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Generalized residual �niteness of groups

Nic Brody and Kasia Jankiewicz

A�������. A countable group is residually �nite if every nontrivial element
can act nontrivially on a �nite set. When a group fails to be residually �nite,
wemightwant tomeasure howdrastically it fails - it could be that only�nitely
many conjugacy classes of elements fail to act nontrivially on a �nite set, or
it could be that the group has no nontrivial actions on �nite sets whatsoever.
We de�ne a hierarchy of properties, and construct groups which become ar-
bitrarily complicated in this sense.
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1. Introduction
Many in�nite discrete groups are known to be residually �nite. For example,

free groups, and more generally, by the theorem of Mal’cev [Mal40], all �nitely
generated linear groups are residually�nite. Other examples include all�nitely
generated nilpotent groups. A famous open problem of geometric group theory
asks whether all Gromov-hyperbolic groups are residually �nite [Bes04, Prob
1.15]. Without the assumption of Gromov-hyperbolicity, there are also many
examples of groups which are not residually �nite.
Of course if a group � has no �nite index subgroups at all, then � is very far

from being residually �nite. This happens, for example, for the Higman group
(see Example 3.1) or any in�nite simple group. However, there are also non-
residually �nite groups that are very close to being residually �nite, in the sense
that the intersection of all�nite-index subgroups is a�nite nontrivial group (see
Example 3.3). We would like to distinguish between these possibilities.
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We propose the notion of �-residual �niteness for arbitrary ordinal �, which
generalizes the notions of a �nite group, and a residually �nite group. For ex-
ample, the Deligne group (de�ned in Example 3.2), which is a non-residually
�nite extension of� by a residually�nite group, is (��2)-residually�nite, where
� is the order type of the natural numbers, and so � � 2 is the order type cor-
responding to two copies of natural numbers listed one after the other. On the
other hand, the Higman group, whose intersection of all �nite index subgroups
is an in�nite simple group, is not �-residually �nite for any ordinal �. For a
precise de�nition of �-residual �niteness, see Section 3.
Our main result is a construction of the following examples.

Theorem 1.1. For every � � �, where � � 1, there exists a �nitely generated
group �� which is � � �-residually �nite, but not � � (� � 1)-residually �nite.
We also give a characterization of �-residual �niteness in terms of actions on

rooted �-trees, which can be thought of as trees of depth �. Informally, those
are collections of vertex sets and edge sets indexed by ordinals � � �, with edges
joining vertices in sets whose indices di�er by 1. For limit ordinals, the vertex
sets are de�ned as the limit sets of the preceding sets of vertices.

Theorem 1.2. A group � is �-residually �nite if and only if � admits a simple
action on a rooted �-tree.
This note is organized as follows. In Section 2 we recall some background

on ordinals and cardinals. In Section 3 we give motivation and de�nition of �-
residual �niteness, and prove some properties of this notion. In the following
Section 4 we include a discussion on �-trees and prove Theorem 1.2. Finally,
in Section 5 we prove Theorem 1.1

Acknowledgement. We thankMartinBridson,MarcoLinton, and the anony-
mous referee for their helpful comments. The second author was supported by
the NSF grants DMS-2203307 and DMS-2238198.

2. Background on ordinals and cardinals
We include basics on ordinals and cardinals. For more background see e.g.

[Hal74].

2.1. Ordinals. An ordered set (�,�) consists of a set �, and a binary relation
�, which is re�exive, anti-symmetric, and transitive. An ordered set (�,�) is
well-ordered, if for any �, � � � either � � � or � � �, and every non-empty
subset of � has a least element with respect to �.
Let (�,�) and (�,�) be two ordered sets. A function � � � � � is mono-

tonic if for every �, � � � such that � � �, we have �(�) � �(�). An order
isomorphism is a monotonic bijection whose inverse is also monotonic. We say
(�,�) and (�,�) have the same order type if there exists an order isomorphism
between � and �. We note that having the same order type is an equivalence
relation.
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An ordinal is the order type of a well-ordered set. The ordinal � is the order
type of the natural numbers with the standard order �. Every natural number
� is the order type of the set {1, 2,… ,�} with the standard order.

2.2. Ordinal arithmetic. The arithmetic operations of addition andmultipli-
cation can be de�ned for ordinals. Let �, � be two ordinals. We de�ne � + �
to be the ordinal whose underlying set is the disjoint union of those of � and �,
and the order is extended so that each element of � is less than each element of
�. We let � � � be the ordinal whose underlying set is the product of those for
� and �, and the order is reverse lexicographic, so that (�1, �1) < (�2, �2) if and
only if �1 < �2 or �1 = �2 and �1 < �2.
For example, the ordinal �+� corresponds to the order type of two copies of

the natural numbers, where each number in the �rst copy is smaller than each
number in the second copy. This is the same ordinal as � � 2.
We note that neither addition nor multiplication is commutative. For exam-

ple, 1+� = �, but �+1 is the order type of the ordered set (�� {�},�)where
the order on � is standard, and � �� for every � � �. In particular, the order
type�+1 contains a largest element, while the order type� does not. Similarly,
� � 2 � 2 � �.
An ordinal � is a successor of � if � is the smallest ordinal greater than �, i.e.

� = � + 1. A limit ordinal is a non-zero ordinal that is not a successor ordinal.
Equivalently, � is a limit ordinal if there exists � such that � < �, and for every
such �, there exists an ordinal � such that � < � < �. Note that, in particular,
every successor ordinal is of the form �+ � for some limit ordinal � and � > 0.

2.3. Cardinals. A cardinal is a set considered up to bijection. There is a natu-
ral association of a cardinal to each ordinal, by taking any set of given order type
and considering it up to bijection. Finite ordinals are in one to one correspon-
dence with �nite cardinals, and both can be identi�ed with natural numbers.
Among in�nite ordinals, there are many ordinals that correspond to the same
cardinal; ordinals �, � + 1 and � � 2 all correspond to the cardinal �0.

3. �-residual �niteness
We recall that a countable group � is residually �nite if for every nontrivial

� � �, there exists a �nite index subgroup � � � such that � � �. Equiv-
alently, � is residually �nite if for every nontrivial � � � there exists a �nite
quotient � � � � � such that �(�) � 1. The residual �niteness core ����(�)
of a countable group �, is the intersection of all �nite index subgroups of �. A
group � is residually �nite if and only if ����(�) = {1}.

3.1. Motivation. We start with reviewing some examples of non-residually �-
nite groups.

Example 3.1 ([Hig51]). The Higman group is given by the presentation
� = ��, �, �, � � ��1�� = �2, ��1�� = �2, ��1�� = �2, ��1�� = �2�.
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It is an in�nite group that admits no �nite quotients. In particular, ����(�) =
�.
Example 3.2 ([Del78], see also [Mor09]). Note that the fundamental group of
��2�(�) is �. There exists a �nite index subgroup � � ��2�(�) such that the
preimage �� of� in the universal cover ���2�(�) of ��2�(�) is a central extension

1� �� �� � � � 1.
Moreover, every �nite index subgroup of �� contains the kernel �, and in fact
����(�) is equal to the index two subgroup 2� of the kernel�. In particular, ��
is not residually �nite, but {residually �nite}-by-{residually �nite}.

Example 3.3. If instead of lifting � to the universal cover, we lift to a �nite
cover of degree � � 3, we obtain a central extension of the form

1� ����� �� � � � 1.
The group �� is not residually �nite, but �nite-by-{residually �nite}.

Our goal is to distinguish the above groups using a �ner notion than residual
�niteness, which we de�ne in the next section.

3.2. De�nition.

De�nition 3.4. Let � be an ordinal and � a cardinal. A group � is called �-
residually �-bounded if there exists an �-indexed chain {C�(�)}��� of subgroups
of � so that

(i) C0(�) = �, and C�(�) = {1},
(ii) [C�(�) � C�+1(�)] < � for all � < �,
(iii) C�(�) =

�
�<� C�(�) for limit ordinals � � �.

The chain of subgroups {C�(�)}��� is called an (�, �)-residual chain for �.
When (�, �) = (�,�0), we recover the standard notion of residual �niteness.

Groupswhich are�-residually�0-boundedwill be called�-residually�nite. We
note that if � is �-residually �nite, then � is �-residually �nite for every � > �.
Similarly, if � is �-residually �1-bounded, then � is �-residually �2-bounded

for every �2 > �1. Moreover, every group � is 1-residually �-bounded for every
� > ���. However, if � is prime and � < �,���� is not �-residually �-bounded
for any �.
De�nition 3.5. We say the residual �niteness depth �������(�) = � if � is �-
residually �nite, but not �-residually �nite for any � < �
While our de�nition does not appear in the literature,MarcoLinton informed

us of the following result of Baumslag, which we restate in our terminology.

Theorem 3.6 ([Bau71]). Every positive one-relator group (i.e. where the relator
is a positive word) is � � �-residually �nite for some �.
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Baumslag also conjectured [Bau74] that every one-relator group is � � �-
residually�nite for some�. One should note thatmanywell-knownone-relator
groups (including non-solvable Baumslag-Solitar groups) are not Hop�an, and
consequently, not residually �nite.

3.3. Properties. The notion of �-residual �niteness is not very interesting for
�nite ordinals. Indeed, for every� � � such that� � 1 a group� is�-residually
�nite if and only if � is �nite. More generally, we have the following.

Proposition 3.7. If �������(�) = �, then � is 0, 1, a limit ordinal, or the succes-
sor of a limit ordinal.
Proof. Any successor ordinal can be expressed as � + � for some � � 1, and
some limit ordinal �. Suppose that � is (�+�)-residually �nite for some � � 2
and sone limit ordinal�, and let {C�(�)}���+� be its�+� index chain provided by
the de�nition. That means that C�+�(�) = {1} and [C�+��1(�) � C�+�(�)] <
�,. . . , [C�(�) � C�+1(�)] < �, hence [C�(�) � C�+�(�)] < �. In partic-
ular the chain {C��(�)}���+1 where C��(�) = C�(�) for � � �, and C��+1(�) =
C�+�(�) = {1} is an (� + 1,�0)-residual chain for � as in De�nition 3.4. Thus
� is (� + 1)-residually �nite. ⇤
Example 3.8. We have �������(�) = 0 if and only if � is the trivial group, and
�������(�) = 1 if and only if � is a nontrivial �nite group. A group � with
�������(�) = � + 1 is �nite-by-residually �nite.
More generally, we have the following.

Proposition 3.9. Suppose that

1� � � � ��� � � 1
is a short exact sequence of groups where � is �1-residually �1-bounded and� is
�2-residually �2-bounded. Then � is (�1 + �2)-residuallymax{�1, �2}-bounded.
Proof. Let {C�(�)}���1 , {C�(�)}���2 be (�1, �1)- and (�2, �2)-residual chains for

� and � respectively. For � � �1 + �2 set C�(�) = ��
�1(C�(�)) for � � �1

C���1(�) for � > �1
Then C�1(�) =

�
�<�1 �

�1(C�(�)) = ��1(��<�1 C�(�)) = ��1(1�) = �. Thus
{C�(�)}���1+�2 is an (�1 + �2,max{�1, �2})-residual chain for �. ⇤
Proposition 3.10. Let � be a group such that ����(�) has �������(����(�))) =
� > 0. Then �������(�) = � + �.
Proof. Note that if ����(�) is �-residually �nite for some ordinal � > 0, then
necessarily [� � ����(�)] = �. Indeed, if [� � ����(�)] < �, then any �nite
index subgroup of ����(�), which exists by the assumption that ����(�) is �-
residually �nite, would also have �nite index in �, contradiction the de�nition
of ����(�). Thus, ������(�) is an in�nite residually �nite group. By Proposi-
tion 3.9 � is (�+�)-residually �nite. It remains to prove that �������(�) is not
less than � + �.
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Since � surjects onto an in�nite group, clearly � is in�nite, so �������(�) �
�. Suppose that� is (�+�)-residually�nite for someordinal�, and let {C�(�)}���
be the (� + �)-residual chain for �. Since C�(�) is an intersection of �nite in-
dex subgroups of � we have C�(�) � ����(�). By construction, this (� + �)-
residual chain also provides a �-residual chain witnessing �-residual �niteness
of C�(�). In particular, this proves that ����(�) is �-residually �nite.
It follows that �������(�) = � + � as claimed. ⇤

Remark. We emphasize that �+ �might be equal to �. Indeed, this is the case
precisely when � � ��.
In the next proposition, �� denotes the group of functions from the set �

to the group �, with the group operation de�ned coordinate-wise. By �(�) we
denote the subgroup of the functions with �nite support.

Proposition 3.11. If � is �-residually �nite, and � is a countable set, �� is
�-residually �nite. In particular, if � is in�nite, �������(�) = �������(��) =
�������(�(�)).

Proof. Let {C�(�)}��� be a residual chain for �, and {�0,�1,�2,�3,… } an enu-
meration of �. Then consider the chain

�� = {�� � � � � �(��) � C���(�) for � < �}.
This has index [� � C1(�)][� � C2(�)] … [� � C�(�)] < �, and the intersec-
tion of all�� is trivial.
The second statement follows because � � �(�) � �� . ⇤

4. Actions on rooted trees
4.1. Faithful actions on rooted �nite valence trees. If � is a group, � � �
and � � �, the element � permutes the left cosets of �. For a �xed group �,
we may wish to study all such actions at once, for all � and all �. Note that if
�2 � �1 � �, the permutations of�2 are compatible with permutations of�1,
in the sense that if � �xes�2, it �xes�1 as well.

Proposition 4.1 (Folklore). A countable group � is residually �nite if and only
if it acts faithfully on a rooted �nite valence tree.

Proof. Let C�(�) for � � � be a residual chain. Consider a rooted tree � with
the level � vertex sets �� = ��C�(�), and edges joining the cosets �C�+1(�) and
�C�(�). This admits a left �-action via �(�C�(�)) = (��)C�(�), which preserves
the edge structure. Since {C�(�)}��� is a residual chain, for every 1 � � � �
there is an � with � � C�(�). So � acts nontrivially on��. This shows that� acts
faithfully on a rooted �nite valence tree.
Conversely, suppose � acts faithfully on a rooted tree �, and let �� be the

�nite index subgroup which �xes the �th level of the tree. Since the action is
faithful, no nontrivial element �xes every level of the tree, so ������ = 1. ⇤
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4.2. Rooted �-trees.

De�nition 4.2. Let � be an ordinal, and � a cardinal. A rooted (�, �)-tree �
is a family {��}��� of sets, and a family {��}�<� of functions, where �0 = {�},
�� � ��+1 � �� with ���1� (��)� < �, and for a limit ordinal � � �,�� = lim����<� ��.

For each � � �, we refer to�� as the vertex set of � at level �. By �<� we denote
the union

�
�<� ��, the vertex set of � at level at most �. Note that when � is a

�nite ordinal, then � is just a rooted tree of depth �. When � = �, then � is a
standard in�nite rooted tree, with an extra vertex corresponding to each end of
�.
The directed system determines restriction maps ��� � �� � �� for any � �

� � �. Indeed, if � = � + � for some �nite � � 0, then ��� is the composition of
�nitely manymaps ���1 ����2���. Otherwise � = �+� for some limit ordinal
� and some �nite � � 0, and � < �. Then by the de�nition of �� there is a map
��� � �� � ��, and we de�ne ��� = ��� � �

�
� .

4.3. Actions on rooted �-trees. An automorphism of a rooted (�, �)-tree is a
family � = {��}��� of bijections of�� satisfying����+1 = ����. An automorphism
is simple if the action on �� is �xed-point free; a group acts simply on an �-tree
if every nontrivial element acts as a simple automorphism.

Theorem 4.3. A group� is �-residually �-bounded if and only if� has a simple
action on a rooted (�, �)-tree.

Proof.
� Supposing {C�(�)}��� is an (�, �)-residual chain for �, we can build a

rooted (�, �)-tree with a simple �-action as follows. Let

�� = {{��C�(�)}��� � ��+1C�(�) = ��C�(�) for � < �},

and take �� � ��+1 � �� by

��({��C�+1(�)}���+1) = {��C�(�)}���.

Then we have ���1� (��)� = [C�+1(�) � C�(�)] < �, and �� = lim����<� ��,
so we have constructed an (�, �)-tree. The left�-action �{��C�(�)}��� =
{���C�(�)}��� respects the edge structure.

� Suppose � acts simply on an (�, �)-tree � = (��,��)���. Let �� � ��,
and set �� = ��� (��) for any � � �. Let C�(�) = ����(��). By simplic-
ity of the action, C�(�) = 1, and since the tree is locally �, [C�(�) �
C�+1(�)] � ���1� (��)� < � for all � < �. Finally, if � is a limit ordinal,
we have ��<�C�(�) = ��<�����(��) = {� � � � ��� = �� for all � < �} =
����(lim����<� ��) = ����(��) = C�(�), as desired. ⇤
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5. A construction of � � �-residually �nite groups
If� is a set with a transitive� action, and� is a group, the (restricted) wreath

product � �� � is de�ned

� �� � = �(�) � �,
where �(�) is the group of functions � � � with �nite support, and the action
of � on �(�) is by precomposing with the �-action on �. By � � �, we mean
� �� �, where � acts on itself by left multiplication.
Note that � � � is the quotient of the free product � � � by the family of

relations {[����1, ��] = 1 � �, �� � �, 1 � � � �}.
Theorem 5.1. Suppose� is an in�nite, �nitely generated, residually �nite group
with �nite abelianization. Let �1 = �, and ��+1 = �� � �. The group �� is a
�nitely generated group with �������(��) = � � �.
For example, we can take � to be perfect (i.e. � = [�,�]), such as � =

���(�) for � � 3, or � a cocompact hyperbolic triangle group with generators
of relatively prime orders, or � a free product of (at least 2 nontrivial) �nite
perfect groups. We can also take � to be �� � ��, where �� permutes the
coordinates of ��, for � � 5.
For � � �, we let�(�)

� denote the functionswhose support is contained in {�},
so this is an isomorphic copy of ��. Note that we have a short exact sequence
�(�)
� � ��+1

��� �, and that the normal closure of �(1)
� in ��+1 is �(�)

� .

Lemma 5.2. [��,��](�) � ����(��+1) � �(�)
� .

Proof. To see that ����(��+1) � �(�)
� , note that there is a natural map ��+1 =

�(�)
� �� ��� � with kernel�(�)

� . Since� is residually �nite, a residual chain for
� pulls back under the quotient to a residual chain in ��+1 terminating in �(�)

� .
To prove that ����(��+1) � [��,��](�), it su�ces to show that if � is a sub-

group of ��+1 with �nite index, then � contains [��,��](�). Since the intersec-
tion of �nitely many conjugates of� yields a normal subgroup� of �nite index
in ��+1, it is enough to show that � contains [��,��](1), as this implies that �
contains its normal closure [��,��](�).
Note that �(�) has �nite index in �, and since � is in�nite, �(�) is non-

trivial. Let �0 be a nontrivial element in �(�), and �1 a lift to �. Now for any
�, � � �(1)

� , the elements [�, �] and [�1���11 , �] have the same image in��+1��.
But since �1���11 � �(�0)

� and � � �(1)
� , we have [�1���11 , �] = 1, and thus

[�, �] � �. This shows that [��,��](�) � ����(��+1). ⇤

Proof of Theorem 5.1. We prove by induction that �� is a �nitely generated
group with �������(��) = � ��. The group�1 = � satis�es those conditions by
assumption. Suppose that���1 is a�nitely generated groupwith �������(���1)
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= � � (�� 1). Then �� = ��1 �� is generated by the generators of ���1, and the
generators of �, in particular �� is �nitely generated. By Proposition 3.10

�������(��) = � + �������(����(��)).
We need to show that �������(����(��)) = � � (� � 1) to conclude that

�������(��) = � + � � (� � 1) = � � �.
By Lemma 5.2 we have

�������([���1,���1](�)) � �������(����(��)) � �������(�(�)
��1).

Now, by Proposition 3.11,
�������([���1,���1](�)) = �������([���1,���1]),

and similarly �������(�(�)
��1) = �������(���1). By the inductive assumption

�������(���1) = � � (� � 1), and since [���1,���1] has �nite index in ���1,
we also have �������([���1,���1] = � � (� � 1). Thus �������(����(��)) =
� � (� � 1). ⇤
Note that the groups with residual depth � � � constructed in Theorem 5.1

are �nitely generated but not �nitely presented. The Deligne group �� from
Example 3.2 �������(��) = � � 2 is �nitely presented. We do not know �nitely
presented examples for � > 2.
Question5.3. Does there exist a�nitely presented group��with �������(��) =
� � � for each � � �?
Question 5.4. Does there exist a �nitely generated (�nitely presented?) group
��� with �������(���) = � � � + 1 for each � � �?
There exist groups that are not �-residually �nite for any �. An example of

such a group is the Higman group (Example 3.1) or any in�nite simple group.
However, we do not knowwhether there are �nitely generated groups with the
residual �niteness depth de�ned, but larger than � � � for all �. In particular,
we do not know the answer to the following question.

Question 5.5. Does there exist a �nitely generated group � with �������(�) =
�2? What about �� for every � � �? Can � be chosen to be �nitely presented?

6. Application to pro�nite rigidity
A�nitely generated, residually�nite group� is said to be absolutely pro�nitely

rigid if for any �nitely generated residually �nite group � with �� � ��, we have
� � �.
If there exists a group �which is pro�nitely rigid and perfect, the group � � �

will have the same pro�nite completion as �, and so we would not be able to
distinguish these two groups by their pro�nite completions. However, these
groups may be distinguished in terms of �-residual properties. Note that all of
the groups which are known to be absolutely pro�nitely rigid (see [BMRS20]
and [CW22]) have �nite nontrivial abelianization, so are not perfect.
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