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Abstract

While privacy-focused browsers have taken steps to block
third-party cookies and mitigate browser fingerprinting, novel
tracking techniques that can bypass existing countermeasures
continue to emerge. Since trackers need to share information
from the client-side to the server-side through link decoration
regardless of the tracking technique they employ, a promising
orthogonal approach is to detect and sanitize tracking infor-
mation in decorated links. To this end, we present PURL (pro-
nounced purel-1), a machine-learning approach that leverages
a cross-layer graph representation of webpage execution to
safely and effectively sanitize link decoration. Our evaluation
shows that PURL significantly outperforms existing counter-
measures in terms of accuracy and reducing website breakage
while being robust to common evasion techniques. PURL’s
deployment on a sample of top-million websites shows that
link decoration is abused for tracking on nearly three-quarters
of the websites, often to share cookies, email addresses, and
fingerprinting information.

1 Introduction

Web browsers and browser extensions are actively cracking
down on new and emerging online tracking techniques. For
example, almost all mainstream web browsers now already
block or will soon block third-party cookies [61, 82, 113]
and some privacy-focused browsers even deploy countermea-
sures against emerging tracking techniques, such as browser
fingerprinting [20,51, 114]. In response, online trackers con-
tinue to evolve and devise innovative tracking techniques
that can bypass existing privacy-enhancing countermeasures
[24, 53, 88, 100]. The key limitation of existing privacy-
enhancing tools is that they aim to mitigate specific types of
tracking (e.g., third-party cookies, first-party cookies, email
addresses, canvas fingerprinting, AudioContext fingerprint-
ing, CNAME cloaking) [24,27,42,43]. This approach works
reasonably well to protect against known forms of tracking
but fails against new or unknown forms of tracking, which
routinely emerge from time to time [13,88, 100, 117].
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Our key insight is that trackers need to share information
(e.g., user/device identifiers) from the client to the server
side regardless of what type of tracking is employed. There-
fore, we contend that a promising orthogonal approach to
anti-tracking is to detect and block the sharing of tracking
information in network requests. Trackers commonly include
tracking information in “decorated” network request URLSs
(aka link decoration). Existing privacy-enhancing tools out-
right block network requests to endpoints using filter lists
of known tracking services. However, a decorated link can
include both tracking (e.g., user/device identifiers) and func-
tional (e.g., CSRF tokens, identifying news/product subpages)
information, which renders existing request blocking counter-
measures ineffective — they risk breaking legitimate function-
ality as collateral damage if they block the request and risk
allowing privacy-invasive tracking if they do not. This is fun-
damentally a granularity issue. To the best of our knowledge,
there is an unmet need for a fine-grained approach that can
precisely remove tracking information in decorated links.

To sanitize link decoration (i.e., precisely removing just the
tracking information from a request URL), privacy-focused
browsers and browser extensions such as Safari, Firefox,
Brave, uBlock Origin, and AdGuard employ a manually-
curated list of query parameters that are known to be abused
for tracking [3,18,49,92,110], similar to the request-blocking
filter lists such as EasyList and EasyPrivacy [40,41]. While
the manual approach might work for a small number of track-
ing query parameters, it cannot keep pace with the increasing
adoption of query parameters by trackers [95], a problem that
has also severely impacted filter lists [9, 72, 105]. Thus, it is
not surprising that the filter lists to sanitize link decoration
conservatively target only 10-100s of query parameters.

In this paper, we propose PURL (pronounced purel-1), a
machine-learning approach to distinguish between tracking
and functional link decorations. PURL makes use of a cross-
layer graph representation to capture the complete execution
of a webpage, which includes interactions between the HTML
DOM structure, JavaScript execution behavior, information
stored in browser storage, and network requests issued during



a webpage load. PURL then extracts distinguishing features
from this rich graph representation and uses a supervised
classifier to detect tracking link decorations.

Our evaluation on a sample of top-million websites shows
that PURL can effectively (98.87% recall) and safely (98.62%
precision) sanitize link decoration. Overall PURL achieves
98.74% accuracy, significantly outperforming existing coun-
termeasures by at least 7.71% in terms of precision, 4.83% in
terms of recall, and 6.43% overall accuracy while reducing
website breakage by more than 8 x. Our evaluation also shows
that PURL is robust against common evasion attempts such as
changing link decoration names and splitting/combining link
decoration values.

We deploy PURL on a subset of top-million websites to
measure the prevalence of link decorations for tracking. PURL
detects that 73.02% of the sites abuse link decorations for
tracking, with an average site using 10.75 tracking link deco-
rations. We find that the most common abusers of link deco-
ration include well-known advertising and tracking services,
which use link decorations to share cookies, email addresses,
and fingerprinting information.

Our key contributions are as follows:

1. We propose and evaluate an automated machine learn-
ing approach, called PURL, to detect tracking link dec-
orations using features that capture interactions and flow
of information across multiple layers of the web stack.

2. We deploy PURL on top-million sites to measure the
prevalence, abusers, and type of tracking information
shared via link decorations.

3. We use PURL to generate a filter list, which can and
is already being used by privacy-focused browsers and
browser extensions.

2 Background & Related Work

In this section, we discuss preliminaries, review related work,
and survey existing countermeasures against the abuse of link
decoration for tracking in industry and academia.

2.1 What is Link Decoration?
A URL is composed of the following key compo-

nents: scheme, , Te-
source path, query parameters, and We use
https:// /YYY/72Z/pixel. jpg?

ISBN=XXX&UID=ABC123#

these segments below:

Base URL. https:// is the scheme in this URL and
is the FQDN. These segments are com-

bined to form the base URL.

Resource path. Immediately following the FQDN,

/YYY/ZZZ is the resource path in the URL. It points to a

, as an example URL to define

directory, file, API endpoint, or other resource on the server.
pixel. jpg is the name of the resource hosted on the server.

Query parameters. Immediately following the resource path
after the ? delimiter, ISBN=XXX&UID=abcl23 are the query
parameters in the URL. A query parameter consists of a key-
value pair, where the key is separated from the value by the =
delimiter. Multiple query parameters in a URL are separated
from each other by the & delimiter.

Fragments. Immediately following the query parameters af-
ter the # delimiter, is the fragment in the URL. Fragments
can be a singular value or multiple key-value pairs that are
separated by the & delimiter (similar to query parameters).’

While only query parameters are traditionally considered
as link decoration [95, 106], we find that link decoration can
be carried out using the resource path, query parameters,
and fragments (discussed further in Section 3.1)”. Next, we
describe the threat model we consider for tracking through
link decoration.

2.2 Threat Model

Our threat model focuses on the sharing of identifying infor-
mation through link decoration in third-party requests. We
exclude first-party requests from our analysis as we assume
that first-parties would use identifying information to provide
legitimate website functionality. Our threat model considers
the abuse of link decoration for both same-site and cross-site
tracking because even same-site identifiers (e.g., first-party
cookies [24, 88, 100]) can be combined with additional infor-
mation for cross-site tracking. We consider two main entities
in our threat model: the victim (users) and the adversary
(third-party trackers). While third-party trackers require some
cooperation from the website publisher (i.e., embedding a
script on the page), we do not consider the publisher to be an
active part of the threat model.

We assume that the victim/user:
e has third-party and first-party cookies enabled in the browser
e may provide personally identifiable information (PII) such
as email address on the website (e.g., to log in)

We assume that the adversary/third-party tracker:
e may be present in a third-party context or a first-party con-
text (i.e., a script embedded in the main frame) on the websites
visited by the user
e aims to collect identifying information such as identifier
cookies and email addresses for tracking

As described below, third-party trackers can use link deco-
rations to share identifying information in several ways:

A user visits a website website.example, where tracker A
is present in a first-party context (e.g., a script that sets a

!In cases where fragments contain multiple key-value pairs, we treat these
key-value pairs similarly as query parameters to facilitate easier comparison
and analysis across different URL components.

2While fragments are not sent alongside a request to a server, the server
can send a redirect to another page, which can access the fragments from the
URL, e.g., through window.location.hash.



first-party identifier cookie) and tracker B is present in a third-
party context (e.g., a pixel that sets a third-party identifier
cookie). The user provides their email address on a form
field that is accessible to only tracker A. To send the email
address to its server, tracker A has to append the email address
as a link decoration in the request URL to its server. To
send the first-party cookie to its server, tracker A again has
to append the first-party cookie as a link decoration in the
request URL to its server because first-party cookies would
not be automatically sent to its third-party domain. Upon
subsequent visits to the website by the same user, tracker
A can associate its first-party cookie with the email address
for same-site tracking even though the user may not provide
the email address in subsequent visits. Tracker A can also
share the email address with tracker B by appending the email
address as a link decoration in the request URL to tracker
B’s server. Tracker B can cross-site track the user with its
third-party cookie, while also being able to associate it with
the email address shared by tracker A.

2.3 Abuse of Link Decorations for Tracking

The abuse of link decoration for online tracking is not a new
phenomenon. To the best of our knowledge, the earliest evi-
dence of link decoration abuse is from 1996, when Webtrends
(an analytics service) used the WT.mc_id query parameter
for click tracking in advertising campaigns [115, 116]. Since
then, link decorations in general, and query parameters specif-
ically, have been widely used for creating personalized links
to track the success of advertising campaigns. For exam-
ple, Urchin Tracking Module (UTM) parameters, such as
utm_source, are link decorations that identify the source of
traffic on a website and attribute it to specific advertising
campaigns [63,67,80, 85].

Prior research has shown that trackers abuse link decoration
to implement various tracking techniques [16,28,52,69, 74,
75, 88,90]. While prior work has proposed approaches to
detect and block specific tracking techniques, which in turn
rely on link decoration, these studies do not specifically study
the abuse of link decorations for tracking. To the best of our
knowledge, Randall et al. [95] is the first study to specifically
study tracking query parameters. The authors found that 8.1%
of the navigation URLSs are decorated with identifiers as query
parameters for tracking.

With new restrictions [82, 101, 113] on third-party cookies,
trackers are moving towards alternative techniques of track-
ing, which include the use of first-party cookies [24, 88, 100],
personally identifiable information (PII) [1, 102], and de-
vice/browser fingerprinting [54,71,77]. In contrast to third-
party cookies that are automatically included as headers in
outgoing HTTP requests, these alternative tracking techniques
must rely on link decoration for sharing identifying informa-
tion. As trackers shift their focus towards these alternative
tracking techniques, it is reasonable to assume that the abuse
of link decoration for tracking will also continue to increase.

2.4 Countermeasures Against the Abuse of
Link Decorations for Tracking

Given the increased focus on alternative techniques to track
users due to restrictions on third-party cookies, privacy-
focused browsers, and browser extensions have started de-
ploying countermeasures against the abuse of link decora-
tions. These countermeasures can largely be divided into two
different categories: filter list based countermeasures that rely
on a static filter list of link decorations and heuristic-based
countermeasures that rely on certain properties to identify
tracking link decorations. Next, we describe existing counter-
measures against tracking link decoration and highlight their
limitations.

2.4.1 Filter List Based Countermeasures

Filter lists of link decorations contain both site-specific and
site-agnostic rules which determine which link decorations
should be allowed and which link decorations should be re-
moved. These filter lists are manually curated and maintained,
which has been shown by previous research to have issues
such as slow updates and being error-prone [10, 64,72]. As
discussed below, filter list based countermeasures are used by
both privacy-focused browsers and browser extensions.

Brave. Since July 2020 [21], Brave browser attempts to re-
move tracking query parameters from URLs by matching
them against a list of known tracking query parameters. This
filter list is curated by analyzing the documentation provided
by the trackers themselves and from the reports submitted by
Brave developers and users. At the time of writing, Brave’s
filter list of tracking query parameters contains 59 query pa-
rameters [17, 18].

Firefox. In January 2022, Firefox introduced the query pa-
rameter stripping feature [89] in Firefox Nightly 96.

Mozilla integrated this feature in Firefox 102.0 in June
2022 [55] although it was not enabled by default — Firefox
users have to set Strict security level in Enhanced Tracking
Prevention (ETP) to enable this feature. Firefox also allows
users to remove tracking link decorations from copied URLSs
[86]. Similar to Brave, Firefox also relies on a curated filter
list of tracking query parameters. At the time of writing,
Firefox’s filter list of tracking query parameters contains 23
query parameters [50].

Safari. Since June 2023, Safari 17 [99] removes known track-
ing query parameters in Safari’s private browsing mode. Sim-
ilar to Brave and Firefox, Safari also relies on a curated filter
list of tracking query parameters. At the time of writing, Sa-
fari’s filter list of tracking query parameters contains 24 query
parameters [92].

AdGuard. AdGuard introduced a new filter type named
removeparam to remove tracking query parameters from re-
quest URLs in 2021 [3]. At the time of writing, AdGuard’s



filter list includes more than one thousand query parameter
rules [4-6].

uBlock Origin. uBlock Origin introduced new filter types
queryprune in 2020 and then switched to removeparam
[109]. Unlike AdGuard, uBlock Origin supports regular
expression-based filters to remove tracking query parame-
ters. At the time of writing, uBlock Origin includes 46 query
parameter rules [56].

Requests based filter lists. Filter lists such as EasyList [40]
and EasyPrivacy [41], which are designed to block network
requests to known trackers, would indirectly also block track-
ing link decorations. However, blocking the whole URL is
not practical where tracking and non-tracking link decora-
tions are mixed in the same URL. As we show later, using
EasyList [40] and EasyPrivacy [41] results in non-trivial false
positives and false negatives.

2.4.2 Heuristic Based Countermeasures

The aforementioned filter list based countermeasures are lim-
ited because they need to be manually created and updated.
These limitations are apparent in their smaller size, with only
one filter list including close to a thousand rules to detect
tracking link decorations.

To address these issues, Randall ef al. [95] proposed Crum-
bCruncher — a semi-automated heuristic-based approach to
detect query parameters involved in the sharing of identifiers.
CrumbCruncher conducts parallel and consecutive crawls
to identify query parameters that are distinct across parallel
crawls but persistent across consecutive crawls. However,
their approach is prone to false positives and false negatives.
Specifically, not all persistent parameters are predisposed
to be tracking, e.g., parameters such as share_button or
en-US remain consistent during multiple visits by the same
user, however, they are not used for tracking. The manual
review by the authors showed that CrumbCruncher suffers
from a 36% false positive rate that needs to be addressed
through a manual review. CrumbCruncher also suffers from
false negatives because it incorrectly assumes that tracking
query parameters are persistent across subsequent crawls. We
find that almost 80% of potential identifiers (i.e., longer than
8 characters as defined by CrumbCruncher) that are shared to
known tracking endpoints (defined using EasyList [40] and
EasyPrivacy [41]) via query parameters change their value
across consecutive crawls. For example, the fbp query param-
eter, which is used by Meta Pixel to share identifiers stored
in the _fbp cookie, does not maintain its value in about 87%
of the cases.” In summary, CrumbCruncher suffers from non-
trivial false positives and false negatives due to its simplistic
heuristic.

3Bekos et al. [14] showed that the value of the _fbp cookie (and conse-
quently the fbp query parameter) is randomly chosen from a list of up to 50
different identifiers, resulting in a new identifier for the same user each time.

3 Motivating Measurements

In this section, we motivate the need for a tailored solution to
curb the abuse of link decoration, such as PURL, by demon-
strating that link decoration abuse is a prevalent phenomenon.
Our key idea is to crawl a large set of websites and investigate
the network requests, from known advertising and tracking
services that appear on those websites, for link decoration.
We exclusively focus on known advertising and tracking ser-
vices because they are the main culprits who engage in such
practices, and also because currently there are no current
approaches to effectively detect link decoration abuse.

3.1 Methodology

Crawler configuration. We use OpenWPM (v0.17.0) [43]
and Firefox (v102) [87] for crawling. Our crawls are stateless
—1i.e., we clear all cookies and other local browser states before
crawling each website. By using stateless crawling, we ensure
that each crawl is independent and not biased by the residual
state from previous website crawls. We turn off all built-in
tracking protections provided by Firefox (Enhanced Tracking
Protection [ETP]) [48]. We conduct our crawls from the
vantage point of an academic institution in the US.

Websites crawled. We crawl a 20K sample of the Tranco
top-million websites between March and April 2023 [91]. As
previous research has highlighted the importance of making
crawls representative of sites with varying popularity [98], we
crawl all of the top-1K sites, uniformly sample another 9K
sites from the sites ranked 1K—100K, and a further 10K from
sites ranked 100K—1M. Additionally, to capture differing con-
tent on both the landing and internal pages [12], we perform
an interactive crawl that covers both types of pages. Specifi-
cally, for each site, we crawl its landing page, randomly scroll
and move the cursor (for bot mitigation), and then select up to
20 internal pages to visit at random. After each page load is
complete (i.e., when the onLoad event is fired), we uniformly
at random wait an additional 5-30 seconds for bot mitigation
and other resources to finish loading. The success rate of our
crawler is 98.79%. A tiny fraction of web pages do not load
correctly because of server-side errors.

Labeling tracking requests. To analyze the prevalence of
link decoration in tracking requests, we use EasyList [40]
and EasyPrivacy [41]. Specifically, we use them to label
requests as Advertising and Tracking Service (ATS) or non-
Advertising and Tracking Service (Non-ATS). We label a
request as ATS if its URL matches the rules in either one of
the lists. Otherwise, we label it as Non-ATS.

Naming link decorations. When link decorations are in
the key-value format, the key can simply be combined with
FQDN* to uniquely identify a link decoration. For example,
if a link decoration with key username is sent to an FQDN

4We combine FQDN with the link decoration key because different
FQDNs can use the same key names.



Percentage of sites

Figure 1: Percentage of sites where the same link decoration
by top domain appears and their primary usage. The shades
of red and green show link decoration’s usage as ATS and
Non-ATS, respectively.

site.example.com, site.example.com+username can be used to
identify the link decoration. When link decorations are not in
the key-value format (e.g., resource paths and fragments), we
assign them keys based on the FQDN and their position in the
URL. We identify link decorations for resource paths based on
their distance (directory levels) from the root. For the example
URL: https://a.site.example/YYY/227/pixel. jpg?
ISBN=ABC&UID=DEF123#xvz, we identify the following link
decorations as key-value pairs:

e

e:.site.example | pathy: YYY

o >xample | pathy: 7727

o ~xanple | ISBN: ABC
®a.5 xanple | UID: DEF123
oo site.exanple | fragment: xyz’

This naming scheme allows us to compare link decoration
values across different URLs.

3.2 Prevalence of Link Decoration

We investigate the prevalence of link decoration used on the
20K sample of the top-million websites. Of the 44,648,436
link decorations in our data, 41.22% are query parameters,
58.14% are resource paths, and 0.63% are fragments. Con-
sidering only unique link decorations, we observe a total of
584,174 decorations: 42.41% of which are query parameters,
53.85% are resource paths, and 3.73% are fragments.
Overall, 45.55% unique link decorations are in the URLs
labeled as ATS, while the rest are sent to Non-ATS endpoints.
We find that requests sent to ATS endpoints disproportion-
ately contain more decorations on average (7.69) than the

SIf fragments are in the key-value format like query parameters, we treat
them similarly as query parameters.
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Figure 2: Total unique link decorations used by domains. The
shades of red and green show link decoration’s usage as ATS
and Non-ATS, respectively.

requests sent to Non-ATS endpoints (4.68), highlighting that
link decorations are more frequently used by ATS than Non-
ATS. A similar trend holds for third-party requests (4.80) vs.
first-party endpoints (2.10).

We further find that the same link decorations are widely
reused (use of the same link decoration key/name on more
than one site) by advertising and tracking services. Figure
1 shows the top 20 link decorations and their prevalence in
our dataset.® The color of the bar shows the usage of link
decoration for either ATS or Non-ATS purpose (i.e., the red
represents ATS and green represents Non-ATS). The plot
shows that while both ATS and Non-ATS services show reuse
of the same link decoration across multiple websites, it is
ATS who predominately exhibit this behavior. For example,
www . googletagmanager. com|id is used in around 55% of
sites in our dataset and is primarily used in ATS requests. On
the other hand, the most commonly used Non-ATS link dec-
oration is cdnjs.cloudflare.com|path|0, which is found
on slightly more than 10% of sites in our dataset.

Next, we analyze the use of link decoration by ATS. Fig-
ure 2 plots top-20 tracking domains based on the number of
unique link decorations they use. The intensity of the color
(green for Non-ATS and red for ATS) in the figure for each
domain shows its use of link decorations in ATS or Non-
ATS requests. We note that googlesyndication.com, which
is used by Google Ad Manager [62], uses the highest num-
ber of unique link decorations among the ATS domains. It
is followed by omtrdc.net, which is used by Adobe Market-
ing Cloud [8], google-analytics.com, which aggregates and
reports user stats for sites [58], and cloudfront.net, which
is an Amazon-owned content delivery network [11]. Other
well-known ATS such as Facebook, Baidu, and Microsoft are

6To simplify the illustration due to space constraints, we limit link deco-
rations for each FQDN to only the top two.
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Figure 3: Average number of link decorations used by Google
endpoints (minimum 1000 requests across 20K sites)

also among the domains that use the most link decorations in
their requests. Our main finding is that link decorations are
widely used by well-known advertising and tracking services.
Crucially, Figure 2 also shows some mixed usage of link dec-
orations. For example, link decorations used by google.com
were part of 122,028 ATS requests and 56,026 Non-ATS re-
quests (this is represented by a lighter shade of red in the
figure as compared to other domains which are either darker
shades or red or green). On the other hand, link decorations
used by amazonaws.com were part of 863 ATS requests and
16,420 Non-ATS requests (represented by a darker shade of
green in Figure 2).

To identify the reason behind significant mixed usage of
link decorations by google.com, we take a closer look at differ-
ent link decorations used by google.com and their prevalence
in our dataset.

Figure 3 plots the prevalence of the top 20 link decorations
used by google.com. The color of each link decoration rep-
resents its use in ATS and Non-ATS link decorations, with
higher shades of red representing predominant use in ATS
requests and higher shades of green representing predominant
use in Non-ATS requests. We observe that the top 4 link
decorations by google.com have significant mixed usage be-
tween ATS and Non-ATS requests, with the top 3 link decora-
tions: www.google.com|path|0, www.google.com|path|l,
and www .google. com|path|2 leaning towards more ATS use
while www.google. com|v slightly leaning towards Non-ATS
use.

These results show that a single link decoration can be part
of both ATS and Non-ATS requests. Next, we try to evaluate
if a single request can also have both ATS and Non-ATS link
decorations. To this end, we make use of query parameter
filter lists used by Brave [18], Firefox [49], and Safari [92], as
well as privacy-enhancing extensions uBlock Origin [110] and
AdGuard [5,6]. We label every link decoration not included

http://go.artinstitutes.edu/search/brand/local/PSGLC?sourc

e=BGNAG&ven=search&Tac=sem&school=newyork&Vatchtype=Exact&

gclid=KjwKEAjwq6m3BRsdfdfsdfCP7IfMq6009gsdfACRcObN3J-fcQlt
1DdfO5AyuTfKIyFbgTFPfCmPXyGdrKRBoCmv3w_wcB

Figure 4: Example URL with mixed link decorations. Il indi-
cates a Non-ATS link decoration while B indicates an ATS
link decoration. Resource paths are highlighted as green and
the query parameters with keys source, ven, Tac, school,
and Matchtype are used for functional purposes, while gclid
contains an identifier that is used to track ad clicks.

in these filter lists as a Non-ATS link decoration. Overall, we
observe 51,736 requests that contain one or more ATS link
decoration, while only 248 of these requests contain no other
Non-ATS link decoration. On average, an ATS link decoration
is accompanied by 16.06 Non-ATS link decorations in the
same request URL. An example of such mixed URLs is
shown in Figure 4.

Takeaway. Our measurements show that a request URL can
contain both ATS and Non-ATS link decorations. Moreover,
the classification of a link decoration can change depending
on which site it is used on and the domain it is being sent
to. Thus, as we demonstrate later in Section 4.3, it iS not
trivial to detect and block ATS link decorations using existing
countermeasures.

4 PURL

In this section, we present PURL (pronounced purel-1), our
machine learning approach to detect ATS link decorations.
PURL’s key idea is to use the execution traces of ATS link dec-
orations as their signatures, which it learns and automatically
detects with the help of a machine learning (ML) classifier.
PURL captures detailed execution traces across the HTML,
network, JavaScript, and storage layers of the web stack and
models them in a graph representation. The graph representa-
tion captures the natural interaction between different layers
of the web stack and provides a parse-able representation
to extract various characteristics (i.e., features) of ATS link
decoration execution, that are used to train a supervised ML
classifier. Figure 5 provides an overview of PURL’s design.

4.1 Design and Implementation

Browser instrumentation. PURL extends OpenWPM [43],
an open-source web measurement tool, to record the execu-
tion of a webpage across HTML, network, JavaScript, and
storage layers during a webpage load. Similar to prior work
on tracking detection (e.g., [73, 88, 104]), PURL captures the
HTML elements created by scripts, network requests sent
by scripts and HTML elements, responses received to these
requests, sharing of identifiers stored in storage (local stor-
age and cookies), and other read/write operations on storage
mechanisms present in the browser.



Webpage crawl using
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Firefox browser
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Figure 5: Overview of PURL pipeline: (1) Webpage crawl using an instrumented browser; (2) Construction of a graph
representation to represent the instrumented webpage execution information; (3) Feature extraction for graph nodes that represent
link decorations; and (4) Classifier training to separate out ATS and Non-ATS link decorations.

PURL improves upon previous work by creating a more
granular representation of the network layer of a webpage,
which is essential for capturing characteristics of link deco-
ration. Specifically, instead of coarsely capturing network
requests and responses, PURL breaks them down and cap-
tures granular components of link decorations. For example,
instead of identifying that a request contains a cookie value,
PURL identifies the exact link decoration that was used to
share that cookie value.

Graph Construction. There are five types of nodes in PURL’s
graph representation: storage, HTML, script, network, and
decoration. Storage nodes refer to information stored in cook-
ies and localStorage. HTML nodes refer to HTML Document
Object Model (DOM) elements on a webpage. Script nodes
map interactions of JavaScript execution on a webpage. Net-
work nodes represent outgoing HTTP requests and incoming
HTTP responses from network endpoints. Decoration nodes
are created by splitting each network node into its link deco-
rations.

We capture read and write operations performed on infor-
mation in browser storage by different scripts, their sharing
through network requests, and the setting of browser stor-
age through network responses. We capture the interaction
of different scripts with HTML elements and also map re-
quests generated through HTML elements. In addition to
these interactions, PURL captures actions and attributes that
are specific to link decorations. Since link decorations may
be used to share information stored in browser storage and
the network responses received as a result of this sharing may
be used to set browser storage elements using HTTP head-
ers or JavaScript APIs, we monitor Base64-, MD5-, SHA-1-,
and SHA-256-encoded’ storage node values in decorations
to associate relevant interactions between decoration, storage,
network, and script nodes.

Figure 6 and 7 show how PURL constructs a graph rep-
resentation for an example scenario where a script is read-

7PURL can be extended to support other encodings.

ing/writing to browser storage and sending requests including
link decorations to tracking sources. The nodes in the given
example graph are storage, script, request, and decoration.
The numbers on the edges represent a particular action, as
represented in Figure 6. Dotted and dashed lines respectively
show the flow of information from storage to decoration nodes
(exfiltration) and the flow of information from request nodes
to storage nodes (infiltration). PURL links the outward flow
of information (exfiltration) to decoration nodes, and also
maps the inward flow of information (infiltration) from a par-
ent request/response node to the storage node. We use this
graph structure to calculate features for decoration nodes that
represent this flow of information.

Feature extraction. PURL leverages the graph representation
to extract three different types of features that capture the
execution traces of link decoration, referred to as structural,
flow, and content features.

Structural features map the relationship of different nodes
in the graph with each other, such as the connectivity of nodes
and information about their ancestry. For example, the con-
nectivity of nodes can capture how many different link deco-
rations are in a request. As described in Section 3, on average,
ATSes use far more link decorations than Non-ATSes, result-
ing in stronger connectivity for ATS link decorations that will
be reflected in corresponding structural feature values. Struc-
tural features help encode this information for our classifier
using graph properties such as centrality, connectivity, and
closeness [81,97].

Flow features represent information flow across different
layers of a webpage. Capturing this flow of information is
important to track how user information is, extracted, stored,
and sent out through tracking link decorations. First, PURL
captures the direct sharing of storage values through the link
decoration. As described in Figure 6, storage values can di-
rectly be sent out using link decorations. PURL represents this
sharing as additional edges from storage nodes to decoration
nodes. Second, PURL also keeps track of whether the parent



Browser

example.com
Storage p 2. tracker1.com?info=xxx&time=yyyy
o ‘ 1. read Info via document.cookie 3. receive UID in response payload tracker1.com |
info=xxx
4. store UID via document.cookie JavaScript 6. tracker2.com?UID=zzz |
tracker2.com
UID=zzz ) . |
5. read UID via document.cookie 7. tracker3.com?UID=zzz |
| tracker3.com

Figure 6: Example scenario to illustrate PURL’s graph construction (shown in Figure 7). (1) A script on example.com reads info
cookie from browser storage using document . cookie. (2) The script sends a network request to trackerl.com which includes
the info cookie value and the current time in the decorated link. (3) trackeri.com sends a network response that contains UID in
the response payload. (4) The script stores UID in the browser storage using document . cookie. (5) The script reads UID using
document . cookie (6,7) The script sends the UID to tracker2.com and tracker3.com as decorated links.

info

Figure 7: Graph representation of Figure 6 in PURL. @
network nodes, [ ) script nodes, () storage nodes, and O
decoration nodes. While the solid lines show the interactions
of the script nodes with the storage and request nodes, the
dashed (- - -) and dotted (. _.) lines represent the flow edges
that are captured by PURL.

request of a link decoration results in the setting of a storage
node. This inward flow of information (infiltration) is usually
used by ATS to set identifiers based on information sent out in
requests (mainly through link decorations) [88]. PURL maps
this infiltration through indirect edges connecting the parent
request/response of decoration with the corresponding storage
node. In addition, PURL monitors if the script sending the
parent request of decoration is involved in sending storage
information in non-parent requests or is part of redirects [74].
To determine the suitability of a decoration as a poten-
tial identifier, PURL also computes content features such as
character-level Shannon entropy [103] and the relative posi-
tion of the decoration in the URL. The complete list of the
features used by PURL and their analysis is in the appendix.

Ground Truth Labeling. Once we capture the execution
traces, we need to label them before they can be used to train
a classifier. However, as discussed in Section 2, there are

currently no readily available sources that can be reliably
used to label link decoration abuse. Thus, we create our own
set of labels by combining three different sources, which are:
(1) filter lists of known advertising and tracking sources, (ii)
a database of known tracking cookies, and (iii) short lists
of manually curated tracking query parameters. Recall from
Section 3.1 that each link decoration instance is a combination
of the site where it appeared and the decoration key, and it is
labeled as such. Next, we describe our ground truth labeling
process that leverages the three aforementioned approaches.

1) Filter lists. Filter lists, such as EasyList and EasyPri-
vacy [40,41], are the most reliable sources to identify tracking,
which are used by almost all privacy-enhancing tools. How-
ever, their detection granularity is at the level of a URL and
thus cannot be directly used to label individual parameters as
ATS in a URL. This is because even a URL detected as ATS
by filter lists might contain both tracking and non-tracking pa-
rameters [19,47]. Despite this problem, filter lists can still be
used to identify benign parameters, i.e., the parameters found
in URLs from Non-ATS services, and we use them as such.
Specifically, we rely on EasyList [40] and EasyPrivacy [41]
filter lists to first identify Non-ATS URLSs and then label all
parameters in them as Non-ATS. As shown in Section 3.2, a
single URL can contain both ATS and Non-ATS link deco-
rations. In such cases, labeling all link decorations in URLs
that are not blocked by filter lists as Non-ATS will result in
incorrect labels for ATS link decorations. To account for this,
we re-label all Non-ATS link decorations identified in this
step as ATS if they are found to be involved in tracking in the
next steps.

2) Cookiepedia. Link decoration can contain values stored
in cookies, which are traditionally used to store and share user
identifiers [88,100]. To identify such link decorations that can
be used to exfiltrate tracking cookies, we make use of Cook-
iepedia [25], which is a database of cookies maintained by
a well-known Consent Management Platform (CMP) called
OneTrust [16,65]. Primarily, Cookiepedia provides the pur-
pose of each cookie in its database through its integration



with OneTrust. Each cookie is provided one of the four labels:
strictly necessary, functional, analytics, and advertising/track-
ing. We monitor the sharing of all cookies labeled as either
analytics or advertising/tracking in Cookiepedia through a
link decoration and label those link decorations as ATS.

3) Manually Curated Lists. Recall from Section 2 that sev-
eral privacy-enhancing browsers and extensions maintain lists
of known ATS link decorations parameters. Despite these lists
being limited, they contain popular query parameters that are
manually vetted to be used for tracking. Thus, we also make
use of ATS link decoration lists, maintained by Brave [22],
Firefox [49], AdGuard [7], and uBlock Origin [110].

Using a combination of these techniques, we were able to
label 18.76% of our dataset, with 1.40% (60,573 instances)
being labeled as ATS and 17.36% (749,553) as Non-ATS.
Even though the ground truth is limited, especially for ATS
samples, we argue that it is a significant improvement over the
existing countermeasures. As described in Section 2.4, prior
work has identified only a handful (maximum of around one
thousand) ATS link decorations. Additionally, mislabelling
link decorations can result in significant website breakage,
necessitating a high-precision, albeit limited, ground truth.

Classifier. After curating the ground truth, we next train a
supervised classifier to detect ATS link decoration. We use a
random forest ensemble classifier because it is tolerant against
noisy labeled data, is efficient to train, and is interpretable
[84,111]. We train the model using a balanced set of ATS and
Non-ATS link decoration samples. We evaluate the accuracy
of our classifier using stratified 10-fold cross-validation, to
ensure that we do not train and test on the same samples.
Overall, our classifier achieves 98.74% accuracy, 98.62%
precision, and 98.87% recall, indicating that it is successful
in detecting ATS link decorations.

The classifier accuracy is also comparable across different
types of link decorations. For resource paths, it achieves an
accuracy of 99.36%, 99.03% precision, and 99.69% recall.
For query parameters, the accuracy is 96.40%, precision is
93.39%, and recall is 99.87%. Finally, for fragments the
accuracy is 99.33%, precision is 98.75%, and recall is 100%.

4.2 Analysis of Disagreements between PURL
and Ground Truth

We manually analyze PURL’s false positives and false nega-
tives to assess whether these are actual mistakes or limitations
of our ground truth (recall that we curated a high-precision,
albeit limited, ground truth).

First, we analyze the false positives of PURL. We manu-
ally verify the most common false positives in our dataset
by first, analyzing information sent by false positive link
decorations (user identifiers, values stored in cookies, etc.),
and second, by analyzing available online documentation by
senders/receivers of these link decorations. Our analysis of
the most commonly misclassified ATS link decorations re-
veals that most of them are indeed used for tracking. In total,

PURL classifies 8,058 Non-ATS instances (out of 749,553
total, 1.07%) as ATS, which correspond to 2,994 unique link
decorations. The three most common false positive link dec-
orations include utk query parameter sent to hubspot.com,
bsi query parameter sent to frog.wix.com, and iigpciddate
query parameter sent to api.intentiq.com. We manually ana-
lyzed these three link decorations, which account for almost
10% of all false positives. Our analysis of the documen-
tation for these three link decorations shows that these are
not false positives, but rather these were falsely labeled as
Non-ATS in our ground truth, and PURL actually correctly
classified them as ATS. utk query parameter contains the
HubSpot’s hubspotutk cookie which is used to identify a
user visiting a website [112]; bsi query parameter contains
the identifier used by BSI’s Customer Data Platform [23],
while iigpciddate accompanies iigpcid query parameter
which is used by IntentIQ to uniquely identify a user [70]. We
conclude that PURL’s false positives are, in actuality, false
negatives in the ground truth, which was curated conserva-
tively to be highly precise (rather than high recall).

Second, we analyze the false negatives of PURL. In total,
PURL incorrectly classifies only 50 ATS instances as nega-
tives (out of 60,573 total, 0.08%). In all of these instances,
PURL was unable to link the sharing of stored information
through these link decorations. In addition to this, values of
structural features (e.g., number of edges) for these instances
were also lower than true positive instances (e.g. 11,501.99
number of edges as compared to 14,762.86 for true positives).
We conclude that false negatives happen when PURL is unable
to trace certain tracking behaviors of ATS link decorations.
We elaborate on PURL’s implementation limitations in tracing
storage sharing in Section 6.

Beyond these disagreements, PURL is more than the sum
of its ground truth. Concretely, PURL detects 52,489 ATS link
decorations that are not detected by Cookiepedia, EasyList
[40], EasyPrivacy [41], or the manually curated filter lists for
ATS link decorations.

4.3 Comparison with Existing Countermea-
sures

In this section, we compare PURL versus existing counter-
measures against ATS link decorations to demonstrate that
it significantly advances the state-of-the-art. We compare it
against approaches that directly detect ATS link decoration
and also approaches that were originally designed to detect
ATS link decoration but can be repurposed to detect them.

We compare PURL against CrumbCruncher [95] and link
decoration based filter lists, which are designed to detect ATS
link decoration. For comparison with CrumbCruncher, we
rely on the list of ATS query parameters published by Randall
et al. [26]. For comparison with link decoration based filter
lists, we rely on the lists offered by Brave [22], Firefox [49],
Safari [92], uBlock Origin [110], and AdGuard [7]).



Classifier Accuracy Precision Recall
PURL 98.74% 98.62%  98.87%
CrumbCruncher 50.16% 59.09% 10.67%
Cookiepedia 80.99% 99.01%  62.63%
Filter lists (Requests) 92.31% 90.91% 94.04%
Filter lists (Decorations) 50.50% 100.0% 10.15%

Table 1: Classification accuracy of PURL, CrumbCruncher,
Request Filter lists, Decoration Filter lists, and Cookiepedia

Additionally, we also compare PURL against Cookiepe-
dia [25] and request-based filter lists (i.e., EasyList [40] and
EasyPrivacy [41]), which we repurpose to detect ATS link
decoration. We compare with Cookiepedia cookie labels by
identifying link decorations that are used to exfiltrate values
of cookies labeled as ATS by Cookiepedia. For comparison
with request-based filter lists, we consider all link decorations
in the requests labeled as ATS by filter lists to be ATS link
decorations. We compare these approaches across two axes:
(i) accuracy and (ii) breakage.

Accuracy. Table | shows the comparison of accuracy,
precision, and recall of all four countermeasures against
PURL. It can be seen from the table that PURL outperforms
the runner-up countermeasure (i.e., request-based filter
lists) by 6.43% in terms of accuracy and by 7.71% in
terms of precision. Some of the most common ATS
link decorations detected by PURL and missed by the
runner-up countermeasure are sync.intentigq.com|pcid,
pr-bh.ybp.yahoo.com|path|2, and
partner.mediawallahscript.com|uid. As we dis-
cuss next, the higher precision results in a measurable
reduction in website breakage when PURL is used as
compared to runner-up countermeasures.

Website Breakage. To determine what effect each counter-
measure has on the usability of a site, we compare website
breakage caused by PURL and the countermeasure with the
second-highest accuracy and recall (request-based filter lists)
on 50 sites. We sample 25 sites sampled from 20K sites
used in section 5, out of which 25 sites were sampled from
those ranked 1-1000 and 25 from the rest to ensure the sample
is representative. A list of sites used for breakage analysis
is available at [94]. Our breakage analysis is divided into
four different categories of how a website is used: navigation
(moving from one page of the website to another), SSO (third-
party login integrations), appearance (visual consistency and

Classifier Navigation SSO Appearance  Miscellaneous
ASSIET N inor Major Minor Major Minor Major Minor Major
PURL 0% 0% 2% 0% 2% 0% 0%
Filter lists | 0% - 2% 0% 8% 4% 0%
Table 2: Website breakage comparison of all three

countermeasures.( ) signifies no breakage, ( ) minor
breakage, and (===) major breakage. Each cell represents the
percentage of sites on which breakage was observed.

10

‘ Resource Paths  Query Parameters Fragments ‘ Total
ATS 13,030 183,813 47 196,890
(6.62%) (93.36%) (0.02%) (100.00%)
Non-ATS 1,295,246 2,824,549 2,233 4,122,028
(31.42%) (68.52%) (0.05%) (100.00%)
Total 1,308,276 3,008,362 2,280 4,318,918
(30.29%) (69.65%) (0.05%) (100.00%)

Table 3: Distribution of link decorations between ATS and
Non-ATS across the 20K sample of top-million sites

acuity), and miscellaneous (additional functionality such as
shopping carts, chatbots, etc.). We also categorize each break-
age into minor or major, with the former implying that the
underlying functionality is disrupted but still usable and the
latter implying that the functionality is completely unusable
from the user’s perspective. Two reviewers interact with the
webpage while ATS link decorations detected by PURL or
filter lists are removed. Any disagreements between the two
reviewers are resolved after careful discussion.

Our evaluation shows that out of the 50 sites, PURL caused
minor breakage on 2 sites, while it caused major breakage
due to a failure to load CSS on autodesk.com. On the other
hand, requests-based filter lists caused minor breakage on
7 different sites and major breakage on 4 sites, including a
complete breakdown of navigation on directunlocks.com and
CSS issues on engadget.com and mysuncoast.com.

These results show that PURL not only significantly outper-
forms existing countermeasures in terms of accurately sani-
tizing more ATS link decorations, but it also does so without
causing additional website breakage.

S Deployment

In this section, we deploy PURL on a 20K sample of top-
million sites to understand the prevalence and the nature of
information shared in ATS link decorations.

5.1 Prevalence of ATS Link Decorations

We first analyze the breakdown of PURL’s classification of
link decorations. PURL classifies 4.56% (196,890) of link
decorations in our dataset as ATS. 73.02% (14,604) of the
tested sites contain at least one request with an ATS link deco-
ration. Overall, an average site employs 10.75 ATS and 44.59
Non-ATS link decorations. Table 3 provides the breakdown
of different types of ATS and Non-ATS link decorations. Out
of the 196,890 link decorations labeled as ATS, 6.62% are
resource paths, 93.36% are query parameters, and 0.02% are
fragments. Our findings indicate that while query parameters
account for the majority of ATS link decorations, trackers
also abuse resource paths and fragments that are ignored in
prior work [95].

Table 4 lists the top-50 most prevalent ATS link decora-
tions. We note that a majority of the top ATS link deco-
rations are used by various Google advertising and track-



ing endpoints on doubleclick.net, google-analytics.com, and
google.com. For example, cid and _gid are used by all of
the aforementioned Google domains, with cid and _gid on
www.google-analytics.com shared on more than half of the
sites. After Google, fbp on www.facebook.com used by Meta
pixel [45] is present on nearly 20% of the sites. After Face-
book, vid and sid on bat.bing.com used by Microsoft/Bing
Ads Conversion tracking [83] are present on about 5% of
the sites. All of the remaining top-50 ATS link decorations
also belong to well-known advertising and tracking organiza-
tions such as BidSwitch [15], LiveRamp [79], Yahoo! [39],
Magnite [38], Amazon [31], Criteo [34], OpenX [37], Ora-
cle/BlueKai [32], The Trade Desk [30], Sovrn Holdings [36],
Index Exchange [33], TripleLift [29], and Livelntent [35].
The presence of these advertising and tracking organizations
in top-50 ATS link decorations (and even beyond top-50, not
shown here due to space constraints) highlights PURL’s effec-
tiveness in detecting both popular and relatively lesser known
ATS link decorations.

Next, we investigate different types of information shared
through these ATS link decorations.

5.2 Sharing of Browser Storage through ATS
Link Decorations

Prior work has shown that browser storage, such as cook-
ies and local storage, is widely used for tracking by ATS
[88, 100, 104]. To investigate whether ATS link decorations
are used to share browser storage, we look for the presence of
browser storage in link decorations. Table 4 shows the num-
ber of distinct browser storage keys shared in the plaintext
or encoded formats (Base64, SHA1, SHA-256, and MDS5)
by top-50 ATS link decorations. We find that most of the
ATS link decorations detected by PURL are used to share
a large number of browser storage keys (cookies and local
storage). For example, google_hm on cm.g.doubleclick.net
is used by Google’s cookie matching service [57] to receive
cookies of its advertising partners such as CMID (set by casale-
media.com), suid (set by simpli.fi), __mguid_ (set by medi-
ago.io), and tuuid (set by adsrvr.com). Other such well-
known ATS link decorations that are similarly used to share
browser storage keys set by various organizations include
partner_uid (LiveRamp), partner_device_uid (Tapad),
uid (Yahoo!), put (RubiconProject), and ttd_puid (The
Trade Desk). We also note that some AT'S link decorations
are used to share only a few browser storage keys. For ex-
ample, fbp (www.facebook.com) is mainly used to share
ghosted [88, 100] _fbp cookie set by Meta pixel [45]. As
another example, vid and sid (bat.bing.com) are mainly used
to share ghosted _uetvid and _uetsid cookies set by Mi-
crosoft UET tracking tag [83]. A related interesting example
is cid (www.google-analytics.com), which is mainly used to
share ghosted _ga cookie set by Google Analytics [59, 60].
However, it is also used to share 250 other browser storage
keys potentially due to cookie name conflicts [118].
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FQDN Key Storage %
Keys Sites
www.google-analytics.com cid 251 56.84
www.google-analytics.com _gid 206 50.90
stats.g.doubleclick.net cid 220 36.60
stats.g.doubleclick.net _gid 133 34.04
www.google.com cid 193 23.43
www.facebook.com fbp 5 19.14
googleads.g.doubleclick.net auid 46 13.41
analytics.google.com cid 98 11.03
googleads.g.doubleclick.net cookie 1 7.72
googleads.g.doubleclick.net gpic 1 7.71
googleads.g.doubleclick.net ga_vid 112 6.97
securepubads.g.doubleclick.net | ga_vid 54 6.69
partner.googleadservices.com cookie 1 5.60
partner.googleadservices.com | gpic 1 5.59
bat.bing.com vid 2 5.55
bat.bing.com sid 2 5.54
securepubads.g.doubleclick.net | cookie 1 5.45
securepubads.g.doubleclick.net | gpic 1 542
www.google-analytics.com sid 802 4.99
x.bidswitch.net user_id 139 4.70
idsync.rledn.com partner_uid 208 4.61
pixel.tapad.com partner_device_id 174 4.50
cm.g.doubleclick.net google_hm 77 4.28
ups.analytics.yahoo.com uid 182 4.19
pixel.rubiconproject.com put 185 3.96
www.facebook.com ts 202 3.84
securepubads.g.doubleclick.net | ga_sid 618 3.79
pagead2.googlesyndication.com | rst 115 3.50
www.facebook.com it 167 3.48
www.google.com auid 29 3.48
s.amazon-adsystem.com id 213 3.45
gum.criteo.com info 2 3.30
us-u.openx.net val 132 3.14
pr-bh.ybp.yahoo.com path 12 47 3.13
securepubads.g.doubleclick.net | dt 117 3.12
tags.bluekai.com id 90 3.07
googleads.g.doubleclick.net fst 188 3.05
googleads.g.doubleclick.net ga_sid 741 2.95
match.adsrvr.org ttd_puid 17 292
googleads.g.doubleclick.net random 182 291
ce.lijit.com 3pid 167 2.89
www.google.com random 182 2.85
dsum-sec.casalemedia.com external_user_id 126 2.85
securepubads.g.doubleclick.net | Imt 414 2.77
eb2.3lift.com xuid 182 2.76
analytics.google.com sid 490 2.71
securepubads.g.doubleclick.net | dlt 66 2.57
www.google-analytics.com dl 214 2.40
googleads.g.doubleclick.net Imt 620 233
i.liadm.com bidder_uuid 85 2.30

number of cookies they share

Table 4: Prevalence of Top-50 ATS link decorations and the

5.3 Sharing of Deterministic Information
through ATS Link Decorations

Next, we look at the sharing of deterministic identifiers
through ATS link decoration. Deterministic identifiers include
email addresses and any commonly used user identifiers such
as username, phone number, etc. provided by the user to log
into a site. In contrast with identifiers stored in third-party
cookies, these deterministic identifiers are not automatically
sent with requests, necessitating their sharing through mecha-



FQDN | Key Sites
p.adsymptotic.com _expected_cookie 90
idsync.reson8.com userid 47

api-2-0.spot.im ayl_id 33
comcluster.cxense.com glb 29
polo.feathr.co ttd_id 21
rtb.mfadsrvr.com _ 20
cs.iqzone.com puid 18
pixel-geo.prfct.co xid 13
sync.richaudience.com pmUserld 11
rp.Jliadm.com ext__pubcid 8
cdn-p.cityspark.com b 6
ssl.connextra.com pathll0 6
aps.zqtk.net url 5
trackingapi.trendemon.com | Cookield 5
cs-tam.yellowblue.io aid 5
b6.im-apps.net vid 4
m.trafmag.com id 4
sync.upravel.com uid 3
cdn.gladly.com q 3
cms.getblue.io appnexusid 3

Table 5: Top-20 link decorations which were only present in
at least 2 of the crawls where user email address was entered
in text fields

nisms such as link decorations. To study this sharing of deter-
ministic identifiers, we crawl the 20K sample of top-million
websites twice, both with and without providing determin-
istic identifiers such as email addresses in text input fields.®
Similar to the aforementioned storage analysis, we analyze
whether link decorations contain these deterministic identi-
fiers in plaintext or encoded format using well-known hashing
techniques (Base64, SHA1, SHA256, and MDS5). We repeat
these parallel crawls two additional times for a total of three
crawls with and without entering deterministic identifiers. We
find 538 link decorations that are present in multiple crawls
where we enter deterministic identifiers, but are absent in
crawls where we do not enter deterministic identifiers. PURL
labels 62 of these 538 link decorations as ATS.

Table 5 shows the top-20 such link decorations. Most
notable of these ATS link decorations are ttd_id used by
Feathr (provides marketing campaign solutions to non-profits
[46]), pmUserId used by Rich Audience (an advertising so-
lution which works with major universal identifiers such as
by ID5 [68] and The Trade Desk unified ID [96, 107]), and
ext__pubcidused by Livelntent (provides “cookieless email-
based solutions” [78]).

5.4 Sharing of Probabilistic Information
through ATS Link Decorations

Finally, we look at the exfiltration of probabilistic informa-
tion through ATS link decorations. Probabilistic information
includes features such as screen resolution, fonts, etc. that
can be combined to extract a browser fingerprint [71, 88].

8To automatically fill in the text fields on web pages, we extended a
crawler released by prior work [102].
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FQDN | Key Sites
securepubads.g.doubleclick.net | ippd 212
kraken.rambler.ru tid 146
sofire.baidu.com t 127
ib.adnxs.com path 10 117
kraken.rambler.ru top100_id 115
kraken.rambler.ru Iv 104
log.rutube.ru sid 92
kraken.rambler.ru aduid 55
trackingapi.trendemon.com vid 41
connect.facebook.net path 10 41
kraken.rambler.ru adtech_uid 39
hexagon-analytics.com uu 37
api.segment.io path |1 35
trackingapi.trendemon.com MarketingAutomationCookie 27
idr.cdnwidget.com bxvid 24
events.bouncex.net visitid 23
sofire.baidu.com h 22
unseenreport.com uuid 20
ids.cdnwidget.com path | 0 18
hexagon-analytics.com h 17

Table 6: Top-20 ATS link decorations used by scripts involved
in fingerprinting and the number of sites they were detected
on.

To determine if link decoration is potentially being used to
send out probabilistic information, we use FP-Inspector an
ML-based tool proposed by prior work [71] to detect whether
the initiator scripts of link decorations are fingerprinters. We
run FP-Inspector to detect 1,528 fingerprinting scripts on the
tested websites. These fingerprinting scripts initiate requests
containing 1,800 unique link decorations, out of which 200
are labeled as ATS by PURL. Table 6 shows the top 20 most
common ATS link decorations sent by fingerprinting scripts.
While it is challenging to reverse-engineer the scripts, names
(e.g., aduid, uuid) of some of these link decorations make it
fairly obvious that they contain some sort of identifiers.

6 Discussion

In this section, we further discuss the robustness of PURL to
evasion, PURL’s deployment in browsers and browser exten-
sions, and coverage of PURL’s dynamic analysis.

6.1 Robustness to Evasion

We evaluate the robustness of PURL against three differ-
ent evasion techniques: manipulation of link decoration key
names, splitting link decoration values, and combining of link
decoration values.

First, we evaluate whether changing link decoration keys
impacts PURL’s accuracy. To this end, we randomly change
the query parameter names as well as the position of resource
paths and fragments. Our evaluation shows that there is no
change in PURL’s accuracy due to this randomization. This is
because PURL does not directly use name features for query
parameters and fragments, and thus there is no impact on
the features. Moreover, changing the key names of resource



paths by changing their position in the URL impacts just one
feature (maximum depth of decoration) but does not end up
changing the classification outcome for any link decoration.

Second, we evaluate whether splitting a link decoration
into multiple link decorations impacts PURL’s accuracy. If
the individual character lengths of the new smaller link deco-
rations are shorter than 8 characters, PURL’s pre-processing
would remove such link decorations from the classification
pipeline — resulting in a successful evasion. To mitigate this
issue, we can exclude this pre-processing step, but it might
result in more false positives. We evaluate PURL (without
this pre-processing step) against this evasion technique by
splitting the link decorations longer than 8 characters into
multiple smaller link decorations. Our evaluation shows that
splitting link decoration results in only a 0.4% drop in accu-
racy, which corresponds to an increase of false positive rate
by 0.17%.

Finally, we evaluate whether combining all link
decorations into a single encrypted string impacts
PURL’s accuracy. This approach has been attempted
by Facebook [44] to circumvent query parameter strip-
ping. In Facebook’s case, the obfuscated URL (e.g.,
https:/fwww.facebook.com/user/posts/pfbidORjTS7KpBA...)
contains a single encrypted resource path that essentially
combines multiple query parameters. A consequence of
combining link decorations in an encrypted string is that
PURL would be unable to attribute storage exfiltration
features to this new link decoration. However, this change
also results in higher entropy and, as discussed in Section
A.1, increases the likelihood that the link decoration will
be labeled as ATS. We evaluate PURL against this evasion
technique by combining the link decorations in an SHA-256
encoded string for 156,348 requests containing both ATS
and Non-ATS link decorations. Here, PURL only uses the
features whose values are the same across all the combined
link decorations (e.g., number of ancestors, descendants,
presence of ad keyword in the ascendant). Our evaluation
shows that PURL is still able to detect 83.4% of new link
decorations as ATS.

6.2 PURL’s implementation in privacy-focused
browsers or browser extensions

While PURL’s implementation is not suitable for runtime
deployment (mainly due to the performance overheads of the
browser instrumentation and subsequent dynamic analysis), it
can be used in existing privacy-focused browsers and browser
extensions as follows. Concretely, we run PURL on live
webpages to detect ATS link decorations offline, and then
add the detected link decorations to a filter list used in Brave,
Firefox, Safari, uBlock Origin, or AdGuard for runtime URL
sanitization [7,22,49,92,110]. We generated a filter list
compatible with popular privacy-focused extensions such as
uBlock Origin and AdBlock Plus by running PURL on our
dataset [93]. Our filter list is incorporated in the adfilt
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filter list [2], which is used by AdGuard. Note that PURL’s
classifier can be periodically rerun to generate a new filter
list in case a tracker frequently changes their link decoration
keys/names. If a tracker randomly generates link decoration
keys/names each time, PURL’s filter list can applied based on
their relative position in the URL. Note that it is challenging
in practice for a tracker to change its link decorations at a
fast pace because it requires changing both client-side and
server-side logic across different servers and organizations.

6.3 Coverage

PURL builds a graph representation of the webpage execution.
The number of interactions captured depends on the intensity
and variety of user activity on a webpage (e.g., scrolling activ-
ity, number of internal pages clicked). PURL may not detect
certain ATS link decorations if its graph representation does
not capture certain interactions between different elements
in the webpage because it does not sufficiently emulate dif-
ferent user interactions. We attempt to mitigate this issue by
randomly scrolling and clicking, but it might not be always
sufficient. The coverage of PURL’s dynamic analysis can
be improved, if needed, using various techniques from prior
research [66, 76].

7 Conclusion

In this paper, we investigated the abuse of link decoration for
tracking. We found that link decoration is used by known
trackers for both functional and tracking purposes, even
within a single URL, necessitating a fine-grained approach
to detect tracking link decorations. We proposed PURL— a
machine learning approach to detect and sanitize tracking link
decorations. PURL leverages a graph representation that cap-
tures interactions and the flow of information across multiple
layers of the web stack.

Our evaluation showed that PURL significantly outper-
formed existing countermeasures in its ability to detect link
decorations accurately and in minimizing website breakage.
Our deployment of PURL on top-million sites showed that
link decoration is abused for tracking on almost three-quarters
of the websites by well-known advertising and tracking ser-
vices to exfiltrate first-party cookies, email addresses, and
fingerprints. We also showed that PURL is robust to common
evasion attempts and is readily deployable in privacy-focused
browsers and browser extensions as a filter list. While PURL
is orthogonal to existing countermeasures that focus on de-
tecting specific types of tracking, it can be deployed alongside
them for a defense-in-depth strategy against new and emerg-
ing online tracking techniques.

For reproducibility and to foster follow-up research,
PURL’s source code (OpenWPM patch and the machine learn-
ing pipeline) and the detected list of link decorations are
available at [93].
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A Appendix

A.1 Feature Analysis

We conduct feature analysis to understand which properties
of link decorations are most useful in classifying into ATS or
Non-ATS.

First, we look at which feature was the most important
when classifying both ATS and Non-ATS link decorations.
We rank the most important features by summing the fea-
ture contributions during the classification of link decora-
tions [108]. Table 7 reports the top-10 features ranked based
on the percentage of instances where the feature was impor-
tant for ATS classification. We observe that for ATS instances,
Shannon Entropy, the number of nodes, edges, predecessors,
and ancestors are the most important. Figure 8 plots the
conditional distribution of two top-ranked features: Shannon
entropy and the number of edges. Figure 8 shows that the
Shannon entropy for ATS decorations is higher than Non-
ATS decorations. Specifically, more than 70% of Non-ATS
link decorations and only 8% of ATS link decorations have
Shannon entropy lower than 3, respectively. The usage of
higher entropy strings by ATS link decorations is expected as
they are more suitable for storing unique identifiers. Figure
9 shows that ATS decorations are more connected as com-
pared to Non-ATS decorations. Specifically, less than 50% of
ATS link decorations and more than 85% of Non-ATS link
decorations have less than 10,000 edges, respectively. ATS
link decorations tend to interact more with other elements
of the webpage, which is expected as ATS link decorations
are expected to be fetched and updated more frequently from
storage and shared more frequently through network requests.
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Figure 8: Distribution of Shannon entropy value for ATS
and Non-ATS link decorations. ATS link decorations have a
higher Shannon entropy as compared to Non-ATS link deco-
rations.

In addition to these features, the flow of information from
storage nodes to link decoration nodes also affects the de-
cision due to the importance of indirect features, which are
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Figure 9: Distribution of the number of edges for ATS and
Non-ATS link decorations. ATS link decorations interact
more with the neighboring nodes, resulting in higher connec-
tivity and number of edges than Non-ATS link decorations.

calculated by exfiltration and infiltration to and from the stor-
age nodes. We find that ATS link decorations are more likely
to exfiltrate storage values, with an ATS decoration averaging
7.4 exfiltrations (standard deviation of 20.56) while a Non-
ATS decoration averaging only 0.06 (standard deviation of
1.41).
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Figure 10: Distribution of the number of exfiltrations for ATS
and Non-ATS link decorations. ATS link decorations are used
to exfiltrate storage values significantly more than Non-ATS
link decorations.

For Non-ATS instances, we observe that lack of informa-
tion flow was a strong indicator, with the top three features
directly or indirectly related to exfiltration and infiltration
of storage values. The classifier also took into account the
entropy of the string and keywords related to advertisement
in ascendants as important features for classifying Non-ATS
link decorations. Our analysis shows that flow features, that
map the flow of information from storage to link decorations,
entropy, and the position of link decoration within the URL
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are the most important features when it comes to classifying
link decorations into ATS and Non-ATS categories.

Feature Percentage
Shannon Entropy 17.43%
Number of Nodes 16.38%
Closeness Centrality of Indirect Edges 13.22%
Ratio of Nodes over Edges 12.4%
Number of Edges 11.54%
Number of Script Predecessors 5.28%
Number of Ancestors 3.22%
Ratio of Edges over Nodes 3.06%
Number of Indirect Ancestors 2.83%
Closeness Centrality 2.03%

Table 7: Percentage of instances where a feature was the most
important for ATS link decoration classification

A.2 PURL Features

Feature Type
Graph size (# of nodes, # of edges, and nodes/edge ratio) Structure
Degree (in, out, in+out, and average degree connectivity) Structure
Centrality (closeness centrality, eccentricity) Structure
Ascendant’s attributes Structure
Descendant of a script Structure
Ascendant’s script properties (Ad keyword, FP keyword, length of script) ~ Structure
Parent is an eval script Structure
Depth of Link Decoration in URL Content
Shannon Entropy Content
Local storage access by parent (# of sets, # of gets) Flow
Cookie accesses by parent (# of sets, # of gets) Flow
Requests (sent, received) by parent Flow
Redirects (sent, received, depth in chain) by parent Flow
Common access to the same storage node Flow
Cookie exfiltration Flow
Cookie infiltrations by parent Flow
Cookie Setter (# of exfiltration, # redirects) by parent Flow
Graph size (# of nodes, # of edges, and nodes/edge ratio) Flow
Degree (in, out, in+out, and average degree connectivity) Flow
Centrality (closeness centrality, eccentricity) Flow

Table §: Features used by PURL. PURL calculates Graph
size, Degree, and Centrality features using both normal and
shared information edges. The former comes under structural
features while the latter comes under flow features.
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