
Published as a conference paper at ICLR 2024

MODELING BOUNDEDLY RATIONAL AGENTS WITH
LATENT INFERENCE BUDGETS

Athul Paul Jacob

MIT
apjacob@mit.edu

Abhishek Gupta

University of Washington
abhgupta@cs.washington.edu

Jacob Andreas

MIT
jda@mit.edu

ABSTRACT

We study the problem of modeling a population of agents pursuing unknown goals
subject to unknown computational constraints. In standard models of bounded
rationality, sub-optimal decision-making is simulated by adding homoscedastic
noise to optimal decisions rather than explicitly simulating constrained inference.
In this work, we introduce a latent inference budget model (L-IBM) that models
agents’ computational constraints explicitly, via a latent variable (inferred jointly
with a model of agents’ goals) that controls the runtime of an iterative inference
algorithm. L-IBMs make it possible to learn agent models using data from diverse
populations of suboptimal actors. In three modeling tasks—inferring navigation
goals from routes, inferring communicative intents from human utterances, and
predicting next moves in human chess games—we show that L-IBMs match or
outperform Boltzmann models of decision-making under uncertainty. Inferred
inference budgets are themselves meaningful, efficient to compute, and correlated
with measures of player skill, partner skill and task difficulty.

1 INTRODUCTION

Building effective models for multi-agent decision-making—whether cooperative or adversarial—
requires understanding other agents’ goals and plans. To help a friend navigate in a new environ-
ment, we must first understand where they want to go; to beat an opponent at chess, we must be
able to predict their likely next moves. But decision-making, in humans and machines, is subject
to computational constraints. Decision-makers often act suboptimally, relying on heuristics and ap-
proximations to choose their actions. Techniques that do not account for this suboptimality carefully
may attribute behavior to differing intentions rather than different inference procedures.

How should we interact with agents seeking to accomplish unknown goals subject to unknown
computational constraints? In standard models of bounded rationality (Luce, 1959), sub-optimal
decision-making is simulated by adding noise to optimal decisions rather than explicitly simulating
constrained inference. This results in models that treat agents as uniformly suboptimal in a way that
fails to account for sub-optimal inference algorithms or for non-homogenous suboptimality.

In this paper, we describe a simple approach for building models of agents given traces of their
behavior. Our approach explicitly models agents’ “inference budgets”, via a latent variable that con-
trols the runtime of each agent’s inference procedure. We show that for agents performing inference
using anytime algorithms (algorithms that can be terminated at any point and return approximately
correct solutions) inference budgets can be efficiently inferred from example behaviors. A diverse set
of multi-agent decision-making procedures—including graph-based planning algorithms, recursive-
rational models of human language production, and Monte Carlo tree search—admit imputation of
inference budgets in this framework.

In three diverse agent modeling tasks—inferring navigation goals from routes, inferring commu-
nicative intents from human utterances, and predicting subsequent moves in human–human chess
matches—we show that our approach matches or outperforms Boltzmann models of decision-
making under uncertainty. Moreover, inferred inference budgets are themselves meaningful, cor-
relating with measures of player skill, partner skill, and task difficulty. Our results show that sub-
optimal human decision-making can be efficiently modeled with computationally constrained ver-

1

Published as a conference paper at ICLR 2024

sions of standard search algorithms. By doing so, we obtain both accurate models of humans’
decision-making and informative measures of their inferential capacity.

2 BACKGROUND AND PROBLEM FORMULATION

We study the problem of modeling one or more agents given given traces of their behavior. In
particular, we assume that we observe a collection of trajectories (state–action sequences) produced
by agents ⇡⇤ : s 7! a acting in a Markov decision process to maximize some reward function
R⇤(⌧). Even when R⇤(⌧) is known to agents, inferring optimal actions is often intractable, so
agents in the real world will in general approximate optimal behavior subject to some (unknown)
computational constraints (which may differ from agent to agent). From this data, we seek to infer
agent models ⇡ defined in terms of (1) estimates R of reward function R⇤ (known to agents but
not modelers), and (2) descriptions of the computational limitations that govern agents’ choice of
actions. In other words, we seek to model both what agents wish to do and what agents will actually
do in any given state. Fig. 1 shows a conceptual example: assuming the agent receives a different
reward for reaching each of the two goals, the three trajectories depicted there cannot be generated
by the optimal policy for any reward function, but can be explained by model that can only look
ahead to a limited number of positions in the maze.

(a) (b) (c)
R

=1

R = 2 R = 2

R = 1

pbudget

�runtime = 4

�(d) runtime = 1 runtime = 2 runtime = 3 runtime = 4

Figure 1: Inferring rewards from boundedly-rational
trajectories. The agent will move to the blue star (a), but
prefers to move toward the orange star when both are
available (b). When locating the orange star requires
solving a harder search problem, however, the agent
seeks the blue star instead, indicating that its search
abilities are limited (c). Our proposed approach au-
tomatically infers the budget that the agent uses when
planning (d). Knowing this budget, we could perhaps
assist this agent by providing a targeted hint (move
right) at the beginning of its trajectory.

Throughout this paper, we will model agent ac-
tions as arising from an approximate infer-

ence procedure ⇡(a | s;R,�) that takes as
input a reward function and a computational

budget �. We model agents by inferring values
of R and � given the executed trajectories ⌧i.

The ability to infer goals from suboptimal (and
even completely unsuccessful) plans is a key
human skill, present in children as young as 18
months (Meltzoff, 1995). Computational mod-
els of bounded rationality thus have a long his-
tory in artificial intelligence, cognitive science,
and behavioral economics. But what does this
suboptimality look like in practice, and how
should we model and infer the inference bud-
get � simply from observations of behavior?

One of the most widely used models of bound-
edly rational decision-making is the so-called
Boltzmann model (Luce, 1959), in which
agents take actions according to

⇡(a | s;R,�) / exp{� ·R(s, a)} (1)
This equation has a number of appealing interpretations, e.g. as the policy that achieves a target
reward while maximizing entropy. It has been used to model not just the selection of actions, but
also trajectories, preferences, corrections, and more—see Jeon et al. (2020) for a recent survey.
More elaborate approaches in this family also predict � conditioned on the current state or action
history, making it possible to model state-dependent skill (Beliaev et al., 2022).

However, Boltzmann models have a significant limitation: the probability of generating an action
in Eq. (1) depends only on the true value of that action, and not on the cost of acquiring a high-
quality value estimate in the first place. To see why this might be a problem, consider again the
trajectories depicted in the conceptual example Fig. 1(b–c), which differ only in the difficulty of the
search problem, and not in the cost of the optimal trajectory at all. A model of boundedly rational
decision-making with the form of Eq. (1) cannot account for this difference.

There is a large body of other approaches on modeling human planning under resource constraints
in psychology, economics and in classical AI (Callaway et al., 2022; Russell & Wefald, 1991; Huys
et al., 2015; 2012; Camerer et al., 2004; Griffiths et al., 2019; Boddy & Dean, 1989; van Opheusden
et al., 2023, inter alia). Notably, Zhi-Xuan et al. (2020) build an explicit hierarchical Bayesian model
of a symbolic planning procedure while inferring per-timestep inference budgets.

2

Published as a conference paper at ICLR 2024

In general, these approaches make strong assumptions about how planning is performed. Here, we
seek to develop a general framework that avoids strong assumptions about either the functional form
of the reward model or the algorithmic form of the planning procedure. Related approaches were
proposed by Evans & Goodman (2015) and Shah et al. (2019), though with simpler environments
or inference procedures. The framework we develop can be applied to model real-world behavior in
tasks as diverse as language generation and chess gameplay.

3 INFERRING REWARDS AND INFERENCE BUDGETS FROM BEHAVIOR

As motivated in Section 2, our goal is to model agents acting to optimize an unknown value function
subject to an unknown computational constraint. In practice, we often want to model populations
comprising multiple agents or agent sub-populations (⇡⇤

1 ,⇡
⇤
2 , . . .⇡

⇤
N) with a shared reward function

R⇤ (e.g. winning at chess) but differing computational constraints.

To do so, we assume we have access to a collection of trajectories {⌧}i = {⌧1i , ⌧
2
i , . . . ⌧

Mi
i }, with

each collection of trajectories {⌧}i generated by a different agent or sub-population i. We model
these trajectories as drawn from the following generative process:

1. at each timestep, agent i draws a budget � from an agent-specific prior pbudget(� | ⌘i)

2. ⇡⇤
i chooses actions according to a budget-constrained inference procedure ⇡⇤

i (a | s;R⇤,�)

Because budgets may vary between trajectories, learning a model of these agents ultimately consists
of learning reward parameters ✓ and agent-specific budget-generating parameters ⌘i while marginal-
izing over latent budgets themselves. We do so via maximum a posteriori inference, optimizing:

argmax
✓,⌘

X

i
⌧2{⌧}i

(s,a)2⌧

log ⇡(a | s; ✓, ⌘) = argmax
✓,⌘

X

i
⌧2{⌧}i

(s,a)2⌧

log
X

�

pbudget(� | ⌘i) · ⇡(a | s;R✓,�) (2)

If ⇡(a | s;R⇤,�) is an arbitrary inference algorithm, Eq. (2) might present a challenge: this infer-
ence procedure must be run for all possible values of �, which will in general be intractable. Under
what circumstances can we optimize this equation efficiently? The key observation in this paper is
that if ⇡ is an anytime inference algorithm (Dean & Boddy, 1988), we can evaluate n values of � as
quickly as we can evaluate one, making this optimization tractable.
Definition 1. An anytime algorithm ⇡ is one that runs for t timesteps and produces a sequence of
inference states (f1, f2, . . . ft), where every fi can be computed from fi�1 in O(1) time, and fi can
be used to select an action according to some ⇡(a | s;R, fi).

As we will see shortly, many canonical inference algorithms used in single- and multi-agent
decision-making scenarios have this from. In these cases, rather than letting the budget parame-
ter � determine noise or suboptimality, we may use it to parameterize the runtime of the agent’s
inference procedure itself, writing:

log ⇡(a | s; ✓, ⌘i) = log
X

�

pbudget(�runtime | ⌘i) · ⇡(a | s;R✓, f�runtime) (3)

where we have denoted the budget �runtime to indicate that it parameterizes the runtime of the any-
time inference algorithm. Crucially—by definition—computing this sum up to some maximum �
requires no more time than computing its final term.

The remainder of this paper looks at instantiations of this basic modeling framework in three differ-
ent domains. In Section 4, we study the problem of inferring navigation goals from maze domain
using a truncated graph search algorithm. In Section 5, we study rational speech acts (RSA) for
inferring communicative intents from human utterances. Finally, in Section 6, we model human
action prediction in chess using Monte-Carlo tree search (MCTS).

4 SOLVING MAZES WITH TRUNCATED DEPTH-FIRST SEARCH

We begin with a pedagogical example of latent inference budget model applied to a simple, single-
agent decision-making task: maze navigation. Agents are placed at a random position in a maze with

3

Published as a conference paper at ICLR 2024

(a) (b) (c) (d) (e) (f)

Figure 2: Examples of the maze task. (a) Example of the value function heuristic applied to each state in
the maze. Red indicates low value states and blue indicates high value states. (b)-(f) depicts the example
trajectories of agents with depth budgets of 1, 2, 5, 10 and 20.

five exits. Each exit is a state ei associated with a reward Ri. Agents attempt to navigate toward
the highest scoring exit by taking navigation actions (north, east, south, west). Here our goal
is to recover the rewards Ri that a single agent associates with each exit, along with agent budget
parameters ⌘, given observations of the agent’s behavior.

4.1 AGENT MODEL

We assume that agents select navigation actions using a heuristic with a known functional form, in
which the value of a state s is approximated as:

V (s) =

P
i Rie�ks�eik1·Ri

P
i e

�ks�eik1·Ri
(4)

where ks � s0k1 measures the Manhattan distance between a pair of states (i.e. maze positions).
Intuitively, we model agents as “attending” to each exit in proportion to both its distance and asso-
ciated reward. We assume that agents use this heuristic to perform truncated breadth-first search.
In a state s, agents first estimate the value of each action a by computing the value of the best state
reachable in �runtime actions, starting with a. Formally:

Qruntime(a | s) = max
⌧ :⌧0=a,|⌧ |=�runtime

V (⌧�runtime) (5)

where ⌧0 and ⌧�runtime respectively denote the first and last actions in the trajectory ⌧ . Finally, agents
select actions in proportion to these Q-values (Haarnoja et al., 2017):

⇡(a | s;�runtime, R) / eQ(a|s) (6)
With this agent parameterization, Eq. (2) can be computed efficiently:
Proposition 1. Truncated breadth-first Search (TBFS) is an anytime inference algorithm. (Repre-
sent each inference state f� as the set of frontier states and values reachable from each starting
action. To compute f�+1, add the unexplored children of these states to the set.)

4.2 DATA

In this pedagogical example, we treat the agent model in Section 4.1 as the true data-generating
process. We fix a set of parameters Ri and �runtime, generate a collection of synthetic trajectories
using Eq. (6), then attempt to recover these parameters using Eq. (2). (This allows us to validate
the feasibility of our approach under ideal conditions—later sections will apply it to real datasets of
human-generated actions). In particluar, we generate 5 agents with runtime budgets of 1, 2, 5, 10,
and 20 respectively. Example trajectories from each of these agents are depicted in Fig. 2.

4.3 EVALUATION

We compare L-IBMs with a Boltzmann model in which agents select actions according to:
Qtemp(a | s) = �temp · max

⌧ :⌧0=a
R(⌧) (7)

where R(⌧) denotes the final reward obtained along the complete trajectory ⌧ (i.e. upon reaching
some exit Ri). We also compare to simple baselines in which the agent performs truncated search
up to a constant (not inferred) depth. We evaluate these models in two ways:

4

Published as a conference paper at ICLR 2024

Inferred �temp
Inferred �runtime

(L-IBM)

(a) (b)

Figure 3: Inferred parameters ⌘i (distributions over �) for the maze navigation
task. (a) L-IBM almost perfectly recovers these parameters, while (b) the
Boltzmann model shows no significant differences across inferred �temp.

Approach Accuracy

�runtime = 0 5
�runtime = 20 16
Inferred �temp 20
L-IBM 44

Table 1: Agent action pre-
diction accuracies in maze
navigation. L-IBM signif-
icantly outperforms base-
lines.

Predicting actions. In held-out states, we evaluate models’ exact-match accuracy in predicting
an agent’s next action. Results are shown in Table 1. Models that assume a constant depth perform
worst. While Boltzmann models are better able to predict agents’ next actions than these fixed-
budget models, they are significantly outperformed by L-IBM.
Predicting rewards. We also evaluate whether inferred prior distributions over � recover the true
values used to generate the data. Results for L-IBM and the Boltzmann model are shown in Fig. 3a.
It can be seen that L-IBM almost perfectly recovers these parameters (suggesting that prediction
errors in Table 1 result entirely from errors in the inferred reward parameters Ri). Meanwhile, the
Boltzmann model shows no significant differences in inferred �temp across depth budgets, empha-
sizing the discrepancy between the two mdoels of suboptimality.

Together, these results show that L-IBM is computationally tractable and capable of making accurate
predictions and inferring meaningful parameters in simple search problems. In the remainder of the
paper, we apply it to modeling real human behavior in more complex decision-making tasks.

5 PRAGMATIC LANGUAGE UNDERSTANDING WITH RATIONAL SPEECH ACTS

Context Utterance

1. xxxx xxxx xxxx purple

2. xxxx xxxx xxxx blue

3. xxxx xxxx xxxx blue

Table 2: Example of the ref-
erence color (within the black
box) and the two distractor col-
ors, along with the utterance pro-
duced by a speaker from the col-
ors in context task (Monroe et al.,
2017). Notice how the context
affects the utterance, even as the
reference color remains fixed.

The next task we consider focuses on pragmatic language under-

standing—inferring speakers’ communicative intents from their ut-
terances. Humans readily produce and understand language in ways
that deviates from its “literal” meaning. In Table 2, for example, a
color that would be described on its own by most speakers purple
is instead labeled blue in some contexts. A large body of work in
cognitive science models this kind of context-based language un-
derstanding as the result of an iterative inference process (Frank &
Goodman, 2012; Franke, 2013): for example, in Row 2 of Table 2,
a speaker might choose to describe the highlighted color as blue by
reasoning that a naı̈ve listener might resolve purple to the second
color in the row. A more sophisticated listener, in turn, can predict
this speaker behavior, and successfully infer the intended meaning.
But this kind of recursive reasoning about other agents can be com-
putationally demanding, and requires sophisticated internal models
of other language users. Experimental evidence suggests that is de-
ployed selectively, and to different degrees by different language users (Franke & Degen, 2016). We
use L-IBMs to determine when, and to what extent, this kind of recursive reasoning is used during
language production.

Our experiments focus on a reference game of the kind depicted in Table 2 (Monroe et al., 2017).
Reference games are a staple of research on pragmatic language use. In a reference game, both a
listener and speaker observe a set of candidate referents (e.g. colors). The speaker is privately given
one of the colors as a target; they must then produce a natural language utterance for the listener.
Finally, the listener selects a color patch, and both players win if they agreed on the target.

5

Published as a conference paper at ICLR 2024

By fitting an L-IBM to utterances and choices in human reference games, we investigate (1) whether
we can infer whether humans are engaged in pragmatic reasoning from behavior alone, (2) whether
there are differences between players in their ability to reason about their interlocutors, and (3)
whether these differences actually predict communicative success (i.e. whether players with greater
inference budgets are better at making themselves understood).

5.1 AGENT MODEL

We build on the Rational Speech Acts (RSA) model of Frank & Goodman (2012). This model
frames communication as one in which Bayesian listeners and speakers reason recursively about
each others’ beliefs in order to select utterances and actions. The starting point of RSA is a literal

listener ⇡0
L that maps utterances u to actions according to their non-contextual meanings. (In Ta-

ble 2, a literal listener hearing the word purple might choose randomly between the first two colors
in the second row, as both would be reasonably described as purple out of context.) The literal
listener may be implemented by any model (e.g. a lookup table or a neural network; Andreas &
Klein, 2016) with parameters ✓. Next, given a reference target t, a pragmatic speaker ⇡S chooses
an utterance in proportion to the probability that it will cause a literal listener to take the right action:

⇡1
S(u | t) / p(⇡0

L selects t upon hearing u) = ⇡0
L(t | u) (8)

(RSA speakers are standardly parameterized with an additional Boltzmann rationality parameter,
which we will discuss momentarily.) Finally, pragmatic listeners observe speaker utterances u,
and reason about which reference targets were most likely to have produced those utterances:

⇡1
L(t | u) = p(⇡1

S intends to signal t | u) / ⇡1
S(u | t) p(t) (9)

Crucially, this process may be repeated, with speakers ⇡i
S reasoning about ever-more-sophisticated

speakers ⇡i�1
L , etc. But how many rounds of iteration actually explain human behavior? In the latent

inference budget model framework, we may model this by embedding RSA inside an L-IBM, with
the budget � parameterizing the number RSA iterations performed by each agent:

⇡S(u | t; ✓, ⌘) =
X

�

�runtime(� | ⌘)⇡S(u | t; ✓,�) (10)

⇡S(u | t; ✓,�) = ⇡�
S(u | t) (11)

(and analogously for ⇡L.)
Proposition 2. Rational Speech Acts (RSA) is an anytime inference algorithm. (Each inference state
f� is ⇡�

S or ⇡�
L. Each of these can be derived from the other in constant time via Eqs.8–9.)

5.2 DATA

For this task, we use the data collected by Monroe et al. (2017). Each game consists of roughly 50
rounds played between a human speaker and a human listener. In each round, the speaker observes
a target color along with two distractors. The speaker produces an utterance and the listener has to
click on one of the colors. The dataset consists of 46,994 rounds across 948 games. We create a
80/10/10 split across train, valid and test sets. Monroe et al. stratify the dataset into three difficulties
(easy, medium and difficult) based on perceptual similarity between colors and distractors. Because
each game is annotated with a unique identifier for both the speaker and the listener, we may further
stratify the dataset according to player skill: we compute the fraction of games won by each (speaker,
listener) pair, then group these pairs into six buckets according to their win rate percentile relative
to other players. This allows us to examine the relationship between inference budget and both task
difficulty and communicative success.

5.3 MODELS

Following Monroe et al. (2017), we implement the literal listener ⇡0
L using a transformer model that

receives all three colors (represented as HSL vectors) and a natural language utterance as input, and
predicts the index of the target color as output. We embed this listener model within the speaker–
listener recursion defined by Eq. (9), then train it end-to-end (with budget parameters ⌘i) on the
Colors in Context data using Eq. (2).

6

Published as a conference paper at ICLR 2024

Inferred �temp Inferred �runtime (L-IBM)

(a) (b) (c) (d)

Figure 5: Inferred distributions over � in RSA. X-axis indicates the difficulty level (Easy, Medium, Hard) or the
player skill level (between 1 and 6, 6 being the most skilled players). The inferred �temp across difficulty in a)
and player skill in b) is not as meaningful as it is for �runtime in c) and d). c) When separating games by difficulty,
L-IBM infers that the non-literal speaker is employed only for the hardest condition. d) When separating games
by player skill, we infer that the weakest players can be modeled exclusively as literal speakers, while stronger
players can be modeled as a mix of literal and pragmatic speakers.

The constant of proportionality in Eq. (8) involves a sum over all natural language strings, which is
cannot be computed efficiently. Here, also following (Monroe et al., 2017), we perform a sampling-
based approximation: we train a literal speaker model to generate plausible utterances, then sum
over a finite number of such samples to obtain a distribution over strings. See McDowell & Goodman
(2019) for more details. The literal speaker is parameterized identically to the literal listener, but
outputs strings rather than color indices.

In experiments investigating the relationship between task difficulty and inference budget, we fit
one ⌘i per condition (easy, medium, hard). In experiments investigating the relationship between
communicative success and inference budget, we fit one ⌘i per skill level (between 1 and 6).

5.4 EVALUATION

Standard implementations of RSA modifies Eq. (8) to include a Boltzmann parameter for speakers:
⇡i
S(u | t;�) / exp{�temp log ⇡

i�1
L (t | u)} (12)

Like our �runtime, this parameter is intended to model possibly sub-optimal behavior on the part of
speakers and listeners. We compare an L-IBM to a model of this form. In particular, we fix the
number of RSA iterations to one, use the same data as above to estimate literal listener parameters
jointly with a prior distribution over �temp:

⇡1
S(u | t; ✓, ⌘) =

X

�

ptemp(� | ⌘)⇡1
S(u | t;�) (13)

where ⇡1
S is defined as in Eq. (12).

Table 3 shows different models’ ability to predict the target referent given human speaker utterances.
Consistent with the findings of (Monroe et al., 2017), because even literal models have access to all
three referents, all model variants can achieve good task performance. When we look at inferred val-
ues for �runtime and �temp, however, we begin to see significant differences between models. When
stratifying games by difficulty, we infer that the non-literal speaker is employed only for the hardest
conditions. When stratifying games by player skill, we infer that the weakest players can be mod-
eled exclusively as literal speakers, while stronger players can be modeled as a mix of literal and
pragmatic speakers. To the best of our knowledge, this is the first example of an RSA-type model
being used to infer individual differences in pragmatic language use within a speaker population;
we expect that these tools may be of independent interest to the cognitive science community. Ad-
ditional experiments, predicting the object that the listener picked instead of the one the speaker is
presented can be found in Appendix C.

6 PLAYING CHESS WITH MONTE-CARLO TREE SEARCH

Finally, we turn from cooperative to adversarial decision-making tasks. We focus on chess, a popular
two-player sequential game widely used as a benchmark for AI systems. Here, we are interested in

7

Published as a conference paper at ICLR 2024

Model Type Accuracy

�runtime = 0 - 83.3
�runtime = 1 - 83.0
Inferred �temp player skill 83.9
Inferred �runtime (L-IBM) player skill 84.0

Inferred �temp difficulty 83.5
Inferred �runtime (L-IBM) difficulty 82.7

Table 3: Performance of different RSA models in
predicting the speaker target. All models (including
literal models and fixed-depth RSA models) achieve
similar predictive performance—because even lit-
eral models have access to all three referents, all
model variants can achieve good task performance.
�runtime = 0 represents the base literal listener.

Model Type Accuracy

IL - 42.06
�runtime = 100 - 43.64
Inferred �puct Active Elo 43.77
Inferred �runtime (L-IBM) Active Elo 44.17

Inferred �puct Opponent Elo 43.84
Inferred �runtime (L-IBM) Opponent Elo 44.17

Inferred �puct Time Control 43.61
Inferred �runtime(L-IBM) Time Control 44.15

Table 4: Accuracy of predicting an agent’s next ac-
tion in chess. Models with MCTS outperform the
depth-0 (imitation learning) baseline. Learning sub-
population-specific � enhances performance, with
L-IBM-based learning of �runtime consistently out-
performing �puct by a slight margin.

modeling human chess play—specifically, observing data from a population of sub-optimal agents
with a common reward function (winning the game) and attempting to infer those agents’ com-
putational constraints. In human human play, there can be numerous sources of such constraints: a
player paired against a strong opponent will likely to plan for longer than against a weaker opponent;
some variants (like blitz chess) deliberately limit players’ time-per-move (and, we might expect, the
quality of their plans). Given a dataset of human games played under different time constraints and
player strengths, can we use L-IBM to model variability in players’ decisions across game states?

6.1 AGENT MODEL

In this work, we model chess players as selecting actions using Monte Carlo tree search (MCTS).
Recent work (Jacob et al., 2022) has shown that MCTS is a good model of strong human players.
Here, following (Silver et al., 2018; 2016; Jacob et al., 2022; Grill et al., 2020), we implement one of
the most common modern forms of MCTS, which uses a value function V predicting the expected
total future reward and a policy prior ⇡0 to guide exploration. At a high level, MCTS operates by
incrementally growing a game tree starting at the root node, repeatedly picking some path to explore
down the tree, performing a value function evaluation and then walking back up the tree updating
all the value estimates based on that result. At each node, MCTS treats action selection as a multi-
armed bandit problem. We use a standard exploration policy (Kocsis & Szepesvári, 2006): during
inference at each node of the search tree, we choose actions according to:

argmax
a

Qt(a | s) + �puct⇡
0(a | s)

�pP
b N(s, b)

�
/
�
N(s, a) + 1

�
(14)

where Qt(s, a) is the estimated expected future reward for i from playing action a in state s at
iteration t, the visit count N(s, a) is the number of times a has been explored from s, ⇡0(a | s) is an
“anchor” policy, and �puct is a tunable parameter trading off exploration versus exploitation. After
expanding �runtime nodes of this tree, an agent’s final action is sampled from a distribution:

⇡(a | s;�runtime) = �puct

p
�runtime

N(s, a) + 1

⇡0(a|s)

� �Q�runtime(a | s)
(15)

where � is chosen such that ⇡ forms a proper probability distribution.
Proposition 3. MCTS is an anytime inference algorithm. (Let each inference state f� be the tree of
nodes and visitation counts after � evaluations. This tree is refined by evaluating Eq. (15) once.)

With ⇡(a | s;�runtime) as defined above, we may instantiate an L-IBM for MCTS:

⇡runtime(t|u; ⌘, ✓) =
X

�runtime

pbudget(�runtime | ⌘i) · ⇡(a; s,�runtime) (16)

We train the base initial policy ⇡0 and a value model ṽ0 as two different output heads of a deep
neural network using imitation learning. Our architecture is a 4-block residual network similar
to those used in prior work (McIlroy-Young et al., 2020). Unlike previous sections, we do not
learn the value functions jointly with pbudget. Instead, we first learn a single value function, then
fit pbudget(�puct | ⌘i) and pbudget(�runtime | ⌘i). We stratify players into sub-populations according
to player Elo (a proxy for player skill), and opponent Elo and time control (both proxies for task
difficulty). As in Section 5, we estimate a separate ⌘i for each group within each stratified dataset.

8

Published as a conference paper at ICLR 2024

Inferred �puct

Inferred �runtime (L-IBM)

Figure 6: Inferred distributions over � in Chess using MCTS. The horizontal axis indicates the player Elo
rating, opponent Elo rating buckets and time control: Ultra Bullet (U), Bullet (B), Blitz (BZ), Rapid (R) and
Classical (C). The top row depicts the distributions for �puct and the bottom row depicts the distributions for
�runtime. When the player’s strength, opponent’s strength, or time increases, �runtime infers greater runtime.

6.2 DATA

We use similar data to previous models of human chess play (McIlroy-Young et al., 2020): First,
a dataset Dlarge containing roughly 6 million moves, used to train the base value function; second,
a dataset Dsmall containing roughly 75,000 moves, used to build population-specific models. Dsmall
includes metadata describing players’ Elo ratings (a measure of strength) and game formats (the
amount of time players had to select moves). See Appendix B for details.

6.3 EVALUATION

Unlike in the two domains studied above, there is already an established literature on modeling
sub-optimal behavior via MCTS outside the Boltzmann framework. The most successful current
approach models individual differences in play (Jacob et al., 2022) by fitting �puct. We thus compare
to a baseline in which ⌘i parameterizes a distribution over values of �puct rather than tree expansions.

Accuracy (in terms of top-one predictions and negative log-likelihood) is reported in Table 4. As
in past work, we find that models that with explicit search outperform imitation-learning baseline.
Learning sub-population specific � improves the performance even further, with L-IBM-based learn-
ing of �runtime consistently outperforming �puct by a small margin.

Inferred budget parameters are shown in Fig. 6. Here, we observe that as the player strength or the
opponent strength increases as measured by the Elo ratings, �runtime infers higher runtime. We also
observe the same as the time control increases: �runtime infers higher runtime as the duration of each
move of the game increases. �puct shows a weaker, but similar trend: as the agents or opponents get
stronger, or as the time control increases, �puct infers lower values of �puct, indicating that players
are deviating from the prior and are relying more on the search Q-values.

7 CONCLUSION

We have described latent inference budget models, a family of approaches for modeling agents
acting to achieve unknown goals subject to unknown constraints on their inferential capabilities.
Instead of assuming either global optimality of decision-making or uniform suboptimality, our ap-
proach explicitly infers the runtime that agents devote to approximate inference. This paradigm is
applicable to all anytime inference algorithms. In three domains—maze navigation, pragmatic lan-
guage understanding, and playing chess—we demonstrated that it can outperform classical models
of bounded rationality while imputing meaningful measures of human skill and task difficulty.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under grants IIS-2238240, IIS-
2212310, and a seed grant from the MIT Schwartzman College of Computing ”Artificial Intelligence
for Augmentation and Productivity” program. Thanks to Jennifer Hu for helpful discussions about
modeling individual differences in Rational Speech Act models.

REFERENCES

Jacob Andreas and Dan Klein. Reasoning about pragmatics with neural listeners and speakers.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp.
1173–1182, 2016.

Mark Beliaev, Andy Shih, Stefano Ermon, Dorsa Sadigh, and Ramtin Pedarsani. Imitation learning
by estimating expertise of demonstrators. In Proceedings of the International Conference on
Machine Learning, pp. 1732–1748. PMLR, 2022.

Mark Boddy and Thomas L Dean. Solving time-dependent planning problems. Brown University,
Department of Computer Science, 1989.

Frederick Callaway, Bas van Opheusden, Sayan Gul, Priyam Das, Paul M Krueger, Thomas L Grif-
fiths, and Falk Lieder. Rational use of cognitive resources in human planning. Nature Human
Behaviour, 6(8):1112–1125, 2022.

Colin F Camerer, Teck-Hua Ho, and Juin-Kuan Chong. A cognitive hierarchy model of games. The
Quarterly Journal of Economics, 119(3):861–898, 2004.

Thomas L Dean and Mark S Boddy. An analysis of time-dependent planning. In Proceedings of the
Annual Meeting of the Association for the Advancement of Artificial Intelligence, volume 88, pp.
49–54, 1988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 4171–4186, 2019.

Owain Evans and Noah D Goodman. Learning the preferences of bounded agents. In NIPS Work-
shop on Bounded Optimality, 2015.

Michael C Frank and Noah D Goodman. Predicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998, 2012.

Michael Franke. Game theoretic pragmatics. Philosophy Compass, 8(3):269–284, 2013.

Michael Franke and Judith Degen. Reasoning in reference games: Individual-vs. population-level
probabilistic modeling. PloS one, 11(5):e0154854, 2016.

Thomas L Griffiths, Frederick Callaway, Michael B Chang, Erin Grant, Paul M Krueger, and Falk
Lieder. Doing more with less: Meta-reasoning and meta-learning in humans and machines. Cur-
rent Opinion in Behavioral Sciences, 29:24–30, 2019.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-Carlo tree search as regularized policy optimization. In
In Proceedings of the International Conference on Machine Learning, pp. 3769–3778. PMLR,
2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In Proceedings of the International Conference on Machine Learning,
pp. 1352–1361. PMLR, 2017.

10

Published as a conference paper at ICLR 2024

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert
Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Rı́o, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-
pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant.
Array programming with NumPy. Nature, 585(7825):357–362, September 2020. URL https:
//doi.org/10.1038/s41586-020-2649-2.

Quentin JM Huys, Neir Eshel, Elizabeth O’Nions, Luke Sheridan, Peter Dayan, and Jonathan P
Roiser. Bonsai trees in your head: How the Pavlovian system sculpts goal-directed choices by
pruning decision trees. PLoS Computational Biology, 8(3):e1002410, 2012.

Quentin JM Huys, Nı́all Lally, Paul Faulkner, Neir Eshel, Erich Seifritz, Samuel J Gershman, Peter
Dayan, and Jonathan P Roiser. Interplay of approximate planning strategies. Proceedings of the
National Academy of Sciences, 112(10):3098–3103, 2015.

Athul Paul Jacob, David J Wu, Gabriele Farina, Adam Lerer, Hengyuan Hu, Anton Bakhtin, Jacob
Andreas, and Noam Brown. Modeling strong and human-like gameplay with KL-Regularized
search. In Proceedings of the International Conference on Machine Learning, pp. 9695–9728.
PMLR, 2022.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. In Advances in Neural Information Processing Systems, pp. 4415–
4426, 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Proceedings of
European Conference on Machine Learning, pp. 282–293. Springer, 2006.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gonzalez, Ken Gold-
berg, and Ion Stoica. Ray rllib: A composable and scalable reinforcement learning library. arXiv
preprint arXiv:1712.09381, 85, 2017.

R Duncan Luce. Individual choice behavior. 1959.

Bill McDowell and Noah Goodman. Learning from omission. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics, pp. 619–628, 2019.

Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Aligning superhu-
man ai with human behavior: Chess as a model system. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1677–1687, 2020.

Reid McIlroy-Young, Russell Wang, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. Learn-
ing models of individual behavior in chess. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 1253–1263, 2022.

Andrew N Meltzoff. Understanding the intentions of others: Re-enactment of intended acts by
18-month-old children. Developmental Psychology, 31(5):838, 1995.

Will Monroe, Robert XD Hawkins, Noah D Goodman, and Christopher Potts. Colors in context: A
pragmatic neural model for grounded language understanding. Transactions of the Association
for Computational Linguistics, 5:325–338, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32,
2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

11

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Published as a conference paper at ICLR 2024

Stuart Russell and Eric Wefald. Principles of metareasoning. Artificial Intelligence, 49(1-3):361–
395, 1991.

Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On the feasibility of learning, rather
than assuming, human biases for reward inference. In International Conference on Machine
Learning, pp. 5670–5679. PMLR, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140–
1144, 2018.

Bas van Opheusden, Ionatan Kuperwajs, Gianni Galbiati, Zahy Bnaya, Yunqi Li, and Wei Ji Ma.
Expertise increases planning depth in human gameplay. Nature, pp. 1–6, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, 2020.

Tan Zhi-Xuan, Jordyn Mann, Tom Silver, Josh Tenenbaum, and Vikash Mansinghka. Online
Bayesian goal inference for boundedly rational planning agents. Advances in neural informa-
tion processing systems, 2020.

12

Published as a conference paper at ICLR 2024

A TRAINING HYPERPARAMETERS

We will detail the training hyperparameter details in this section.

A.1 MAZE

All models in Section 4 were trained using the Adam optimizer (Kingma & Ba, 2015), where the
learning rates were sweeped across the following values [1.0, 0.5, 1e� 1, 0.05, 1e� 2, 5e� 3, 1e�
3, 5e�4, 1e�4, 5e�5] for 50 epochs. The values presented in Table 1 were picked from the model
with the best validation accuracy across the learning rates. We implemented truncated BFS using
Pytorch (Paszke et al., 2019) and Numpy (Harris et al., 2020) and we also used the mazelib library
to generate the data.

A.2 COLORS IN CONTEXT

The models trained in Section 5 are based on the transformer architecture and trained from scratch.
The speaker model was trained based on the T5 model (Raffel et al., 2020) with the following
hyperparameters described in Table 5. The speaker was trained with a batch size of 64 using the
Adam optimizer with learning rate 1e� 4 for 25 epochs.

Parameter Value

Number of Layers 4
Number of Heads 4
Model Dimension 32
Key-Value Dimension 16
Feedforward Dimension 32

Table 5: Hyperparameter configuration of
the speaker model based on T5 (Raffel et al.,
2020).

Parameter Value

Hidden Size 64
Number of Hidden Layers 4
Number of Attention Heads 4
Intermediate Hidden Size 256

Table 6: Hyperparameter configuration of
the listener model based on BERT.

All the listener models were based on the BERT (Devlin et al., 2019) model with the configuration
described in Table 6. The listener models were trained using Adam and the learning rates were
sweeped across the following values [1e� 3, 5e� 4, 1e� 4, 5e� 5] for upto 50 epochs. The values
presented in Table 8 and Table 3 were picked from the model with the best validation accuracy across
the learning rates. We trained the models using Pytorch (Paszke et al., 2019) and Huggingface (Wolf
et al., 2020) libraries. We specifically implemented RSA using Pytorch.

A.3 CHESS

The value and policy network used in Section 6 are based on an architecture that is a 4-block resid-
ual network similar to those used in prior work McIlroy-Young et al. (2020); Jacob et al. (2022);
McIlroy-Young et al. (2022). The policy and value network was trained using Adam with a learning
rate of 0.001, a batch size of 4096 and for upto 30 epochs. The epoch used in the rest of the section
was picked based on the validation accuracy.

In the second set of fine-tuning experiments, for every set of conditioning type, a simple feedforward
network was trained using Adam with a batch size of 512. The models in Section 6 were picked by
selecting the learning rates between 1e� 3, 5e� 4, 1e� 4, 5e� 5 with the best validation accuracy.

For chess, the base policy and value functions were trained using Ray library (Liang et al., 2017) and
Pytorch. MCTS was specifically implemented using Numpy. We also used the pettingzoo library
for simulating moves.

B CHESS DATA

Dlarge consists of 5,974,872 moves in the training split, 60,968 in the validation split and 60,969
moves in the test set. These data points were randomly sampled from the January, 2019 database

13

https://github.com/john-science/mazelib
https://pettingzoo.farama.org/

Published as a conference paper at ICLR 2024

release of a chess website (lichess). Dsmall consists of 50,000 moves in the training split, 12,041
moves in the validation split and 12,040 moves in the test split. These data points were randomly
sampled from the February, 2019 lichess database release but filtering such that only those players
with Elo ratings in the following buckets were considered: [800-1000], [1400-1600] and [2000-
2200].

The dataset contains 5 different types of time control. In increasing duration, they are Ultra Bullet,
Bullet, Blitz, Rapid and Classical (see Table 7).

Time control Estimated Duration (seconds)

UltraBullet < 29
Bullet < 179
Blitz < 479
Rapid < 1499
Classical � 1500

Table 7: Estimated game durations across different time controls.

The time controls used in our work have estimated durations that are defined in Table 7:

C ADDITIONAL EXPERIMENTS: COLORS IN CONTEXT

In this section, we include additional experiments for the pragmatics domain where we train the
models to predict the object that the listener picks. We present the results of a similar set of experi-
ments as in Section 5 in Table 8 and Fig. 8. We specifically note that the inference based approaches
outperform the baselines in this setting.

Model Type Accuracy

�runtime = 0 (Literal listener) - 80.4
�runtime = 1 - 81.8
Inferred �temp player skill 82.3
Inferred �runtime (L-IBM) player skill 83.1

Inferred �temp difficulty 82.7
Inferred �runtime (L-IBM) difficulty 82.1

Table 8: Performance of different RSA models in predicting the speaker target. The � based models outperform
the baseline models: literal models and fixed-depth RSA models.

(a) (b) (c) (d)

Figure 8: Inferred distributions over � in RSA, with the listener target. X-axis indicates the difficulty level
(Easy, Medium, Hard) or the player skill level (1 - 6, 6 being the most skilled players). The inferred �temp
across difficulty in a) and player skill in b) is not as meaningful as it is for �runtime in d). When separating
games by player skill, we infer that the weakest players can be modelled with a smaller mix towards pragmatic
speakers compared to stronger players

14

Published as a conference paper at ICLR 2024

D ADDITIONAL DISCUSSION

D.1 RELATIONSHIP BETWEEN �puct AND ELO RATING IN CHESS

�puct (as used in popular strength-modeling approaches like Silver et al. (2016)) doesn’t simply
control exploration vs. exploitation. Instead, it biases exploration towards an initial policy prior
⇡0. As �puct tends to infinity, it is identical to playing ⇡0. When �puct is set to 0, it is equivalent
to greedily picking the search Q-values. In Fig. 6 and as it relates to ELO rating, we notice that
stronger players start deviating more from their base policy ⇡0 to instead depend more on their
MCTS search Q-values. Therefore indicating that stronger players rely more on search compared to
weaker players.

15

	Introduction
	Background and problem formulation
	Inferring Rewards and Inference Budgets from Behavior
	Solving Mazes with Truncated Depth-First Search
	Agent Model
	Data
	Evaluation

	Pragmatic Language Understanding with Rational Speech Acts
	Agent Model
	Data
	Models
	Evaluation

	Playing Chess with Monte-Carlo Tree Search
	Agent Model
	Data
	Evaluation

	Conclusion
	Training hyperparameters
	Maze
	Colors in context
	Chess

	Chess Data
	Additional Experiments: Colors in context
	Additional Discussion
	Relationship between puct and ELO rating in chess

