)

(5.62)

Correspondingly, in the large N limit, the Borel singularities of T
(−)
N (t) in (5.60) tend towards

the common values of −n2π2, for n = 1, 2, 3, ... on the negative real axis, as shown in Figure
32. Compare with Figures 30 and 31 for −1

2
surgery on the 41 and 52 knots, the hyperbolic

twist knots for N = 1 and N = −2, respectively.
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Figure 32. The Borel poles for the hyperbolic twist knots, for various values of
the twist knot label N , with different colored points corresponding to different
N values. Those for positive N are complex conjugate pairs forming a parabolic
pattern, as in Figure 30, while those for negative N all lie on the real axis, as
in Figure 31. As N → ∞ the poles coalesce to real values, −(nπ)2, the Borel
singularities for the heat kernel trace (5.62) for the 2 dimensional hyperbolic
manifold H

2.

The formal small t expansions in the double-scaling limit are generated from the expansion
of the Borel transform function about ζ = 0. This expansion follows from the following
straightforward Lemmas:
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Lemma 5.63.

sinh
(√

ζ
)

cosh
(
2
√
ζ
)
− 1

2
(x2 + x−2)

=
1

x+ x−1

(
x e−

√
ζ

1− x2 e−2
√
ζ
+

x e
√
ζ

x2 e2
√
ζ − 1

)
(5.64)

=
∞∑

n=0

ζn+1/2

Γ(2n+ 2)

(
Li−(2n+1)(x)− Li−(2n+1)(−x)

(x+ x−1)

)
(5.65)

Similarly,

sin
(√

ζ
)

cos
(
2
√
ζ
)
− 1

2
(x2 + x−2)

=
∞∑

n=0

(−1)nζn+1/2

Γ(2n+ 2)

(
Li−(2n+1)(x)− Li−(2n+1)(−x)

(x+ x−1)

)
(5.66)

The only difference between these series expansions is the alternating sign factor (−1)n.

This lemma leads directly to the following theorem giving closed-form expressions for the
formal small t expansions in the double-scaling limit:

Theorem 5.67. The small t double-scaling limit expansion of the Chern-Simons partition
function for ± surgery on the knot KN has the following formal perturbative asymptotic
expansion as t → 0+

T
(±)
N (t) ∼ sign(N)

∞∑

n=0

(
∓ t

4

)n

n!

[
Li−(2n+1)(x+(N))− Li−(2n+1)(−x+(N))

2
√
N(4N + 1)

]
(5.68)

Comments:

(1) Note that the RHS of (5.68) may also be written in terms of polylogarithms of ±x−(N),
since Li−(2n+1)(x+(N))−Li−(2n+1)(−x+(N)) = Li−(2n+1)(x−(N))−Li−(2n+1)(−x−(N)).
This follows from an identity for polylogarithm functions, recalling that x−(N) =
1/x+(N).

(2) The formal double-scaling limit small t series in (5.68) have factorially growing
coefficients that alternate in sign for positive surgery and N > 0, or for negative
surgery and N < 0. When the sign of the surgery and the sign of N differ, the
coefficients in (5.68) all have the same sign.

(3) We also note the curious fact that the polylogarithmic combinations appearing in
these asymptotic expansions are integer valued. This is despite the fact that for
N > 0 the x±(N) are irrational, and for N < 0 they are pure phases which are not
rational roots of unity. It is tempting to interpret these integers as (close cousins of)
the BPS state count in 3d-3d correspondence that we briefly reviewed in Section 5.1.
As explained there, we expect the relevant theory to be T [S3

0(K)] and the count to
be with respect to the supercharge Q of a partial topological twist of the 3d N = 2
theory. We will return to this interpretation below, after Lemma 5.75 and before
Lemma 5.78.

These properties follow from the following Lemma:

Lemma 5.69. (1) If x = x±(N) is a solution (5.57) of ∆N (x
2) = 0, where ∆N (x) is the

Alexander polynomial (5.56) for the twist knot KN , then for all integers n g 0 the
following combination [which appears in the coefficients of the double-scaling limit
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small t expansion in (5.68)] is an integer:
(
Li−(2n+1)(x±(N))− Li−(2n+1)(−x±(N))

2
√
N(4N + 1)

)
=

x±(N) 4n+1Φ
(
x±(N)2,−(2n+ 1), 1

2

)

2
√
N(4N + 1)

∈ Z (5.70)

Here Φ(z, s, v) is the Lerch function.
(2) The leading large order behavior of the expansion coefficients in (5.68) is given by

1

4nn!

(
Li−(2n+1)(x±(N))− Li−(2n+1)(−x±(N))

2
√
N(4N + 1)

)

∼ 1√
πN(4N + 1)

Γ
(
n+ 3

2

)

(log(x+(N)))2n+2 , n → ∞ (5.71)

This Lemma follows from an identity relating the PolyLog function to the Lerch function,
combined with the remarkable Lerch duality formula [Erd]:

Φ(z, s, v) = i z−vΓ(1− s)

(2π)1−s

{
e−iπ s

2Φ

(
e−2πiv, 1− s,

log(z)

2πi

)

−eiπ(
s
2
+2v)Φ

(
e2πiv, 1− s, 1− log(z)

2πi

)}
(5.72)

As a consequence of this Lerch duality formula, we can express the coefficients in terms of
Hurwitz zeta functions, whose asymptotic behavior is well known. We have

zΦ

(
z2,−(2n+ 1),

1

2

)
=

(−1)n+1Γ(2n+ 2)

(2π)2n+2

[
Φ

(
−1, 2n+ 2,

log(z)

πi

)
− Φ

(
−1, 2n+ 2, 1− log(z)

πi

)]
(5.73)

=
(−1)n+1Γ(2n+ 2)

(4π)2n+2

[
ζ

(
2n+ 2,

log(z)

2πi

)
+ ζ

(
2n+ 2, 1− log(z)

2πi

)

−ζ

(
2n+ 2,

1

2
+

log(z)

2πi

)
− ζ

(
2n+ 2,

1

2
− log(z)

2πi

)]
(5.74)

Evaluating at z = x+(N), and using the large order behavior of the Hurwitz zeta function,
leads to the asymptotic result in part (2) of the Lemma.

Comments:

(1) Note that when N = 1 we recover from (5.71) the leading large-order behavior of the
small t double-scaling limit expansion for the 41 knot case, see Eq. (5.21), and when
N = −2 we recover the leading large-order behavior of the small t double-scaling limit
expansion for the 52 knot case, see Eq. (5.29).

(2) The sign-alternation pattern of the factorially growing coefficients in the small t
expansion (5.68) depends both on the sign of the surgery (in the double-scaling limit
this means an expansion in powers of t or of −t) as well as on the sign of the twist
knot label N . This is because when N > 0, the roots x±(N) are real, whereas when
N < 0 they are pure phases. Specifically: the coefficients alternate in sign when the
sign of the surgery and the sign of N are the same, and all have the same sign when
the sign of the surgery and the sign of N are opposite.
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(3) It is interesting to note that this sign pattern matches the behavior found in Section 3
for the ∓1

2
surgery of the 41 knot (N = 1) and of the 52 knot (N = −2), which were

not in the double-scaling limit.

5.5.2. Double-Scaling Limit Expansions for Hyperbolic Twist Knots at Large t. The large
t double-scaling limit behavior reveals extra structure. As described in Section 4, within
this class of Borel integrals, the transformation t → π2

t
, which maps small to large t, is

implemented by Fourier-Poisson transformation. This leads to a rich structure of behaviors
in the double-scaling limit, depending on the sign of the surgery and on the sign of N , the
twist knot parameter. The large t behavior is governed by the large ζ behavior of the Borel
transform functions. These are described by the following straightforward Lemmas.

Lemma 5.75. (1) For all N , the ζ → +∞ behavior of the following Borel transform function
is:

sinh
(√

ζ
)

cosh
(
2
√
ζ
)
− 2N+1

2N

∼
∞∑

k=0

(
x+(N)2k+1 + x+(N)−(2k+1)

)

(x+(N) + x+(N)−1)
e−(2k+1)

√
ζ , ζ → +∞ (5.76)

where x+(N) is the root in (5.57). For N > 0 this Borel function has a pole on the positive
real ζ axis.
(2) For both positive and negative N , the expansion coefficients in (5.76) are integers divided
by powers of N :
(
x+(N)2k+1 + x+(N)−(2k+1)

)

(x+(N) + x+(N)−1)
=

√
N

4N + 1

[(√
4N + 1 + 1

2
√
N

)2k+1

+

(√
4N + 1− 1

2
√
N

)2k+1
]

=
integerk

Nk
, ∀k g 0 (5.77)

These integers are related to multiplicities of linear recurrences with constant coefficients
[Beu80], generalizing the familiar Fibonacci bisection case for N = 1.

Whereas we expect the integraliy in (5.68)–(5.70) to have an explanation in terms of
partial topological twist (Q-cohomology) of 3d N = 2 theory T [S3

0(K)], the integrality in
(5.77) is more tricky. This is due to the fact that the variable t which we keep fixed in the
double-scaling limit is produced from two kinds of couplings: ℏ that defines 3d background,
and the surgery coefficient that defines 3-manifold M3. These two belong to the different sides
of 3d-3d correspondence, making t a natural (finite) parameter in the 6d theory. From this,
it is a priori unclear whether the large-t expansion is supposed to have a dual weakly-coupled
description in terms of QFTd for some d < 6. We hope to shed light on this question in
future work.

Lemma 5.78. (1)When N > 0 (i.e., for positive twist knots KN>0, for which x±(N) are
real, with x+(N) > 1: recall (5.57)), we have the following Fourier expansion:

sin
(√

ζ
)

cos
(
2
√
ζ
)
− 2N+1

2N

= −2
∞∑

k=0

x+(N)−(2k+1)

(x+(N) + x+(N)−1)
sin
(
(2k + 1)

√
ζ
)

(5.79)

(2)When N < 0 (i.e., for negative twist knots KN<0, for which x±(N) is a pure phase:
recall (5.57)), we have the following Fourier expansion:

sin
(√

ζ
)

cos
(
2
√
ζ
)
− 2N+1

2N

= −
∞∑

k=0

(
x+(N)2k+1 + x+(N)−(2k+1)

)

(x+(N) + x+(N)−1)
sin
(
(2k + 1)

√
ζ
)

(5.80)
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In this case there are poles on the ζ > 0 axis.

Lemma 5.81. For Re(t) > 0 and k g 0 we have the following integrals:

∫ ∞

0

dζ e−ζ/t e−(2k+1)
√
ζ =

(2k + 1)

4
t3/2 e(k+

1
2)

2
t Γ

(
−1

2
,

(
k +

1

2

)2

t

)
(5.82)

∼ 4√
π (2k + 1)2

∞∑

n=0

( −4

(2k + 1)2 t

)n

Γ

(
n+

3

2

)
, t → +∞(5.83)

∫ ∞

0

dζ e−ζ/t sin
(
(2k + 1)

√
ζ
)

=
(2k + 1)

2

√
π t3/2 e−(k+

1
2)

2
t (5.84)

These Lemmas specify the different large t behaviors of the Chern-Simons partition function
in the double-scaling limit. For example, for positive surgery for positive hyperbolic twist
knots, (5.61), (5.79) and (5.84) imply a pure transseries exponentially decaying behavior at
large t:

T
(+)
N>0(t) = − 1

N
√
π t3/2

∫ ∞

0

dζ e−ζ/t sin
(√

ζ
)

cos
(
2
√
ζ
)
− 2N+1

2N

(5.85)

=
1√

N(4N + 1)

∞∑

k=0

(x−(N))2k+1 (2k + 1)e−(k+
1
2)

2
t , t → +∞ (5.86)

This should be contrasted with the asymptotic power-law small t behavior in (5.68).
In contrast, for negative surgery for negative hyperbolic twist knots, (5.60), (5.80) and

(5.82) imply an asymptotic expansion behavior at large t:

T
(−)
N<0(t) = − 1

N
√
π t3/2

∫ ∞

0

dζ e−ζ/t sinh
(√

ζ
)

cosh
(
2
√
ζ
)
− 2N+1

2N

(5.87)

∼ 2√
N(4N + 1)

√
π t3/2

∞∑

n=0

(−4

t

)n

Γ

(
n+

3

2

)
[Li2n+2(x+(N))

−Li2n+2(−x+(N)) + Li2n+2(x−(N))− Li2n+2(x−(N))] , t → +∞ (5.88)

Compare this with the asymptotic small t behavior in (5.68), which can be re-expressed using

Lerch duality in a form that makes the t → π2

t
transformation more clear:

T
(−)
N<0(t) ∼ − sign(N)√

πN(4N + 1)

∞∑

n=0

(−t)n
Γ
(
n+ 3

2

)

(2π)2n+2 ×
[
ζ

(
2n+ 2,

log(x+(N))

2πi

)
− ζ

(
2n+ 2,

1

2
− log(x+(N))

2πi

)
(5.89)

+ζ

(
2n+ 2, 1− log(x+(N))

2πi

)
− ζ

(
2n+ 2,

1

2
+

log(x+(N))

2πi

)]
, t → 0+

The other cases, for which the sign of the surgery and the twist knot label differ can be
analyzed using the analytic continuation methods of Section 4.
It would be interesting to explore the double-scaling limit for more general knots and, in

particular, verify whether the curious integrality properties observed in Theorem 5.67 and in
Lemma 5.75 hold true for other families of knots. We leave this to future work.
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Appendix A. Approaching 0-surgeries via ℏ and 1/r expansions

In this appendix we extend the analysis of Section 5.2 to obtain the 1
r
corrections and to

extract the asymptotics.

A.1. Higher order corrections. We start with the ℏ expansion [GM] (see also [MM, Roz1]):

FK(x, ℏ) =
(x

1
2 − x− 1

2 )

∆K(x)
+

(x
1
2 − x− 1

2 )R1(K; x)

∆K(x)3
ℏ+

(x
1
2 − x− 1

2 )R2(K; x)

∆K(x)5
ℏ
2 + · · ·

=
1

2

∑

m≥1
odd

(fm,0 + fm,1ℏ+ fm,2ℏ
2 + · · · )(xm

2 − x−m
2 )

as well as the usual surgery expansion for surgeries on knot complements

Ẑ
(
S3
−1/r(K)

)
=

1

2(q − 1)

∞∑

m=1

q
(mr−1)2

4r (qm − 1)fm(q). (A.1)

We again want to analyse the double scaling limit

ℏ → 0 , r → ∞ , t := rℏ = fixed (A.2)

As ℏ = t
r
and so we can expand (A.1) as a series in t and 1

r
to get

e
t

4r2

∞∑

m=1

e
m2t
4

(
m

2
fm,0 +

(
−mfm,0

4
+

m

2
fm,1

)
t

r
+

(
mfm,0

24
− mfm,1

4
+

m

2
fm,2 +

m3fm,0

48

)
t2

r2
+O

(
1

r3

))

(A.3)
We can evaluate these series individually to get a series of the form

G0(K; t) +
1

r
G1(K; t) +

1

r2
G2(K; t) + · · · =

∞∑

n=0

bn,0t
n +

1

r

∞∑

n=0

bn,1t
n +

1

r2

∞∑

n=0

bn,2t
n + · · ·
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We can come up with a quick an easy cookbook to compute these coefficients. The key lemma
is the following

Lemma A.4. Let F be a function with expansion

F (x) =
1

2

∞∑

m=1

fm(x
m
2 − x−m

2 )

with fm = 0 for m even then
∑

m

e
m2t
4

(m
2

)
fm =

−1√
πt

B−1F (e2
√
t) (A.5)

where B−1 is the inverse of the usual Borel transform which means that we expand F (e2
√
t)

as a series in t and then replace t
n
2 by Γ(1 + n

2
)t

n
2 .

Proof. Observe that by commuting derivatives and the sum, when n is odd,
∞∑

m=1

(m
2

)n
fm =

∂nF

∂ log(x)n

∣∣∣
x=1

.

If we define F̃ (u) = F (eu) then this is exactly the 2n+ 1 taylor coefficient of F̃ (u) expanded
around u = 0. This allows us to rewrite the left hand side of Equation (A.5) as

∑

m

e
m2t
4

(m
2

)
fm =

∞∑

n=0

tn

n!

∞∑

m=1

(m
2

)2n+1

fm

=
∞∑

n=0

tn

n!
F̃ (2n+1)(0).

We can similarly expand the right hand side of (A.5) as

B−1F (e2
√
t) = B−1F̃ (2

√
t)

=
∞∑

n=0

2nt
n
2Γ(n

2
+ 1)

n!
F̃ n(0)

Next, use the symmetry F̃ (u) = −F̃ (−u) to conclude that F̃ n(0) = 0 for n even. Additionally,

when n = 2m+ 1 is odd, Γ(m+ 3
2
) = (2m+1)!!

2m+1

√
π. Combining these we find

B−1F (e2
√
t) =

√
π

∞∑

m=0

2mtm+ 1
2

(2n)!!
F̃ 2m+1(0)

=
√
tπ

∞∑

m=0

tm+ 1
2

(n)!
F̃ 2m+1(0).

□

As a simple corollary from this we also find that

∂n

∂tn
G(t) =

∑

m

e
m2t
4

(m
2

)2m+1

fm.
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This analysis shows that these functions Gi(t) are determined entirely by the MMR expansion.
Defining

Rn(K; t) =
−1√
πt

B−1

(
(e

√
t − e−

√
t)Rn(K; e2

√
t)

∆K(e2
√
t)2n+1

)

we see that49

G0(K; t) = R0(K; t)

G1(K; t) = R1(K; t)t− 1

2
R0(K; t)t

G2(K; t) = R2(K; t)t2 − 1

2
R1(K; t)t2 +

1

4
R0(K; t)t+

1

12
R0(K; t)t2 +

1

6

(
∂

∂t
R0(K; t)

)
t2

Focusing on the 41 case we have

R0(41; t) = 1

R1(41; t) = 0

R2(41; t) = x2 − 4x+ 5− 4x−1 + x−2

and so we can compute

R0(41; t) = 1 +
25

4
t+

2161

32
t2 +

391945

384
t3 +O(t4)

R1(41; t) = 0

R2(41; t) = −1− 121

4
t− 28081

32
t2 − 10628521

384
t3 +O(t4)

which means that

G0(41; t) = 1 +
25

4
t+

2161

32
t2 +

391945

384
t3 +O(t4)

G1(41; t) = − t

2
− 25

8
t2 − 2161

64
t3 − 391945

768
t4 +O(t5)

G2(41; t) =
t

4
+

27

16
t2 +

1237

128
t3 − 163409

1536
t4 +O(t5)

and this exactly matches what we computed previously.

A.2. Asymptotic behaviour. There is an interesting puzzle presented by the analysis in the
previous section. As we have seen elsewhere in this paper, when we look at the perturbative
expansion

Ẑ
(
S3
−1/r(K), ℏ

)
=

∞∑

n=0

anℏ
n

the coefficients grow as

an ∼ S
Γ(n+ 3

2
)

(radius)n

49Note that R0(K,x) = 1
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where radius is the minimal value of CS(α)
4π2 as α ranges over irreducible flat connections. At

the same time, the previous section shows that

Ẑ
(
S3
−1/r(K), ℏ

)
=

∞∑

n=0

1

rn
Gn(K; rℏ)

where each Gn is a sum of the Ri’s and their derivatives. The puzzle is that directly from
the definition of the Ri, all of their radii of convergence (of their Borel transforms) are equal
and given by Log(x∗)2 for an appropriate root x∗ of the Alexander polynomial ∆K(x

2). This
implies that all finite sums

∑m
n=0

1
rn
Gn(K; rℏ) have this same radius of convergence which

would seem to suggest that this should be the radius of convergence of BẐ
(
S3
−1/r(K), ℏ

)

which is certainly not what we observe.
The resolution of this puzzle is subtle, so we go through it with care in the 41 case. First

observe that while the radii of convergence of the Ri are all equal, the asymptotic behaviour
of the series is subtly different. We have

(R0)n ∼ 1
√
5π log

(
1+

√
5

2

)2
Γ(n+ 3

2
)

log
(

1+
√
5

2

)2n = S0

Γ(n+ 3
2
)

dn

(R2)n ∼ −n3

75
√
π log

(
1+

√
5

2

)5
Γ(n+ 3

2
)

log
(

1+
√
5

2

)2n = −n3S2

Γ(n+ 3
2
)

dn

Note the appearance of the n3. This appears because the pole at log
(

1+
√
5

2

)2
has order 4

which occurs as (x− 3 + x−1) divides R2(x). Next observe that if (F (t))n ∼ nkS
Γ(n+ 3

2
)

dn
then

(ti
∂i

∂tj
F (t))n ∼ nk+2j−idi−jS

Γ(n+ 3
2
)

dn
.

This allows us to read off that

(G2)n ∼ (R2)n

and hence that

(G0 +
1

r
G1 +

1

r2
G2) ∼

Γ(n+ 3
2
)

dn

(
S0 −

d

2nr
S0 −

nd2S2

r2

)
∼ S0Γ(n+ 3

2
)

dn

(
1− nd2S2

S0r2

)

If we fix an r ∈ Z, we find that the large order behaviour of this finite sum of Gi’s has radius
of convergence d as expected. However if we treat 1

r
as an infinitesimal quantity, then

1− nd2S2

S0r2

dn
∼ 1

(d+ d3S2

S0r2
)n

and so the radius of convergence acquires a shift! Indeed this shift is exactly given by

d3S2

S0r2
=

√
5 log

(
1+

√
5

2

)3

75

1

r2

which is exactly the O( 1
r2
) correction to the CS value in (5.13) which was computed via

studying the A-polynomial.
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Appendix B. Torsion Polynomials for Twist Knot Surgeries

Recall from Section 2.2 we have the general formula for Adjoint Torsion

τadj
M3

p/r
(K)

(ρ) =
p

y52
x

dx
dyK

τadjK,[l](ρ) + r τadjK,[l](ρ)

τadjS1,K

This is easy to evaluate for a large class of knots and surgery coefficients and is much
easier to automate than the computations giving Chern-Simons values. Hence we briefly test
and refine the predictions/observations made in Section 2.4. In particular we investigate
further how close torsions are to algebraic integers, the constant coefficient of the torsion
polynomial and factoring of the torsion polynomial. This sort of general structure has been
studied previously for the standard torsion [Kit2016], but not the adjoint one.

B.1. Torsion polynomials for the figure-eight surgeries. Let us start by focusing on
the figure eight knot. In Table 8 we compute a large number of Torsion polynomials for
various small surgeries.

• Denoting the torsion polynomial as

σadj
(
K,

p

r
; t
)
=

n∑

i=0

ait
i

The sum of inverse torsions is the ratio a1
a0
. Hence in Table 8 we see that the sum

of inverse torsions is non 0 for integral surgeries and 5
2
, 7
2
but is always integral.

Additionally, if we hold p constant and increase r we find that the sum quickly returns
to 0. Hence a make the following conjecture:

Conjecture B.1. Fix a knot K let τ p
r
denote the adjoint torsions for the p

r
surgery.

Then the sum of inverse torsions is always integral and for any fixed p, for |r| sufficienty
large the sum of inverse torsions is 0.

• Looking at the leading coefficients, we also see that torsions are not always algebraic
integers up to powers of 2. However there does appear to be a constant Cp depending
on K, p such that for all r, the leading term of the torsion polynomial is 2iCpt

j with
i f j.

B.2. Factoring of torsion polynomials. In general, factoring of the torsion polynomial is
controlled by the A polynomial. Fixing a surgery coefficient p

r
, we the polynomial AK(t

r, t−p)
controls the intersections of A(x, y) and yrxp = 1. After removing the components corre-
sponding to x, y = ±1, we are left with a polynomial AK, p

r
(t) whose roots correspond pairwise

to irreducible flat connections on M3
p
r
(K). If AK, p

r
(t) factors, the torsion polynomial will also

factor correspondingly.
On occasion however, the torsion polynomial factors further. In particular we see this in

(2.44), for the −1
2
on the K2 = 52 knot. As we see below this is the first example of a family

of surgeries on twist knots where one factor of the torsion poly is a perfect square.

σadj

(
K2,−

1

2
; t

)
=
(
− 5 + t

)2(
164− 28t+ t2

)2

(
44241255 + 32803272t+ 695124t2 − 2966904t3 + 386592t4 − 13152t5 + 64t6

)
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Surgery
Coefficient

Torsion Polynomial σadj
(
41,−p

r
; t
)

1 −49 + 98t− 56t2 + 8t3

1
2

−7215127 + 2828784t2 − 417832t3 − 272624t4 + 83296t5 − 7168t6 + 128t7

1
3

−18526263694969 + 4555881355272t2 + 79840648144t3 − 387642368768t4 −
4086926944t5+13272051392t6−370245888t7−164618240t8+14550528t9−387072t10+
2048t11

1
4

−260317390949631266159 + 47813638030084915680t2 + 63968552791767792t3 −
3331851853538685632t4 − 18418344332124448t5 + 110148430262003200t6 +
1172148087271296t7−1774195301982464t8−17706680725504t9+12657826505728t10−
82127824896t11 − 35044376576t12 + 1287880704t13 − 14680064t14 + 32768t15

2 5− 10t+ 4t2

2
3

753079− 95554t2 − 1527t3 + 3453t4 − 234t5 + 4t6

3 1− 12t+ 4t2

3
2

365263− 249220t2 + 25584t3 + 53280t4 − 15840t5 + 1024t6

4
3

−156896 + 10240t2 + 2336t3 − 704t4 + 32t5

5 283− 4528t+ 32020t2 − 16272t3 + 1936t4

5
2

−3998639 + 7997278t− 292496t2 + 2013296t3 − 8580192t4 + 3740416t5 − 450048t6 +
15488t7

5
3

−13892528391821 + 3761182474536t2 + 320652615912t3 − 588943066640t4 +
21394528864t5 + 14259307648t6 + 8918661632t7 − 3628587264t8 + 433233408t9 −
18388992t10 + 247808t11

6 −59 + 354t− 772t2 + 256t3

6
5

2561632524397− 206780347415t2 + 10795739215t3 + 4922885241t4 − 507071145t5 −
1061595t6 − 312559t7 + 261798t8 − 15860t9 + 256t10

7 50173 + 100346t− 308856t2 − 221184t3 + 1355904t4 − 642496t5 + 53824t6

7
2

−3685907 + 140064466t− 222192900t2 + 246279536t3 − 139637424t4 + 36192128t5 −
3865600t6 + 107648t7

7
3

−11259183017377 + 13780004616964t2 − 1460730231592t3 − 4038035497728t4 +
1804028110400t5−647662872576t6+215832738560t7−40414661888t8+3669160960t9−
144599040t10 + 1722368t11

Table 8. Torsion Polynomials for the Figure Eight Knot
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σadj

(
K−2,

1

2
; t

)
= (254983 + 32828t− 2976t2 − 368t3 + 16t4)2

(−4320863531 + 1112586392t+ 69657084t2 + 206142952t3 − 44685360t4

+ 2593056t5 − 48832t6 + 128t7)

σadj

(
K3,−

1

3
; t

)
=
(
334153383044420071− 18349887725325090t− 3913729948936348t2

+ 185036724185680t3 + 37720618951440t4 − 4394629374624t5

+ 204381542080t6 − 5034238336t7 + 67439360t8 − 445440t9 + 1024t10)2

(293324796050981989 + 32215607249284620t− 11504848303637416t2

− 2462247201108184t3 + 35739935743664t4 + 41253374845120t5

+ 2132995639616t6 − 84897722112t7 + 856537600t8 − 2677760t9 + 1024t10)

σadj

(
K−3,

1

3
; t

)
=
(
− 10 + t

)2(− 19505543083830541912− 3045381269445479596t

− 169076190701696918t2 + 11929094279439271t3 + 792736409895796t4

+ 425924792048t5 − 846181769360t6 − 7749071520t7

+ 358319136t8 + 3097472t9 − 85760t10 + 256t11
)2

(−121354714396578397745 + 13623041676142110996t

+ 2675608055331699792t2 + 51100649359048448t3

− 69736245006519296t4 + 1570776432089952t5

+ 7459030688256t6 + 27276645239296t7

− 587342424832t8 + 3806090240t9 − 8184832t10 + 2048t11)

Appendix C. Mellin transform approach

In this Appendix we note that the small and large t asymptotics of the Mordell-like integrals
can alternatively be analyzed with Mellin transforms, a widely used approach to asymptotics
[FGD95, Zag06]. Instead of using the Fourier transform identity (4.34) for the Gaussian term

e−u2/t, we use instead a Mellin representation:

e−u2/t =
1

2πi

∫ c+i∞

c−i∞
u−s 1

2
ts/2 Γ

(s
2

)
ds (C.1)

where 0 < c < 1. This follows because the Mellin transform of e−u2/t is:

M[e−u2/t](s) :=

∫ ∞

0

du us−1 e−u2/t =
1

2
ts/2 Γ

(s
2

)
(C.2)

This Mellin representation has the nice property that it efficiently encodes both the small
and large t expansions. Consider an integral of Mordell form

∫ ∞

0

du e−u2/t z e−u

1∓ z e−u
(C.3)
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Using the Mellin transform

M
[

z e−u

1∓ z e−u

]
(s) = ±Γ (s) Lis(±z) (C.4)

by convolution we have:
∫ ∞

0

du e−u2/t z e−u

1∓ z e−u
=

±1

2πi

∫ c+i∞

c−i∞
t(1−s)/21

2
Γ

(
1− s

2

)
Γ(s)Lis(±z) (C.5)

where 0 < c < 1. The Γ
(
1−s
2

)
factor has simple poles at s = 2n + 1 (n = 0, 1, 2, ...), while

the Γ(s) factor has simple poles at s = −n (n = 0, 1, 2, ...). Closing the contour around the
negative s axis generates the small t expansion:

∫ ∞

0

du e−u2/t z e−u

1∓ z e−u
∼ ±

∞∑

n=0

(−1)n
Γ
(
1+n
2

)

Γ(n+ 1)
Li−n(±z)t(n+1)/2 (C.6)

On the other hand, closing the contour around the positive s axis generates the large t
expansion:

∫ ∞

0

du e−u2/t z e−u

1∓ z e−u
∼ ±

∞∑

n=0

(−1)n
Γ (2n+ 1)

Γ(n+ 1)
Li2n+1(±z)

1

tn
(C.7)

This explains the appearance of polylog factors with negative integer indices for the small t
expansions, and polylog factors with positive integer indices for the large t expansions. Note
that Li−n(±z) grows factorially fast in magnitude, while Li2n+1(±z) tends rapidly to 1 in
magnitude, so both expansions are factorially divergent.
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