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KASIA JANKIEWICZ, ANNETTE KARRER, KIM RUANE,
AND BAKUL SATHAYE

ABsTrACT. We show that every group acting properly and cocom-
pactly by isometries on a product of n bounded valance, bushy trees
is boundary rigid. That means that every CAT(0) space that ad-
mits a geometric action of any such group has the visual boundary
homeomorphic to a join of n copies of the Cantor set.

1. INTRODUCTION

A visual boundary is a particular type of compactification of a proper
CAT(0) metric space. The boundary is defined as a set of equivalence
classes of asymptotic rays endowed with an appropriate topology. For
hyperbolic spaces X and Y, any quasi-isometry X — Y between them
extends to a homeomorphism of their visual boundaries. Consequently,
the homeomorphism type of the boundary of a hyperbolic group is a well-
defined group invariant. This is not true for CAT(0) groups, i.e., groups
that act geometrically on CAT(0) spaces.

Bowers and Ruane [BR96] give an example of a group G acting geomet-
rically on CAT(0) spaces X and Y, such that the associated G-equivariant
quasi-isometry between the spaces does not extend to a homeomorphism
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182 JANKIEWICZ ET AL.

between their visual boundaries. Croke and Kleiner [CK00] provide an
example of a CAT(0) group G and two CAT(0) spaces X and Y, both
admitting geometric actions by G such that 0., X and 0., Y are non-
homeomorphic. Wilson [Wil05] further shows that, in fact, this same G
acts geometrically on uncountably many spaces with boundaries of dis-
tinct topological type. The group G in the Croke—Kleiner construction
is the right-angled Artin group with the defining graph a path on four
vertices.

A CAT(0) group G is called boundary rigid if the visual boundaries of all
CAT(0) spaces admitting a geometric action by G are homeomorphic. As
noted above, hyperbolic CAT(0) groups are boundary rigid, while not all
CAT(0) groups are boundary rigid. Ruane [Rua99] proves that the direct
product of hyperbolic groups is boundary rigid. Hosaka [Hos03] extends
that to show that any direct product of boundary rigid groups is boundary
rigid. Hruska and Kleiner [HKO05] prove that groups acting geometrically
on CAT(0) spaces with the isolated flats property are boundary rigid.

A bushy treeis a simplicial tree that is not quasi-isometric to a point or a
line. In this note, we study a family of CAT(0) groups acting geometrically
on the product of n bushy trees. We will assume the groups preserve the
factors, which is always the case after passing to a finite-index subgroup.
We refer to such groups as lattices in a product of trees. We skip the word
“cocompact” even though we are assuming this property throughout the
paper.

The simplest example of a lattice in a product of trees is a direct
product F, x F,,, of two finite rank free groups. These are boundary rigid
by [Rua99]. However, there exist lattices in product of trees that are
irreducible; i.e., they do not split as direct products, even after passing to
a finite index subgroup. Irreducible lattices in products of trees are first
studied by Mozes [Mo0z92] and Burger and Mozes [BM97], [BM00], and by
Wise [Wis96]. Burger and Mozes construct examples of simple lattices in a
product of trees, providing the first examples of simple CAT(0) groups, as
well as the first examples of simple amalgamated products of free groups
[BMO97].

In this paper, we prove the following.

Theorem 1.1. Let G be a lattice in a product of n trees. Suppose G acts
geometrically on a CAT(0) space X. Then 0o, X is the join of n Cantor
sets.

Corollary 1.2. Every lattice in a product of n trees is boundary rigid.

Upon revision of an earlier version of this paper, we changed our
proof method and used the work of Monod [Mon06] and Caprace and
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Monod [CMO09]. After we finished the revision, we discovered that Mar-
golis [Mar22, Thm. K] had used [Mon06] and [CMO09] independently to
generalize the first version of our paper. Margolis proves boundary rigid-
ity for finitely generated groups quasi-isometric to a product of finitely
many proper cocompact non-elementary hyperbolic spaces.

There are two steps in our proof of Theorem 1.1. We first deduce
from the rank-rigidity results in [Mon06] and [CM09] that we may as-
sume, without loss of generality, that X splits as a product of n convex
subspaces. This will imply that 0., X splits as a join of n 0-dimensional
topological spaces. In the special case when X is a CAT(0) cube complex
and X is either geodesically complete or the action of G on X is essential,
we can use rank rigidity for CAT(0) cube complexes, due to [CS11], to
obtain a necessary splitting. We mention this case separately to illustrate
the usefulness of the Caprace-Sageev Rank Rigidity Theorem in the cube
complex setting [CS11].

The second step is to prove that the n O-dimensional subspaces ob-
tained after the first step are indeed homeomorphic to Cantor spaces.

The paper is organized as follows. In section 2, we give the background
on lattices in products of trees, as well as ends and boundaries of CAT(0)
spaces. We prove the main theorem in section 4.

2. CAT(0) SPACES AT INFINITY

2.1. Ends of a space.

We recall the definitions and relevant facts about the space of ends of
a topological space. For more details, see [BH99].

Let X be a topological space. A ray in X is a proper map r : [0, 00) —
X. A ray at xo, where z( is a point of X, is a ray with 7(0) = zo. An
end e of X is an equivalence class of rays in X where r| ~ r5 if and only
if for every compact set K C X there exists N > 0 such that r1 ([N, o0])
and 7 ([IV, o0]) are contained in the same connected component of X — K.
We denote the equivalence class of the ray r by e(r). The set of all ends
of X is denoted by Ends(X).

Let U be an open set in X and e € Ends(X). We use the notation
e < U to mean that for any r : [0,00) — X with e(r) = e, there exists
N > 0 such that r([N,00)) C U.

The set X U Ends(X), denoted by X, can be endowed with topology
that is generated by the basis consisting of the following sets:

e open sets in X,
o sets of the form UU{e € Ends(X) |e < U} where U is a connected
component of X — K for some compact set K C X.
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The space X is compact and is called the end compactification of X.
2.2. Visual Boundary.

Assume that X is a metric space with metric d. Two geodesic rays
r and 7’ are asymptotic if there exists a constant K > 0 such that
d(r(t),'(t)) < K for all ¢ € [0, c0).

The boundary of X, denoted 0X, is the set of equivalence classes of
geodesic rays where two rays are equivalent if they are asymptotic. We
denote the equivalence class of a ray r by r(co).

When X is a complete CAT(0) space, we can put a topology on 90X
as follows. First, fix a basepoint z¢o € X. The cone topology on 0X with
respect to xg is given by the neighborhood basis {U(r, R,€) : r(c0) €
0X, R,e > 0} where

U(r,R,e) = {r'(00) € X : 7'(0) = zg,d(r(R), 7 (R)) < €}.

This topology seems to depend on the choice of basepoint x¢ € X but,
in fact, it does not. There is a well-defined change of basepoint home-
omorphism between the topologies determined by different basepoints.
This follows from the next fact.

Proposition 2.1 ([BH99, Prop. I1.8.2]). If r is a geodesic ray based at
2 in a complete CAT(0) space X and 2’ is a point not on this ray, then
there exists a unique geodesic ray r’ with r/(0) = 2’ that is asymptotic to
T,

The boundary 90X endowed with the cone topology is called the visual
boundary of X and we denote it by 0., X. See [BH99, Chap. IL.8] for
more details and properties of the visual boundary.

If X is a proper CAT(0) space, then 0. X is compact and there is
a natural well-defined map 9X — Ends(Y) sending a ray r to e(r).
This map does not depend on the choice of a ray in the equivalence class
of asymptotic rays. The map is a continuous surjection [BH99, Rem.
11.8.10].

One important theorem we will use about the visual boundary is the
following theorem of Geoghegan and Ontaneda [GOOT].

Theorem 2.2 (JGOO07]). The topological dimension of J,,X is a quasi-
isometry invariant. In particular, if a group G acts geometrically on
CAT(0) spaces X and X', then their visual boundaries have the same
topological dimension.

We will also use the following lemma due to Papasoglu and Swenson
[PS09].
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Lemma 2.3 ([PS09, Lem 26]). Let G be a group acting geometrically on
a CAT(0) space X. Then G virtually stabilizes a finite subset A of the
visual boundary of X if and only if G virtually has Z as a direct factor.

Proof. The content of [PS09, Lem 26] proves that if G virtually stabilizes
a finite subset of 0, X, then G virtually has Z as a direct factor. We
prove the other direction here.

Suppose G virtually has Z as a direct factor. Thus, there is a finite
index subgroup of G of the form H x Z. Let g be the generator of the
virtual Z factor. Notice that C(g), the centralizer of g in G, contains this
subgroup and is, therefore, also finite index in G. Then for each = € G,
an z" is in Cg(g). Every element in Cg(g) fixes {gT>°}, the endpoints
in 0,,X of an axis of g in X. Thus, every element of the finite index
subgroup H X Z fixes this finite set in the boundary as needed. (]

We do not want to assume X is geodesically complete for our theorem,
so we use work of Caprace and Monod in [CM09] to get around this issue.
We explain how to do this here.

An action of a group G on a CAT(0) space X is minimal if there does
not exist a proper non-empty G-invariant closed convex subset of X. A
CAT(0) space X is minimal if the action of its full isometry group is
minimal.

A subset X’ C X is quasi-dense in X if there exists a D > 0 such that
each point of X is within distance D of X'. In particular, 0X = 90X’ as
sets. Thus, for purposes of studying the boundary, we can always pass to a
quasi-dense subset without losing any information. The following theorem
will be used to avoid the extra assumption of geodesic completeness.

Theorem 2.4 (JCMO09]; see also [Cap14, Ex I1.4 and Prop II1.10]). Let G
be a group acting geometrically on a CAT(0) space X. Then G stabilizes a
closed, convex, quasi-dense subspace X’ C X such that G acts minimally
on X'’. In particular, 0X = X’ as sets.

Moreover, 7 X splits as a join if and only if X’ splits as a product
X1 X X2.

The subspace X’ in the above theorem is not necessarily unique. In
fact, every closed, convex, quasi-dense subspace of X on which G acts
minimally admits a splitting as a product, provided that dr X splits as a
join.

3. LATTICES IN PrRODUCT OF TREES

In this section, we summarize facts about lattices in products of trees
used in the proof of Theorem 1.1. A simplicial tree 7" is bushy if it is not
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quasi-isometric to a point or a line. For example, a regular tree of valence
> 3 is bushy.

Standing Assumption. Throughout the paper, we assume that all the
trees we consider are bushy trees of bounded valence.

We view T as a metric space, with the path metric, where each edge
has length 1. The automorphism group Aut(7T) is a group of all isometries
T — T, i.e., permutations of the vertex sets that preserve the adjacency.
The group Aut(T") endowed with a compact-open topology is a locally
compact group. We now consider n trees 71,...,7,. The product 77 X
.-+ x T, has a natural structure of a cube complex. It is easy to verify
that each vertex link is a complete n-partite graph and, in particular, it
is a flag simplicial complex. Thus, T} X --- x T}, with the path metric
induced by the Euclidean metric on each cube, is a CAT(0) cube complex.

Example 3.1. Let G be a group on four generators a, b, z, and y with
four relations:

>

a4 Ab a4 Yb a4 Yya ba Yb

< >

z y Z y

The group G is an irreducible lattice in the product of two copies of a
4-valent tree [JWQ9].

The presentation complex of G in the example above, and for all
torsion-free lattices in product of two trees more generally, is a non-
positively curved square complex where each vertex link is a complete
bipartite graph. Such square complexes are referred to as complete square
complezes. We refer the reader to [WisQ7] for the theory of complete
square complexes. Our approach in the n-factor case is inspired by Wise’s
work in the two factor case.

Let G be a lattice in Aut(7y) x---x Aut(7T,), and let Z be the orbispace
obtained as the quotient of 77 x --- x T}, by the action of G. Let ¢ :
Ty x--+-xT, — Z denote the quotient map, which is an orbispace covering
map. Let v € T} x --- x T}, be a basepoint. We identify G with the
orbispace fundamental group m(Z,v) where v = ¢g(v).

All the edges of the product T} X --- x T}, can be labelled by 1,...,n,
indicating in which factor the edge lies. Since the action of G on T3 x - - - X
T, preserves the factors, the underlying space of Z is an n-dimensional
cube complex whose edges can also be labelled by 1,...,n according to
the label on the lift of the edge. Consider the subspace of Z consisting of
all the edges with label ¢ and denote its connected component containing
v by Z;. Note that Z; is a 1-dimensional cube complex; i.e., Z; is a graph.
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For each i =1, letpri:T1><~~><Tn%T1><~~~><ﬁ-><~~><Tnbe
the projection onto n — 1 factors where * denotes an omission of a factor.
Similarly, let p; : G — Aut(Ty) x - -~ X K\ut(Tz) X -+ x Aut(T;,) denote the
projected action of G on T7 X --- X ﬁ X ---xT,. Foreachi=1,...,n,
we define a subgroup G; C G as the stabilizer of pr;(v) with respect to
the action p;; i.e.,

(*) Gi :StaleX...Xﬁx...xT“(pri(U))'

In particular, G; fixes setwise a copy of T; in the original action of G
on T} x --- x T,,. The coordinates, other than the i-th one of this copy
of T;, are the coordinates of the basepoint v of T7 X --- x T;,. We abuse
notation to denote that copy of T; by T; x {pr;(v)}.

We will prove that the action of G; on T; x {pr;(v)} is geometric. We
first need the following lemma.

Lemma 3.2. Let T be an unbounded simplicial tree and let H be a group
acting geometrically on T. Then H contains an infinite order element.

Proof. Suppose that H contains no infinite order elements. Every finite
order isometry of a tree has a fixed point. There cannot exist two elements
of H with disjoint sets of fixed points, as their product would have infinite
order. Thus, the group H has a global fixed point. By the properness of
the action, H must be finite, but this is impossible since 1" is unbounded
and the quotient of T' by the action of H is finite. |

Lemma 3.3. For each i = 1,... n, the group G; acts geometrically on
T; x {pri(v)} and contains an infinite order element.

Proof. We will prove the statement for ¢ = 1. The proof is analogous for
every it =1,...,n.

The properness of the action of G; on T; x {pr;(v)} follows from [BH99,
Ch. II, Thm. 6.10]. In order to show that the action is cocompact, we
first consider the restriction Ty x {pri(v)} — Z; of the quotient map ¢,
which is also an orbispace covering map. Note that Z; is a finite graph,
as a subspace of a finite cube complex, and T x {pri(v)} is the universal
cover of Z;. In particular, the action of m(Z1,7) on T7 X {pri(v)} is
cocompact. Moreover, by Lemma 3.2, the orbispace fundamental group
m1(Z1,7) has an infinite order element.

Let us now show that 71 (Z1,7) embeds as a subgroup of G;. First, we
check that the map between the orbispace fundamental groups 71 (Z1,7) —
m1(X,0) induced by the inclusion Z; C X is injective. Take g € 71(Z1,7)
and denote its image in 71 (X, 7) by g. We can view both § and ¢ as deck
transformations of Ty X - -- x T, and T} X {pr1(v)}, respectively. We have
g = pogout, where ¢ is the inclusion ¢ : Ty X {pr1(v)} < Ty x - -- x T,,, and



188 JANKIEWICZ ET AL.

p:Ty x -+ xT, =Ty x {pri(v)} is the projection onto the basepoint in
the last n — 1 trees. In particular, since g is nontrivial, we deduce that §
is nontrivial. This also shows that § maps v to g(v) whose last n — 1 co-
ordinates are pri(v). Thus, p1(g) belongs to the stabilizer of prq(v), and
so g € G1. Since the action of m1(Z1,7) on Ty x {pri(v)} is cocompact
and m1(Z1,7) C G1, we conclude that the action of Gy on T1 x {pri(v)}
is cocompact. O

Lemma 3.4. A lattice G in Aut(7}) x - - - X Aut(7},) has no infinite order
central elements. In particular, G does not have a direct Z factor.

Proof. The second part follows directly from the first part, as if G has a
direct Z factor, then it contains an infinite order central element.

Let g be an infinite order central element. Then the points at infinity
gt are fixed by G, as G centralizes (g). Since G preserves the factors of
Ty x - -+ xT,, the existence of a global fixed point in O, T7 * - - - * O Ty, Of
the action of GG implies that G fixes a point in at least one of 0., T;. By
Lemma 3.3, the group G; has no fixed point in d, T; since the action of
G; on T; is geometric. In particular, G has no fixed point in 0, T;. This
completes the proof. O

4. PROOF OF THEOREM 1.1

In order to prove the main theorem, we first conclude from [Mon06]
and [CMO09] that X splits as a metric product. Afterwards, we show that
the boundary of each factor of the metric product is a Cantor set.

4.1. Splitting.

Let G be a lattice in a product of n trees acting geometrically on a
CAT(0) space X. Recall that we may assume that G acts minimally on
X by Theorem 2.4. We conclude the following theorem from the rank-
rigidity results of Monod [Mon06] and Caprace and Monod [CMO09].

Theorem 4.1 ([Mon06]; [CM09]). Let G < Aut(Ty) x --- x Aut(T;,) be
an irreducible lattice in a product of n bushy trees T1,...,T,. Suppose G
acts geometrically and minimally on a CAT(0) space X. Then X splits
as a metric product of n unbounded factors X; x - -- x X,,, and the action
of GG preserves the decomposition of X.

Proof. By Theorem 2.2, X has finite-dimensional boundary. By Lemma
3.4, G does not virtually have Z as a direct factor. In particular, X does
not have a Euclidean factor by [CM19, Thm. 2(v)]. By [PS09, Lem. 26],
G acts without a fixed point at infinity. Thus, the rank-rigidity theorem
[CMO09, Thm. 8.4] implies that the G-action of X extends to a continuous
Aut(Th) x --- x Aut(T,)-action by isometries. By [Mon06, Thm. 9],
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X splits Aut(71) x -+ x Aut(T},)-equivalently isometrically as a direct
product X; x --- x X,, of Aut(T;)-spaces X;.

It remains to show that each factor X; is unbounded. Let g; be an
infinite order element of G; provided by Lemma 3.3. Since the action of G
on X is geometric, each element of G acts on X as a semi-simple isometry,
and, in particular, g; acts as a hyperbolic isometry. By [BH99, Prop. 6.9],
g; acts as a semi-simple isometry of each factor X1,..., X,,. As an element
of G;, g; acts elliptically on each of the factors X1,..., X; 1, X;11,..., Xn,
so g; must act as a hyperbolic isometry on X;. Thus, X; contains an axis
of g; and, in particular, is unbounded. O

4.2. Analyzing the join factors.

Let G be a lattice in a product of n bushy trees. In this subsection,
we complete the proof of the main theorem by showing the following
proposition.

Proposition 4.2. Let G be a lattice in a product of trees. Suppose G acts
geometrically on a CAT(0) space X where Oy X = 0o X1 % -+ % 0o X
for unbounded, closed, convex subspaces Xi,..., X, in X. Then each
Ooo X1, - ..,000 Xp 18 homeomorphic to the Cantor set and each subspace
X is quasi-isometric to a finite valence bushy tree.

The subtlety involved here is that when the group G is not (virtually)
a product of free groups, we do not have geometric group actions on X;.
Indeed, if G is an irreducible lattice, then the projected action of G on
X, is cocompact but not proper.

Lemma 4.3. Suppose G acts geometrically on a CAT(0) space X so that
Ooo X = Oso X1 % -+ % Ox Xy, for closed convex subspaces Xq,..., X, in
X. If the topological dimension of each 0X,...,0X,, is zero, then the
boundary 0. X; is homeomorphic to Ends(X;), the ends space of Xj.

Proof. Let us first show that each X; is hyperbolic. Note that since X is
proper, so are X;,..., X,.

First, we show that the subspace X; for i = {1,...,n} is a visibility
space; i.e., given any two distinct points & and 7 in Oy X, there is a
geodesic line in X; between them. Suppose there is no geodesic line in
X; between ¢ and 1. Then by [BH99, Prop. I1.9.21(2)], there is a ge-
odesic segment in JrX; joining them. This segment is an arc in drX;
which would map to an arc in d, X; via the identity map on 0X. This
contradicts the fact that 0. X; is 0-dimensional.

Moreover, the action of G on X; is cocompact, since the action of G on
X is cocompact. Hence, X; is uniformly visible by [BH99, Prop. 11.9.32].
Finally, X; is hyperbolic by [BH99, Prop. III.1.4].
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Since X; is a proper hyperbolic space, the natural map 0. X; —
Ends(X;) is continuous and the fibers of that map are the connected com-
ponents of J,, X; [BH99, Exer. ITI.H.3.9]. Since d, X; is 0-dimensional,
the connected components are single points. Thus, the map 0., X; —
Ends(X;) is a continuous bijection. Every continuous bijection from a
compact space to a Hausdorff space is a homeomorphism. O

In [Bes96, Def 1.1], Bestvina outlines a set of axioms that a group
boundary should have in order to be useful for relating homological in-
variants of the boundary to cohomological invariants of the group. All of
the axioms hold true for a hyperbolic group G acting on G U d, G and
for a CAT(0) group G acting on X U 05 X where G admits a geometric
action on the CAT(0) space X. One of the axioms requires the collection
of translates of any compact set to form a null set in X U d5 X; i.e., for
any open cover U of X U J, X and any compact set K in X, all but
finitely many G-translates of K are contained in an element of U.

The next lemma shows that each X; U 0, X; inherits this nullity con-
dition on compact sets from X UJ X even though we have no geometric
group action on Xj;.

Lemma 4.4. Suppose G acts geometrically on a CAT(0) space X with
Oso X = 0o X1 % -+ * 05 X, for closed convex subspaces X1,...,X, in
X. For every compact set K C X; and every open neighborhood U of an
end of X;, there exists g € G such that gK C U.

Proof. We show that the lemma holds for X;. The argument for other X;
is identical. Let K C X; and K’ C X5 x --- x X, be compact sets. Then
K x K’ is a compact set in X. By Lemma 4.3, 05, X1 is homeomorphic
to Ends(X;). Let £ € 05 X1, and let U be an open neighborhood of .
Then U x X3 X --- x X,, is an open neighborhood of £, viewed as a point
in 0o X = Ooo X1 % Ooo Xo * -+ % 05 X,,. Since the action of G on X is
geometric, there exists g € G such that g(K x K') CU x X3 x ..., xX,
(see, e.g., [Bes96, p. 124]). It follows that in the action of G on X;, we
have gK C U. |

The following is not stated explicitly, but is proved in [Hop44]. It
is also proved in a similar form in [Kro05]. We include the proof for
completeness. We restrict our attention to the case of geodesic metric
spaces, but the proposition holds in a more general setting.

Proposition 4.5 ([Hop44]). Let Y be a geodesic metric space with at
least three ends. Let G be a group acting on Y cocompactly so that the
following holds: For every compact set K C Y and every open neighbor-
hood U of an end of Y, there exists g € G such that gK C U. Then the
space of ends Ends(Y') is perfect.
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Proof. Suppose that there exists an end e € Ends(Y') that is isolated; i.e.,
there exists a neighborhood U of e that does not contain any other ends.

First, we show that without loss of generality, we can assume that
Y — U is connected. Indeed, if Y — U is not connected, we construct
a neighborhood U’ C U of e such that Y — U’ is connected. Since ¥
is compact, so is Y —U. Let Vi,...,V, be a finite collection of open
sets covering Y — U such that each V; is connected and does not contain
e, and its closure 171 inY is compact. The union J,_;. Vi has finitely
many components, and since Ends(Y) is nowhere dense in Y, each V;
contains points of Y. Each two points in Y can be joined by a path in
Y. In particular, there exists a closed connected set () which is the union
of J;,_1» Vi and a finite number of paths in Y. Note that ¢ does not
contain e. The set U’ = Y — @ is an open neighborhood of e and since
Y —-UCUV; CQ, we have U’ C U. Thus, U’ is the neighborhood we
were looking for.

By assumption, there are at least three distinct ends, e;, es, and ez,
in Y. Let K be a compact set in Y such that each of the ends, eq, es,
and eg, lies in a different connected component, Y7, Y5, or Y3, of Y — K.
By assumption, there exists an element g € G such that gK C U. We
claim that for each i = 1,2, 3, either g¥; C U or g(Y —Y;) C U. Indeed,
otherwise there exist points p € gY; — U and ¢ € g(Y —Y;) — U. Since
Y — U is connected, there exists a path v in Y — U joining p and ¢. Note
that p and ¢ lie in distinct connected components of Y — g K, so 7 has to
pass through gK. This is a contradiction since gK C U.

Since U contains only one end, we have g(Y —Y;) C U for at least
two i’s among 1, 2, 3, say 1 and 2. It follows that Y — U C gY; for
i = 1,2. The subsets Y7 and Y5 are disjoint, and so are gY; and gYs.
This is a contradiction and, therefore, the space Ends(Y) has no isolated
points. O

Lemma 4.6. Suppose G acts geometrically on a CAT(0) space X so that
Oso X = Oso X1 % -+ * 05 X, for closed convex subspaces X1,...,X, in
X. Suppose that the topological dimensions of X3, ...,0X,, are zero. If
|0X;| > 3, then 0X; is homeomorphic to the Cantor set C.

Proof. Since X; is a proper CAT(0) space, the boundary dX; is compact
and metrizable [BH99]. As dim 0, X; = 0, the boundary 0, X is totally
disconnected. The action of G on X, is cocompact since the action of G
on X is cocompact. By Lemma 4.4, for every compact set K C X; and
every open neighborhood U C X; of an end of X, there exists g € G
such that gK C U. By Proposition 4.5, Ends(X;) is a perfect space.
This implies that 0 X; is a perfect space because Ends(X;) = 0 X; by
Lemma 4.3. By the characterization of the Cantor set, as a non-empty,
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perfect, totally disconnected, compact metrizable space, we conclude that
0X; is the Cantor set. O

Proof of Proposition 4.2. By Theorem 2.2, the topological dimension of
Oso X coincides with the topological dimension of Oy 11 * - -+ % O Ty, =
n — 1, so each d, X; is O-dimensional.

By Theorem 4.1, the action of G on X = X; x -+ X X,, preserves
the factors, and, in particular, G fixes each 0, X; setwise. If for some
i =1,...,n, the set d,, X; was finite, then G would have a Z factor by
Lemma 2.2. Since this is not the case for G by Lemma 3.4, we deduce
that 0. X; is infinite for each ¢ = 1,...,n. By Lemma 4.6, each 0, X;
is homeomorphic to a Cantor set. Consequently, 0o, X is homeomorphic
to a join of n copies of a Cantor set. We now show that X; is quasi-
isometric to a tree, following [Chal4]. By [Chal4, Lem. 5.7], X; has the
bottleneck property; i.e., there is some A > 0 so that for all z,y € X,
there is a midpoint m = m(z,y) with d(z,m) = d(y,m) = d(z,y) and
the property that any path from z to y must pass within less than A of the
point m. By [Man05, Thm. 4.6], this property is equivalent to X; being
quasi-isometric to a simplicial tree T]. Since X is a proper space, so is
each X;. Thus, T/ is finite valence. The boundary 0X; is homeomorphic
to a Cantor set, and, thus, T} is bushy. O
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