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Abstract: Arms, legs, and fingers of animals and robots are all examples of

ªkinematic chainsº - mechanisms with sequences of joints connected by effec-

tively rigid links. Lightweight kinematic chains can be manufactured quickly and

cheaply by folding tubes. In recent work [Chen et al. 23], we demonstrated that

origami patterns for kinematic chains with arbitrary numbers of degrees of free-

dom can be constructed algorithmically from a minimal kinematic specification

(axes that joints rotate about or translate along). The work was founded on a cat-

alog of tubular crease patterns for revolute joints (rotation about an axis), pris-

matic joints (translation along an axis), and links, which compose to form the

specified design. With this paper, we release an open-source python implemen-

tation of these patterns and algorithms. Users can specify kinematic chains as a

sequence of degrees of freedom or by specific joint locations and orientations. Our

software uses this information to construct a single crease pattern for the corre-

sponding chain. The software also includes functions to move or delete joints in

an existing chain and regenerate the connecting links, and a visualization tool so

users can check that the chain can achieve their desired configurations. This pa-

per provides a detailed guide to the code and its usage, including an explanation

of our proposed representation for tubular crease patterns. We include a number

of examples to illustrate the software’s capabilities and its potential for robot and

mechanism design.

1 Introduction

Origami is a promising platform for constructing mechanisms and robots due to its

lightweight structure, parameterizable mechanical properties, and cheap materials

and fabrication [Rus and Tolley 18]. The low cost also gives it potential to broaden

access to robot construction, but the required design expertise ± both for mecha-

nisms and origami patterns ± can be a barrier to entry. Software tools can help

users generate origami designs with desired mechanical behavior, and algorithm-

assisted systems designed for exploratory, human-in-the-loop workflows would be

particularly helpful for users without the expertise to directly specify exactly what

they want. We present such a tool for kinematic chains (sequences of joints con-

nected by rigid links) made of tubular origami, based on the pattern library and

joint placement algorithms from [Chen et al. 23].
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Previous work in computational origami has developed pattern generation tools

for many classes of static structures including branching figures [Lang 96], tessel-

lations [Bateman 02], polyhedral surfaces [Demaine and Tachi 17], and box pleat-

ings [Lang and Tsai 18]. Other software lets users design their own patterns and

simulate their kinematics [Tachi 10, Ghassaei et al. 18, Suto et al. 23] and mechan-

ics [Gillman et al. 18, Liu and Paulino 18].

Our previous work [Chen et al. 23] introduced a catalog (Figure 2) of tubular

origami patterns for revolute and prismatic joints connected by bending and twist-

ing links. In that paper, we also provided algorithms to construct the path geometry

of a whole chain given the kinematic specifications, i.e., the rotational axes for rev-

olute joints and the translational axes for prismatic joints. These algorithms append

joints one by one, solving for the new joint’s position and orientation such that it

has the specified axis of motion and has a feasible link path from the previous joint.

In this paper, we use the results from [Chen et al. 23] to create an open-source

tool for algorithm-assisted design exploration of kinematic chains made of tubular

origami. Using our system requires minimal technical background, namely, basic

familiarity with matrix-vector math and python. The system supports a variety of

user workflows to explore designs and configurations, as summarized in Figure 1.

In particular, because the sufficient conditions developed in [Chen et al. 23] that

guarantee a non-intersecting physical implementation may yield overly conserva-

tive (large limbed) designs, we add editing support to rework the automatically gen-

erated crease pattern (e.g., use human intuition to develop a more compact but still

non-intersecting implementation). Moreover, compared to [Chen et al. 23], we add

capacity to visualize link structures (by their bounding cylinders), and plot a variety

of configurations of a given chain design. Our code, and module folding videos,

are at https://sung.seas.upenn.edu/research/kinegami/.

Additionally, we provide a fabrication-agnostic mathematical representation for

tubular origami patterns. The code from [Chen et al. 23] calculates patterns directly

in 2D as rectangles with duplication at the sides: it builds physical tubes by rolling

the rectangles around and adhering the duplicated sides together. However, tubu-

lar origami structures can be manufactured in other ways [Wickeler et al. 23], so

it is more general to separate out the pattern representation from the fabrication

file generation. Therefore in this paper we represent patterns with a graph respect-

ing the cylindrical wraparound: the duplication involved in 2D-to-3D fabrication is

handled in its own method rather than being part of the underlying representation.

Vertices are represented using a 2D parameterization of the prism surface where

one coordinate wraps modularly about the tube. Edges represent shortest paths on

the surface connecting the vertices. There is initially ambiguity about which short-

est path an edge should correspond to, but we resolve this by proving (Lemma 1)

that a straight crease in a tubular pattern cannot travel more than halfway about the

tube, so an edge is naturally associated with a unique globally-shortest path (unless

the vertices are radially opposite: in that case there are exactly two globally-shortest

paths, whose representations we can distinguish by vertex ordering, and if either is

creased then both must be).
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Figure 1: Flow chart depicting system capabilities to illustrate potential user work-

flows. Boxes with black background are user actions to edit the chain design or

configuration, and arrows with italicized labels are user judgements or actions. The

crease pattern is based only on the chain’s structural design, while the visualization

also depends on the current configuration (joint states).

The remainder of the paper is structured as follows. Section 2 defines the rel-

evant concepts in mechanisms and robotics. Section 3 reviews the tubular origami

modules and joint placement algorithms from [Chen et al. 23], gives an overview

of our system’s capabilities for exploring chain designs and configurations, and

shows example chains. Section 4 describes mathematical details of our graph rep-

resentation for tubular origami, with proof of Lemma 1 and explanation of why it is

necessary. Section 5 provides a user guide to our python code. Section 6 concludes

with directions for future work.

2 Background

2.1 3D Rigid Transformations, Reference Frames, and Poses

The (proper) 3D rigid transformations describe the ways in which one can move

an object in 3D space without deforming or reflecting it. Such transformations map

each point in the object to its new location, i.e., they are maps R3 → R
3, but they

are commonly encoded by 4× 4 matrices operating on vectors in homogeneous
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coordinates (position vectors with 1 appended). Specifically, a (proper 3D rigid)

transformation matrix is a 4×4 matrix of the form

T =

(

R t

0⊤ 1

)

, R =
(

x̂ ŷ ẑ
)

(1)

where R is a rotation matrix (i.e., x̂, ŷ, ẑ are an orthonormal basis of R3 ordered

such that x̂× ŷ = ẑ) and t is the translation vector. This defines the 3D rigid trans-

formation v 7→ Rv+ t.

The terms ªframeº, ªposeº, and ªtransformationº are closely related: they are

all represented by this class of matrices, but they are used in slightly different con-

texts. A pose is the position and orientation of some object. A (reference) frame

defines a coordinate system with respect to which other things are encoded: the

pose of an object defines a frame, but frames can also be more abstract, such as the

global frame given by the origin and coordinate axes of the visualization plotting

system. A (rigid) transformation is a map between frames or poses. Further details

can be found in [Waldron and Schmiedeler 16].

2.2 Joints and Links

A kinematic chain is a sequence of joints connected by rigid structures called links

[Waldron and Schmiedeler 16]. A joint is a connection between two rigid structures

that constrains their relative motion [Waldron and Schmiedeler 16]. Joints whose

motion constraints arise from contact between the body surfaces have six basic

types, classified by the types of motion they allow [Waldron and Schmiedeler 16].

Three have a single degree of freedom characterized by a line called the axis of

motion:

• Revolute joints allow rotation about the axis.

• Prismatic joints allow translation along the axis.

• Helical joints allow screw-like motion: rotation about and translation along the

axis, coupled together by a pitch ratio into one degree of freedom.

The other three basic joint types have multiple degrees of freedom:

• Cylindrical joints allow both rotation about and translation along an axis of mo-

tion (not coupled together, so they are two separate degrees of freedom).

• Spherical joints allow rotation about a point (three degrees of freedom).

• Planar joints allow translation and rotation within a plane (three degrees of free-

dom).

Each of the multiple-degree-of-freedom joints can be instantiated by composing

revolute and prismatic joints. [Chen et al. 23] includes examples of each of these

compound joints, and we also generate such examples with our code (Figure 3).

2.3 Dubins Paths

Paths with a minimum turning radius, called Dubins paths after their introduction in

2D by [Dubins 57], are well-studied in the motion planning literature, for example
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Figure 2: The tubu-

lar origami pattern

catalog from [Chen

et al. 23], with n = 6.

The fabricated exam-

ples are folded from

Polyethylene tereph-

thalate (PET) plastic

with creases etched

by laser-cut dots. The

tubular wraparound

is adhered with tape.

The prismatic joint

example is folded

from clear PET with

the inner REBO

structure painted

white for visibility.

for turning-constrained vehicles [Boissonnat et al. 94, Lugo-CÂardenas et al. 14, Cai

et al. 17,Karapetyan et al. 18]. In 3D, the shortest Dubins path from a start point and

direction to a goal point and direction is either a helicoidal arc or of the form CSC

or CCC (or a degenerate case thereof), where S is a straight line segment and C is

a circular arc of the minimum turning radius [Sussmann 95]. [Hota and Ghose 10]

provides an optimization-based approach to computing CSC Dubins paths in 3D.

3 System Overview and Definitions

Our system enables users to create kinematic chains made of tubular origami. The

chains (section 3.1) have revolute and prismatic joints connected by links follow-

ing CSC Dubins paths. To iteratively construct a chain, users append each joint

either by specifying its exact pose or by specifying only its axis of motion and

letting an algorithm (section 3.2) place the joint along the axis. Users can input

poses and axes either in global coordinates or relative to the previous joint’s pose.

Additionally, users can modify existing chains by moving or deleting joints. Joint

movements can be given as translations along the axis of motion, rotations about

the axis of motion, or arbitrary rigid transformations. Joint movements can be set

either to propagate to all subsequent joints or to apply only to the given joint.

If a proposed modification cannot generate feasible link paths, the system will

reject the change and warn the user. When a user has a candidate design, they

can specify the state of each joint to visualize different configurations of the chain,

letting them check whether it can do what they want and modify the design ac-

cordingly. Figure 1 summarizes available workflows. Figure 3 shows a variety of

example chains visualized in our system. The generating code is in the examples

folder of our repository.
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3.1 Kinegami Chains and Configurations

Figure 2 shows the catalog of tubular origami modules defined by [Chen et al. 23],

instantiated on the hexagonal prism (n = 6). We illustrate and fabricate the pat-

terns as a flat sheet with the first side duplicated at the end to adhere the tubular

wraparound, but the patterns could also be folded directly from a cylinder.

A link in a kinegami chain is a pair of elbow fitting modules joined by a tube,

with a twist if necessary for alignment. Since elbows instantiate rotation equivalent

to an arc with the same radius as the tube, a link instantiates a CSC Dubins path

(degenerate cases can occur in which one or more of the path sections is empty and

thus the corresponding origami modules are omitted). To avoid self-intersection

within a link, we do not use C components with turning angle > π .

The revolute joint is a pair of triangular-prism-like polyhedra joined along the

axis of rotation. The prismatic joint is a REBO pattern [Chen et al. 20] with a

surrounding cylinder to prevent off-axis bending. Both joint types are compliant

(see [Chen et al. 23] for energy analysis). The state of a joint is a real number in-

dicating its current displacement (rotation in radians for revolute joints, translation

for prismatic joints) from the minimum-energy state (state 0). The joint pose of a

joint in a chain is located at the center of the joint’s physical structure (at state 0),

and its ẑ direction is the axis of motion. Note that our prismatic joints connect to

links along their axis of motion, while our revolute joints connect to links orthog-

onally to the axis of motion. Therefore, we define a joint’s path direction â as the

end tangent of the incoming link path: for prismatic joints this is ẑ, and for revolute

joints this is x̂.

For each joint we also define proximal and distal frames where they connect to

the incoming and outgoing links respectively. The proximal frame has orientation

matching that of the joint pose, and it is fixed relative to the joint pose. In contrast,

the distal frame’s position (and for revolute joints, orientation) relative to the joint

pose depends on the joint’s current state.

A configuration of a k-joint chain is a vector in R
k storing the state of each

joint. It is important to distinguish the chain’s configuration from its structural

design: different configurations do not vary the link shapes, and therefore cannot

alter the relative pose of each joint in its predecessor’s distal frame.

3.2 Joint Placement Algorithm Overview

Since the kinematic behavior of revolute or prismatic joints is given by their axes

of motion, we say revolute or prismatic joints of the same type with the same axis

of motion are kinematically equivalent, and the kinematics of a chain is specified

only by its sequence of axes of motion. [Chen et al. 23] provides two algorithms to

construct tubular chains given a sequence of axes: a safe algorithm and a relatively

compact algorithm. The core idea is to convert the chain design problem into a

path planning problem under the observation that each module has a centerline

path and therefore can be considered as the instantiation of a rigid motion resulting

in the appropriate transformation of the local frame of the chain. Since the tubular

radius constrains the centerline path curvature, this is a Dubins planning problem.
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Figure 3: Example

chains generated

with our system.

(a-c) Basic multi-

degree-of-freedom

joints constructed

as compound struc-

tures of revolute

and prismatic joints.

(d) PUMA arm

generated using

the compact joint

placement algorithm

(based on Denavit-

Hartenberg param-

eters from [Lee and

Ziegler 84]) then

modified by man-

ually translating

joints along their

axes of motion. (e-g)

Other examples.

Links are constructed to instantiate CSC paths (section 3.1), so the joint placement

algorithms solve for poses (along the given axes of motion) far enough apart that

CSC paths exist linking the joints. The compact joint placement algorithm places

a new joint at least 4r from the current chain’s bounding sphere, and attaches it

with a CSC path found by an optimization from [Hota and Ghose 10]. However,

such CSC paths may have turn angles > π which would cause collisions in our

chain structures, so the alternate safe joint placement algorithm routes the chain

through intermediate waypoint poses connected by CSC paths with turn angles

≤ π . These waypoints often route the links along unnecessarily convoluted paths,

which is why the first algorithm is called (relatively) ªcompactº. However, even

the compact algorithm often generates chains which can be made much shorter

with human intuition moving joints along their axes (as in Figure 3(d)), motivating

the chain editing tools we introduce in this paper.

4 Representing Tubular Origami Crease Patterns

This section discusses formally how we represent tubular origami patterns as graphs,

and specifically which path along the surface corresponds to a given edge. We en-

code vertices (points on the pattern connected by creases) in a manner similar to the

angle-height parameterization of a cylinder surface, but applied to the prism tube.

Specifically, the tubular patterns from [Chen et al. 23] are based on right prisms

whose bases are regular n-gons of circumradius r (with n ≥ 4 even). One base is

considered the starting base and one side of it the starting side. We parameterize
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vertices as (x,y) where y is the height along the tube and x is the distance about the

prism modulo nb, where b = 2r cos
π(n−2)

2n
is the side length of the polygon base.

These are measured relative to the point (0,0) bisecting the starting side.

We can define a tubular origami surface as a polyhedral surface isometric

(deformable without stretching or tearing) to a cylinder. A crease is an edge of

this polyhedral surface, so it is a line segment in R
3 along the folded surface.

Since a line segment is a geodesic (a locally-shortest path) and isometries preserve

geodesics [Do Carmo 16], it corresponds to a geodesic on the cylinder. In a flat

origami pattern there is a unique geodesic (a line segment) connecting a given pair

of vertices, so creases can easily be represented by edges (vertex pairs) and there-

fore patterns can be represented by graphs. In a tubular pattern, however, there

is ambiguity to be resolved regarding exactly which geodesic a vertex pair should

map to. The geodesics on the cylinder are the helices [Do Carmo 16] and there

are infinitely many helices on a cylinder connecting a given pair of points (a helix

can proceed either clockwise or counterclockwise about the cylinder, and can make

arbitrarily many full turns around it between the two points).

We resolve this ambiguity by defining the path corresponding to a pair of ver-

tices as the globally-shortest path along the surface connecting the vertices. We say

a path is creased if it corresponds to a line segment joining adjacent facets in the

folded polyhedron. An edge in our graph represents the path for that vertex pair

being creased. If the vertices are radially opposite (i.e., their x coordinates differ by

exactly nb/2) then there are exactly two globally-shortest paths connecting them,

which we distinguish via vertex order: if one is creased then the other must be as

well, but they may have different mountain-valley labels. This is justified by the

following observation that specifies the natural helix an edge should correspond to.

Lemma 1. A crease in a tubular origami pattern cannot travel more than halfway

about the tube, i.e., the corresponding path in the cylinder winds at most π about

its central axis. If it travels exactly halfway around, then the symmetrical path in

the other direction about the tube is also creased.

Proof. Let F ⊂ R
3 be a tubular origami surface and f : [0,nb)× [0,h] → F be

its parameterization map as described above. Let C ⊂ R
3 be the isometrically

corresponding cylinder surface and c : [0,nb)× [0,h]→ C be its parameterization.

Let v1 = (x1,y1) and v2 = (x2,y2) be vertices where (v1,v2) is an edge. Using

an edge to encode a crease means that in the folded structure, the line segment

connecting these vertices is entirely on the folded structure, i.e., f (v1) f (v2) ⊂ F.

Since a line segment on a surface is a geodesic, it corresponds to a helix h on C.

Since isometries preserves length [Do Carmo 16], we have ||h||= || f (v1)− f (v2)||.
Let h′ be any helix connecting c(v1) and c(v2). Since h′ is also a geodesic

and isometries preserve length, it corresponds to a geodesic on F of length ||h′||
connecting f (v1) and f (v2). By the triangle inequality, ||h′|| ≥ || f (v1)− f (v2)||=
||h||. Therefore h is a globally shortest helix connecting c(v1) and c(v2).

Since h is globally shortest, it cannot have complete wraparound, i.e., its an-

gular travel is ≤ 2π . This leaves two candidates connecting c(v1) and c(v2), a
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Figure 4: Poses obtained by composing a rotation and a transformation in either

order, relative to the global frame SE3() in the bottom left of each plot.

Left: SE3.Trans(1,2,0) @ SE3.Rx(np.pi/3) translates by (1,2,0) in

the global frame and then rotates about x̂ by π/3.

Right: SE3.Rx(np.pi/3) @ SE3.Trans(1,2,0) first rotates by about x̂ by

π/3 and then translates by (1,2,0) relative to the already-rotated frame axes.

clockwise helix hcw and a counterclockwise helix hccw, whose angular travels sum

to 2π . If their angular travels are not equal (i.e., if |x1 − x2| ̸= nb/2), the one with

angular travel < π is shorter, so it is h. Otherwise (i.e., if |x1 − x2| = nb/2), c(v1)
and c(v2) are radially opposite on C, so hcw and hccw each have angular travel π

and ||hcw|| = ||hccw|| = || f (v1)− f (v2)||. Then by the triangle inequality, each of

them must correspond to f (v1) f (v2), i.e., they are both creased in F.

5 User Guide to Kinegami Code

In this section, we provide an overview of how the above concepts translate into

our code implementation, and how a user may interact with the code to create their

own kinematic chains.

We represent chains with a KinematicChain class. A chain stores a list of

Joint objects (discussed in section 5.2), which each store their pose (section 5.1).

KinematicChain also computes and stores links as a list of LinkCSC objects

(section 5.3), and has a show method for visualization.

To make a chain, initialize it with a starting joint and then append further joints

(section 5.4) using the append method on KinematicChain. This method

has options to place the new joint at its stored pose or to use a joint placement

algorithm to find a pose on its axis of motion. Users can also edit an existing chain

by moving or deleting joints (section 5.5), and can change joint states to visualize

different configurations of the same chain (section 5.6). Once they are satisfied

with a chain design, they can export its crease pattern (section 5.7).

5.1 3D Rigid Transformations using [Corke and Haviland 21]

We represent 3D rigid transformations (and thus poses and reference frames) using

the SE3 class in the spatialmath package from [Corke and Haviland 21]. It
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includes a variety of construction options such as SE3() for the identity transfor-

mation, SE3.Trans(x,y,z) for a translation, SE3.Rx(angleInRadians)

for rotation about x̂ (and similarly SE3.Ry and SE3.Rz), and SE3(T) where T

is an array encoding a transformation matrix. Transformations are composed with

the operator @ (see Figure 4) and applied to vectors (represented by numpy arrays)

with the operator *.

5.2 Joints

We represent joints with an abstract base class Joint and subclasses for each spe-

cific joint type. Joint stores the joint’s current state (a float, initialized to 0), its

Pose, the tubular radius r, and its length neutralLength (the distance in state

0 between proximal and distal frames). It has an abstract method (a method imple-

mented separately for each subclass) pathIndex specifying the path direction by

returning an axis index (0 for x̂ or 2 for ẑ). There are four subclasses:

• A RevoluteJoint (Figure 2(d)) is constructed from parameters numSides,

tube radius r, angle totalBendingAngle (defining the range of states to

be ±totalBendingAngle/2), and Pose. It also has an optional parameter

numSinkLayers defaulting to 1, which can be increased to insert ªrecursive

sink gadgetº layers to its origami pattern that increase its stiffness (see [Chen

et al. 23]).

• A PrismaticJoint (Figure 2(e)) is constructed from parameters numSides,

r, neutralLength, numLayers, coneAngle, and Pose. The parameters

numLayers and coneAngle (an angle in (π

6
, π

2
)) affect the joint’s extension

range and stiffness by controlling the number and internal angle of REBO pattern

layers [Chen et al. 20] inside the joint.

• A Waypoint is a pose that the path routes through. It has no physical structure

or changeable state (i.e., its state range is {0}). The constructor parameters are

numSides, r, Pose, and optionally pathIndex (defaults to 2 for ẑ).

• StartTip and EndTip are static structures closing the beginning and end of

a tube respectively. The constructor parameters are numSides, r, Pose, and

length. Its path direction is ẑ. It does not have changeable state, i.e., its state

range is {0}. The pattern consists of half of the revolute joint pattern.

5.3 Links

The LinkCSC class stores the radius, the start and end poses, and a CSC Dubins

path connecting them. The S components are implemented as tube and twist fit-

tings, while the C arcs are implemented as elbow fittings. Since elbow fittings pro-

trude increasingly outwards as the turn angle approaches π , we avoid excessively

long elbows by replacing them with a concatenation of several shorter elbows.

The LinkCSC constructor has an optional parameter maxAnglePerElbow, de-

faulting to π/2, to do this: when implementing a C component with turn angle

θ > maxAnglePerElbow, it will concatenate k = ⌈θ/maxAnglePerElbow⌉
elbow patterns each with turn angle θ/k.
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5.4 Chain Generation

Our KinematicChain class stores on a list Joints of Joint objects and a

list Links of LinkCSC objects. Specifically, Links[i] stores the link from the

distal frame of joint i-1 to the proximal frame of joint i (the first link Links[0]

is an empty path at the proximal frame of joint 0). KinematicChain also stores

and maintains a boundingBall encompassing the whole structure. Chains are

initialized with a given startJoint. The constructor also has optional parameter

maxAnglePerElbow, defaulting to np.pi/2, which it uses when constructing

links as described in section 5.3.

Chains are constructed by repeatedly adding joints to the end of the chain with

the append method (details below), for example:

Example 1A.

from KinematicChain import *
r = 1

numSides = 4

chain = KinematicChain(StartTip(numSides, r, Pose=SE3.Trans(3,3,0),

length=1.5))

prismatic = PrismaticJoint(numSides, r, neutralLength=3,

numLayers=3, coneAngle=np.pi/4, Pose=SE3.Trans([5,5,0]))

prismaticIndex = chain.append(prismatic)

revolute = RevoluteJoint(numSides, r, np.pi, SE3.Ry(np.pi/4))

revoluteIndex = chain.append(revolute)

end = EndTip(numSides, r, Pose=SE3.Ry(np.pi/2), length=1.5)

endIndex = chain.append(end)

chain.show(showGlobalFrame=True) #Figure 5(a)

Figure 5(a) depicts the result of the call to KinematicChain’s showmethod.

This method has a variety of optional parameters controlling which features are dis-

played. Color and opacity default values are defined in the style.py file.

The append method takes parameter newJoint (a Joint object) and adds

it to the end of the chain. It returns the index of the new joint. Depending on

the following optional parameters, it will either use a joint placement algorithm

(section 3.2) to find the joint pose on its axis of motion (ẑ), or use newJoint’s

pose exactly as given.

• relative, defaulting to True, indicates whether newJoint.Pose should

be interpreted as relative to the previous joint’s frame (True) or as already in the

global frame (False). KinematicChain stores joints in global coordinates,

so if relative=True it converts the input from local to global coordinates.

• safe, defaulting to True, indicates whether it should use the safe version of the

joint placement algorithm (see section 3.2). If safe is False, it will use the

compact joint placement algorithm instead, unless fixedPosition is True

in which case it does not algorithmically find joint placement at all.

• fixedPosition, defaulting to False, indicates whether the joint should be

placed exactly at the position in its given pose (True) or should use the joint

placement algorithms to choose somewhere kinematically equivalent (i.e., along

its ẑ axis). This and safe cannot both be True.
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Figure 5: Results from

the running example.

(a) Example 1A gener-

ates a chain with the

safe joint placement

algorithm. (b-e) Ex-

ample 1B adjusts this

chain by transforming

joints and waypoints in

ways which preserve

their axes of motion and

therefore preserve the

chain’s overall kine-

matics. (f) Example 1C

shows the same chain

design in a different

configuration, one with

each of the joints in

nonzero states. (g)

The origami pattern

generated for this

design, and a physical

construction of this

pattern (alongside the

program visualization

for comparison).

• fixedOrientation, defaulting to False, indicates whether the joint should

be placed with exactly its given orientation (True) or with a kinematically equiv-

alent orientation (i.e., rotated about its ẑ axis) such that its x̂ points along the

common normal from the previous joint’s ẑ to the new joint’s ẑ.1 This and safe

cannot both be True.

The safe algorithm is guaranteed to find a valid path to the new joint, but if safe is

False it may fail to find a path. In this case it will print a warning and return None,

leaving the chain unchanged.

5.5 Adjusting an Existing Chain

KinematicChain has several methods to edit existing joints:

• translateJointAlongAxisOfMotion takes parameters jointIndex

and distance.

• rotateJointAboutAxisOfMotion takes parameters jointIndex and

angle.

1This choice is to match how frames are specified by Denavit-Hartenberg parameters [Denavit and

Hartenberg 21, Waldron and Schmiedeler 16].
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• transformJoint takes parameters jointIndex and Transformation.

• delete removes joint jointIndex and recomputes links accordingly.

Each method returns whether it succeeded in finding new paths for the links: if it

succeeds it edits the chain accordingly, and if it fails it leaves the chain unchanged

and prints a warning. Each method has optional parameter propogate, default-

ing to True, indicating whether to apply the same transformation to the rest of the

chain (True case) or only to the given joint (False case).

Kinematic-preserving methods translateJointAlongAxisOfMotion

and rotateJointAboutAxisOfMotion each have an additional optional pa-

rameter applyToPreviousWaypoint defaulting to False. If set to True,

this will check if joint jointIndex-1 is a waypoint: if so, it will apply the same

transformation matrix it applied to jointIndex. Continuing from Example 1A,

with the results of chain.show() in Figure 5(b)±(d):

Example 1B.

chain.translateJointAlongAxisOfMotion(revoluteIndex, -7)

chain.show(showGlobalFrame=True) #Figure 5(b)

chain.translateJointAlongAxisOfMotion(endIndex, -10,

applyToPreviousWaypoint=True)

chain.show(showGlobalFrame=True) #Figure 5(c)

chain.rotateJointAboutAxisOfMotion(revoluteIndex, -np.pi/3)

chain.show(showGlobalFrame=True)

chain.translateJointAlongAxisOfMotion(prismaticIndex, -2,

propogate=False)

chain.show(showGlobalFrame=True) #Figure 5(d)

pattern = chain.creasePattern()

pattern.save(dxfName="examplePatterns/example1.dxf")

5.6 Changing Joint States

The state of a joint in a KinematicChain can be adjusted by the chain method

setJointState, which takes parameters jointIndex and newState. It

will return whether this succeeded, i.e., whether newState is in the joint’s valid

state range - and if it fails it will also print a warning. Joint has a stateRange

method to help with this. Continuing from Example 1B, with the chain.show

result in Figure 5(f):

Example 1C.

minPrismaticState, maxPrismaticState = chain.Joints[prismaticIndex].

stateRange()

chain.setJointState(prismaticIndex, maxPrismaticState)

chain.setJointState(revoluteIndex, np.pi/2)

chain.show(showGlobalFrame=True) # Figure 5(f)

5.7 Tubular Origami Pattern Generation

The method creasePattern on KinematicChain outputs the tubular origami

crease pattern implementing the chain as a TubularPattern object. This class
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has a show method to plot and a save method to create a DXF file. To display the

wraparound, it duplicates the starting panel (and all folds crossing it) along each

end. This also creates area along which to adhere a flat sheet into a tube. Figure 5(g)

shows the crease pattern for Example 1B and the resulting folded structure.

6 Conclusion

We present a python library for design exploration and crease pattern generation

of tubular kinematic chains, accessible to users with only basic familiarity with

matrix-vector math and python. The library has been demonstrated on chains with

a wide variety of morphologies and degrees of freedom. In the future, to further

facilitate intuitive design of origami robots and mechanisms, we plan to add an

interactive graphical user interface and features for post-generation optimization

to reduce overall length or volume or to guarantee a desired workspace. Finally,

full robot or animal bodies often include branching structures such as hands and

multiple limbs, so we plan to expand the system to support kinematic trees by

providing new joint placement algorithms and fabrication techniques.
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