
Scheduling Generative-AI Job DAGs with
Model Serving in Data Centers

Ying Zheng1, Lei Jiao2, Yuedong Xu1, Bo An3, Xin Wang1, Zongpeng Li4
1Fudan University, China 2University of Oregon, USA

3Nanyang Technological University, Singapore 4Tsinghua University, China

Abstract—Scheduling generative-AI jobs in the edge computing
environment faces multiple non-trivial challenges, including the
Directed Acyclic Graph (DAG) dependency among tasks, the
intrinsic intertwinement between task scheduling and model
selection, and the dynamic unpredictable arrival of job DAGs.
In this work, we capture all such challenges and formulate a
non-linear integer program to optimize the long-term profit of
the generative-AI service provider, i.e., service revenue of the
admitted jobs minus system costs of executing the tasks contained
in such job DAGs. This problem is NP-hard even in the offline
setting. To solve it, we first reformulate it into an equivalent
schedule selection problem using generated schedules to tackle
complex constraints. Then, we design a new online scheduling
method through the online primal-dual technique. Experimental
results confirm that our approach can increase the total service
profit by up to 41.2% compared to existing algorithms.

I. INTRODUCTION

Generative AI, or AI-Generated Content (AIGC), has been
increasingly popular in text [1], [2], image [3], [4], and other
applications [5]–[7]. A complex AIGC job can typically be
represented as a Directed Acyclic Graph (DAG) of interdepen-
dent basic tasks, each of which uses a pre-trained generative-
AI model to conduct inference. For instance, Hugging Face
[8] provides more than 40 types of AIGC tasks with 260,000+
models. As shown in Fig. 1, a user can submit an AIGC job for
generating a new image based on the pose in Image 1 and the
caption in Image 2. Here, the first task selects an appropriate
model from the candidate models to “extract” the pose from
Image 1, and the second task selects a model to generate a
text description from Image 2. Then, with the extracted pose
and text, the third task ultimately creates a new image.

An AIGC service can receive many AIGC jobs from users
at diverse geographic locations and execute such jobs upon
distributed edge clouds, particularly with powerful proces-
sors (e.g., NVIDIA Triton Inference Server [9]) increasingly
equipped at the network edge. This provides multiple benefits,
including the closer proximity to the users with low service
latency, better traffic and data localization, and more efficient
model and resource sharing and usage across AIGC jobs.

Yet, to realize these benefits in practice, the service provider
confronts fundamental and unique challenges for scheduling
and executing AIGC jobs. First, edge clouds often have
limited resources, and as users specify their jobs’ deadlines,
the service may be only capable of executing and finishing
some of the submitted jobs selectively before the deadlines,
which results in an admission control issue on top of re-
source allocation. Second, the DAG structure complicates the

“a girl is reading a book”

input image 1

Output
Task 1

Pose Detection

AIGC Job Prompt
Please create a new image by combining the pose from the Input image 1 with the

action depicted in the Input image 2.

input image 2

Candidate models:
ControlNet, Annotators…

Task 2
Image Caption

Candidate models:
vit-gpt2, blip…

Stable diffusion…

Task 3
Pose to Image

Candidate models:

Fig. 1: An example AIGC job

scheduling of the AIGC tasks in each job, as the scheduling
of each task needs to follow the dependency specified in the
DAG. This impacts not only the order but also the location
of executing the tasks upon the edge clouds. Third, unlike
traditional jobs, each task in the AIGC job can be executed
via multiple generative-AI models, making task scheduling
intrinsically intertwined with model selection. For example, for
a text-to-image task, both DALLE [3] and stable diffusion [10]
models can be used to execute this task. Choosing different
models results in varying execution times and costs, where
shorter execution time does not necessarily incur lower cost
due to the complexity and diversity of today’s neural network
model structures. Fourth, AIGC jobs arrive dynamically and
unpredictably, but the schedule decision of each job needs to
be made immediately and irrevocably in an online manner.

Existing literature fails to address the aforementioned chal-
lenges. Regarding AIGC task scheduling [11], [12], they fail
to consider complex AIGC requests with DAG structure, and
hence are not applicable to our problem. Regarding job DAG
scheduling, they either focus on a single DAG [13]–[15],
tackle offline static settings [16]–[18], ignore communications
between components [19], or optimize the makespan or cost
on a single critical path [19], [20].

In this work, we model and formulate a non-linear integer
program to optimize the AIGC service’s long-term profit, i.e.,
the revenue collected from the admitted AIGC jobs minus
task computation cost, inter-task communication cost, and
model hosting cost over time via controlling job admission,
task scheduling, and model serving under DAG dependencies
and resource and deadline restrictions. Unsurprisingly, this
problem is NP-hard even in the offline setting. To solve it, we
reformulate it into a simpler yet equivalent schedule selection

problem, and then design an efficient online algorithm based

on primal-dual analysis. The key idea is, rather than making
those multiple types of control decisions dynamically, we
generate a series of static schedules containing different con-
crete decisions spanning future time slots as each job arrives
and then just seek the best schedule for the job. Through
extensive trace-driven experiments, we demonstrate that our
proposed approach outperforms multiple other methods with
better scalability and robustness, able to balance different cost
components and achieve superior empirical competitiveness in
various settings practically.

II. MODELING AND FORMULATION

A. Edge-Cloud System

We consider an AIGC service provider which owns and op-
erates the AIGC service upon a distributed edge infrastructure.
This system consists of a set [K] = {1, 2, . . . ,K} of dis-
tributed edge clouds, or “edges”, where each edge is a server
cluster or a small-scale datacenter at a specified location (e.g.,
neighborhood, regional center) in close proximity to the AIGC
service’s users, as in Fig. 2. These edges are connected to one
another via wired networks, and are connected to the users
via wired or wireless networks. Without loss of generality, the
entire system operates in slotted time [T] = {1, 2, . . . , T}.

B. AIGC Jobs with Deadlines

Users submit AIGC jobs to the AIGC service for execution.
We use [I] = {1, 2, . . . , I} to refer to all AIGC jobs. A job
i ∈ [I] is represented as {ti, di, bi,Di}, where ti is the job’s
arrival time; di is its deadline, i.e., the time before which this
job needs to be finished; Di is the job’s Directed Acyclic
Graph (DAG) of the tasks, which will be elaborated next; and
bi is the expense that the AIGC service charges from the user
who submits this job if this job is admitted for execution.

C. AIGC Tasks and Models

Each AIGC job i contains one DAG Di = {Fi, Ei,Mi}.
Specifically, Fi is the set of the nodes and Ei is the set of the
directed edges, where each node j ∈ Fi is an individual AIGC
task and the directed edges specify the data flow between tasks
and correspondingly the execution order of the tasks. Note that
we can always add a dummy entry task and a dummy exit
task with zero execution time to the DAG to make the DAG
have only one entry node and only one exit node, following
techniques from the literature [13], [18], as shown in Fig. 2.
More than often, for a task, there could exist multiple models,
any one of which can be used for executing the task. Therefore,
we use Mi to refer to the candidate pool of the generative-
AI models that are associated to the tasks in Di. Note that
these can be just the indices or IDs of the models, as the
actual models themselves are hosted in the AIGC service’s
edge clouds. We can write Mi = {Mij}j∈Fi

, where Mij is
the candidate pool of the generative-AI models for executing
task j of the job i. We also note that each model is often
bounded with its own pre-specified configurations, e.g., the
number of inference steps for the stable diffusion model. In
this paper, we target the situation where every single edge
cloud has a full copy of all the models stored on its storage.

Edge Cloud 1

RES CAP

…
Edge Cloud 2

RES CAP

…

Execute task 1 with
! at current slot

Central controller
• Admission control
• Model selection
• Task execution

…AIGC Jobs arrive online

0

21

3

4

Entry task

Exit task

[]		!
[]		" 		#

[]		$ 		%

		!

Execute task 2 with
" at next slot

		"

		&

candidate
models

Fig. 2: The framework of AIGC job scheduling

D. Control Decisions

As a job i arrives at the system dynamically, the service
collects all the information about this job in real time and
makes the following control decisions in an online manner:
(i) whether or not to admit the job i, denoted by ui ∈ {1, 0};
(ii) whether or not to execute the task j of this job i on the edge
k at the time slot t, represented by xijkt ∈ {1, 0}, ∀t ≥ ti;
and (iii) whether or not to use the generative-AI model m for
executing the task j of this job i, denoted by yijm ∈ {1, 0}.

E. Service Revenue and Costs

For the AIGC service, we consider the revenue received for
executing the AIGC jobs, and the costs incurred from execut-
ing these jobs. Note that costs are not necessarily monetary,
and can include performance overhead of the system.

1) Revenue: The total revenue earned for the service is

Rev =
∑

iuibi. (1)

2) Task Computation Cost: Task computation cost refers to
the system overhead for executing the AIGC models’ inference
process, which mainly depends on the computational workload
correspondingly. Let rfm,i,j be the amount of computation
required by executing the model m for job i’s jth task per
time slot, and efk be the overhead per unit computation on the
edge k. The task computation cost is

Costp =
∑

i

∑
j

∑
m

∑
k

∑
txijktyijmrfm,i,je

f
k . (2)

3) Inter-Task Communication Cost: Inter-task communica-
tion cost appears if any two tasks are assigned to different edge
clouds for execution, where these two tasks are connected by
a directed edge within an AIGC job DAG and thus the output
of the predecessor task has to be transmitted as the input to
the successor task. Denote aij as the edge that executes the
job i’s task j. If the job is admitted for execution by the AIGC
service, we can have aij = maxti≤t≤di+τi{xijktk}. This is
because, although different tasks can be executed on different
edge clouds, we ensure by our constraints, as shown later,
that a task is always executed at consecutive time slots until
it finishes, associating with the same edge cloud for execution
during this process. For tasks j and j′ where (j, j′) ∈ Ei,
I(aij ̸= aij′) is an indicator function representing whether j
and j′ are executed on the same edge (where j′ executes after
j). Let hjj′ be the communication data size between the tasks

2

j and j′, and epk be the cost of communicating unit data on
the edge k. The inter-task communication cost is

Costc =
∑

i

∑
(j,j′)∈Ei

I(aij ̸= aij′)hjj′e
p
k. (3)

4) Model Hosting Cost: Model hosting cost is the system
overhead of maintaining the models in the processor memory
of the edge servers, e.g., memory consumption, and electricity
consumption. Because different tasks, either belonging to
the same or different jobs, could need the same model for
execution, there could exist multiple instances of the same
model in the memory, each model instance for a single task.
Let rsm be the size of the model m. Denote ehk as the hosting
cost per unit-size of any model per time slot on the edge k.
The model hosting cost is

Costm =
∑

i

∑
j

∑
m

∑
k

∑
txijktyijmrsmehk . (4)

F. Problem Formulation

Our goal is to maximize the profit of the service provider,
i.e., the total revenue minus the total costs. The problem
formulation is as follows:

P : max Rev − Costp − Costc − Costm (5)

s.t. (1) ∼ (4), (5a)

ui ≤
∑

myijm ≤ 1, ∀i, j, (5b)
∑

kxijkt ≤ 1, ∀i, j, t, (5c)

xijktt ≤ di, ∀i, j, k, t ≥ ti, (5d)

max
t≥ti

{
∑

kxijktt}+ 1 ≤ min
t≥ti

{
∑

kxij′ktt},

∀i, (j, j′) ∈ Ei, (5e)
∑

k

∑
t′I(

∑t′+fm,i,j

t=t′
xijkt ≥ fm,i,j) ≥ yijm,

∀i, j,m, (5f)
∑

k

∑
txijkt ≤ ui

∑
mfm,i,jyijm, ∀i, j, (5g)

∑
i

∑
jxijktyijmrsm ≤ csk, ∀k, t, (5h)

ui, xijkt, yijm ∈ {0, 1}, ∀i, j, k,m, t. (5i)

Constraint (5b) ensures that if a job is accepted, then one
and only one model can be selected for each task of the
job. Constraint (5c) ensures that only one edge can be used
for executing each task at each time slot. Constraint (5d)
ensures that each task can only be executed no later than
the job’s deadline. Constraint (5e) captures the dependency
relationship of task execution. Constraint (5f) ensures enough
consecutive time slots for the task j if it is scheduled to execute
with the model m. Constraint (5g) ensures that resource is
not allocated more than necessary. Constraint (5h) enforces
resource capacity on each edge at each time slot. Constraint
(5i) specifies the domains of the control variables.

III. ONLINE ALGORITHM DESIGN

A. Problem Reformulation

We reformulate the problem P into an equivalent problem
P1 of schedule selection, in order to “absorb” the complex
constraints and “simplify” the problem. We define a schedule

of the job i as an assignment of a set of concrete values to

the decision variables ui, xijkt, and yijm, while satisfying
Constraints (5a)∼(5g) of the problem P . That is, a schedule
of the job i is a concrete determination of whether to admit
job i, at what time slots on which edge to execute each task
of the job i, and what model to use for each task of the job i.
Thus, a schedule is indexed by l = {(i, j,m, k, t)|i ∈ [I], j ∈
Fi,m ∈ Mij , k ∈ [K], t ∈ [T]}. Based on the concept of
schedule, the problem P can be reformulated:

P1 : max
∑

i

∑
l∈ζi

xilbil (6)

s.t.
∑

l∈ζi
xil ≤ 1, ∀i, (6a)

∑
i

∑
j

∑
m

∑
l∈ζi:(i,j,m,k,t)∈lxilr

s
m ≤ csk, ∀k, t, (6b)

xil ∈ {0, 1}, ∀i, l ∈ ζi, (6c)

where the binary decision variable xil indicates whether the
job i is scheduled to execute following the schedule l. We
use ζi to denote the set of all the feasible schedules for
the job i, each of which satisfies Constraints (5a)∼(5g).
We calculate bil = Revi − Costpi − Costci − Costmi =
uibi−

∑
j

∑
m

∑
k

∑
t xijktyijmrfm,i,je

f
k−

∑
(j,j′)∈Ei

I(aij ̸=
aij′)hjj′e

p
k−

∑
j

∑
m

∑
k

∑
t xijktyijmrsmehk . Constraint (6a)

ensures that we choose up to one schedule for each job.
Constraint (6b) is equivalent to (5h). As a result, there is a one-
to-one mapping between the feasible solutions for the problem
P and those for the problem P1.

B. Primal-Dual Algorithm

We design a primal-dual algorithm to solve the problem P1

in an online manner. To that end, we relax xil as xil ≥ 0, and
derive the Language dual problem D1 of the relaxed problem
P1:

D1 : min
∑

iµi +
∑

t

∑
kc

s
kλkt (7)

s.t. µi ≥ bil −
∑

k

∑
t

∑
j

∑
m:(i,j,m,k,t)∈lr

s
mλkt, ∀i, l ∈ ζi,

(7a)

µi ≥ 0,λkt ≥ 0, ∀i, k, t, (7b)

where µi and λkt are the Language dual variables associated
with Constraints (6a) and (6b), respectively.

The key idea of our online algorithm is as follows. We
maintain a feasible solution for the dual problem D1 by a
carefully designed update rule of dual variables. Specifically,
for each job i, we try to find an appropriate schedule denoted
as li which maximizes the right-hand side of Constraint (7a)
out of the set of all the feasible schedules, and set µi as

µi ← max
l∈ζi

{bil −
∑

k

∑
t

∑
j

∑
m:(i,j,m,k,t)∈lr

s
mλkt}. (8)

If µi > 0, we admit the job and execute it according to the
schedule li returned by (8); otherwise we deny the admission
for the job i and set µi = 0. After processing the job i with
the schedule l, we update λkt as

λkt ← λkt(1 +
rkt(il)

csk
) + α(

b̄ilrkt(il)

csk
), (9)

where b̄il =
bil∑

k

∑
t rkt(il)

; α = maxi{
bi

ri,min
}; ri,min is the

minimum resource requirement of a task within the job i; and

3

Algorithm 1: Online Job Scheduling Algorithm

Input: {(ti, di, bi,Di)}, csk, e
f
k , e

p
k, e

h
k

1 Initialize xil = 0, µi = 0,λkt = 0, ∀m, k, t, i, l;
2 for job i do
3 Invoke Algorithm 2 to produce µi and the schedule li;
4 if µi > 0 then
5 Update λkt via (9);

6 if
∑i

i′=1

∑
l xi′lrkt(i

′l) ≤ csk, ∀k, t then
// check resource sufficiency

7 Admit the job i and execute it using li;

8 else Decline the job i;

9 else Decline the job i;

rkt(il) is the resource requirement for the edge k at the time
slot t when executing the job i using the schedule l. Intuitively,
b̄il can be understood as the profit incurred per unit resource.
λkt can be interpreted as a marginal price function of re-
sources, and has the following properties: (i) it is initialized to
zero and then increases as the resource consumption increases;
(ii) if the schedule li causes the cumulative usage of resources
to exceed the capacity (i.e., to violate Constraint (6b)), then no
more tasks will be scheduled on the edge k at the time slot t;
and (iii) it is carefully designed so that we always maintain a
dual feasible solution. The overall online AIGC job scheduling
algorithm is Algorithm 1.

Algorithm 1 works as follows. Upon the arrival of a job i,
Line 3 invokes Algorithm 2 to obtain µi and the schedule li via
dynamic programming, which will be elaborated next. Lines
4∼5 indicate that if µi > 0, then we update the dual variable
λkt. Lines 6∼7 indicate if there are sufficient resources to
execute the job i using the schedule li, we admit this job and
execute it following li (i.e., xili = 1, and xil = 0, ∀l ̸= li);
otherwise, we deny admission for this job (i.e., xil = 0, ∀l).
Note that since λkt has been updated, no more tasks can be
scheduled on the edge k in the future.

Dynamic Programming: Algorithm 2 is invoked by Al-
gorithm 1, and works as follows. This algorithm is the key
to handling each job DAG. As shown in Line 2, we first
determine an execution order of the tasks in the job DAG
i. We do so based on the “rank” of the job i’s task j, ∀j,
calculated as

rank(ij) =
1

|Mij |

∑
m∈Mij

fm,i,j + max
j′:(j,j′)∈Ei

{rank(ij′)},

(10)

where Mij is the set of candidate models for executing the
job i’s task j, and fm,i,j is the runtime of using model m to
execute job i’s jth task. We use (j, j′) to represent an edge
from the task j to the task j′. The execution order for the tasks
in job i is then generated as the descending order of the ranks
of the tasks. This ensures that when executing a task j, all its
predecessor tasks have been completed. Line 3 in Algorithm 2
generates the set of “schedule options” H for each task that has
multiple children tasks. This is because, to obtain the optimal
scheduling strategy using dynamic programming, a parent task
that has multiple children tasks is difficult to handle in the
sense that the optimal schedule of different children tasks may

Algorithm 2: Per-Job Schedule Selection Algorithm

Input: (ti, di, bi,Di), c
s
k, γkt,λkt, {δ̃mkt}

Output: µi, li

1 Initialize
Fjkmt = inf, Vjkmt = ∅, Pjkmt = −inf, ∀j, k,m, t;

2 Generate the execution order S for the tasks as the
descending order of the ranks defined in (10);

3 Generate schedule options H for each task with multiple
child tasks;

4 for option h ∈ H do
5 for task j ∈ S do

6 for edge k ∈ hK
j do

7 for model m ∈ hM
j do

8 for time t ∈ [ti, di − f(m, i, j)] do
9 Fjkmt ←∑

j′:(j′,j)∈Ei
mink′,m′{Fj′k′m′(t−fm,i,j)

I(j ==
Rj′) + Costpij + Costcij + Costhij} ;

10 if Fjkmt < Fjkm(t−1) then
11 Add decision (i, j,m, k, t) to Vjkmt

;

12 else
13 Fjkmt, Vjkmt ←

Fjkm(t−1), Vjkm(t−1);

14 if j == exit task then
15 Pjkmt ← Revi − Fjkmt;

16 return schedule li = Vjk∗m∗t∗ that achieves max{Pjkmt},
and the maximum value is µi.

be based on the conflicting schedules of the same parent task.
To address this issue, we first assign a specific edge cloud and
a specific model to the parent task, and collect all such possible
assignments in a set H . Then, for each option h ∈ H , we
perform the dynamic programming process. The hK

j in Line
6 indicates a specified edge cloud if task the j has multiple
children tasks, otherwise hK

j = [K]. Similarly, hM
j in Line 7

refers to a specified model if the task j has multiple children
tasks, otherwise it just takes hM

j = Mij . For each job i, let
Fjkmt be the minimum cumulative cost up to executing the
task j following the execution order, where the task j starts
to execute with the model m no later than t on the edge k.
Likewise, denote Pjkmt as the profit up to executing the task
j with the model m no later than t on the edge k. Since we
calculate Revi = bi only at the finishing time slot of the last
task of the job i, Pjkmt has values only for j = |Fi|. We
use Vjkmt to record the scheduling decisions for each task
that can achieve Fjkmt. Line 9 defines the updating rule of
Fjkmt, where Rj′ represents the task to which the parent task
j’s cost is accumulated. Line 10 states that if executing the
task j at t results in a smaller cost compared to executing it
at t − 1 or earlier, then we save this schedule for the task j
in Line 11; otherwise we just keep the previous result as in
Lines 12∼13. Lines 14∼15 indicate that when executing the
last task, we start to calculate the revenue, and subtract the
cumulative cost to obtain the final profit. Line 16 returns the
schedule li = Vjk∗m∗t∗ that achieves max{Pjk∗m∗t∗}, and
the corresponding maximum value is assigned to µi. Fig. 3

4

0

32

4

5

Entry task

Exit task

1

Execution
order

RankEstimated
average runtime

Candidate
models

Task

--------0

1rank(1)=!"+
max{rank(2),rank(3)

}=16

!"=!" # # +
 ! &=5

#, !1

3rank(2)=""+$"=7""=3"2

2rank(3)=%"+$"=11%"=7%, $, &3

4rank(4)=$"=4$"=4', (4

--------5

Schedule options
à Edge 0, #Option 1

à Edge 0, !Option 2

à Edge 1, #Option 3

à Edge 1, !Option 4

1
1
1
1

is the task with
multiple children tasks
1

Fig. 3: An example of generating the schedule options and computing the execution order

Fig. 4: Impact of number of slots Fig. 5: Impact of number of edges Fig. 6: Impact of edge capacities Fig. 7: Impact of workload

exhibits an example of generating the schedule options and
computing the execution order when there are two edge clouds
in the system.

IV. EXPERIMENTS

A. Evaluation Settings

AIGC Jobs and System Environments: We generate a
DAG dataset based on huggingGPT [21], a system that trans-
forms complex AIGC requests into task DAGs. The revenue
for each request is determined in proportion to its overall
resource demand multiplied by a reference average completion
time. The deadline for each request is generated randomly
within the range between its arrival time and the experiment
end time [22]. The memory and computation capacity of an
edge cloud in different settings is set based on the capacity
of a server with 4 NVIDIA GeForce RTX 3060, 4090, and
Tesla V100, respectively. For each time slot, the number of
requests arriving online follows a Poisson process with an
average of 3, 5, and 7. Each time slot lasts 5 seconds and
the total number of time slots in different settings are set
as 100, 200, and 500. Note that although we only measure
finite horizon in our experiments, our algorithm can easily be
extended to infinite time horizon.

Comparison Algorithms: We compare our proposed ap-
proach against (i) HEFT-A, (ii) HEFT-MA, and (iii) Random-
A. We call our approach ComDOS (Compact-exponential-
based AIGC DAG Online Scheduling) in the evaluations.

• HEFT-A: HEFT [23], [24] is widely used for job DAG
scheduling. It calculates the scheduling priority of each
node in the DAG based on the rank, and assigns tasks

to edges with the shortest completion time to minimize
the overall job completion time. We introduce admission
control to HEFT, i.e., when the profit for executing a task
is negative, the task is directly declined.

• HEFT-MA: We also extend HEFT-A to HEFT-MA with
an additional model selection algorithm, where each task
is executed by the model with the shortest execution time.

• Random-A: Random-A calculates the scheduling priority
of each node in the DAG based on the rank, while ran-
domly assigning tasks to edges for processing. Similarly,
we also apply admission control.

B. Evaluation Results

Scalability: Fig. 4 shows the impact of the total number of
time slots or the length of the time horizon on the profit. We
observe that ComDOS consistently achieves the highest profit,
and improves the profit by 41.2%, 100.78%, and 315.51% in
the setting of 500 time slots when compared to HEFT-MA,
HEFT-A, and Random-A , respectively.

Fig. 5 varies the number of the edge clouds in the system
and investigates how this impacts the profit. ComDOS still
outperforms others. Specifically, when compared to the HEFT-
MA, ComDOS improves the profit by 38.95%, 39.76%, and
38.94% for 5, 10, and 20 edges, respectively. ComDOS also
achieves an improvement of 94.95%, 95.60%, and 94.44%
compared to HEFT-A.

Fig. 6 visualizes the profit with different edge capacities. In
this experiment, we conduct tests based on 10 edge clouds.
In the first three sets of experiments, we test homogeneous
edge clouds with the same capacity for each server. The labels

5

Fig. 8: Impact of cost weights Fig. 9: Competitive ratio

‘homo-S’, ‘homo-M’, and ‘homo-L’ correspond to the capac-
ities of 4 NVIDIA 3060, 4090, and Tesla V100, respectively.
The last set of experiments is for heterogeneous edge clouds.
ComDOS achieves the best performance in all tests.

Robustness: Fig. 7 illustrates the profit under different job
arrival patterns. In the light-workload scenario, i.e., the param-
eter lambda of Poisson distribution is 3, ComDOS achieves
improvements of 32.67%, 92.38%, and 290.28% compared
to the HEFT-MA. HEFT-A, Random-A, respectively. While
the improvement is 35.44%, 85.87%, and 198.16% in the
heavy-workload scenario. ComDOS is robust to the workload
variations.

Cost Dissection: Fig. 8 depicts the profit under different
cost weights. As we consider multiple types of costs, we can
associate a weight to each cost term to control the overall
optimization. We set the weight to 0.1 for all costs in the first
test. The remaining four tests are each dominated by one type
of cost, where the dominant cost weight is set to 0.5 and the
others are set to 0.1. ComDOS achieves the best performance
across various weight settings.

Competitiveness: Fig. 9 evaluates the empirical competitive
ratio. Results demonstrate that ComDOS achieves the empir-
ical competitive ratios of no more than 2 in various settings.

V. CONCLUSION

Unlike other types of job DAGs, it is particularly difficult
to dynamically schedule complex generative-AI job DAGs that
arrive online. This paper makes our first step toward a more
comprehensive and solid study about this problem. We model
this problem, handle the complex constraints and reduce the
decision dimensions through a careful and equivalent refor-
mulation, and manage to design an online algorithm rooted
in rigorous optimization theory. We also conduct preliminary
experiments to validate the superior practical performance of
our proposed approach over multiple existing methods. Due
to the space limit, there still exist factors that have not been
considered, which we intend to postpone to our future work.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 62072117, in part
by the Shanghai Natural Science Foundation under Grant
22ZR1407000, and in part by the U.S. National Science
Foundation under Grants CNS-2047719 and CNS-2225949.
The corresponding authors are Lei Jiao (jiao@cs.uoregon.edu)
and Yuedong Xu (ydxu@fudan.edu.cn).

REFERENCES

[1] OpenAI, “GPT-4 Technical Report,” https://cdn.openai.com/papers/
gpt-4.pdf.

[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “LLAMA
2: Open Foundation and Fine-Tuned Chat Models,” arXiv preprint
arXiv:2307.09288, 2023.

[3] G. Daras and A. G. Dimakis, “Discovering the Hidden Vocabulary of
DALLE-2,” arXiv preprint arXiv:2206.00169, 2022.

[4] T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture
for Generative Adversarial Networks,” in IEEE/CVF CVPR, 2019.

[5] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin, M. Shar-
ifi, D. Roblek, O. Teboul, D. Grangier, M. Tagliasacchi et al., “Audiolm:
A Language Modeling Approach to Audio Generation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2023.

[6] C. Chen, Y. Hu, W. Weng, and E. S. Chng, “Metric-Oriented Speech
Enhancement Using Diffusion Probabilistic Model,” in IEEE ICASSP,
2023.

[7] Z. Luo, D. Chen, Y. Zhang, Y. Huang, L. Wang, Y. Shen, D. Zhao,
J. Zhou, and T. Tan, “VideoFusion: Decomposed Diffusion Models for
High-Quality Video Generation,” in IEEE CVPR, 2023.

[8] Hugging Face, https://huggingface.co/.
[9] NVIDIA Triton Inference Server, https://developer.nvidia.com/

nvidia-triton-inference-server.
[10] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-

Resolution Image Synthesis with Latent Diffusion Models,” in IEEE
CVPR, 2022.

[11] M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han,
“Joint Foundation Model Caching and Inference of Generative AI
Services for Edge Intelligence,” arXiv preprint arXiv:2305.12130, 2023.

[12] H. Du, R. Zhang, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, X. S. Shen,
and H. V. Poor, “Exploring Collaborative Distributed Diffusion-based
AI-Generated Content (AIGC) in Wireless Networks,” IEEE Network,
no. 99, pp. 1–8, 2023.

[13] B. Hu and Z. Cao, “Minimizing Resource Consumption Cost of DAG
Applications with Reliability Requirement on Heterogeneous Processor
Systems,” IEEE TIT, vol. 16, no. 12, pp. 7437–7447, 2019.

[14] W. Chen, G. Xie, R. Li, and K. Li, “Execution Cost Minimization
Scheduling Algorithms for Deadline-Constrained Parallel Applications
on Heterogeneous Clouds,” Cluster Computing, vol. 24, pp. 701–715,
2021.

[15] H. Arabnejad and J. G. Barbosa, “List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table,” IEEE TPDS,
vol. 25, no. 3, pp. 682–694, 2013.

[16] N. Rizvi, R. Dharavath, and D. R. Edla, “Cost and Makespan Aware
Workflow Scheduling in IaaS Clouds using Hybrid Spider Monkey
Optimization,” Simulation Modelling Practice and Theory, vol. 110, p.
102328, 2021.

[17] G. Xie, G. Zeng, J. Jiang, C. Fan, R. Li, and K. Li, “Energy Management
for Multiple Real-Time Workflows on Cyber-Physical Cloud Systems,”
Future Generation Computer Systems, vol. 105, pp. 916–931, 2020.

[18] Q. Wu, F. Ishikawa, Q. Zhu, Y. Xia, and J. Wen, “Deadline-constrained
cost optimization approaches for workflow scheduling in clouds,” IEEE
TPDS, vol. 28, no. 12, pp. 3401–3412, 2017.

[19] K. Agrawal, J. Li, K. Lu, and B. Moseley, “Scheduling Parallel DAG
Jobs Online to Minimize Average Flow Time,” in ACM SODA, 2016.

[20] S. Zhao, X. Dai, and I. Bate, “DAG Scheduling and Analysis on Multi-
Core Systems by Modelling Parallelism and Dependency,” IEEE TPDS,
vol. 33, no. 12, pp. 4019–4038, 2022.

[21] Y. Shen, K. Song, X. Tan, D. Li, W. Lu, and Y. Zhuang, “HuggingGPT:
Solving AI Tasks with ChatGPT and its Friends in Hugging Face,” arXiv
preprint arXiv:2303.17580, 2023.

[22] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An Efficient Cloud Market
Mechanism for Computing Jobs with Soft Deadlines,” IEEE/ACM ToN,
vol. 25, no. 2, pp. 793–805, 2016.

[23] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and
Low-Complexity Task Scheduling for Heterogeneous Computing,” IEEE
TPDS, vol. 13, no. 3, pp. 260–274, 2002.

[24] L.-C. Canon, E. Jeannot, R. Sakellariou, and W. Zheng, “Comparative
Evaluation of the Robustness of DAG Scheduling Heuristics,” Grid
Computing: Achievements and Prospects, pp. 73–84, 2008.

6

