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Abstract

In this paper, we study a learning problem in which a forecaster only observes partial
information. By properly rescaling the problem, we heuristically derive a limiting PDE
on Wasserstein space which characterizes the asymptotic behavior of the regret of the
forecaster. Using a verification type argument, we show that the problem of obtain-
ing regret bounds and efficient algorithms can be tackled by finding appropriate smooth
sub/supersolutions of this parabolic PDE.

Keywords: machine learning, expert advice framework, bandit problem, asymptotic
expansion, Wasserstein derivative

1. Introduction

In this paper, we study a zero-sum game between a forecaster and an adversary. At each
round, the forecaster chooses an action between K ≥ 2 alternative actions based on his/her
partial observations aiming at performing as well as the best constant strategy, while the
adversary aims at maximizing the forecaster’s regret. Our problem is motivated by pre-
diction with expert advice and bandit problems (see e.g. Cesa-Bianchi and Lugosi (2006);
Bubeck and Cesa-Bianchi (2012)), which are fundamental problems in online learning and
sequential decision making. The main difference between prediction with expert advice and
bandit problem is the information observed by the forecaster. In prediction with expert ad-
vice problems, the forecaster can monitor the outcomes of each alternative action, whereas
in bandit problems, the forecaster can only observe the outcome of the action chosen. Thus,
the former problem is a full information game whereas the latter is a bandit game (see e.g.
Audibert and Bubeck (2010); Audibert et al. (2011)).

The most commonly used algorithm for decision making and prediction problem is
the so-called multiplicative weights algorithm, which assigns initial weights to each expert,
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update these weights multiplicatively and iteratively based on their performance, and ran-
domly choose experts according to their weights. This simple algorithm is widely used and
has been proven efficient in practice. However, it cannot provide accurate regret bounds
and best strategies for the forecaster. In Drenska and Kohn (2020), techniques from partial
differential equations were first employed to understand asymptotic behavior of prediction
of expert advice problems. Since then, it became popular and has been proven powerful in
certain problems, see e.g. Drenska and Kohn (2023); Drenska and Calder (2021); Calder
and Drenska (2021); Kobzar and Kohn (2022); Kobzar et al. (2020); Bayraktar et al. (2021a,
2020b,a, 2021b); Harvey et al. (2020); Zhang et al. (2022); Greenstreet et al. (2022).

In full information games, these papers rely on the fact that the difference (Xi
t)i=1,...,N =

(Git − Gt)i=1,...,N ∈ RK between the gain Gt of the forecaster and the gain Git of each
action i is a natural state variable for the dynamic game between the forecaster and the
adversary. Thus, the minimax regret of the forecaster satisfies a finite dimensional dynamic
programming principle whose scaling limit is a parabolic partial differential equation on
RN . For bandit games or in the presence of partial information such methodology cannot
be applied. Indeed, due to partial information, the natural state variable for the dynamic
programming principle is the set of probability distributions on RN which encodes the
distribution mt of Xt conditional on the information of the forecaster. Thus, with partial
information, the fundamental problem is to understand the dynamics of mt and how these
dynamics behave in the long-time regime.

Our main contribution consists in showing that the update of the conditional distribution
between two consecutive time steps from mt to mt+1 admits a scaling limit that can be
described using partial differential equations in the Wasserstein space. The equations we
obtain are fully nonlinear versions of the PDEs appearing in mean-field games and Mckean-
Vlasov control problems, see e.g. Cardaliaguet et al. (2019); Cosso et al. (2021); Bandini
et al. (2019); Bayraktar et al. (2023a) and Remark 9 for further discussions. This novel
relation between the discrete-time bandit problem and the continuous-time equations comes
from the fact that in the game we study, the updated measure mt+1 can be written as a
push-forward operator on mt, i.e. mt+1 = (Id + Yt)]mt where Yt is a (random) function
describing the feature learned by the forecaster on [t, t+1]. If the game is played T times and
if we rescale the problem with its natural

√
T scaling, the update of the mt can be written

as mt+ 1
T

= (Id+ Yt√
T

)]mt. In the long-time regime, i.e., as T →∞, by the definition of the

Wasserstein derivative (see (Cardaliaguet et al., 2019, Proposition 2.3)), we obtain that for
any smooth function U , we have the expansion

U
(
mt+ 1

T

)
= U (mt) +

1√
T

∫
DmU(mt, x)Yt(x)m(dx) + O

(
1√
T

)
.

Thus, the impact of the Bayesian update of the distribution mt can be characterized in
the long-time regime using the Wasserstein derivative DmU . In fact, we derive a second
order expansion of U(mt+ 1

T
) involving the derivatives DxDmU and D2

mmU which allows us

to heuristically exhibit a second order parabolic equation of type

0 = ∂tU(t,m) (1)

+ F

(∫
DmU(t,m, x)m(dx),

∫
DxDmU(t,m, x)m(dx),

∫∫
D2

mmU(t,m, x, y)m(dx)m(dy)

)
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which is expected to govern the dynamics of the prediction problem in the long-time regime.
In this equation, the unknown is the function U , F is a function that can be explicitly
computed from the Bayes’ rule, and the derivatives are defined as in Cardaliaguet et al.
(2019); Cosso et al. (2021).

The equation (1) gives simple methods to obtain algorithms and regret bounds for
the long-time regime of the prediction problem with partial information. Indeed, using a
verification type argument we show that the gradient Dmφ of any smooth supersolution φ
of (1) satisfying some growth and terminal condition yields an algorithm that guarantees an
upper bound for regret of order φ(0, δ0)

√
T where δ0 is the Dirac mass at 0. Heuristically,

the algorithm corresponding to Dmφ is the probability matching algorithm as in Drenska
and Kohn (2020); Bayraktar et al. (2020a), and is a tradeoff between exploitation and
exploration; see Remark 13. A similar result also holds for appropriate subsolutions.

Due to the nonlinearity on the second derivative term D2
mmU , wellposedness of viscosity

solutions for (1) is not available in the literature. Hence, the questions of establishing
appropriate comparison result for viscosity solutions and obtaining the exact growth of the
regret as for example in Drenska and Kohn (2020) are left for future research.

The rest of this paper is organized as follows. In Section 2, we formulate our problem
and show that the value function of the game depends only on the law mt of Xt conditional
on the information of the agents. Then, using Bayes’ rule, we compute explicitly the update
of beliefs and prove a dynamic programming principle. In Section 3, by properly rescaling
the value function and using differential calculus on the space of measures, we heuristically
obtain a limiting PDE of type (1) on the Wasserstein space. In Section 4 and 5, using smooth
supersolutions and subsolutions of the PDE, we construct strategies for the forecaster and
the adversary, and find upper and lower bounds of expected regret.

1.1 Notations

For any positive integer K, define [K] = {1, . . . ,K}, {±i} := {±i : i ∈ [K]}, and SK to
be the set of positive semidefiniete K ×K matrices. Id stands for the identity mapping of
appropriate dimension. For any x ∈ RK , denote its i-th coordinate by xi. Let {ei : i =
1, . . . ,K} be the canonical basis of RK , and for any j ⊂ [K], denote ej =

∑
i,i∈j ei and

e =
∑K

i=1 ei.

We fix K ≥ 2 and denote by P2(RK) the set of probability measures m on RK such
that

∫
|x|2m(dx) <∞. For any v ∈ RK , λ ∈ R, and m ∈ P2(RK), we define the measures

m]v := (Id+ v)]m and m∗λ via∫
f(x)m]v(dx) =

∫
f(x+ v)m(dx),∫

f(x)m∗λ(dx) =

∫
f(λx)m(dx) for all f continuous and bounded.

Additionally, for any function f and m ∈ P2(RK), we denote

f([m]) :=

∫
f(x)m(dx).
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2. Formulation of the problem

Our online prediction problem with partial observation can be described as a T -round game,
played by a forecaster in an adversarial environment. Suppose that there are K actions. At
each round t, the forecaster chooses an action It ∈ [K], and independently the adversary
chooses a set of winning actions Jt ⊂ [K]. The reward of action i is 1 if i ∈ Jt and is 0 if
i 6∈ Jt. Then the total gain of the forecaster Gt and the total gain Git of action i evolve as

Gt+1 −Gt = 1It∈Jt ,

Git+1 −Git = 1i∈Jt , i = 1, . . . ,K.

The goal of the forecaster is to design a robust strategy that performs as well as the best
constant strategy under any adversarial environment, i.e., to minimize max

Adversary
E[maxiX

i
T ],

where Xi
t := Git −Gt is the state variable evolving as

Xt+1 −Xt := eJt − 1It∈Jte ∈ RK .

Both the forecaster and the adversary are allowed to adopt randomized strategies. At each
round t, they decide on distributions bt ∈ P([K]) of It and at ∈ P({0, 1}K) of Jt respectively.
If we allow both agents to observe the outcomes of It and Jt, this problem is the classical
prediction with expert advice problem in the adversarial setting, see for example Cover
(1966); Cesa-Bianchi and Lugosi (2006); Gravin et al. (2016); Drenska and Kohn (2020).

Let us now describe information observed by the forecaster and his/her admissible strate-
gies in the partial information problem we aim to study. At initial time t = 0, both the
adversary and the forecaster get informed of the distribution m0 of X0. For any t ≥ 0, the
random variable

Yt := 1It∈JtIt − 1It 6∈JtIt ∈ {±i}

indicates whether the forecaster makes a good decision or not. Both players can observe
the law of adversary’s control at−1 and the indicator yt−1. Their accumulated information
is given by

ht := (m0, a0, y0 . . . , at−1, yt−1) ∈ Ht, (h0 := m0 ∈ H0),

where Ht := P(RK) ×
(
P({0, 1}K)× {±i}

)t
. The strategies of the forecaster and the ad-

versary are measurable functions βt : Ht → P([K]) and αt : Ht → P({0, 1}K) respectively.
Note that αt, βt denote functions of Ht, while at, bt denote the output of αt, βt respectively.
Define A to be the set of all possible strategies α := (α0, α1, . . . , αT−1), and B similarly.

Suppose this game starts from time t with an initial distribution m ∈ P(RK). Then
given any strategies α ∈ A, β ∈ B, the regret for the forecaster is given by

γT (t,m, α, β) := Em,α,β [max
i
Xi
T |Xt ∼ m].

From the perspective of the forecaster, we aim at solving a minimax problem

vT (t,m) := inf
β∈B

sup
α∈A

γT (t,m, α, β), (2)
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and we denote this two player game by ΓT (t,m). Note that on the state space P(RK)
this game is of complete information. As we will see in the next subsection, the infor-
mation structure allows both agents to compute the value function iteratively backward in
time. Moreover, our final payoff is regret Em,α,β [maxiX

i
T |Xt ∼ m] instead of pseudo-regret

maxi Em,α,β [Xi
T |Xt ∼ m]; see for example Bubeck and Cesa-Bianchi (2012). Since the final

payoffs can be written as functions of L(XT ) in both cases, our PDE method can also be
applied to pseudo-regret analysis.

Remark 1 (i) Our formulation is motivated by the classical bandit problems; see for ex-
ample Cesa-Bianchi and Lugosi (2006); Bubeck and Cesa-Bianchi (2012). Similar to the
bandit problems, the forecaster observes partial information Yt instead of Xt, and both ad-
versary and forecaster choose their strategies to be played at each round. In our framework
both players observe Yt, at and hence they can compute the same update of mt. In the adver-
sarial bandit problem, the forecaster cannot observe the randomization at of the adversary
and therefore cannot update mt. This additional uncertainty in future dynamics of mt is
the main difference between our framework and the classical adversarial bandit problems.

Bayesian approaches have also been widely used in stochastic multi-armed problems, see
for example Agrawal and Goyal (2013) and the references therein. In such problems, reward
functions are i.i.d. with some fixed unknown distribution, and the belief of the forecaster on
the reward functions are updated at each round by Bayes’ rules. However in our framework,
distributions of reward functions are chosen by the adversary so as to maximize the regret
of forecaster.

(ii)

Gangs of bandit problems have applications in online recommendation systems; see for
example Cesa-Bianchi et al. (2013), and Herbster et al. (2021) which considers this in the
adversarial setup. In these problems, recommendation systems serve content to a group of
users by taking advantage of underlying network of social relationships among them. The
system makes the same recommendation to users similar to each other. We consider a
simplified framework where all the users are of the same type and their feedbacks Jt are
sampled from the same distribution at. Assume that the privacy cookie allows the system to
collect statistical data of Jt without knowing the identity of users. In this way, the system
learns the distribution at of Jt, and it aims to make recommendations in a robust manner.

(iii) In our context, since the forecaster learns at, he/she can update mt via Bayes’ rule.
This update is impossible in the classical bandit problems. An interesting question that is
left for future research is to extend our PDE tools to classical bandit problems.

2.1 Dynamic programming principle

In this subsection, we establish the dynamic programming principle for the game (2), and
reduce controls α, β to functions of conditional distribution of the state X. Let us first
compute the distribution of X, i.e., belief, given prior information. Suppose the current
distribution is m and X is a random variable with distribution m. We denote ∆X the change
of X between two rounds. The players choose strategies a ∈ P({0, 1}K) and b ∈ P([K])
respectively, and receive signal y ∈ {±i}. We denote by La,b the distribution of a random
variable and by Pa,b the probability of an event given the strategies of the agents. We omit
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the superscripts a or b if this dependence is clear from the context. We also denote by

l(m, a, y) := La(X + ∆X|X ∼ m,Y = y) ∈ P(RK)

the Bayesian update of the distribution.

We will compute the explicit formula of l(m, a, y) in the next Lemma. For any a ∈
P({0, 1}K), b ∈ P([K]), denote

â(i) :=
∑
j:i∈j

a(j), â(−i) :=
∑
j:i/∈j

a(j), ∀ i ∈ [K].

Proposition 2 Given a ∈ P({0, 1}K) and the distribution m ∈ P(RK), we have that

l(m, a, i) =
∑
j:i∈j

(
a(j)

â(i)
m

)
]−ejc

, l(m, a,−i) =
∑
j:i/∈j

(
a(j)

â(−i)
m

)
]ej

.

We make the convention in these expressions that l(m, a, y) = δ0 ∈ P(RK) whenever â(y) =
0.

Proof For j ⊂ [K] and i ∈ [K], it can be easily verified that

P(∆X = ej , Y = −i,X ∈ dx) = 1i/∈ja(j)b(i)m(dx)

P(∆X = −ejc , Y = i,X ∈ dx) = 1i∈ja(j)b(i)m(dx)

P(Y = i) = b(i)
∑
k:i∈k

a(k)

P(Y = −i) = b(i)
∑
k:i/∈k

a(k)

P(∆X = ej , X ∈ dx |Y = −i) =
1i/∈ja(j)m(dx)∑

k:i/∈k a(k)

P(∆X = −ejc , X ∈ dx |Y = i) =
1i∈ja(j)m(dx)∑

k:i∈k a(k)
.

Therefore, conditioning on Y , the distribution of X + ∆X is given by

P [(X + ∆X) ∈ dx |Y = i] =
∑
j:i∈j

P [X ∈ d(x+ ejc),∆X = −ejc |Y = i]

=
∑
j:i∈j

a(j)m(d(x+ ejc))

â(i)
,

=
∑
j:i∈j

(
a(j)

â(i)
m

)
]−ejc

(dx),
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and

P [(X + ∆X) ∈ dx |Y = −i] =
∑
j:i/∈j

P [X ∈ d(x− ej),∆X = ej |Y = −i]

=
∑
j:i/∈j

a(j)m(d(x− ej))
â(−i)

=
∑
j:i/∈j

(
a(j)

â(−i)
m

)
]ej

(dx).

The following theorem proves a dynamic programming principle showing that one can
solve (2) with a backward induction.

Theorem 3 For any distribution m ∈ P(RK) and T ∈ N we have that

vT (t,m) = inf
b∈P([K])

sup
a∈P({0,1}K)

(
K∑
i=1

b(i)â(i)vT (t+ 1, l(m, a, i))

+

K∑
i=1

b(i)â(−i)vT (t+ 1, l(m, a,−i))

)
, (3)

where b(i)â(i), b(i)â(−i) represent the probability of receiving signal i, −i respectively, and
l(m, a,±i) is the update of beliefs.

Proof The equation (3) holds trivially for t = T − 1. Suppose it is true for t + 1. Let
us prove it for t. Denote by v the value of the right hand side of (3). For any α ∈ A and
β ∈ B, denote αt+1:T = {αt+1, . . . , αT−1}, βt+1:T = {βt+1, . . . , βT−1}. It is clear that

γT (t,m, α, β) =

K∑
i=1

∑
k:i∈k

βt(i)αt(k)γT (t+ 1, l(m,αt, i), αt+1:T , βt+1:T )

+

K∑
i=1

∑
k:i/∈k

βt(i)αt(k)γT (t+ 1, l(m,αt,−i), αt+1:T , βt+1:T ), (4)

where l(m,αt,±i) is the conditional distribution of Xt+1. For the game γT (t+1, l(m,αt,±i)),
due to our induction hypothesis, the value of this game exists and is just vT (t+1, l(m,αt,±i)).
Taking supremum over α on both sides of (4), it can be easily seen that

sup
α
γT (t,m, α, β) ≥ sup

αt

(
K∑
i=1

∑
k:i∈k

βt(i)αt(k)vT (t+ 1, l(m,αt, i))

+

K∑
i=1

∑
k:i/∈k

βt(i)αt(k)vT (t+ 1, l(m,αt,−i))

)
.
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Taking infimum over β, we conclude that vT (c,m) ≥ v.
Then we prove that for any ε > 0, there exists a robust strategy β∗ of the forecaster

such that

sup
α
γT (t,m, α, β∗) < v + 2ε. (5)

Take β∗t ∈ P([K]) with the property that

v + ε > sup
a∈P({0,1}K)

(
K∑
i=1

∑
k:i∈k

β∗t (i)a(k)vT (t+ 1, l(m, a, i))

+
K∑
i=1

∑
k:i/∈k

β∗t (i)a(k)vT (t+ 1, l(m, a,−i))

)
.

By induction hypothesis, for any belief l(m, a,±i), the forecaster can choose a strategy
β∗t+1:T such that

vT (t+ 1, l(m, a,±i)) + ε > sup
αt+1:T

γT (t+ 1, l(m, a,±i), αt+1:T , β
∗
t+1:T ).

Taking β∗ = (β∗t , β
∗
t+1:T ), clearly it is measurable and satisfies (5).

3. Heuristic expansion of the rescaled value function

Let us define the rescaled value functions

uT (s,m) :=
1√
T
vT

(
dsT e,m∗

√
T
)
,

and equivalently

vT (dsT e,m) =
√
TuT

(
s,m∗

√
T−1
)
.

For any a ∈ P({0, 1}K) and belief m ∈ P(ZK), denote

Aa,m
i,
√
T

=

∑
j:i∈j

(
a(j)

â(i)
m∗
√
T

)
]−ejc

∗ 1√
T

, Aa,m
−i,
√
T

=

∑
j:i/∈j

(
a(j)

â(−i)
m∗
√
T

)
]ej

∗ 1√
T

. (6)

Then due to (3), it holds that

uT
(
s− 1

T
,m

)
= inf
b∈P([K])

sup
a∈P({0,1}K)

(∑
i

b(i)â(i)uT
(
s,Aa,m

i,
√
T

)
+
∑
i

b(i)â(−i)uT
(
s,Aa,m

−i,
√
T

))
, (7)
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with the terminal condition

uT (1,m) =

∫
x∈RK

max
i
xim(dx).

Now we want to derive a limit for (7) as T → ∞. This derivation requires us to
take derivatives in the direction of Aa,m

i,
√
T
− m and Aa,m

−i,
√
T
− m in the Wasserstein space.

Let us introduce the differentiability of functions over the Wasserstein space as defined in
Cardaliaguet et al. (2019); Carmona et al. (2018).

A function u : P2(RK) 7→ R is said to be Fréchet differentiable if there exists a continuous
function

δu

δm
: P2(RK)× RK 7→ R

so that for all (m,m′) ∈ P2(RK), we have that

lim
h→0

u(m+ h(m′ −m))− u(m)

h
=

∫
δu

δm
(m,x) (m′ −m)(dx).

Whenever δu
δm is differentiable in x, we also define

Dmu(m,x) = Dx
δu

δm
(m,x) ∈ RK .

We define DxDmu(m,x) to be the derivative of x 7→ Dmu(m,x) in x, and D2
mmu(m,x, y)

to be the derivative of m 7→ Dmu(m,x) in m as above; see Cardaliaguet et al. (2019); Chow
and Gangbo (2019).

Definition 4 A function u : P2(RK)→ R is said to be C1 if Dmu(m,x) is continuous and
has at most quadratic growth in x, i.e.,

|Dmu(m,x)| ≤ C(1 + |x|2).

It is said to be C2 if DxDmu(m,x) and D2
mmu(m,x, y) are continuous, and have at most

quadratic growth in x and (x, y) respectively.

It is shown in (Cardaliaguet et al., 2019, Proposition 2.3) that Dmu can be understood
as a derivative of u along push-forward directions, meaning that for all Borel measurable
bounded vector field φ : RK 7→ RK we have

lim
h→0

u((Id+ hφ)]m)− u(m)

h
=

∫
Dmu(m,x)φ(x)m(dx).

Due to the expression of Aa,m
i,
√
T

and Aa,m
−i,
√
T

, we need to take derivatives in the directions(
Id+

ej
T

)
which are constant vector fields. However, the presence of terms a(j)

â(i) ]m in (6)
is a randomization among the directions of the vector fields. The following Proposition
shows that at the leading order, we can simplify these perturbations by averaging over
these different vector fields. We recall the notational convention that for all m′ ∈ P2(RK)

Dmu(m, [m′]) =

∫
Dmu(m,x)m′(dx) ∈ RK .

9
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Proposition 5 Suppose u ∈ C1(P(RK);R). Then for all a ∈ P({0, 1}K) and i ∈ [K], we
have that

lim
T→∞

√
T
(
u(Aa,m

i,
√
T

)− u(m)
)

= −V>a,iDmu (m, [m])

lim
T→∞

√
T
(
u(Aa,m

−i,
√
T

)− u(m)
)

= V>a,−iDmu (m, [m]) ,

where

Va,i :=
∑
j:i∈j

a(j)

â(i)
ejc ∈ RK , Va,−i :=

∑
j:i/∈j

a(j)

â(−i)
ej ∈ RK .

Remark 6 Note that −Va,i ∈ RK (resp. Va,−i ∈ RK ) represents the increase in the
expectation of Xt given the information that Y = i (resp. Y = −i) and the adversary’s
strategy a.

Proof Let us only compute the derivative in the direction of Aa,m
i,
√
T
−m. By the definition

of δu
δm , denoting Ãs,

√
T ,m = m+ s(Aa,m

i,
√
T
−m) we have that

√
T (u(Aa,m

i,
√
T

)− u(m))

=
√
T

∫ 1

0

∫
δu

δm

(
Ãs,
√
T ,m, x

)
(Aa,m

i,
√
T
−m)(dx) ds

=
∑
j:i∈j

a(j)

â(i)

√
T

∫ 1

0

∫
δu

δm

(
Ãs,
√
T ,m, x−

ejc√
T

)
− δu

δm

(
Ãs,
√
T ,m, x

)
m(dx) ds,

and thus

lim
T→∞

√
T
(
u(Aa,m

i,
√
T

)− u(m)
)

= −
∑
j:i∈j

a(j)

â(i)

∫
e>jcDmu (m,x) m(dx).

We can now give the second order expansion along T 7→ u(Aa,m
y,
√
T

) for all y = ±i.

Proposition 7 Suppose u ∈ C2(P(RK);R). Then we have that

lim
T→∞

T

(
u(Aa,m

i,
√
T

)− u(m) +
1√
T
V>a,iDmu (m, [m])

)
=

1

2

∑
j:i∈j

a(j)

â(i)
e>jcDxDmu (m, [m]) ejc (8)

+
1

2

∑
k,j:i∈k,i∈j

a(j)

â(i)

a(k)

â(i)
e>jcD

2
mmu (m, [m], [m]) ekc ,

10
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and

lim
T→∞

T

(
u(Aa,m

−i,
√
T

)− u(m)− 1√
T
V>a,−iDmu (m, [m])

)
=

1

2

∑
j:i/∈j

a(j)

â(−i)
e>j DxDmu (m, [m]) ej (9)

+
1

2

∑
k,j:i/∈k,i/∈j

a(j)

â(−i)
a(k)

â(−i)
e>j D

2
mmu (m, [m], [m]) ek

Remark 8 The Propositions 5 and 7 show that, at the leading orders, the impact of the
scaled update Aa,m

y,
√
T

of m on a smooth function u can be characterized by multiplication of

Dmu, DxDmu, and D2
mmu with some matrices depending only on a.

Proof Using the (Cardaliaguet et al., 2019, Equality (25)), we have

T

u(Aa,m
i,
√
T

)− u(m) +
1√
T

∑
j:i∈j

a(j)

â(i)

∫
e>jcDmu (m,x) dm(x)


=
∑
j:i∈j

a(j)

â(i)
T

∫ 1

0

∫
δu

δm

(
Ãs,
√
T ,m, x−

ejc√
T

)
− δu

δm

(
Ãs,
√
T ,m, x

)
+
e>jc√
T
Dx

δu

δm
u (m,x) dm(x)ds.

Let us compute the limit of integrand on the right hand side. By Taylor expansion on x, it
can ben seen that

T

(
δu

δm

(
Ãs,
√
T ,m, x−

ejc√
T

)
− δu

δm

(
Ãs,
√
T ,m, x

)
+
e>jc√
T
Dx

δu

δm
u (m,x)

)

=
1

2
e>jcD

2
x

δu

δm

(
Ãs,
√
T ,m, x̃T

)
ejc −

√
Te>jc

(
Dx

δu

δm

(
Ãs,T,m, x

)
−Dx

δu

δm
u (m,x)

)
where x̃T is some point on the line segment joining x and x − ejc√

T
. Denoting Ãr,s,

√
T ,m =

m+ r(Ãs,
√
T ,m −m), the right hand side of the above equation equals to

1

2
e>jcD

2
x

δu

δm

(
Ãs,
√
T ,m, x̃T

)
ejc − s

∑
k:i∈k

a(k)

â(i)

∫ 1

0

∫
√
T

(
e>jcDx

δ2u

δm2

(
Ãr,s,

√
T ,m, x, x

′ − ekc√
T

)
− e>jcDx

δ2u

δm2

(
Ãr,s,

√
T ,m, x, x

′
))

dm(x′)dx.

Letting T →∞, it converges to

1

2
e>jcD

2
x

δu

δm
(m,x) ejc + s

∑
k:i∈k

a(k)

â(i)
e>jc

∫
D2
x,x′

δ2u

δm2
u
(
m,x, x′

)
ekc dm(x′),

11
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and hence we obtain (8) by integrating over x. Similar computation yields to (9).

We now use (7) to obtain a formal asymptotics for uT as T →∞. Assuming uT converges
to a C2 function u : [0, 1]× P(RK)→ R, the dynamic programming principle yields to

0 = inf
b∈P([K])

sup
a∈P({0,1}K)

∑
i

b(i)â(i)T

(
uT
(
s,Aa,m

i,
√
T

)
− uT

(
s− 1

T
,m

))
+ b(i)â(−i)T

(
uT
(
s,Aa,m

−i,
√
T

)
− uT

(
s− 1

T
,m

))
.

Using Proposition 5 and 7 for large enough T , we obtain that

O(1) = ∂tu(t,m) + inf
b∈P([K])

sup
a∈P({0,1}K)

√
T
∑
i

b(i) (â(−i)Va,−i − â(i)Va,i)>Dmu (t,m, [m])

+
1

2
b(i)â(i)

V>a,iD2
mmu (t,m, [m], [m])Va,i +

∑
j:i∈j

a(j)

â(i)
e>jcDxDmu (t,m, [m]) ejc


+

1

2
b(i)â(−i)

V>a,−iD2
mmu (t,m, [m], [m])Va,−i +

∑
j:i/∈j

a(j)

â(−i)
e>j DxDmu (t,m, [m]) ej

 .

(10)

Notice that A
a,m]ε1

y,
√
T

=
(
Aa,m
y,
√
T

)
]ε1

for any y ∈ {±i}, and the final condition satisfies

uT (1,m]ε1) = uT (1,m) + ε. Therefore by backward induction, we have uT (t,m]ε1) =
uT (t,m) + ε for any t ∈ [0, 1], and also in its limit as T →∞

u(t,m]ε1) = u(t,m) + ε.

Thus, thanks to (Cardaliaguet et al., 2019, Proposition 2.3), we have that

1>Dmu(t,m, [m]) = 1.

Additionally, each component of Dmu(t,m, [m]) is clearly non-negative, which implies that
Dmu(t,m, [m]) ∈ RK is simplex valued. Denoting ui(t,m) the ith component ofDmu (t,m, [m]),
we have that

∑
i

b(i)

∑
j:i/∈j

a(j)e>j −
∑
j:i∈j

a(j)e>jc

Dmu (t,m, [m])

=
∑
i

b(i)

∑
j

a(j)e>j −
∑
j:i∈j

a(j)1>

Dmu (t,m, [m])

=
∑
j

a(j)
∑
i∈j

ui(t,m)−
∑
i

b(i)
∑
j:i∈j

a(j) =
∑
i

(ui(t,m)− b(i))
∑
j:i∈j

a(j). (11)

12
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Thus, in order to have the equality (10), the coefficients of the
√
T term must be zero, i.e.,

0 = inf
b∈P([K])

sup
a∈P({0,1}K)

∑
i

b(i) (â(−i)Va,−i − â(i)Va,i)>Dmu (t,m, [m])

= inf
b∈P([K])

sup
a∈P({0,1}K)

∑
i

(ui(t,m)− b(i))
∑
j:i∈j

a(j).

Otherwise, the first order term explodes. Therefore the forecaster is forced to choose the
strategy b = Dmu (t,m, [m]), and we obtain the PDE

0 = ∂tu(t,m) + sup
a∈P({0,1}K)

∑
i

(12)

+
1

2
ui(t,m)â(i)

V>a,iD2
mmu (t,m, [m], [m])Va,i +

∑
j:i∈j

a(j)

â(i)
e>jcDxDmu (t,m, [m]) ejc


+

1

2
ui(t,m)â(−i)

V>a,−iD2
mmu (t,m, [m], [m])Va,−i +

∑
j:i/∈j

a(j)

â(−i)
e>j DxDmu (t,m, [m]) ej

 .

Remark 9 (i) We say a ∈ P({0, 1}K) is a balanced strategy if
∑
j:i∈j

a(j) is independent of

i, and denote by E the set of all balanced strategies. According to (11), if we restrict a in
(10) to be balanced, the first order term vanishes for any b ∈ P([K]).

(ii)The standard tool to show the convergence of uT to the solution of (12) is to use the
stability and comparison of viscosity solutions, see for example Drenska and Kohn (2023);
Barles and Souganidis (1991) in the finite dimensional cases. However, a comparison result
for viscosity solution of PDEs on the Wasserstein space is not available in the literature
in the generality we need. The viscosity theory of first order PDEs on the Wasserstein
space has been studied in Burzoni et al. (2020); Cosso et al. (2021); Mete Soner and Yan
(2022), and second order PDEs on Wasserstein space is more challenging due to the lack
of Ishii’s lemma. Bandini et al. (2019) studies a second order PDE associated with a
stochastic filtering problem, and by lifting the equation to a Hilbert space they obtained the
well-posedness. However, the relation between the lifted PDE and the original one is unclear.
In Cox et al. (2021), the authors proved the uniqueness of a second order PDE associated
with a control problem under a very specific definition of viscosity solution which might not
enjoy stability results needed to for the convergence problems we aim to study. Our second
order PDE (12) is nonlinear, degenerate, and is different from the PDEs that appeared in
Bandini et al. (2019); Cox et al. (2021).

(iii) Because the second derivative terms D2
mmu and DxDmu are expected to explode as

t→ 1, the generator of (12) is expected to become discontinuous as t→ 1. Thus, it is more

13
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convenient to use the equation

0 = ∂tu(t,m) + sup
i,a∈P({0,1}K)

(13)

+
1

2
â(i)

V>a,iD2
mmu (t,m, [m], [m])Va,i +

∑
j:i∈j

a(j)

â(i)
e>jcDxDmu (t,m, [m]) ejc


+

1

2
â(−i)

V>a,−iD2
mmu (t,m, [m], [m])Va,−i +

∑
j:i/∈j

a(j)

â(−i)
e>j DxDmu (t,m, [m]) ej



to obtain regret bounds. Indeed, any supersolution of (13) is clearly a supersolution of (12)
and the generator of (13) is Lipschitz continuous on the derivatives of u. Thus, one can
expect a simpler proof of comparison of viscosity solutions.

4. Upper bound by smooth supersolution of the PDE

In this part, we design robust strategies of the forecaster using smooth supersolutions of
(12). Note that (12) becomes simpler if D2

mmu = 0. This is the case if u is linear in m. The
following Lemma uses this idea to generate simple supersolutions to (12).

Lemma 10 Suppose φ is a classical solution of

0 ≥ ∂tφ(t, x) +
1

2
sup

i,a∈P({0,1}K)

Tr

D2
xxφ (t, x)

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
φ(1, x) ≥ max

i
xi, φ(t, x+ λ1) = φ(t, x) + λ.

(14)

Then, the function Φ : [0, 1]× P2(RK) 7→ R defined by

Φ(t,m) = φ(t, [m]) :=

∫
φ(t, x)m(dx)

is a smooth supersolution to (12) with

DmΦ (t,m, x) = Dxφ(t, x), DxDmΦ (t,m, x) = D2
xxφ(t, x), D2

mmΦ (t,m, x, y) = 0. (15)

14
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Proof Using (15) which can be easily verified, together with the supersolution property of
φ we have that

0 ≥ ∂tφ(t, [m]) +
1

2

∫
sup

i,a∈P({0,1}K)

Tr

D2
xxφ (t, x)

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

) dm(x)

≥ ∂tφ(t, [m]) +
1

2
sup

i,a∈P({0,1}K)

Tr

D2
xxφ (t, [m])

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
≥ ∂tΦ(t, [m]) +

1

2
sup

i,a∈P({0,1}K)

Tr

DxDmΦ (t,m, [m])

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
≥ ∂tΦ(t, [m]) +

1

2
sup

a∈P({0,1}K)

∑
i

Φi(t,m)Tr

DxDmΦ (t,m, [m])

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

) ,

where Φi(t,m) denotes the i-th coordinate of DmΦ(t,m, [m]). This proves the supersolution
property we want.

Remark 11 It can be easily verified that smooth supersolutions of

0 = ∂tφ(t, x) +
1

2
sup

a∈P({0,1}K)

∑
i

∂xiφ(t, x)Tr

D2
xxφ (t, x)

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
cannot generate supersolutions of (12) simply by integrating x over m. Note that equation
(14) is degenerate, and it is not clear whether a classical solutions exists. We will construct
a smooth supersolution using heat potential in Example 1.

We now show how we can use the Lemma 10 to obtain regret bounds. Fix a large time

horizon T . Denote m̃ := m
∗ 1√

T , tn = n
T , where n denotes the current step. For any smooth

supersolotuion φ of (14), we define a strategy of the forecaster

(β∗0 , . . . , β
∗
T−1)

via

β∗n(m) := DmΦ (tn, m̃, [m̃]) . (16)

Suppose that the initial belief is m0, and denote random belief as (mn)n=1,... ,T . Then it is
clear that

vT (m0) ≤ sup
α

Eβ
∗,α [f([mT ])] ,

15
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where f is the terminal condition f(x) := maxi x
i. The following Proposition provides

assumptions for such a methodology to yield to regret bounds.

Proposition 12 Suppose φ is a classical solution of (14) and

|∂2ttφ(t, x)| ≤ C

(1− t)3/2
, |∂3xxxφ(t, x)|+ |∂2txφ(t, x)| ≤ C

1− t
, ∀x ∈ RK , (17)

for some positive constant C. Then the strategy β∗ of the forecaster defined in (16) yields
regret bounded above by

√
Tφ(0, [m̃0]) asymptotically.

Proof Our goal is to show that lim
T→∞

1√
T

supα Eβ
∗,α [f([mT ])] − φ (0, [m̃0]) ≤ 0. First we

rewrite the difference as a telescopic sum

1√
T

sup
α

Eβ
∗,α [f([mT ])]− φ (0, [m̃0]) = sup

α
Eβ
∗,α [f([m̃T ])]− φ (0, [m̃0])

= sup
α

T−1∑
n=0

(
Eβ
∗,α [φ(tn+1, [m̃n+1])]− Eβ

∗,α [φ(tn, [m̃n])]
)
.

Conditioning on m̃n = m, we have that

Eβ
∗,a [φ(tn+1, [m̃n+1])− φ(tn, [m̃n]) | m̃n = m] (18)

=
∑
i

β∗n(mn)(i)
(
â(i)φ

(
tn+1,

[
Aa,m
i,
√
T

])
+ â(−i)φ

(
tn+1,

[
Aa,m
−i,
√
T

]))
− φ(tn, [m]).

Using the linear structure of φ(t, [m]), it can be seen that

φ
(
tn+1,

[
Aa,m
i,
√
T

])
− φ(tn, [m])

=
∑
j:i∈j

a(j)

â(i)

∫ (
φ

(
tn+1, x−

ejc√
T

)
− φ(tn, x)

)
m(dx). (19)

For any i ∈ j ⊂ [K], we have the equality

φ

(
tn+1, x−

ejc√
T

)
− φ(tn, x) (20)

= − ej
c

√
T
∂xφ(tn, x) +

1

T

(
∂tφ(tn, x) +

1

2
e>jc∂

2
xxφ(tn, x)ejc

)
+

1

T

∫ 1

0
∂tφ

(
tn +

s

T
, x− sejc√

T

)
− ∂tφ(tn, x) ds

− ejc√
T

∫ 1

0
∂xφ

(
tn +

s

T
, x− sejc√

T

)
− ∂xφ

(
tn, x−

sejc√
T

)
ds

+
1

T

∫ 1

0
(1− s)e>jc

(
∂2xxφ

(
tn, x−

sejc√
T

)
− ∂2xxφ(tn, x)

)
ejc ds.

16
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Using our assumption (17), we can estimate the last three terms in the equation above∣∣∣∣ 1

T

∫ 1

0
∂tφ

(
tn +

s

T
, x− sejc√

T

)
− ∂tφ (tn, x) ds

∣∣∣∣ ≤ C ∫ 1/T

0

1
T − s

(1− tn − s)3/2
ds∣∣∣∣ ejc√T

∫ 1

0
∂xφ

(
tn +

s

T
, x− sejc√

T

)
− ∂xφ

(
tn, x−

sejc√
T

)
ds

∣∣∣∣ ≤ C√T ∫ 1/T

0

1
T − s

1− tn − s
ds∣∣∣∣ 1

T

∫ 1

0
(1− s)e>jc

(
∂2xxφ

(
tn, x−

sejc√
T

)
− ∂2xxφ(tn, x)

)
ejc ds

∣∣∣∣ ≤ C

T 3/2(1− tn)
.

Let us define

O(T, n) := C

(∫ 1/T

0

1
T − s

(1− tn − s)3/2
ds+

√
T

∫ 1/T

0

1
T − s

1− tn − s
ds+

1

T 3/2(1− tn)

)
. (21)

Now plugging (19) and (20) into (18), we obtain that

Eβ
∗,a [φ(tn+1, [m̃n+1])− φ(tn, [m̃n]) | m̃n = m]

≤ 1√
T

∑
i

β∗n(mn)(i)

∑
j,i 6∈j

a(j)e>j −
∑
j:i∈j

a(j)e>jc

 ∂xφ(tn, [m]) +
1

T
×

∂tφ(tn, [m]) +
1

2

∑
i

β∗n(mn)(i)Tr

D2
xxφ (tn, [m])

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
+O(T, n).

(22)

The first term on the right hand side vanishes due to our choice of β∗, the second term is
non-positive due to the supersolution property of φ, and thus we obtain that

Eβ
∗,a [φ(tn+1, [m̃n+1])− φ(tn, [m̃n]) | m̃n = m] ≤ O(T, n).

Summing up from n = 0 to T − 1, taking supremum over α ∈ A, and letting T → ∞, we
conclude that

lim
T→∞

1√
T

sup
α

Eβ
∗,α [f([mT ])]− φ (0, [m̃0]) ≤ lim

T→∞

T−1∑
n=0

O(T, n) = 0.

Remark 13 For any fixed terminal T , suppose α∗, β∗ are optimal strategies of the adversary
and forecaster that yield the value function vT (t,m). If vT is regular in m, we denote by
∂xjvT (t,m) the j-th coordinate of DmvT (t,m, [m]). Then according to the definition of
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Wasserstein derivative, we have

∂xjvT (t,m) = lim
ε→0

vT (t, (id+ εej)#m)− vT (t,m)

ε

= lim
ε→0

Eα∗,β∗ [maxiX
i
T |Xt ∼ (id+ εej)#m]− Eα∗,β∗ [maxiX

i
T |Xt ∼ m]

ε

≈ lim
ε→0

Eα∗,β∗ [maxi(X
i
T + ε1i=j) |Xt ∼ m]− Eα∗,β∗ [maxiX

i
T |Xt ∼ m]

ε

≈ Eα
∗,β∗

[
1{Xj

T≥X
i
T , i=1,... ,K} |Xt ∼ m

]
,

which is approximately the probability that the j-th action finishes as the optimal constant
strategy. Therefore, the strategy (16) can be understood as the probability matching algo-
rithm in the limit.

In the following example, we provide a smooth supersolution using heat potentials. One
may also construct supersolutions using other potentials as in Kobzar et al. (2020).

Example 1 Let us take φ to be the smooth solution of the following heat equation{
∂tφ+ 1

2∆φ = 0 on RK × [0, 1)

φ(1, x) = f(x) on RK × {1} .

It can be easily verified as in (Bayraktar et al., 2021a, Proposition 19) that φ satisfies (17).
According to (Kobzar et al., 2020, Appendix F.1), we know that D2

xlxk
φ(t, x) > 0 if l = k

and D2
xlxk

φ(t, x) < 0 if l 6= k. Therefore for any i ∈ [K] and j ⊂ [K], we have that

1

2
Tr
(
D2
xxφ(t, x)

(
1i∈jejce

>
jc + 1i/∈jeje

>
j

))
≤ 1

2
∆φ(t, x),

and hence

1

2
sup

i,a∈P({0,1}K)

Tr

D2
xxφ (t, x)

∑
j

a(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

) ≤ 1

2
∆φ(t, x).

Thus φ is a smooth supersolution of (14) which satisfies (17) according to Kobzar et al.
(2020). By Feynman-Kac formula, we have φ(0, x) = Ex[f(N1, N2, . . . , NK)] where N i is
a standard normal. Supposing x = (0, . . . , 0), then by Jensen’s inequality we have that for
any t ≥ 0

etE[f(N
1,... ,NK)] ≤ E[etf(N

1,... ,NK)] ≤ KE[etN
1
] = Ket

2/2,

and hence E[f(N1, . . . , NK)] ≤ logK
t + t

2 . Choosing t =
√

2 logK, we obtain that φ(0, 0) ≤√
2 logK. Therefore, when initial belief is δ0, in our game where both agents have partial

information, the asymptotic regret is bounded above by
√

2T logK. It is smaller than the

expected regret 5.15
√
TK logK +

√
TK
logK in the case of adversarial bandit where both agents

only observe Yt (Bubeck and Cesa-Bianchi, 2012, Theorem 3.4). The regret bound we obtain
is two times larger than the performance of multiplicative weight algorithms obtained in
Gravin et al. (2017).
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Remark 14 Our main contribution in terms of regret bound is to extend the PDE based
methodology of Kobzar et al. (2020) to the version of bandit problems we study. In Lemma
10, this bound is obtained by considering a functional linear in m in the sense that Φ(t,m) =∫
φ(t, x)m(dx). Similar to Kobzar et al. (2020), the PDE tools are expected to yield sharper

bounds by considering more sophisticated supersolutions to (14).

For example, any solution of

0 = ∂tu(t,m) + sup
i,a∈P({0,1}K)

(23)

+
1

2

V>a,iD2
mmu (t,m, [m], [m])Va,i +

∑
j:i∈j

a(j)

â(i)
e>jcDxDmu (t,m, [m]) ejc


+

1

2

V>a,−iD2
mmu (t,m, [m], [m])Va,−i +

∑
j:i/∈j

a(j)

â(−i)
e>j DxDmu (t,m, [m]) ej


is a supersolution of (14). For all i ∈ [K] and a ∈ P({0, 1}K), we can define the symmetric
matrices

Σ(i, a) =
(
a(ei)Va,eiV>a,ei + a(−ei)Va,−eiV>a,−ei

)
Σ̃(i, a) =

a(ei)
∑
j:i∈j

a(j)

a(ei)
e>jcejc + a(−ei)

∑
j:i/∈j

a(j)

a(−ei)
e>j ej

− Σ(i, a).

By computing v>Σ(i, a)v and v>Σ̃(i, a)v for v ∈ RK , one can show that these matrices are
non-negative. Thus, (23) can be written as the Hamilton-Jacobi-Bellman equation

0 = ∂tu(t,m) +
1

2
sup

i,a∈P({0,1}K)

Tr
(
Hu (t,m) Σ (i, a) +DxDmu (t,m, [m]) Σ̃ (i, a)

)
(24)

where in line with Chow and Gangbo (2019), the term

HU(t,m) :=

∫
DxDmU(t,m, x)m(dx) +

∫ ∫
D2
mmU(t,m, x, y)m(dx)m(dy)

is the so-called the Wasserstien Hessian of U(t, ·). A simple computation shows that the
value function corresponding to a controlled version of (Chow and Gangbo, 2019, Equation
(1.8)) would yield to a viscosity solution to (24); see (Chow and Gangbo, 2019, Remark
3.5). Then, this value function can be used as a supersolution of (14) (which would indeed
depend nonlinearly on m). However such a methodology requires a comparison result for
viscosity solutions of (24) (or smoothness of the value function) to obtain regret bounds.
This comparison result has been obtained in Bayraktar et al. (2023a,b). The convergence of
discrete time value functions and computation of improved regret bounds are being addressed
by the authors in an ongoing project.
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5. Lower bound by smooth subsolution of the PDE

As in the last section, we construct strategies for the adversary using smooth subsolutions
of (12). Recall that E is the set of balanced strategies defined in Remark 9. The proof of
following lemma is almost the same as Lemma 10 and thus we omit it.

Lemma 15 Let φ be a smooth solution of

0 ≤ ∂tφ(t, x) +
1

2
inf
i
Tr

D2
xxφ (t, x)

∑
j

at(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
φ(1, x) ≤ max

i
xi, φ(t, x+ λ1) = φ(t, x) + λ,

where at ∈ E , t ∈ [0, 1],m ∈ P(RK) are balanced strategies. Then, the function Φ : [0, 1] ×
P2(RK) 7→ R defined by

Φ(t,m) = φ(t, [m]) =

∫
φ(t, x)m(dx)

is a smooth subsolution to (12).

Remark 16 Note that in Lemma 15, the choice of balanced strategies at only depends on
time t.

Given balanced strategies (at)t∈[0,1] and subsolution φ as in Lemma 15, we construct
strategies for the adversary in the original game (2). For a large time horizon T . Let us
denote tn = n

T , where n is the current step. We define a strategy α∗ of the adversary via

α∗n = atn , n = 0, . . . , T − 1.

Proposition 17 Suppose (at)t∈[0,1], φ are balanced strategies and classical solutions as in
Lemma 15 that satisfies (17). Let m0 be the initial belief. Then the strategy α∗ of the

adversary defined yields regret bounded below by
√
Tφ

(
0,

[
m
∗ 1√

T

0

])
asymptotically.

Proof The argument is almost the same as that of Proposition 12. Just notice that (22)
now becomes

Eb,α
∗

[φ(tn+1, [m̃n+1])− φ(tn, [m̃n]) | m̃n = m]

≥ 1√
T

∑
i

b(i)

∑
j:i 6∈j

α∗n(j)e>j −
∑
j:i∈j

α∗n(j)e>jc

 ∂xφ(tn, [m]) +
1

T
×

∂tφ(tn, [m]) +
1

2

∑
i

b(i)Tr

D2
xxφ (tn, [m])

∑
j

α∗n(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
+O(T, n),
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where O(T, n) is defined in (21). The first order term on the right hand vanishes since α∗n is
balanced, and second order term is nonnegative due to the subsolution property of φ. Thus
we obtain that Eb,α∗ [φ(tn+1, [m̃n+1])− φ(tn, [m̃n]) | m̃n = m] ≥ O(T, n). Then summing up
from n = 0 to T − 1, taking infimum over β ∈ B, and letting T → ∞, we conclude our
result.

Example 2 Let us take at to be the uniformly distribution over {0, 1}K for each t ∈ [0, 1].
Then it can be easily verified that∑

j

at(j)
(
1i∈jejce

>
jc + 1i/∈jeje

>
j

)
=

1

4

(
ee> + IK − eie> − ee>i

)
, ∀ i ∈ [K].

where IK stands for the identity matrix of dimension K ×K.
Let us take φ to be the smooth solution of the following heat equation{

∂tφ+ 1
8∆φ = 0 on RK × [0, 1)

φ(1, x) = f(x) on RK × {1} .

Thanks to the translation invariance property of φ, i.e., φ(t, x+ c1) = φ(t, x) + c, we have
D2
xxφ(t, x) e = 0 for all t ∈ [0, 1). Then, it can be easily seen that such φ and (at)t∈[0,1] satisfy

all the assumptions in Proposition 17. Therefore when initial belief is δ0, the asymptotic
asymptotic regret is bounded below by

√
Tφ(0, 0). By Feynman-Kac formula, φ(0, 0) =

E[f(N1, . . . , NK)] = E[maxiN
i] where N i is independently gaussian distributed with mean

0 and variance 1/4 for each i = 1, . . . ,K. Then according to (Orabona and Pal, 2015,
Theorem 3), we obtain a lower bound φ(0, 0) = E[maxiN

i] ≥ 0.065
√

logK − 0.35.
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