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A B S T R A C T

In this paper, we identify criteria that guarantees the nonlinear orbital stability of a given periodic traveling
wave solution within the b-family Camassa–Holm equation. These periodic waves exist as 3-parameter families
(up to spatial translations) of smooth traveling wave solutions, and their stability criteria are expressed in
terms of Jacobians of the conserved quantities with respect to these parameters. The stability criteria utilizes
a general Hamiltonian structure which exists for every b > 1, and hence applies outside of the completely
integrable cases (b = 2 and b = 3).

1. Introduction

We study the nonlinear stability of periodic traveling wave solutions
for the b-family of Camassa–Holm equations (b-CH), which is given by

ut * utxx + (b + 1)uux = buxuxx + uuxxx (1.1)

where here b À R is a parameter. The family of models (1.1) was
introduced in [1,2] by using transformations of the integrable hierarchy
of KdV equations. In the modeling, the b-CH equation describes the hor-
izontal velocity u = u(x, t) for the unidirectional propagation of water
waves on a free surface in shallow water over a flat bed. In the special
cases b = 2 and b = 3 it is known that (1.1) is completely integrable
via the inverse scattering transform, with b = 2 corresponding to the
well-studied Camassa–Holm equation and b = 3 corresponding to the
Degasperis–Procesi equation. Further, it is known according to various
tests for integrability that the b-CH equation fails to be integrable
outside of the cases b = 2 and b = 3: see, for example, [3,4].

Besides being completely integrable, both the Camassa–Holm and
Degasperis–Procesi equations have received a considerable amount of
attention due to the fact that they admit both smooth and peaked
traveling solitary and periodic waves, as well as multi-soliton type solu-
tions. Additionally, in these integrable cases Eq. (1.1) admits multiple
Hamiltonian structures: the Camassa–Holm equation (corresponding
to b = 2) admits three separate Hamiltonian structures, while the
Degasperis–Procesi equation admits two. Concerning the stability of
smooth periodic and solitary waves, there have been multiple studies
of their orbital stability by working with the conserved energy integrals
in the natural energy space: see, for example, [5–8] and references
therein. Unfortunately, the Hamiltonian structures used in these studies
are a special feature due to the completely integrability of (1.1) in the

< Corresponding author.
E-mail addresses: ehrman.brett@ku.edu (B. Ehrman), matjohn@ku.edu (M.A. Johnson).

cases b = 2 and b = 3, and hence these results cannot be extended to

more general values of b.

In this work, we are interested in developing an orbital stability

theory for periodic traveling wave solutions of (1.1) which applies to

any b > 1. Note that the analogous work for smooth solitary wave

solutions of (1.1) was recently carried out in [9,10], where the authors

utilized the Hamiltonian formulation of the b-CH equation from [11].

This particular Hamiltonian formulation is expressed in terms of the

so-called momentum density m = u* uxx of the solution, and applies to

the entire family of Eqs. (1.1) outside of the case b = 1. In this work,

we extend the work from [9] to the case of periodic traveling waves of

(1.1), which inherently constitutes a much larger family of solutions:

periodic traveling waves constitute (modulo spatial translations) a 3-

parameter family of solutions, while the solitary waves only constitute

(again modulo spatial translations) a 1-parameter family. The higher

dimensionality of the associated solution manifold introduces a number

of technical challenges not encountered in the solitary wave study. We

approach these challenges by using a methodology introduced in [12]

in the stability analysis of periodic traveling wave solutions of the

generalized KdV equations.

We also note that there have been a series of recent works on the

orbital stability of periodic traveling wave solutions of (1.1) in the

completely integrable cases b = 2 and b = 3: see [7,8]. While there are

obviously some similarities between these and the present work, the

methodology for handling the higher dimensionality of the manifold of

periodic traveling waves are quite different, and we will expand upon

this throughout this manuscript. Additionally, both the works [7,8]

utilize Hamiltonian structures, and the conserved quantities associated

to them, which do not extend to general b > 1.
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The basic approach utilized in this work is by now classical, essen-
tially being an application of the methodology formalized by Grillakis,
Shatah and Strauss in [13] for the stability of nonlinear solitary waves
in Hamiltonian systems. Basically, we start off by carefully studying the
existence theory for periodic traveling wave solutions u(x, t) = '(x*ct),
of period T say, of (1.1). As the Hamiltonian structure associated with
(1.1) is expressed solely in terms of the momentum density m = u* uxx
of solutions of (1.1), we then encode the momentum density of our
solution � = '*'®® as a critical point of an appropriate action functional
built entirely out of conserved quantities for the b-CH flow. Using
Taylor series it quickly becomes apparent that the (orbital) stability
or instability of � is intimately related to the spectral properties of
the second variation of the associated action functional evaluated at �.
We identify conditions on the underlying wave T -periodic wave � that
guarantees this second variation has exactly one negative T -periodic
eigenvalue, a simple T -periodic eigenvalue at the origin (associated to
the translational invariance of (1.1)), and the rest of the T -periodic
eigenvalues are strictly positive and bounded away from zero. By now
considering the notion of orbital stability (i.e. identifying functions up
to spatial translations) and the class of perturbations appropriately, we
then identify a final set of conditions guaranteeing the stability of �,
and hence ', to T -periodic perturbations.

The outline of our paper is as follows. In Section 2 we review
some basic features regarding the b-CH equation (1.1), including the
Hamiltonian structure used in this work as well as the existence theory
for periodic traveling wave solution of (1.1). Our main stability analysis
is contained in Section 3, culminating into our main result, Theorem 2.
Finally, in Appendix we establish a technical result used in Section 3.

2. Some basic properties of the b-CH family

In this section, we collect some basic results regarding the b-CH
equation (1.1) and its solutions.

2.1. Hamiltonian structure and conservation laws

For each b À R the b-CH equation (1.1) is known to be a Hamilto-
nian system in terms of the so-called momentum density m = u * uxx.
Since we are interested in the local dynamics about periodic traveling
waves, here we restrict our discussion of the Hamiltonian formulation
on the space L2

per
(0, T ) for some T > 0. To this end, it is straightforward

to see that (1.1) can be rewritten as

mt + umx + bmux = 0 (2.1)

which, for b ë 1, admits the Hamiltonian formulation

dm

dt
= Jm

�E

�m
(2.2)

where here

Jm :=
*1

b * 1
(bm)x + mx)(1 * )

2
x)

*1)*1x (b)xm * mx) (2.3)

is a (state-dependent) skew-adjoint operator on L2
per

(0, T ) and

E(m) :=  
T

0

m dx. (2.4)

We note that from (2.1) the functional E(m) is readily seen to be a
conserved quantity, often referred to as either the total momentum or
the mass of the wave. Additionally, it is known that for general b ë 0

the b-CH equation admits two additional conserved quantities given by

F1(m) :=  
T

0

m1_bdx and F2(m) :=  
T

0

H
m2
x

b2m2
+ 1

I
m*1_bdx. (2.5)

We note that, in general, the above functionals are well-defined and
smooth functions on the set

XT :=
$
m À H1

per
(0, T ) : m(x) > 0 for all x À R

%
.

Assuming that (1.1) is well-posed on some appropriate subset of
H3

per
(0, T ), our aim is to establish criteria for the nonlinear orbital

stability of T -periodic traveling wave solutions of the b-CH equation
with respect to perturbations in H3

per
(0, T ). Regarding well-posedness,

for general b > 1 the initial-value problem for (1.1) is locally well
posed in the space Hs

per
(0, T ) for any s > 3_2: see [14]. Further, the

initial-value problem with b > 1 is ill-posed in Hs
per

(0, T ) for s < 3_2

due to lack of continuous dependence and norm inflation, and hence
orbital stability in the energy space is only conditional with respect to
the existence of local solutions. For more details, see [9,15].

Finally, a number of Jacobian determinants will arise throughout
our work. For notational simplicity, we adopt the following notation
for 2 ù 2 Jacobians

{f , g}x,y := det

0
)(f , g)

)(x, y)

1
= det

0
fx fy
gx gy

1
(2.6)

and similarly {f , g,h}x,y,z for the analogous 3 ù 3 Jacobian.

2.2. Existence of periodic traveling waves

We now study the existence of smooth periodic traveling wave
solutions of (1.1). We note that the existence theory for smooth solitary
wave solutions has been worked out in detail in [9]. The difference
here, of course, is that the profile now does not have a constant
asymptotic state as xô ±ÿ. Throughout, we will assume b > 1.

Traveling wave solutions of (1.1) correspond to solutions of the form
u(x, t) = '(x * ct) for some wave profile ' and wave speed c > 0.
The profile '(z) is thus required to be a stationary solution of the
evolutionary equation

ut * utzz * cuz + cuzzz + (b + 1)uuz = buzuzz + uuzzz (2.7)

written here in the traveling coordinate z = x * ct. After some
rearranging, it follows that the such stationary solutions satisfy the ODE

(' * c)(' * '®®)® + b'®(' * '®®) = 0, (2.8)

where here ® denotes differentiation with respect to z. Note that, by
elementary bootstrapping arguments, if ' is a T -periodic weak solution
of (2.8) then we necessarily have ' À Cÿ

per
(0, T ) provided that either

'(x) < c or '(x) > c for all x À R. Throughout our analysis, we consider
only solutions satisfying

'(x) < c for all x À R. (2.9)

With this condition in mind, we note that, by multiplying both sides of
(2.8) by the integrating factor (c * ')b, the ODE (2.8) can be rewritten
as

d

dx

�
(c * ')b(' * '®®)

�
= 0, i.e. ' * '®® =

a

(c * ')b
(2.10)

where here a À R is a constant of integration. After another integration,
the above may be further reduced by quadrature to

1

2

�
'®
�2

= E *

0
*
1

2
'2 +

a

(b * 1)(c * ')b*1

1
, (2.11)

where here E À R is another constant of integration, and hence
the existence and non-existence of bounded solutions of (2.8) can be
determined by studying the potential function

V ('; a, c) := *
1

2
'2 +

a

(b * 1)(c * ')b*1
(2.12)

Indeed, by standard phase-plane analysis it is clear that a necessary
and sufficient condition for the existence of periodic solutions of (2.8)
is that the potential V (�; a, c) have a local minimum.

Remark 1. It is also possible to integrate the third order profile
Eq. (2.8) directly, yielding

(c * ')(' * '®®) +
b * 1

2

�
('®)2 * '2

�
= f
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Fig. 1. Depiction of the effective potential V ('; a, c) for an admissible value of a. Note there is a vertical asymptote at ' = c and that, and that all the periodic solutions here
exist for ' < c.

or, equivalently,

*(c * ')'®® + c' +
b * 1

2

�
'®
�2

*
b + 1

2
'2 = f

for some constant f À R. Using (2.10) it immediately follows that
f = (b * 1)E, with E being as in (2.11), and hence, in this sense, the
above equation is redundant from (2.10)–(2.11).

To study the critical points of V satisfying (2.9) we note that

V'('; a, c) = *' +
a

(c * ')b

and hence seeking critical points of V (�; a, c) with ' < c for fixed
parameters (a, c) is equivalent to seeking roots of the function

g(') := '(c * ')b * a, ' < c.

To this end, note that

g®(') = (c * ')b*1 (c * (b + 1)')

and hence the only critical point of g satisfying ' < c is ' =
c

b+1
. In

particular, elementary calculations show that

g®®
⇠

c

b + 1

⇡
= *bc

⇠
bc

b + 1

⇡b*2
< 0

and hence ' =
c

b+1
is a strict local maximum of g. Since g À Cÿ(*ÿ, c)

it follows by above that g is strictly increasing on
⇠
*ÿ,

c

b+1

⇡
and

strictly decreasing on
⇠

c

b+1
, c
⇡
. Further, we have

g(0) = *a, g
⇠

c

b + 1

⇡
=

bbcb+1

(b + 1)b+1
* a, lim

'ôc
g(') = *a

and hence, by the Intermediate Value Theorem, for each a À⇠
0,

bbcb+1

(b+1)b+1

⇡
the equation g(') = 0 has exactly two solutions

'1 À
⇠
0,

c

b + 1

⇡
and '2 À

⇠
c

b + 1
, c
⇡
. (2.13)

For such a we necessarily have V ®('1) = V ®('2) = 0 and, since

V'('; a, c) = *
g(')

(c * ')b
,

it follows that V achieves unique local max and min values at '1 and
'2, respectively.

It follows by the above and elementary phase plane analysis that if
we define the set

B :=

<
(a,E, c) À R

3 : c > 0, a À

0
0,

bbcb+1

(b + 1)(b+1)

1
,

E À
�
V ('2; a, c),V ('1; a, c)

�=
(2.14)

then for each set of parameters (a,E, c) À B the profile Eq. (2.8) admits

a one-parameter family, parameterized by translation invariance, of

smooth periodic solutions '(x; a,E, c) satisfying ' < c and with period

T = T (a,E, c) =
˘
2 

'max

'min

d'˘
E * V ('; a, c)

,

where here 'min and 'max denote, respectively, the minimum and max-

imum roots of the equation E * V (�; a, c) = 0, respectively, and hence

correspond to the minimum and maximum values of the corresponding

periodic solution '. Note that since the values 'min and 'max are smooth

functions of the traveling wave parameters (a,E, c), it follows that the

period function T (a,E, c) represents a C1 function on B.
Putting all of the above together, it follows that the b-CH equa-

tion (1.1) admits a 4-parameter family, constituting a C1 manifold, of

periodic traveling wave solutions of the form

'(x * ct + x0; a,E, c), x0 À R, (a,E, c) À B
with period T = T (a,E, c). Recalling from the previous section that the

Hamiltonian formulation for the b-CH equation is expressed entirely

in terms of the momentum density m = u * uxx, we note from (2.10)

that if '(x; a,E, c) is a smooth T -periodic stationary solution (2.7) as

constructed above, then

�(x; a,E, c) =
a

(c * '(x; a,E, c))b
(2.15)

is a smooth T -periodic stationary solution of1

mt * cmx + umx + bmux = 0

satisfying � > 0 for all x À R. In particular, for each (a,E, c) À B
we have �(x; a,E, c) À XT with T = T (a,E, c). Further, following the

procedure above we can restrict the conserved quantities in (2.5) to

the manifold of periodic traveling wave solutions of the b-CH equation

yielding, with slight abuse of notation, C1 functions F1,F2 : B ô R

1 With a slight abuse of notation, henceforth we will use replace the
traveling variable z simply by x.
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defined via

hnnlnnj

F1(a,E, c) :=  
T (a,E,c)

0

�(x; a,E, c)1_bdx

F2(a,E, c) :=  
T (a,E,c)

0

0
�x(x; a,E, c)

2

b2�(x; a,E, c)2
+ 1

1
�(x; a,E, c)*1_bdx

As we will see, the gradients of these conserved quantities along the

manifold of periodic traveling wave solutions of (1.1), or equivalently

(2.1), will plan a central role in our forthcoming analysis.

Remark 2. As mentioned in the introduction, there are similarities be-

tween the present work and that in [7,8], where authors considered the

stability of periodic traveling wave solutions of the b-CH equation (1.1)

in the completely integrable cases b = 2 and b = 3. In addition to using

a different Hamiltonian structure in our work (recall those used in [7,8]

do not extend outside the completely integrable cases), our work differs

in how we parameterize the set of periodic traveling waves. In [7,8],

the authors, for a fixed b > 1, start by fixing a wave speed c > 0 and

thus reducing to a 2-parameter family depending on (a,E). They then

consider a curve E = E(a) in parameter space where the period is held

constant, and thus reduce to a 1-parameter family of waves with a fixed

period and fixed wave speed depending only on the parameter a. In our

work, by contrast, we work with the full 4-parameter family of periodic

traveling waves and their variations with respect to all four parameters.

This results in the introduction of a number of Jacobian determinants

associated with this parameterization arising in our work, which of

course are geometrically related to the ability to locally reparameterize

the manifold of solutions. This geometric/Jacobian approach has had

significant success not only in orbital stability analysis of periodic

traveling waves in nonlinear dispersive systems, but also in the stability

analysis of such solutions to more general classes of perturbations. See,

for example, [12,16–23].

We close this section by noting that additional families of smooth

periodic traveling waves exist for b f 1, and the associated existence

and stability theory can be handled in a similar way as in this paper.

Further, when b > 1 one can use the above analysis of the potential V

to additionally show that no smooth periodic traveling waves exist for

' > c.

3. Orbital stability criteria

In this section, we derive conditions which guarantee a given T -

periodic traveling wave solution of the b-CH equation is orbitally stable

with respect to T -periodic perturbations. Throughout our analysis, we

will work in the momentum density formulation (2.1). To this end,

we begin by attempting to encode a given T -periodic traveling wave

solution �(�; a,E, c) as a critical point of an action functional of the form

⇤(m) = E(m) * !1F1(m) * !2F2(m), !1,!2 À R (3.1)

defined when m À H1
per[0, T ] and m > 0, where here E denotes the total

momentum functional (2.4) and F1,F2 are the conserved quantities

given in (2.5). More specifically, we seek values !1,!2 À R such that

the profile Eq. (2.11) is equivalent to the Euler–Lagrange equation of

the functional ⇤. This is accomplished in the following Lemma.

Lemma 1. For a fixed b > 1, let �(�; a,E, c) be a T -periodic solution of

(2.11). Then � is a critical point of the action functional ⇤(m) provided that

!1 =
b * 1

2a1_b

⌅
2E + c2

⇧
and !2 =

1

2
a

1

b (b * 1)

Proof. The proof is given in [9, Lemma 2]. For completeness, we
outline the main idea of the argument. First, from (2.5) we note that2

)E

)m
= 1,

)F1
)m

(m) =
⇠
1

b

⇡
m1_b*1

and

)F2
)m

(m) =
1

b
m*(1_b+1)

H
(2b + 1)m2

x

b2m2
*

2mxx
bm

* 1

I
.

and hence the equation )⇤

)m
(�) = 0 is equivalent to the differential

equation

1 * !1

⇠
1

b

⇡
�1_b*1 * !2

⇠
1

b

⇡
�*1_b*1

H
(2b + 1)�2x

b2�2
*

2�xx
b�

* 1

I
= 0 (3.2)

As in [9], we note that if � is a T -periodic weak solution of (3.2)
then by elementary bootstrapping arguments we have � À Cÿ

per
(0, T ).

Consequently, to show the critical points of ⇤ are precisely the periodic
traveling wave solutions �(�; a,E, c) constructed in the previous section,
it is sufficient to establish an equivalence between the differential
equation (3.2) and (2.10).

To this end, it is important to observe that differentiating (2.10) one
has the relations

�® =
b'®

c * '
� and �®® =

b'®®

c * '
� +

b(b + 1)
�
'®
�2

(c * ')2
� (3.3)

and hence derivatives of � in (3.2) can be replaced by derivatives of '
and multiples of �. Upon making these substitutions into (3.2) one finds
by straightforward calculations that the resulting equation is equivalent
to (2.11) provided the stated choices of !1 and !2 are made. For more
details, see [9]. ∏

Remark 3. It is important to note that the Lagrange multipliers !1 and
!2 found above are smooth functions of the traveling wave parameters
(a,E, c) on the entire existence set B defined in (2.14). In particular,
we note that

((a,E,c)!1 =

@
*(b * 1)

2ba1+1_b

⌅
2E + c2

⇧
,
b * 1

a1_b
,
c(b * 1)

a1_b

A

and

((a,E,c)!2 =
(

1

2b
a1_b*1 (b * 1) , 0, 0

)
.

In particular, while !2 depends only on the parameter a, the Lagrange
multiplier !1 depends on all three traveling wave parameters (a,E, c).
This is a quite different case than that encountered, say, in the KdV,
BBM or NLS type equations where each Lagrange multiplier depends
on only one of the traveling wave parameters: see, for instance, [12,20,
24,25]. In the forthcoming analysis, it is interesting to track the effect
of this additional dependence of the Lagrange multipliers.

By Lemma 1, our periodic traveling wave solutions �(�; a,E, c) of the
b-CH equation are realized as critical points of the action functional ⇤.
In order to classify this critical point as a local minimum, maximum or
a saddle point, we study the second derivative

L[�] := )2⇤

)m2
(�)

evaluated at the wave �(�; a,E, c). To this end, we note through straight-
forward, but lengthy and tedious, calculations (see, for example, [9,
Corollary 1]) the operator L[�] can be expressed as a Sturm–Liouville
operator of the form

L[�] = *p(x))2x * q(x))x * r(x) (3.4)

2 Throughout, we use the notation )

)m
to denote variational derivatives of

functionals. Whether we are taking variational derivatives of functionals or
partial derivatives of functions will be clear from context.
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where p, q, and r are smooth, T -periodic functions with3

p(x) =
!2

b2�2+1_b
, q(x) = *

!2(2b + 1)�x

b�3+1_b
. (3.5)

In particular, we note, since b > 1, that p(x) > 0 for all x À R.
It follows that L[�] is a self-adjoint linear operator acting on

L2
per

(0, T ) with compactly embedded domain H2
per

(0, T ). Consequently,
it is well-known4 that the spectrum of L[�] on L2

per
(0, T ) consists of an

increasing sequence of real eigenvalues satisfying

�0 < �1 f �2 < �3 f �4 … û +ÿ

and that the associated eigenfunctions { n}
ÿ
n=0

forms an orthogonal
basis for L2

per
(0, T ). Further, the (ground state) eigenfunction  0 can be

chosen to be strictly positive, while for each n À N the eigenfunctions
 2n*1 and  2n have precisely 2n simple zeroes on [0, T ).

Noting that, by the spatial translation invariance of (2.1), we have

L[�]�x = 0

it follows that � = 0 is a T -periodic eigenvalue of L[�]. Since �x has
precisely two roots on [0, T ), by construction, it further follows that
� = 0 is either the second or third smallest eigenvalue of L[�] and
hence, in particular, L[�] has at least one negative eigenvalue. A precise
count on the number of negative eigenvalues, as well as the simplicity
of the zero eigenvalue, is established in the following result.

Theorem 1. The spectrum of the linear operator L[�] considered on the
space L2

per
(0, T ) satisfies the following trichotomy5

(i) If {T ,!1}E,c > 0 then L[�] has exactly one negative eigenvalue,
a simple eigenvalue at zero, and the rest of the spectrum is strictly
positive and bounded away from zero.

(ii) If {T ,!1}E,c = 0 then L[�] has exactly one negative eigenvalue,
a double eigenvalue at zero, and the rest of the spectrum is strictly
positive and bounded away from zero.

(iii) If {T ,!1}E,c < 0 then L[�] has exactly two negative eigenvalues,
a simple eigenvalue at zero, and the rest of the spectrum is strictly
positive and bounded away from zero.

Remark 4. The sign of the quantity {T ,!1}E,c can be analytically
determined to be positive for at least some waves in the integrable
cases b = 2 and b = 3, corresponding to the classical Camassa–Holm
equation and the Degasperis–Procesi equations, respectively. This is
discussed in detail in Appendix A.1. While the forthcoming stability
analysis requires {T ,!1}E,c > 0, it is an interesting open question to
determine whether failure of this condition is associated with instability
of the wave, or if stability is still possible in this case.

The general strategy for the proof is similar to that given in [7,
Theorem 4], and relies on a well-known result from Floquet theory as
well as Sylvester’s Inertial Law theorem. Before we proceed with the
proof of Theorem 1, we state these auxiliary results.

Lemma 2 ([27]). Consider the Schrödinger operatorM = *)2x+Q(x) with
an even, T -periodic, smooth potential Q. Assume that there exists linearly
independent functions '1,'2 À L2

per
(0, T ) that are solutions of Mw = 0

and such that there exists constant ✓ À R such that

'1(x + T ) = '1(x) + ✓'2(x) and '2(x + T ) = '2(x).

Further, suppose that '2 has two zeros on [0, T ). The zero eigenvalue of M
is simple if ✓ ë 0 and double if ✓ = 0. Furthermore, M has one negative
eigenvalue if ✓ g 0 and two negative eigenvalues if ✓ < 0.

3 The explicit expression for r is quite lengthy, and also irrelevant to our
calculations. As such, we do not include it.

4 For example, see [26, Section 2.3].
5 Recall that the notation {f , g}x,y is defined in (2.6) above.

Lemma 3 (Sylvester’s Inertial Law [28]). Let L be a self-adjoint operator
on a Hilbert space H , and let S be a bounded, invertible operator on H .
Then the operators L and SLS< have the same inertia, i.e. the dimensions
of the negative, null, and positive invariant subspaces of H for these two
operators are the same.

With these results in hand, we now establish Theorem 1.

Proof of Theorem 1. The basic strategy, which again is similar to that
in [7], is to first show that the Sturm–Liouville operator L[�] can be
written as

L[�] = SMS<

for some linear Schrödinger operator M (as in Lemma 2 above) and
some bounded, invertible operator S (as in Lemma 3 above). To this
end, first note by (3.4) the spectral problem L[�]v = �v can be written
as

p(x)v®® + q(x)v® + (r(x) + �) = 0.

We now define the function

D(x) =  
x

0

q(s)

p(s)
ds = ln

H0
c * '(x)

c * '(0)

1*(2b+1)
I

and making the change of variables

v(x) = w(x)e*D(x)_(4b+2) (3.6)

a straightforward calculation shows that

*w®® +Q(x)w = �(c * ')*1w,

where here Q is smooth, T -periodic and even.6

Defining the linear Schrödinger operator M := *)2x + Q(x) and
defining the multiplication operator S := (c * ')1_2, which is clearly
bounded and invertible, it follows that � À R is an eigenvalue of L[�]
if and only if it is an eigenvalue of SMS<. By Sylverster’s inertial law
theorem it follows that SMS<, and by extension L[�], necessarily has
the same inertia as the operator M.

It remains to determine the inertia of the operator M. To this
end, we aim to build functions '1 and '2 as in Lemma 2 by first
building corresponding functions for the operator L[�]. First, notice
that L[�]�x = 0 and

L[�]�E =
)!1

)E

)F1
)m

(�), L[�]�c = )!1

)c

)F1
)m

(�),

where the last two relations come from differentiating the profile
equation ⇤®(�) = 0 with respect to the parameters E and c, respectively.
It follows that the functions

�x and
)!1

)c
�E *

)!1

)E
�c = {�,!1}E,c

provide two linearly independent solutions, the first being odd and the
second even, of the equation L[�]v = 0. We now define the functions

y1(x) =
{�(x),!1}E,c

{�+,!1}E,c
, y2(x) =

�x(x)

�xx(0)
,

which are well-defined thanks to the technical result in Lemma 5 (see
Appendix) and are linearly independent by parity, and note that y2 is
T -periodic while y1 satisfies

y1(x + T ) = y1(x) + ✓y2(x), ✓ = y®
1
(T ). (3.7)

To see the above equality, note that differentiating the identity �(x +

T ) = �(x) with respect to the parameters E and c gives

�E (x + T ) * �E (x) = *TE�x(x), and �c (x + T ) * �c (x) = *Tc�x(x)

6 The function Q(x) can be explicitly expressed in terms of the functions
p(x), q(x), r(x) and '(x) above. However, the expression is quite lengthy and
unnecessary to our calculations and is hence omitted.
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and hence

y1(x + T ) = y1(x) +

0
�x(x)

�xx(0)

10
*�xx(0)

{T ,!1}E,c

{�+,!1}E,c

1
(3.8)

Similarly, differentiating the relation �x(T ) = 0 with respect to E and
c and using the T -periodicity of �(x) gives

�Ex(T ) = �xx(T )TE = �xx(0)TE and �cx(T ) = �xx(0)Tc

and hence

✓ = *�xx(0)
{T ,!1}E,c

{�+,!1}E,c
,

which, along with (3.8), verifies (3.7). We further note that since
Lemma 5 in Appendix implies that �xx(0) < 0 and {�+,!1}E,c > 0, it
follows that

sign (✓) = sign
�
{T ,!1}E,c

�
.

Of specific note, this shows that y1 provides a second linearly indepen-
dent solution of L[�]v = 0 if and only if {T ,!1}E,c = 0.

Now, observing from that the change of variables (3.6) that v(0) =
w(0) and v®(0) = w®(0), we define

'1(x) =

0
c * '

c * ' (0)

1*1_2

y1(x) and '2(x) =

0
c * '

c * ' (0)

1*1_2

y2(x)

and note that, by construction, '1,2 are linearly independent solutions
of the differential equation Mw = 0 and satisfy

'1(x + T ) = '1(x) + ✓'2(x), '2(x + T ) = '2(x)

for all x À R, where ✓ is as in (3.7). Since '2 has precisely two roots in
[0, T ) by construction, it follows from Lemma 2 that the zero eigenvalue
of M is simple if and only if ✓ ë 0. If ✓ ë 0, then � = 0 is a simple
eigenvalue of M and, again by Lemma 2, M has either one or two
negative eigenvalues depending on whether ✓ > 0 or ✓ < 0, respectively.
The proof is complete by recalling that, by Sylverster’s inertial law
theorem, the operators M and SMS<, and hence L[�] by the change
of variables (3.6), have the same inertia. ∏

Remark 5. It is interesting to note that the function y1 would be
considerably simpler if the Lagrange multiplier !1 depended only one
of the traveling wave parameters E or c. This simplification occurs in
many other nonlinear dispersive equations such as KdV type equations
and even in the integrable cases b = 2 and b = 3 of the b-CH
equation (1.1): see, for example, the works [7,8,12,16,18,20]. In these
other cases, where the Lagrange multipliers do not depend on sev-
eral traveling wave parameters, the condition in Theorem 1 simplifies
greatly. For example, for generalized KdV type equations one has !1 = c

and hence the number of negative eigenvalues of L[�] depends only
on TE , i.e. it depends on the monotonicity of the period function with
respect to the ODE energy. There is a long history of studying period
monotonicity with respect to such single parameters: see, for example,
[29,30]. The present situation is more complicated due to the fact that
the Lagrange multipliers depend on several traveling wave parameters.
Nevertheless, the sign of {T ,!}E,c can be determined for some waves
in the integrable cases b = 2 and b = 3: see Remark 4 and Appendix A.1.

Throughout the remainder of our stability analysis, we will assume
that7

{T ,!1}E,c > 0. (3.9)

From Theorem 1 it follows that our given T -periodic traveling wave
solution � is a degenerate saddle point of the functional ⇤ on L2

per
(0, T ),

with one unstable direction and one neutral direction. To accommodate
these negative and null directions, we note that the evolution of (2.1)

7 We note again that, as discussed in Remark 4, this condition can be
analytically verified for some waves in the integrable cases b = 2 and b = 3.

does not occur on all of L2
per

(0, T ) but rather on the co-dimension two
submanifold

⌃0 :=
$
m À H1

per
(0, T ) : F1(m) = F1(�(�; a,E, c)),

F2(m) = F2(�(�; a,E, c))
%
.

Further, since the evolution of (2.1) remains invariant under the one-
parameter group of isometries corresponding to spatial translations,
this motivates us to define the group orbit of � À ⌃0 as

O� :=
�
�(� * x0) : x0 À R

�
.

We note that O� œ ⌃0 and that a solution of (2.1) with initial data in
⌃0 will remain in ⌃0 for all future times. Our strategy moving forward
will be to demonstrate the ‘‘convexity’’ of the functional ⇤ in (3.1) on
the nonlinear manifold ⌃0 in a neighborhood of the group orbit O� .

To this end, we define

T0 :=
<
m À H1

per
(0, T ) :

@
m,
)F1
)m

(�)

A
=

@
m,
)F2
)m

(�)

A
= 0

=

and note that T0 is precisely the tangent space in H1
per

(0, T ) to the
submanifold ⌃0 at the point �. Our next result establishes the positivity
of the linear operator L[�] on the subspace of the tangent space T0 that
is orthogonal to the kernel of L[�].
Lemma 4. Assume that {T ,!1}E,c > 0 and that the product {T ,F1}E,c
{T ,F1,F2}a,E,c is negative. Then

inf
$
ÍL[�]m,mÎ : ÒmÒL2

per (0,T )
= 1, m À T0, m ⌅ �x

%
> 0.

In particular, there exists a constant C > 0 such that

ÍL[�]m,mÎ g CÒmÒ2
L2(0,T )

for all m À T0 with m ⌅ �x.

Proof. We define the function

 = {�, T ,F1}a,E,c

and note that  is smooth, T -periodic and satisfies

L[�] =

ÛÛÛÛÛÛÛ

(!1)a
)F1
)m

+ (!2)a
)F2
)m

(!1)E
)F1
)m

(!1)c
)F1
)m

Ta TE Tc
(F1)a (F1)E (F1)c

ÛÛÛÛÛÛÛ
= {!1, T ,F1}a,E,c

)F1
)m

+ (!2)a{T ,F1}E,c
)F2
)m

.

In particular, we have that ÍL[�] ,mÎ = 0 for all m À T0. Further, we
have

ÍL , Î = {!1, T ,F1}a,E,c

@
)F1
)m

, {�, T ,F1}a,E,c

A

+ (!2)a{T ,F1}E,c

@
)F2
)m

, {�, T ,F1}a,E,c

A

Noting that

 
T

0

)Fj

)m
((a,E,c)� dx = ((a,E,c)Fj * �(T )((a,E,c)T

for both j = 1, 2, we see that
@
)F1
)m

, {�, T ,F1}a,E,c

A
= {F1, T ,F1}a,E,c = 0

and@
)F2
)m

, {�, T ,F1}a,E,c

A
= {F2, T ,F1}a,E,c = {T ,F1,F2}a,E,c ,

and hence

ÍL[�] , Î = (!2)a{T ,F1}E,c{T ,F1,F2}a,E,c .

Since (!2)a > 0 (see Remark 3), it follows by assumption that the
quantity ÍL[�] , Î is negative.
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Now, let m À T0 be such that Ím,�xÎ = 0. Due to Theorem 1, the
assumption {T ,!1}E,c > 0 implies we can write  = ↵� + ��x + p and
m = A� + õp for some constants ↵, �,A À R, the function � belongs to
the negative invariant space for L[�] and functions p and õp belong to
the positive invariant subspace of L[�]. It follows then that
ÍL[�]m,mÎ = *�2A2 + ÍL[�]õp, õpÎ , (3.10)

where here *�2 < 0 is the negative eigenvalue associated to � . Further,
we have

0 = ÍL[�] ,mÎ = *�2A↵ + ÍL[�]p, õpÎ
and

0 > ÍL[�] , Î = *�2↵2 + ÍL[�]p, pÎ
and hence, noting that the bilinear form ÍL[�]�, �Î is an inner-product
on the positive invariant subspace of L[�], an application of Cauchy–
Schwarz gives

ÍL[�]õp, õpÎ g ÍL[�]õp, pÎ2
ÍL[�]p, pÎ > *�2A2

.

Substituting this bound into (3.10), the result now follows. ∏

Remark 6. It is important to note that the Jacobian determinants
arising above have important physical significance in their relation to
the so-called Whitham theory of modulations, which aims to study the
stability of long wavelength perturbations that affect the continuous
Lie symmetries of the underlying wave, i.e. to slow modulations of the
periodic traveling wave. Whitham’s theory of modulations is a well
developed physical theory for dealing with such problems, consisting
of formal WKB/averaging approaches to derive quasilinear systems of
PDEs, often referred to as the Whitham system, to describe the slow
evolution of the frequency and conserved quantities of wave when
subjected to such long-wavelength (modulational) perturbations: for
more information, see [31,32]. As such, from the point of view of
Whitham’s theory of modulations, the period and conserved quantities,
which for the bCH equation under consideration are T , F1, and F2,
provide a natural set of coordinates for the underlying manifold of
periodic traveling waves. Of course, from our work in Section 2.2 we
know that the parameters (a,E, c) provide a smooth parameterization of
the manifold of periodic traveling wave solutions of (1.1). In order for
these two parameterizations to be compatible one needs to ensure the
ability to smoothly change between these coordinate systems, which is
precisely guaranteed by the non-vanishing of the Jacobian determinant

{T ,F1,F2}a,E,c = det

0
)(T ,F1,F2)

)(a,E, c)

1
.

Similarly, the non-vanishing of {T ,F1}E,c is equivalent to requiring
that T and F1 provide a smooth parameterization of the family of
traveling waves with a fixed value of the parameter a. As such, at
least the non-vanishing of the product {T ,F1}E,c{T ,F1,F2}a,E,c can be
seen to be a natural geometric requirement on the manifold of periodic
traveling waves, at least from the standpoint of Whitham’s theory of
modulations. In fact, it has been shown in several models that this
requirement allows for the rigorous justification (at the level of spectral
stability) of the stability predictions coming from Whitham’s theory:
see, for example, [21,23,33,34] and references therein.

Next, we upgrade the result of Lemma 4 to provide a coercivity
bound in H1.

Proposition 1. Under the same hypotheses as Lemma 4, we have

ÍL[�]m,mÎ g CÒmÒ2
H1(0,T )

for all m À T0 with m ⌅ �x.

Proof. This follows by an elementary interpolation argument. Indeed,
recalling (3.4) and rewriting L[�] in the symmetric form
L[�] = *)x

�
p(x))x

�
+ r(x)

we note that for m À T0 with m ⌅ �x we have

ÍL[�]m,mÎ =  
T

0

p
�
mx

�2
dx +  

T

0

rm2 dx

g ↵  
T

0

(mx)
2dx + �  

T

0

m2dx,

where here

↵ := inf
0fxfT p(x) and � = inf

0fxfT r(x).

Note, specifically, that ↵ > 0 by (3.5). Further, from Lemma 4 we know
there exists a constant C1 > 0 such that

ÍL[�]m,mÎ g C1ÒmÒ2L2(0,T )

for all such m. Interpolating these bounds we find that

ÍL[�]m,mÎ g ↵�  
T

0

�
mx

�2
dx +

⌅
�� + (1 * �)C1

⇧
 

T

0

m2 dx,

where here � À [0, 1] is arbitrary. Since ↵,C1 > 0, the result now follows
by fixing � > 0 sufficiently small so that

�� + (1 * �)C1 > 0. ∏

To proceed, we introduce the semidistance ⇢ : H1
per

(0, T ) ô R given
by

⇢(m1,m2) = inf
x0ÀR

ÙÙm1 * m2(� * x0)
ÙÙH1(0,T )

and note that for a given m À H1
per

(0, T ), ⇢(m,�) = dist
�
m,O��. We

now show that the functional ⇤ in (3.4) is coercive on the nonlinear
submanifold ⌃0 near the periodic traveling wave �.

Proposition 2. Under the hypothesis of Lemma 4 there exist a � > 0 and
a constant C = C(�) > 0 such that if m À ⌃0 with ⇢(m,�) < � then

⇤(m) * ⇤(�) g C⇢(m,�)2. (3.11)

Proof. First, we note that the Implicit Function Theorem implies
that for � > 0 sufficiently small and for a �-neighborhood U� =$
m À H1

per
(0, T ) : ⇢(m,�) < �

%
of the group orbit O� , there exists a

unique C1 map � : U� ô R such that

�(�) = 0 and Ím (� + �(m)) ,�xÎ = 0

for all m À U� . Note that since ⇤ is invariant under spatial translations,
it suffices to establish (3.11) with m replaced by m(� + �(m)). Now, fix
m À U� „ T0 and note that we have the decomposition

m(�+�(m)) = �+C1

)F1
)m

(�)+
r̀rrp
C2 * C1

(
)F1
)m

(�),
)F2
)m

(�)
)

(
)F2
)m

(�),
)F2
)m

(�)
)
asssq

)F2
)m

(�)+y (3.12)

where C1,C2 À R and y À T0. Notice that if m = � then we clearly
have C1 = C2 = y = 0. We thus expect these quantities to be small for
m À U� .

To quantify this, let v = m(� + �(m)) * � and note that, by possibly
replacing � by an appropriate spatial translate, we may assume ÒvÒH1 <

�. As F1 and F2 are invariant with respect to spatial translation, it
follows by Taylor’s theorem that

h
nnlnnj

F1(m) = F1 (m(� + �(m))) = F1(�) +

@
)F1
)m

(�), v

A
+ O⇠

ÒvÒ2
H1

⇡

F2(m) = F2 (m(� + �(m))) = F2(�) +

@
)F2
)m

(�), v

A
+ O⇠

ÒvÒ2
H1

⇡ (3.13)
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Noting from the decomposition (3.12) that
@
)F2
)m

(�), v

A
= C2

@
)F2
)m

(�),
)F2
)m

(�)

A

it follows from (3.13)(ii) above, noting specifically that F2(m) = F2(�),

that C2 = O⇠
ÒvÒ2

H1

⇡
. Similarly,

@
)F1
)m

(�), v

A
= C1

r̀rrp

@
)F1
)m

(�),
)F1
)m

(�)

A
*

(
)F1
)m

(�),
)F2
)m

(�)
)2

(
)F2
)m

(�),
)F2
)m

(�)
)
asssq

+ C2

@
)F1
)m

(�),
)F2
)m

(�)

A

and hence, since the Cauchy–Schwarz implies the coefficient of C1 is

non-zero, we infer also that C1 = O⇠
ÒvÒ2

H1

⇡
.

Now, since � is a critical point of the action functional ⇤(m) in
(3.1), which is of invariant under spatial translations, Taylor’s theorem
further implies that

⇤(m) = ⇤ (m (� + �(m))) = ⇤(�) +
1

2

@
)2⇤

)m2
(�)v, v

A
+ o

⇠
ÒvÒ2

H1

⇡

and hence, using the decomposition (3.12) along with the above esti-
mates on the constants C1,2, we find

⇤(m) * ⇤(�) =
1

2
ÍL[�]v, vÎ + o⇠ÒvÒ2

H1

⇡
=

1

2
ÍL[�]y, yÎ + O⇠

ÒvÒ2
H1

⇡
.

Since y À T0 „ {�x}
⌅, it follows by Proposition 1 that

ÍL[�]y, yÎ g CÒyÒ2
H1

.

Noting that the reverse triangle inequality gives

ÒyÒH1 g
ÛÛÛÛÛÛÛÛ
ÒvÒH1 *

ÙÙÙÙÙÙÙÙ
C1

)F1
)m

(�) +
r̀rrp
C2 * C1

(
)F1
)m

(�),
)F2
)m

(�)
)

(
)F2
)m

(�),
)F2
)m

(�)
)
asssq

)F2
)m

(�)

ÙÙÙÙÙÙÙÙH1

ÛÛÛÛÛÛÛÛ
g ÒvÒH1 * õCÒvÒ2

H1
,

where here we again used the above estimates on C1,2, it follows that

⇤(m) * ⇤(�) g CÒvÒ2
H1

= C Òm(� + �(m)) * �Ò2
H1

g C⇢(m,�)2,

as desired. ∏

With the above preliminaries, we are ready to state and establish
our main result.

Theorem 2 (Main Result). For a fixed b > 1, let �(�; a,E, c) be a T -
periodic solution of (2.11). Assume that {T ,!1}E,c > 0 and that the product
{T ,F1}E,c{T ,F1,F2}a,E,c is negative. Given any " > 0 sufficiently small
there exists a constant C = C(") > 0 such that if v À H1

per
(0, T ) and

ÒvÒH1
per (0,T )

f " and if m(�, t) is a solution of (2.1) for some interval of

time with the initial condition u(�, 0) := � + v then m(�, t) may be continued
to a solution for all t > 0 such that

sup
t>0

inf
x0ÀR

ÙÙm(�, t) * �(� * x0)ÙÙH1
per (0,T )

f CÒvÒH1
per (0,T )

.

Remark 7. Recalling that a T -periodic solution m(�, t) of (2.1) cor-
responds to a T -periodic solution u(�, t) = (1 * )2x)

*1m(�, t) of (1.1),
the above H1

per
(0, T ) stability result for the momentum density m(�, t)

immediately translates to an orbital stability result in H3
per

(0, T ) for the
associated solution u(�, t).

Proof (Proof of Theorem 2). Let � > 0 be such that Proposition 2 holds
and let v À H1

per
(0, T ) satisfy ⇢(� + v,�) f " for some 0 < " < �

sufficiently small. By replacing v by an appropriate spatial translate,
if necessary, we may assume that ÒvÒH1 f ". Since � is a critical point
of ⇤, Taylor’s theorem implies that ⇤(� + v) * ⇤(�) f C"2. Further,
if � + v À ⌃0 then the unique solution m(�, t) of (2.1) with initial
condition m(�, 0) = �+v must lie in ⌃0 for as along as the solution exists.

Since ⇤(m(�, t)) = ⇤(m(�, 0)) = ⇤(� + v) independently of t, it follows
by Proposition 2 that ⇢(m(�, t),�) f C" for all t g 0. This establishes
Theorem 2 in the case of perturbations which preserve the conserved
quantities F1 and F2.

If � + v Ã ⌃0, then we claim we can vary the constants (a,E, c)

slightly in order to effectively reduce this case to the previous one.
Indeed, notice that since we have assumed {T ,F1,F2}a,E,c ë 0 at � =

�(�; a0,E0, c0), it follows that the map

(a,E, c) ≠
�
T (�(�; a,E, c)),F1(�(�; a,E, c)),F2(�(�; a,E, c))

�

is a diffeomorphism from a neighborhood of (a0,E0, c0) onto a neigh-
borhood of
�
T (�(�; a0,E0, c0)),F1(�(�; a0,E0, c0)),F2(�(�; a0,E0, c0))

�
.

In particular, we can find constants �a, �E and �c with �a + �E +
�c = O(") such that the function
õ� = õ�

�
�; a0 + �a,E0 + �E, c0 + �c

�

is an H1
per

(0, T ) solution8 of (2.1) and the constants further satisfy

F1(a0 + �a,E0 + �E, c0 + �c) = F1(� + v)

F2(a0 + �a,E0 + �E, c0 + �c) = F2(� + v).

Defining the augmented action functional

õ⇤(m) = E(m) * !1(a0 + �a,E0 + �E, c0 + �c)F1(m) * !2(a0 + �a)F2(m)

for m À H1
per

(0, T ), where !1,!2 are defined as in Lemma 1, it follows
as before that

õ⇤(m(�, t)) * õ⇤(õ�) g C3⇢(m(�, t), õ�)
2

for some C3 > 0 as long as ⇢(m(�, t), õ�) is sufficiently small. Since õ� is a
critical point of the functional õ⇤, we have

C3⇢(m(�, t), õ�)
2 f õ⇤(m(�, 0)) * õ⇤(õ�) f C4

ÙÙm(�, 0) * õ�ÙÙ2H1
per (0,T )

for some constant C4 > 0. Moreover, by the triangle inequality we have

ÙÙm(�, 0) * õ�ÙÙH1
per (0,T )

f Òm(�, 0) * �ÒH1
per (0,T )

+ ÙÙ� * õ�ÙÙH1
per (0,T )

f C5"

for some C5 > 0, and hence there exists a constant C6 > 0 such that

⇢(m(�, t),�) f ⇢(m(�, t)õ�) + ÙÙõ� * �ÙÙH1
per (0,T )

f C6"

for all t > 0. This completes the proof of Theorem 2. ∏

Remark 8. For an alternative argument in the case when � + v Ã ⌃0

in the above proof, see [35].

Theorem 2 provides geometric conditions guaranteeing the orbital
stability of T -periodic traveling wave solutions of (1.1) to perturbations
which are T -periodic. It thus remains to analyze the signs of the quan-
tity {T ,!1}E,c as well as that of the product {T ,F1}E,c{T ,F1,F2}a,E,c .
As discussed in Remark 4, the Jacobian {T ,!1}E,c can be analytically
shown to be positive for at least some waves in the integrable cases
b = 2 and b = 3, corresponding to the Camassa–Holm and Degasperis–
Procesi equations, respectively. For such waves, Theorem 1 implies that
the Hessian operator L[�] will have only one negative eigenvalue as
well as a simple eigenvalue at the origin.

To date we have not been able to analytically evaluate the remain-
ing two Jacobians, namely {T ,F1}E,c and {T ,F1,F2}a,E,c . As discussed
in Remark 6 these quantities arise naturally in the stability analysis
of periodic traveling waves to more general classes of perturbations
(namely, to long-wavelength modulational perturbations). As such, we
believe their appearance in the co-periodic stability analysis of the same
waves is completely natural and expected.

8 In particular, we choose (�a,�E,�c)~ 1 so that T (a0 + �a,E0 + �E, c0 +

�c) = T (a0,E0, c0), i.e. so that õ� and � have the same period.
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In previous works on nonlinear dispersive equations of KdV and
NLS type with polynomial type nonlinearities, these remaining Jaco-
bians could be analytically studied through the use of the so-called
Picard–Fuchs relation: see [18,25]. Specifically, in those examples the
period and conserved quantities of the given equation, as well as their
various derivatives in terms of the ODE parameters a, e and c, could
be expressed as Abelian integrals on an appropriate Riemann surface.
Since there are only a finite number of such Abelian integrals it follows
that the derivatives of T , F1 and F2 with respect to a, E, and c

could be expressed in terms of the quantities T , F1 and F2 themselves.
These relations, known as the Picard–Fuchs relation, allow the various
Jacobians in the associated stability theory to be calculated directly
(either analytically or numerically) in terms of the underlying wave
itself.

Unfortunately, in order to use the Picard–Fuchs relation it must be
that the potential function in the ODE existence theory is a polynomial
in the wave '. For the b-CH equation, the potential function V ('; a, c) is
given explicitly in (2.12), and for b > 1 it is certainly not a polynomial
function in '. As such, the algebraic approaches from the previous
works [18,25] do not apply.

It is possible that these Jacobians can be analytically determined
for general b > 1 by considering either waves with asymptotically
small oscillations (bifurcating from the minimum '2 of the potential
V ('; a, c)) or with asymptotically large periods (taking the solitary wave
limit 0 < V ('1; a, c) * E ~ 1).

Additionally, in the integrable cases b = 2 and b = 3 one can
determine closed form expressions for the periodic traveling waves,
albeit with respect to different parameterizations than used in this
paper: see, for example, [7] for the case b = 2 and [8] for the case
b = 3. It may be possible to use these expressions to study our stability
conditions numerically. While this is currently beyond the expertise
of the authors, we are hopeful these discussions will motivate other
researchers to carry out the relevant analysis.

Finally, for general b > 1 one may be able to numerically determine
the signs of the Jacobians arising in our stability theory. The fact that
the waves depend on several parameters, and that the Jacobian con-
ditions depend on derivatives of the conserved quantities with respect
to all of these parameters, this is seemingly a more delicate numerical
problem than considered numerically for solitary wave studies or even
for the periodic studies in [7,8]. Such numerical computations are
outside the scope of the author’s expertise. However, we sincerely hope
that our work motivates other researchers to pursue such a detailed
numerical study.

4. Conclusions

In this work, we have derived a set of geometric criteria that guar-
antee the nonlinear orbital stability of smooth periodic traveling wave
solutions to the b-CH equation (1.1) with b > 1. The stability analysis
was performed in terms of the momentum variable m, which was shown
to be controlled in H1

per
(0, T ). Correspondingly, solutions u(x, t) of (1.1)

are controlled in H3
per

(0, T ). The stability conditions are geometric in
nature and relate to the parameterization of the manifold of periodic
traveling waves with respect to various coordinate systems and the
Jacobians between them. While we were able to use the previous works
[7,8] to analytically verify one of the geometric criteria, relating to the
number of negative eigenvalues of the associated Hessian operator, we
were unable to analytically verify the remaining criteria, although we
argued that the conditions are natural and expected if one considers
the stability to more general classes of perturbations. We expect there
are certain asymptotic limits (the small amplitude and solitary wave
limits) where an analytical study may be possible for general b > 1,
and explicit solutions may yield a numerical approach for the integrable
cases b = 2 and b = 3. Further, a general numerical investigation may
be possible. As such techniques are outside the expertise of the authors,
here we simply identify these as outstanding open problems, and we

hope our work motivates other researchers to conduct these detailed
studies. Our work does, however, identify a set of geometric criteria
that imply nonlinear orbital stability of a given periodic traveling wave.

We also note that such geometric conditions appear naturally in the
stability analysis of periodic traveling wave solutions to more general
classes of perturbations, specifically, to side-band or modulational per-
turbations: see, for example, [17,25,33] and references therein. This
allows for deep connections to Whitham’s theory of wave modulations
and its applications outside of weakly nonlinear regime, and hence
opens the door to further stability studies for the b-CH equation and
rigorous connections (at the level of stability) of Whitham’s theory.
In addition to the numerical and analytical stability studies mentioned
above, we believe our work motivates a careful study of the modula-
tional stability analysis of periodic traveling wave solutions of the b-CH
equation. This could include not only a rigorous modulational stability
study, but also a mathematically rigorous justification of stability pre-
dictions coming from applying Whitham’s theory of modulations to the
b-CH equations. This would be a very interesting direction for future
study.

Finally, it would be very interesting to connect the failure of our
geometric criteria to the possible instability of the underlying periodic
traveling wave. For example, if {T ,!1}E,c < 0 we know that the
operator L[�] will have two negative eigenvalues. Does the wave
exhibit an instability, maybe spectrally, in this case? Similarly, would
the condition {T ,F1}E,c{T ,F1,F2}a,E,c > 0 imply an instability of the
background wave? Such questions may be amenable to other analytical
methods, such as Hamiltonian–Krein Index Theory [16,26] or periodic
Evans function techniques [17]. This also would be a very interesting
direction for future investigation.
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Appendix

In this appendix, we first present an analytical study of the Jacobian
{T ,!1}E,c , which was seen by Theorem 1 to control the number of
negative eigenvalues of the operator L[�]. We also establish a technical
result that was needed in the proof of Theorem 1.
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A.1. Analysis of {T ,!1}E,c

In Theorem 1 it was shown that the sign of the Jacobian {T ,!1}E,c
determines the number of negative eigenvalues of the Hessian operator
L[�]. Throughout our stability analysis, it was important for us to
assume that L[�] had only one negative eigenvalue, as well as a simple
eigenvalue at zero. This spectral assumption is verified provided one
can show that {T ,!1}E,c > 0. While we cannot determine the sign of
this quantity in general, in this section we discuss how a scaling identity
may be used to better understand this quantity.

First, we note from the explicit expression for the Lagrange multi-
plier !1 in Lemma 1 we have

{T ,!1}E,c = c

0
b * 1

a1_b

1⇠
TE *

1

c
Tc

⇡

Below, we use a scaling relation to rewrite the above and, in some
special cases, express it in terms of quantities that have been studied
in other works.

Now, we note that from the profile Eq. (2.11) that the transforma-
tion

'(x) = c (x), a = c1+b↵, E = c2�

normalizes the wave speed c to unity, so that  , ↵ and � satisfy the same
Eq. (2.11) but with c = 1. It follows that the period function satisfies
the scaling relation

T (a,E, c) = T

0
a

c1+b
,
E

c2
, 1

1
= T (↵, �, 1).

In particular, we see that

Tc (a,E, c) = *
(b + 1)a

cb+2
Ta(↵, �, 1) *

2E

c3
TE (↵, �, 1)

and

TE (a,E, c) =
1

c2
TE (↵, �, 1).

It follows that

{T ,!1}E,c = c

0
b * 1

a1_b

14
2E + c2

c4
TE (↵, �, 1) +

(b + 1)a

cb+3
Ta(↵, �, 1)

5
(A.1)

Regarding the coefficient of TE above, note that from the existence
theory in Section 2.2 we know for b > 1 that periodic traveling waves
only exist when (a,E, c) À B, which is defined in (2.14). In particular,
we must have E > V ('2; a, c) which, using the explicit form of the
potential function V in (2.12), implies that

E > V ('2; a, c) g *
1

2
'2
2
g *

c2

2
,

where the last inequality follows by the upper-bound on '2 in (2.13).
Thus, the coefficient of TE in the above expression for {T ,!1}E,c in
(A.1) is positive. Similarly, it follows by definition that the coefficient
of Ta in (A.1) is positive as well.

By the above considerations, it follows that a sufficient condition
to guarantee the positivity of {T ,!1}E,c , as required in our stability
analysis, is that both of the derivatives TE (↵, �, 1) and Ta(↵, �, 1) are
positive. Both of the quantities TE and Ta have been analytically studied
in the integrable cases b = 2 and b = 3: see [7,36] for the case b = 2

and [8] for the case b = 3. In these previous studies, the authors utilized
various results on period monotonicity for in Hamiltonian systems of
ODE, and the results are summarized below.

Proposition 3. For a given b > 1, fix (a,E, c) À B as in (2.14). For both
the cases b = 2, corresponding to the classical Camassa–Holm equation,
and b = 3, corresponding to the Degasperis–Procesi equation, one has that
TE (a,E, c) > 0 for all (a,E, c) À B. Furthermore, again in the cases b = 2

and b = 3, for a fixed c > 0 there exists a õE(b) À (V ('2(b); a, c), 0) such
that

(i) Ta(a,E, c) > 0 if E À (V ('2(b); a, c), õE(b)),

(ii) T (a,E, c) has a single maximum point in a if E À ( õE(b), 0),
(iii) Ta(a,E, c) < 0 if E À (0,V ('1(b); a, c)).

By the representation (A.1), Proposition 3 implies that for the cases
b = 2 and b = 3 one necessarily has

{T ,!1}E,c > 0 (A.2)

for all (a,E, c) À B with E À (V ('2(b); a, c), õE(b)). Practically speaking,
we note that V ('2(b); a, c) is the minimum ODE energy level associated
with the existence of periodic traveling wave solutions of (1.1), and
õE(b) is some (necessarily negative) energy level. Looking at Fig. 1, it
follows that for the cases b = 2 and b = 3 there are periodic traveling
waves (those oscillating near the local minimum of the potential V ) for
which the condition (A.2) is necessarily satisfied. We note, of course,
that one still may have (A.2) being satisfied for larger values of the
energy E depending on of course the magnitude of the individual
derivatives TE and Ta in (A.1). This balance, however, does not seem
to follow from previous works, nor does it seem that the methodologies
utilized there apply.

A.2. A technical result

In this appendix, we establish a technical result needed in the proof
of Theorem 1.

Lemma 5. Let � = �(�; a,E, c) be a T -periodic even traveling wave solution
of the b-CH equation (2.1), and let �+(a,E, c) := �(0; a,E, c) denote the
global maximum of the solution �. Then �xx(0) < 0 and

{�+,!1}E,c > 0

Proof. First, note by (3.3) that

�®®(0) =
b'®®(0)

c * '(0)
�

which, since ' has a non-degenerate local maximum at x = 0 and
satisfies '(x) < c for all x À R, implies that �xx(0) < 0 as claimed.

Next, evaluating (2.15) at x = 0 and differentiating with respect to
the parameter E we find that

)

)E

⌅
�+(a,E, c)

⇧
=

d

dE

4
a

(c * '(0))b

5
=

ab'E (0)

(c * '(0))b+1
.

Similarly, we have

)

)c
(�+(a,E, c)) =

ab (c * '(0))b*1
⌅
'c (0) * 1

⇧

(c * '(0))2b
=
ab['c (0) * 1]

(c * '(0))b+1

and hence, using the identities in Remark 3, gives

{�+,!1}E,c =
a1*1_b(b * 1)b

(c * '(0))b+1

0
c
)'+

)E
*
)'+

)c
+ 1

1
, (A.3)

where here we set '+(a,E, c) := '(0; a,E, c). To continue, note evalu-
ating (2.11) at x = 0 gives, after rearranging,

�
2E + '2

+

� �
c * 'b*1

+

�
=

2a

b * 1
.

Differentiating with respect to E and simplifying, we find

)'+

)E

⌧
c'+ * E(b * 1) * ('+)

2
⇠
b + 1

2

⇡�
= *(c * '+).

Recalling Remark 1 we note that

(c * '+)'
®®(0) = c'+ * (b * 1)E *

b + 1

2
'2
+

and hence, since c * '+ > 0 and '®®(0) < 0, by above, it follows that

)'+

)E
=

*(c * '+)

c'+ * (b * 1)E *
b+1

2
'2
+

= *
1

'®®(0)
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Similarly, evaluating (2.15) at x = 0 and differentiating with respect to
the parameter c gives

)'+

)c

⌧
c'+ * (b * 1)E *

b + 1

2
('+)

2
�
= *(b * 1)

⇠
E +

1

2

�
'+

�2⇡
.

Since (2.11) implies

E +
1

2
'2
+
=

*a

(b * 1)(c * '+)
b*1

we have

(c * '+)'
®®(0)

)'+

)c
=

a

(c * '+)
b*1

,

i.e.
)'+

)c
= *

1

'®®(0)

0
a

(c * '+)
b

1
= *

'+ * '®®(0)

'®®(0)
.

Together, the above calculations give

c
)'+

)E
*
)'+

)c
+ 1 = *

c

'®®(0)
*
'+ + '®®(0)

'®®(0)
+ 1 = *

c * '+

'®®(0)
,

which is strictly positive. By (A.3), it follows that

{�+,!1}E,c > 0,

as claimed. ∏
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