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Generalized residual finiteness of groups

Nic Brody and Kasia Jankiewicz

ABSTRACT. A countable group is residually finite if every nontrivial element
can act nontrivially on a finite set. When a group fails to be residually finite,
we might want to measure how drastically it fails - it could be that only finitely
many conjugacy classes of elements fail to act nontrivially on a finite set, or
it could be that the group has no nontrivial actions on finite sets whatsoever.
We define a hierarchy of properties, and construct groups which become ar-
bitrarily complicated in this sense.
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1. Introduction

Many infinite discrete groups are known to be residually finite. For example,
free groups, and more generally, by the theorem of Mal’cev [Mal40], all finitely
generated linear groups are residually finite. Other examples include all finitely
generated nilpotent groups. A famous open problem of geometric group theory
asks whether all Gromov-hyperbolic groups are residually finite [Bes04, Prob
1.15]. Without the assumption of Gromov-hyperbolicity, there are also many
examples of groups which are not residually finite.

Of course if a group G has no finite index subgroups at all, then G is very far
from being residually finite. This happens, for example, for the Higman group
(see Example 3.1) or any infinite simple group. However, there are also non-
residually finite groups that are very close to being residually finite, in the sense
that the intersection of all finite-index subgroups is a finite nontrivial group (see
Example 3.3). We would like to distinguish between these possibilities.
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We propose the notion of a-residual finiteness for arbitrary ordinal ¢, which
generalizes the notions of a finite group, and a residually finite group. For ex-
ample, the Deligne group (defined in Example 3.2), which is a non-residually
finite extension of Z by a residually finite group, is (w-2)-residually finite, where
w is the order type of the natural numbers, and so w - 2 is the order type cor-
responding to two copies of natural numbers listed one after the other. On the
other hand, the Higman group, whose intersection of all finite index subgroups
is an infinite simple group, is not «a-residually finite for any ordinal «. For a
precise definition of a-residual finiteness, see Section 3.

Our main result is a construction of the following examples.

Theorem 1.1. For every n € Z, where n > 1, there exists a finitely generated
group G, which is - n-residually finite, but not w - (n — 1)-residually finite.

We also give a characterization of a-residual finiteness in terms of actions on
rooted a-trees, which can be thought of as trees of depth . Informally, those
are collections of vertex sets and edge sets indexed by ordinals i < «, with edges
joining vertices in sets whose indices differ by 1. For limit ordinals, the vertex
sets are defined as the limit sets of the preceding sets of vertices.

Theorem 1.2. A group G is a-residually finite if and only if G admits a simple
action on a rooted a-tree.

This note is organized as follows. In Section 2 we recall some background
on ordinals and cardinals. In Section 3 we give motivation and definition of a-
residual finiteness, and prove some properties of this notion. In the following
Section 4 we include a discussion on a-trees and prove Theorem 1.2. Finally,
in Section 5 we prove Theorem 1.1

Acknowledgement. We thank Martin Bridson, Marco Linton, and the anony-
mous referee for their helpful comments. The second author was supported by
the NSF grants DMS-2203307 and DMS-2238198.

2. Background on ordinals and cardinals

We include basics on ordinals and cardinals. For more background see e.g.
[Hal74].

2.1. Ordinals. An ordered set (X, <) consists of a set X, and a binary relation
<, which is reflexive, anti-symmetric, and transitive. An ordered set (X, <) is
well-ordered, if for any a,b € X either a < b or b < a, and every non-empty
subset of X has a least element with respect to <.

Let (X, <) and (Y, <) be two ordered sets. A function f : X — Y is mono-
tonic if for every a,b € X such that a < b, we have f(a) < f(b). An order
isomorphism is a monotonic bijection whose inverse is also monotonic. We say
(X, <) and (Y, <) have the same order type if there exists an order isomorphism
between X and Y. We note that having the same order type is an equivalence
relation.
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An ordinal is the order type of a well-ordered set. The ordinal w is the order
type of the natural numbers with the standard order <. Every natural number
n is the order type of the set {1, 2, ..., n} with the standard order.

2.2. Ordinal arithmetic. The arithmetic operations of addition and multipli-
cation can be defined for ordinals. Let «, 8 be two ordinals. We define a +
to be the ordinal whose underlying set is the disjoint union of those of o and f3,
and the order is extended so that each element of « is less than each element of
B. We let a - 8 be the ordinal whose underlying set is the product of those for
a and (3, and the order is reverse lexicographic, so that (a;, b;) < (a,, b,) if and
onlyifb; < b, or b; = b, and a; < a,.

For example, the ordinal w + w corresponds to the order type of two copies of
the natural numbers, where each number in the first copy is smaller than each
number in the second copy. This is the same ordinal as w - 2.

We note that neither addition nor multiplication is commutative. For exam-
ple, 1+ w = w, but w + 1 is the order type of the ordered set (N U {0}, <) where
the order on N is standard, and n < oo for every n € N. In particular, the order
type w+1 contains a largest element, while the order type w does not. Similarly,
w-2#2-w.

An ordinal « is a successor of 8 if « is the smallest ordinal greater than f, i.e.
a = 8 + 1. A limit ordinal is a non-zero ordinal that is not a successor ordinal.
Equivalently, « is a limit ordinal if there exists 3 such that § < a, and for every
such S, there exists an ordinal y such that 8 < y < a. Note that, in particular,
every successor ordinal is of the form « + n for some limit ordinal « and n > 0.

2.3. Cardinals. A cardinalis a set considered up to bijection. There is a natu-
ral association of a cardinal to each ordinal, by taking any set of given order type
and considering it up to bijection. Finite ordinals are in one to one correspon-
dence with finite cardinals, and both can be identified with natural numbers.
Among infinite ordinals, there are many ordinals that correspond to the same
cardinal; ordinals w, w + 1 and w - 2 all correspond to the cardinal ¥,,.

3. a-residual finiteness

We recall that a countable group G is residually finite if for every nontrivial
g € G, there exists a finite index subgroup H C G such that g ¢ H. Equiv-
alently, G is residually finite if for every nontrivial g € G there exists a finite
quotient ¢ : G — Q such that ¢(g) # 1. The residual finiteness core Core(G)
of a countable group G, is the intersection of all finite index subgroups of G. A
group G is residually finite if and only if Core(G) = {1}.

3.1. Motivation. We start with reviewing some examples of non-residually fi-
nite groups.

Example 3.1 ([Hig51]). The Higman group is given by the presentation
H={a,b,c,d | a'ba=b% blecb=c? cldc=d? d'ad=a?.
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It is an infinite group that admits no finite quotients. In particular, Core(H) =
H.

Example 3.2 ([Del78], see also [Mor09]). Note that the fundamental group of
Spn(R) is Z. There exists a finite index subgroup G C Sp,,(Z) such that the

preimage G of G in the universal cover S p,,(R) of Sp,,(R) is a central extension
1-7Z-G—-G—1.

Moreover, every finite index subgroup of G contains the kernel Z, and in fact
Core(G) is equal to the index two subgroup 2Z of the kernel Z. In particular, G
is not residually finite, but {residually finite}-by-{residually finite}.

Example 3.3. If instead of lifting G to the universal cover, we lift to a finite
cover of degree k > 3, we obtain a central extension of the form

1-272/kZ -G -G —1.
The group G is not residually finite, but finite-by-{residually finite}.

Our goal is to distinguish the above groups using a finer notion than residual
finiteness, which we define in the next section.

3.2. Definition.

Definition 3.4. Let o be an ordinal and x a cardinal. A group G is called a-
residually x-bounded if there exists an a-indexed chain {C;(G)};<, of subgroups
of G so that
(1) Co(G) = G, and C,(G) = {1},
(i) [Ci(G) : Ciy1(G)] < xforalli < «a,
(iii) €1(G) =),.; Ci(G) for limit ordinals 1 < a.

The chain of subgroups {C;(G)};<, is called an («, x)-residual chain for G.

When (a, x) = (w, N), we recover the standard notion of residual finiteness.
Groups which are a-residually ¥,-bounded will be called a-residually finite. We
note that if G is a-residually finite, then G is §-residually finite for every 8 > «.

Similarly, if G is a-residually x;-bounded, then G is a-residually x,-bounded
for every x, > x;. Moreover, every group G is 1-residually x-bounded for every
x > |G|. However, if p is prime and k < p, Z/pZ is not a-residually k-bounded
for any a.

Definition 3.5. We say the residual finiteness depth depthge(G) = a if G is a-
residually finite, but not S-residually finite for any § < «

While our definition does not appear in the literature, Marco Linton informed
us of the following result of Baumslag, which we restate in our terminology.

Theorem 3.6 ([Bau71]). Every positive one-relator group (i.e. where the relator
is a positive word) is w - n-residually finite for some n.
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Baumslag also conjectured [Bau74] that every one-relator group is @ - n-
residually finite for some n. One should note that many well-known one-relator
groups (including non-solvable Baumslag-Solitar groups) are not Hopfian, and
consequently, not residually finite.

3.3. Properties. The notion of a-residual finiteness is not very interesting for
finite ordinals. Indeed, for every n € Nsuch thatn > 1a group G is n-residually
finite if and only if G is finite. More generally, we have the following.

Proposition 3.7. If depthge(G) = a, then a is 0, 1, a limit ordinal, or the succes-
sor of a limit ordinal.

Proof. Any successor ordinal can be expressed as a + n for some n > 1, and
some limit ordinal a. Suppose that G is (« + n)-residually finite for some n > 2
and sone limit ordinal a, and let {C;(G)}; <4+, be its a+n index chain provided by
the definition. That means that C.,,(G) = {1} and [Cpy,—1(G) : Coyn(G)] <
00,..., [Co(G) : Cuy1(G)] < o0, hence [C,(G) : Couin(G)] < 0. In partic-
ular the chain {€/(G)}i<q41 Where C/(G) = Ci(G) fori < a, and €/_,(G) =
Can(G) = {1}is an (a + 1, Ny)-residual chain for G as in Definition 3.4. Thus

G is (a + 1)-residually finite. O

Example 3.8. We have depthge(G) = 0 if and only if G is the trivial group, and
depthge(G) = 1 if and only if G is a nontrivial finite group. A group G with
depthre(G) = w + 1 is finite-by-residually finite.

More generally, we have the following.

Proposition 3.9. Suppose that

1-N->G = Q-1

is a short exact sequence of groups where Q is o -residually x;-bounded and N is
a,-residually x,-bounded. Then G is (a; + a,)-residually max{x,, x,}-bounded.
Proof. Let {C;(Q)}i<q,> {Ci(N)}i<a, be (a1,%;)- and (a,, k,)-residual chains for
71(Ci(Q)) fori<ay
Ci—q,(N) fori>a

Then eal(G) = ni<oc1 ﬂ_l(ei(Q)) = ﬂ_l(ni«xl ¢(Q) = ﬂ_l(lQ) = N. Thus
{Ci(G)li<a,+a, is an (o + @, max{x,, x,})-residual chain for G. O

Proposition 3.10. Let G be a group such that Core(G) has depthge(Core(G))) =
a > 0. Then depthgr(G) = w + a.

Q and N respectively. Fori < a; + a, set ;(G) =

Proof. Note that if Core(G) is a-residually finite for some ordinal o > 0, then
necessarily [G : Core(G)] = o0. Indeed, if [G : Core(G)] < oo, then any finite
index subgroup of Core(G), which exists by the assumption that Core(G) is a-
residually finite, would also have finite index in G, contradiction the definition
of Core(G). Thus, G/Core(G) is an infinite residually finite group. By Proposi-
tion 3.9 G is (w + a)-residually finite. It remains to prove that depthgre(G) is not
less than w + «.



588 NIC BRODY AND KASIA JANKIEWICZ

Since G surjects onto an infinite group, clearly G is infinite, so depthgrg(G) >
w. Suppose that G is (w+)-residually finite for some ordinal 3, and let {C;(G)}; <,
be the (w + )-residual chain for G. Since C,(G) is an intersection of finite in-
dex subgroups of G we have C,(G) 2 Core(G). By construction, this (w + (3)-
residual chain also provides a §-residual chain witnessing S-residual finiteness
of C,(G). In particular, this proves that Core(G) is S-residually finite.

It follows that depthgre(G) = w + « as claimed. O

Remark. We emphasize that w + a might be equal to . Indeed, this is the case
precisely when o > w®.

In the next proposition, GX denotes the group of functions from the set X
to the group G, with the group operation defined coordinate-wise. By GX) we
denote the subgroup of the functions with finite support.

Proposition 3.11. If G is a-residually finite, and X is a countable set, GX is
a-residually finite. In particular, if G is infinite, depthge(G) = depthge(GX) =
depthRF(G(X))

Proof. Let {C;(G)};<, be a residual chain for G, and {x(, x1, X, X3, ... } an enu-
meration of X. Then consider the chain

H,={f: X->G| f(x;) € C,_i(G) fori < n}.

This has index [G : C1(G)][G : C(G)]...[G : C,(G)] < o0, and the intersec-
tion of all H,, is trivial.
The second statement follows because G < G¥X) < GX. O

4. Actions on rooted trees

4.1. Faithful actions on rooted finite valence trees. If G isa group,g € G
and H < G, the element g permutes the left cosets of H. For a fixed group G,
we may wish to study all such actions at once, for all g and all H. Note that if
H, < H; < G, the permutations of H, are compatible with permutations of H;,
in the sense that if g fixes H,, it fixes H; as well.

Proposition 4.1 (Folklore). A countable group G is residually finite if and only
if it acts faithfully on a rooted finite valence tree.

Proof. Let C;(G) for i € N be a residual chain. Consider a rooted tree T with
the level i vertex sets V; = G/C;(G), and edges joining the cosets gC;,(G) and
gC;(G). This admits a left G-action via h(gC;(G)) = (hg)C;(G), which preserves
the edge structure. Since {C;(G)};ey is a residual chain, forevery 1 # g € G
there is an i with g & C;(G). So g acts nontrivially on V;. This shows that G acts
faithfully on a rooted finite valence tree.

Conversely, suppose G acts faithfully on a rooted tree T, and let G; be the
finite index subgroup which fixes the ith level of the tree. Since the action is
faithful, no nontrivial element fixes every level of the tree, so N;enG; = 1. O
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4.2. Rooted «-trees.

Definition 4.2. Let a be an ordinal, and x a cardinal. A rooted («, x)-tree T

is a family {V};, of sets, and a family {E;};, of functions, where V = {x},

E;: Vip — Viwith |[E7'(v;)| < x, and for alimit ordinal A < a, V; = lim Vi
1<

For each i < a, we refer to V; as the vertex set of T at level i. By V_; we denote
the union Uj < Vj» the vertex set of T at level at most i. Note that when « is a
finite ordinal, then T is just a rooted tree of depth «. When a = w, then T is a
standard infinite rooted tree, with an extra vertex corresponding to each end of
T.

The directed system determines restriction maps Elj 1V - Viforanyi <

j £ a. Indeed, if j = i + n for some finite n > 0, then EZJ is the composition of
finitely many maps E;_; - E;_, --- E;. Otherwise j = §+n for some limit ordinal
B and some finite n > 0, and i < 8. Then by the definition of V4 there is a map

Elﬁ : Vg — V;,and we define Elj = E/Jg Elﬁ

4.3. Actions on rooted a-trees. An automorphism of a rooted (a, x)-tree is a
family g = {g;};<, of bijections of V; satisfying E;g;.; = g;E;. An automorphism
is simple if the action on V, is fixed-point free; a group acts simply on an a-tree
if every nontrivial element acts as a simple automorphism.

Theorem 4.3. A group G is a-residually x-bounded if and only if G has a simple
action on a rooted (at, x)-tree.

Proof.
= Supposing {C;(G)}i<, is an («, x)-residual chain for G, we can build a
rooted (a, x)-tree with a simple G-action as follows. Let

V; ={{giCi(Glig) | 8i+1Ci(G) = g Ci(G) fori < j},

andtake E; : V= V; by
E;({8iCj11(Glicjr1) = {8iCj(Ghig;-

Then we have |E; ' (v))| = [€41(G) : €(G)] < x,and V; = mid Vi,
so we have constructed an (a, x)-tree. The left G-action g{g;C,(G)}i<; =
{g8iC;(G)}i<; respects the edge structure.

<= Suppose G acts simply on an (a,x)-tree T = (V, E;)i<,. Letv, € Vg,
and set v; = Ef(v,) for any i < a. Let C;(G) = Stab(v;). By simplic-
ity of the action, C,(G) = 1, and since the tree is locally x, [C;(G) :
Cin1(G)] < |El._1(vl~)| < x for all i < a. Finally, if A is a limit ordinal,
we have N;;C;(G) = N;;Stab(v;) = {g € G | gv; = v; foralli < A} =
Stab(l(iﬂid v;) = Stab(v;) = C;(G), as desired. O
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5. A construction of w - n-residually finite groups

If X is a set with a transitive G action, and K is a group, the (restricted) wreath
product K 3 G is defined

K G =K% %G,

where K& is the group of functions X — K with finite support, and the action
of G on KX is by precomposing with the G-action on X. By K 2 G, we mean
K ¢ G, where G acts on itself by left multiplication.

Note that K ? G is the quotient of the free product K * G by the family of
relations {[gkg~', k'] =1 | k,k' €K,1 # g € G}.

Theorem 5.1. Suppose G is an infinite, finitely generated, residually finite group
with finite abelianization. Let G, = G, and Gi;1 = G; 1 G. The group G, is a
finitely generated group with depthge(G,) = @ - h.

For example, we can take G to be perfect (i.e. G = [G,G]), such as G =
SL,(Z) for n > 3, or G a cocompact hyperbolic triangle group with generators
of relatively prime orders, or G a free product of (at least 2 nontrivial) finite
perfect groups. We can also take G to be Z" X A,,, where A, permutes the
coordinates of Z", forn > 5.

For g € G, welet Gl.(g) denote the functions whose support is contained in {g},
so this is an isomorphic copy of G;. Note that we have a short exact sequence
Gl.(G) - Gy 5 G, and that the normal closure of Gl.(l) in Gj,q is Gl.(G).
Lemma 5.2. [G;,G;]® < Core(G;y1) < Gl.(G).

Proof. To see that Core(Gj;,q) < Gl.(G), note that there is a natural map G;;; =

Gl.(G) X G Z, G with kernel Gl.(G). Since G is residually finite, a residual chain for

G pulls back under the quotient to a residual chain in G;; terminating in Gl.(G) .

To prove that Core(Gy,1) > [G;, G;]@, it suffices to show that if H is a sub-
group of G, with finite index, then H contains [G;, G;]?). Since the intersec-
tion of finitely many conjugates of H yields a normal subgroup N of finite index
in G,,,, it is enough to show that N contains [G;, G;]V, as this implies that N
contains its normal closure [G;, G;]©.

Note that 7(N) has finite index in G, and since G is infinite, 7(N) is non-
trivial. Let g, be a nontrivial element in 7(N), and g; a lift to N. Now for any

X,y € Gl.(l), the elements [x, y] and [glxgl_l, y] have the same image in G;,, /N.
But since glxgl_1 S Gl.(g‘)) andy € Gl.(l), we have [glxgl_l,y] = 1, and thus
[x,y] € N. This shows that [G;, G;]‘?) < Core(G;,1). O
Proof of Theorem 5.1. We prove by induction that G, is a finitely generated

group with depthre(G,,) = w-n. The group G, = G satisfies those conditions by
assumption. Suppose that G,,_; is a finitely generated group with depthge(G,,_;)
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= w-(n—1). Then G, = G,, 1G is generated by the generators of G,_,, and the
generators of G, in particular G, is finitely generated. By Proposition 3.10

depthge(G,,) = w + depthgre(Core(G,,)).
We need to show that depthgr(Core(G,)) = @ - (n — 1) to conclude that
depthre(Gp) =w+w-(n—1) =w - n.
By Lemma 5.2 we have
depthge([Gp_1, Gy—11‘9) < depthge(Core(G,)) < depthRF(Gfi)l)-
Now, by Proposition 3.11,
depthge([Gp_1, Gy—11‘9) = depthpe([Gy—1, G 1),

and similarly depthRF(G,(ﬁ)l) = depthge(G,_1). By the inductive assumption
depthge(G,—;) = w - (n — 1), and since [G,_;, G,,_;] has finite index in G,,_;,
we also have depthgre([G,,_1,G,—1] = @ - (n — 1). Thus depthge(Core(G,,)) =
w-(n-—1). O

Note that the groups with residual depth w - n constructed in Theorem 5.1
are finitely generated but not finitely presented. The Deligne group G from
Example 3.2 depthge(G) = w - 2 is finitely presented. We do not know finitely
presented examples for n > 2.

Question 5.3. Does there exist a finitely presented group G,, with depthge(G,,) =
w - nforeachn € N?

Question 5.4. Does there exist a finitely generated (finitely presented?) group
G, with depthge(G,) = w - n + 1 for each n € N?

There exist groups that are not a-residually finite for any . An example of
such a group is the Higman group (Example 3.1) or any infinite simple group.
However, we do not know whether there are finitely generated groups with the
residual finiteness depth defined, but larger than w - n for all n. In particular,
we do not know the answer to the following question.

Question 5.5. Does there exist a finitely generated group G with depthre(G) =
w?? What about w¥ for every k € N? Can G be chosen to be finitely presented?

6. Application to profinite rigidity

Afinitely generated, residually finite group I is said to be absolutely profinitely
rigid if for any finitely generated residually finite group A with T’ = A, we have
' A

If there exists a group I" which is profinitely rigid and perfect, the group I'2 T
will have the same profinite completion as I', and so we would not be able to
distinguish these two groups by their profinite completions. However, these
groups may be distinguished in terms of a-residual properties. Note that all of
the groups which are known to be absolutely profinitely rigid (see [BMRS20]
and [CW22]) have finite nontrivial abelianization, so are not perfect.
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