LEARNING ADAPTIVE PLANNING REPRESENTATIONS WITH NATURAL LANGUAGE GUIDANCE

Lionel Wong^{1*} Jiayuan Mao^{1*} Pratyusha Sharma^{1*} Zachary S. Siegel² Jiahai Feng³ Noa Korneev⁴ Joshua B. Tenenbaum¹ Jacob Andreas¹

¹MIT ²Princeton University ³UC Berkeley ⁴Microsoft

ABSTRACT

Effective planning in the real world requires not only world knowledge, but the ability to leverage that knowledge to build the *right representation* of the task at hand. Decades of hierarchical planning techniques have used domain-specific temporal *action abstractions* to support efficient and accurate planning, almost always relying on human priors and domain knowledge to decompose hard tasks into smaller subproblems appropriate for a goal or set of goals. This paper describes *Ada* (Action Domain Acquisition), a framework for automatically constructing task-specific planning representations using task-general background knowledge from language models (LMs). Starting with a general-purpose hierarchical planner and a low-level goal-conditioned policy, Ada **interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.** On two language-guided interactive planning benchmarks (*Mini Minecraft* and *ALFRED Household Tasks*), Ada strongly outperforms other approaches that use LMs for sequential decision-making, offering more accurate plans and better generalization to complex tasks.

1 Introduction

People make complex plans over long timescales, flexibly adapting what we *know* about the world in general to govern how we act in specific situations. To make breakfast in the morning, we might convert a broad knowledge of cooking and kitchens into tens of fine-grained motor actions in order to find, crack, and fry a specific egg; to achieve a complex research objective, we might plan a routine over days or weeks that begins with the low-level actions necessary to ride the subway to work. The problem of *adapting general world knowledge to support flexible long-term planning* is one of the unifying challenges of AI. While decades of research have developed representations and algorithms for solving restricted and shorter-term planning problems, generalized and long-horizon planning remains a core, outstanding challenge for essentially all AI paradigms, including classical planning (Erol et al., 1994), reinforcement learning (Sutton et al., 1999), and modern generative AI (Wang et al., 2023a).

How do humans solve this computational challenge? A growing body of work in cognitive science suggests that people come up with *hierarchical, problem-specific representations* of their actions and environment to suit their goals, tailoring how they represent, remember, and reason about the world to plan efficiently for a particular set of tasks (e.g., Ho et al., 2022). In AI, a large body of work has studied *hierarchical planning using domain-specific temporal abstractions*—progressively decomposing high-level goals into sequences abstract actions that eventually bottom out in low-level control. An extensive body of work has explored how to plan using these hierarchical action spaces, including robotic task-and-motion planning (TAMP) systems (Garrett et al., 2021) and hierarchical RL frameworks (Sutton et al., 1999).

However, identifying a set of abstract actions that are relevant and useful for achieving any given set of goals remains the central bottleneck in general. Intuitively, "useful" high-level actions must satisfy many different criteria: they should enable time-efficient high-level planning, correspond feasible low-level action sequences, and compose and generalize to new tasks. Despite efforts to learn high-level actions automatically in both classical planning (Nejati et al., 2006) and RL formulations (Dietterich, 2000), most state-of-the-art robotics and planning systems rely on human expertise to hand-engineer new planning representations for each new domain (Ahn et al., 2022).

^{*}Asterisk indicates equal contribution. Correspondence to zyzzyva@mit.edu. Code for this paper will be released at: https://github.com/CatherineWong/llm-operators

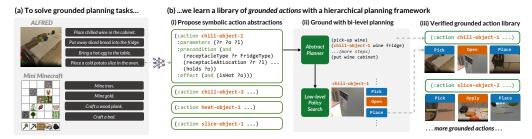


Figure 1: We solve complex planning tasks specified in language and grounded in interactive environments by jointly learning a *library of symbolic high-level action abstractions and modular low-level controllers* associated with each abstraction. Our system leverages background information in language as a prior to *propose useful action abstractions*, then uses a *hierarchical planning framework* to verify and ground them.

In this paper, we introduce *Action Domain Acquisition* (*Ada*), a framework for using background knowledge from language (conveyed via language models) as an initial source of task-relevant domain knowledge. Ada uses language models (LMs) in an interactive planning loop to assemble a *library of composable, hierarchical actions tailored to a given environment and task space*. Each action consists of two components: (1) a *high-level abstraction* represented as a symbolic planning *operator* (Fikes & Nilsson, 1971) that specifies preconditions and action effects as sets of predicates; and (2) a *low-level controller* that can achieve the action's effects by predicting a sequence of low-level actions with a neural network or local search procedure. We study planning in a multitask reinforcement learning framework, in which agents interact with their environments to must solve collections of tasks of varying complexity. Through interaction, Ada incrementally builds a library of actions, ensuring at each step that learned high-level actions compose to produce valid abstract plans and realizable low-level trajectories.

We evaluate Ada (Fig. 1) on two benchmarks, *Mini Minecraft* and *ALFRED* (Shridhar et al., 2020). We compare this approach against three baselines that leverage LMs for sequential decision-making in other ways: to parse linguistic goals into formal specifications that are solved directly by a planner (as in Liu et al. (2023)), to directly predict sequences of high-level subgoals (as in Ahn et al. (2022)), and to predict libraries of actions defined in general imperative code (as in Wang et al. (2023a)). In both domains, we show that Ada learns action abstractions that allow it to solve dramatically more tasks on each benchmark than these baselines, and that these abstractions compose to enable efficient and accurate planning in complex, unseen tasks.

2 PROBLEM FORMULATION

We assume access to an environment $\langle \mathcal{X}, \mathcal{U}, \mathcal{T} \rangle$, where \mathcal{X} is the (raw) state space, \mathcal{U} is the (low-level) action space (e.g., robot commands), and \mathcal{T} is a deterministic transition function $\mathcal{T}: \mathcal{X} \times \mathcal{U} \to \mathcal{X}$. We also have a set of features (or "predicates") \mathcal{P} that define an abstract state space \mathcal{S} : each abstract state $s \in \mathcal{S}$ is composed of a set of objects and their features. For example, a simple scene that contains bread on a table could be encoded as an abstract state with two objects A and B, and atoms $\{bread(A), table(B), on(A, B)\}$. We assume the mapping from environmental states to abstract states $\Phi: \mathcal{X} \to \mathcal{S}$ is given and fixed (though see Migimatsu & Bohg, 2022 for how it might be learned).

In addition to the environment, we have a collection of tasks t. Each t is described by a natural language instruction ℓ_t , corresponding to a goal predicate (which is not directly observed). In this paper, we assume that predicates may be defined in terms of abstract states, i.e., $g_t: \mathcal{S} \to \{T, F\}$. Our goal is to build an agent that, given the initial state $x_0 \in \mathcal{X}$ and the natural language instruction ℓ_t , can generate a sequence of low-level actions $\{u_1, u_2, \cdots, u_H\} \in \mathcal{U}^H$ such that $g_t(\Phi(x_H))$ is true (where x_H is the terminal state of sequentially applying $\{u_i\}$ on x_0). The agent receives reward signal only upon achieving the goal specified by g_t .

Given a very large number of interactions, a sufficiently expressive reflex policy could, in principle, learn a policy that maps from low-level states to low-level actions conditioned on the language instruction $\pi(u \mid x; \ell_t)$. However, for very long horizons H and large state spaces (e.g., composed of many objects and compositional goals), such algorithms can be highly inefficient or effectively infeasible. The key idea behind our approach is to use natural language descriptions ℓ_t to bootstrap a high-level action space $\mathcal A$ over the abstract state space $\mathcal S$ to accelerate learning and planning.

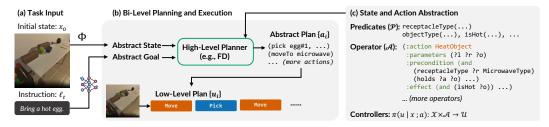


Figure 2: Representation for our (a) task input, (b) the bi-level planning and execution pipeline for inference time, and (c) the abstract state and action representation.

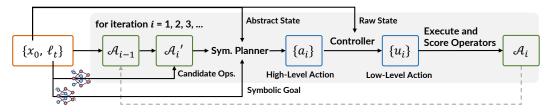


Figure 3: The overall framework. Given task environment states and descriptions, at each iteration, we first propose candidate abstract actions (operators) \mathcal{A}'_i , then uses bi-level planning and execution to solve tasks. We add operators to the operator library based on the execution result.

Formally, our approach learns a library of high-level actions (operators) \mathcal{A} . As illustrated in Fig. 2b, each $a \in \mathcal{A}$ is a tuple of $\langle name, args, pre, eff, controller \rangle$. name is the name of the action, args is a list of variables, usually denoted by ?x,?y,etc., pre is a precondition formula based on the variables args and the features \mathcal{P} , and eff is the effect, which is also defined in terms of args and \mathcal{P} . Finally, $controller: \mathcal{X} \to \mathcal{U}$ is a low-level policy associated with the action. The semantics of the preconditions and effects is: for any state x such that $pre(\Phi(x))$, executing controller starting in x (for an indefinite number of steps) will yield a state x' such that $eff(\Phi(x'))$ (Lifschitz, 1986). In this framework, \mathcal{A} defines a partial, abstract world model of the underlying state space.

As shown in Fig. 2b, given the set of high-level actions and a parse of the instruction ℓ_t into a first-order logic formula, we can leverage symbolic planners (e.g., Helmert, 2006) to first compute a high-level plan $\{a_1, \cdots, a_K\} \in \mathcal{A}^K$ that achieves the goal ℓ_t symbolically, and then refine the high-level plan into a low-level plan with the action controllers. This bi-level planning approach decomposes long-horizon planning problems into several short-horizon problems. Furthermore, it can also leverage the compositionality of high-level actions $\mathcal A$ to generalize to longer plans.

3 ACTION ABSTRACTIONS FROM LANGUAGE

As illustrated in Fig. 3, our framework, *Action Domain Acquisition* (*Ada*) learns action abstractions iteratively as it attempts to solve tasks. Our algorithm is given a dataset of tasks and their corresponding language descriptions, the feature set \mathcal{P} , and optionally an initial set of high-level action operators \mathcal{A}_0 . At each iteration i, we first use a large language model (LLM) to propose a set of novel high-level action definitions \mathcal{A}_i' based on the features \mathcal{P} and the language goals $\{\ell_t\}$ (Section 3.1). Next, we use a LLM to also translate each language instruction ℓ_t into a symbolic goal description F_t , and use a bi-level planner to compute a low-level plan to accomplish ℓ_t (Section 3.2). Then, based on the planning and execution results, we score each operator in \mathcal{A}_i and add ones to the verified library if they have yielded successful execution results (Section 3.4). To accelerate low-level planning, we simultaneously learn local subgoal-conditioned policies (i.e., the controllers for each operator; Section 3.3). Algorithm 1 summarizes the overall framework.

A core goal of our approach is to adapt the initial action abstractions proposed from an LLM prior into a set of useful operators A* that permit efficient and accurate planning on a dataset of tasks and ideally, that generalize to future tasks. While language provides a key initial prior, our formulation refines and verifies the operator library to adapt to a given planning procedure and environment (similar to other action-learning formulations like Silver et al., 2021). Our formulation ensures not only that the learned operators respect the dynamics of the environment, but also fit their grain of abstraction according to the capacity of the controller, trading off between fast high-level planning and efficient low-level control conditioned on each abstraction.

Algorithm 1 Action Abstraction Learning from Language

```
Input: Dataset of tasks and their language descriptions \{\ell_t\}
Input: Predicate set \mathcal{P}
Input: Optionally, an initial set of abstract operators A_0, or A_0 = \emptyset
 1: Initialize subgoal-conditioned policy \pi_{\theta}.
 2: for i = 1, 2, \dots, M do
 3:
          A_i \leftarrow A_{i-1} \cup \text{ProposeOperatorDefinitions}(\mathcal{P}, \{\ell_t\})
                                                                                                                                 ⊳ Section 3.1
          for each unsolved task j: (x_0^{(j)}, \ell_t^{(j)}) do
 4:
               \bar{u} \leftarrow \text{BiLevelPlan}(\mathcal{A}_i, \ell_t^{(j)}, \pi)
 5:
                                                                                                                                 ⊳ Section 3.2
               result^{(j)} \leftarrow \text{Execute}(x_0^{(j)}, \bar{u})
 6:
                                                                                                                          7:
          \theta \leftarrow \text{UpdateSubgoalPolicy}(\theta, result)
                                                                                                                                 ⊳ Section 3.3
          A_i \leftarrow \text{ScoreAndFilter}(A_i, result)
                                                                                                                                 ⊳ Section 3.4
```

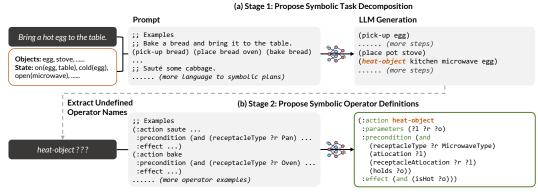


Figure 4: Our two-stage prompting method for generating candidate operator definitions. (a) Given a task instruction, we first prompt an LLM to generate a candidate symbolic task decomposition. (b) We then extract undefined operator names that appear in the sequences and prompt an LLM to generate symbolic definitions.

3.1 OPERATOR PROPOSAL: $A_i \leftarrow A_{i-1} \cup \text{ProposeOperatorDefinitions}(\mathcal{P}, \{\ell_t\})$

At each iteration i, we use a pretrained LLM to extend the previous operator library \mathcal{A}_{i-1} with a large set of candidate operator definitions proposed by the LLM based on the task language descriptions and environment features \mathcal{P} . This yields an extended candidate library \mathcal{A}'_i where each $a \in \mathcal{A}'_i = \langle name, args, pre, eff \rangle$ where name is a human-readable action name and args, pre, eff are a PDDL operator definition. We employ a two-stage prompting strategy: symbolic task decomposition followed by symbolic operator definition.

Example. Fig. 4 shows a concrete example. Given a task instruction (*Bring a hot egg to the table*) and the abstract state description, we first prompt the LLM to generate an abstract task decomposition, which may contain operator names that are undefined in the current operator library. Next, we extract the names of those undefined operators and prompt LLMs to generate the actual symbolic operator descriptions, in this case, the new *heat-object* operator.

Symbolic task decomposition. For a given task ℓ_t and a initial state x_0 , we first translate the raw state x_0 into a symbolic description $\Phi(x_0)$. To constrain the length of the state description, we only include unary features in the abstract state (i.e., only object categories and properties). Subsequently, we present a few-shot prompt to the LLM and query it to generate a proposed task decomposition conditioned on the language description ℓ_t . It generates a sequence of named high-level actions and their arguments, which explicitly can include high-level actions that are not yet defined in the current action library. We then extract all the operator names proposed across tasks as the candidate high-level operators. Note that while in principle we might use the LLM-proposed task decomposition itself as a high-level plan, we find empirically that this is less accurate and efficient than a formal planner.

Symbolic operator definition. With the proposed operator names and their usage examples (i.e., the actions and their arguments in the proposed plans), we then few-shot prompt the LLM to generate candidate operator *definitions* in the PDDL format (argument types, and pre/postconditions defined based on features in \mathcal{P}). We also post-process the generated operator definitions to remove feature

names not present in \mathcal{P} and correct syntactic errors. We describe implementation details for our syntax correction strategy in the appendix.

3.2 GOAL PROPOSAL AND PLANNING: $result^{(j)} \leftarrow \text{Execute}(x_0^{(j)}, \text{BiLevelPlan}(\mathcal{A}_i, \ell_t^{(j)}, \pi))$

At each iteration i, we then attempt to BiLevelPlan for unsolved tasks in the dataset. This step attempts to find and execute a low-level action sequence $\{u_1, u_2, \cdots, u_H\} \in \mathcal{U}^H$ for each task using the proposed operators in \mathcal{A}_i' that satisfies the unknown goal predicate g_t for each task. This provides the environment reward signal for action learning. Our BiLevelPlan has three steps.

Symbolic goal proposal: As defined in Sec. 2, each task is associated with a queryable but unknown goal predicate g_t that can be represented as a first-order logic formula f_t over symbolic features in \mathcal{P} . Our agent only has access to a linguistic task description ℓ_t , so we use a few-shot prompted LLM to predict candidate goal formulas F_t' conditioned on ℓ_t and features \mathcal{P} .

High-level planning: Given each candidate goal formula $f'_t \in F'_t$, the initial abstract problem state s_0 , and the current candidate operator library \mathcal{A}' , we search for a high-level plan $P_A = \{(a_1, o_{1_i}...), \cdots, (a_K, o_{K_i}...)\}$ as a sequence of high-level actions from \mathcal{A}' concretized with object arguments o, such that executing the action sequence would satisfy f'_t according to the operator definitions. This is a standard symbolic PDDL planning formulation; we use an off-the-shelf symbolic planner, FastDownward (Helmert, 2006) to find high-level plans.

Low-level planning and environment feedback: We then search for a low-level plan as a sequence of low-level actions $\{u_1,u_2,\cdots,u_H\}\in\mathcal{U}^H$, conditioned on the high-level plan structure. Each concretized action tuple $(a_i,o_{1_i}...)\in P_A$ defines a local subgoal sg_i , as the operator postcondition parameterized by the object arguments o. For each $(a_i,o_{1_i}...)\in P_A$, we therefore search for a sequence of low-level actions $u_{i_1},u_{i_2}...$ that satisfies the local subgoal sg_i . We search with a fixed budget per subgoal, and fail early if we are unable to satisfy the local subgoal sg_i . If we successfully find a complete sequence of low-level actions satisfying all local subgoals sg_i in P_A , we execute all low-level actions and query the hidden goal predicate g_t to determine environment reward. We implement a basic learning procedure to simultaneously learn subgoal-conditioned controllers over time (described in Section 3.3), but our formulation is general and supports many hierarchical planning schemes (such as sampling-based low-level planners (LaValle, 1998) or RL algorithms).

3.3 Low-Level Learning and Guided Search: $\theta \leftarrow \text{UpdateSubgoalPolicy}(\theta, \textit{result})$

The sequence of subgoals sg_i corresponding to high-level plans P_A already restricts the local low-level planning horizon. However, we further learn subgoal-conditioned low-level policies $\pi(u|x;sg)$ from environment feedback during training to accelerate low-level planning. To exploit shared structure across subgoals, we learn a shared controller for all operators from $x \in \mathcal{X}$ and conjunctions of predicates in sg. To maximize learning during training, we use a hindsight goal relabeling scheme (Andrychowicz et al., 2017), supervising on all conjunctions of predicates in the state as we roll out low-level search. While the shared controller could be learned as a supervised neural policy, we find that our learned operators sufficiently restrict the search to permit learning an even simpler count-based model from $X, sg \to u \in \mathcal{U}$. We provide additional details in the Appendix.

3.4 SCORING LLM OPERATOR PROPOSALS: $A_i \leftarrow \text{ScoreAndFilter}(A_i, result)$

Finally, we update the learned operator library \mathcal{A}_i to retain candidate operators that were useful and successful in bi-level planning. Concretely, we estimate operator candidate $a_i' \in \mathcal{A}_i'$ accuracy across the bi-level plan executions as s/b where b counts the total times a_i' appeared in a high-level plan and s counts successful execution of the corresponding low-level action sequence to achieve the subgoal associated with a_i' . We retain operators if $b > \tau_b$ and $s/b > \tau_r$, where τ_b, τ_r are hyperparameters. Note that this scoring procedure learns whether operators are accurate and support low-level planning independently of whether the LLM-predicted goals f_t' matched the true unknown goal predicates g_t .

4 EXPERIMENTS

Domains. We evaluate our approach on two-language specified planning-benchmarks: *Mini Minecraft* and *ALFRED* (Shridhar et al., 2020). *Mini Minecraft* (Fig. 5, *top*) is a procedurally-generated Minecraft-like benchmark (Chen et al., 2021; Luo et al., 2023) on a 2D grid world that requires

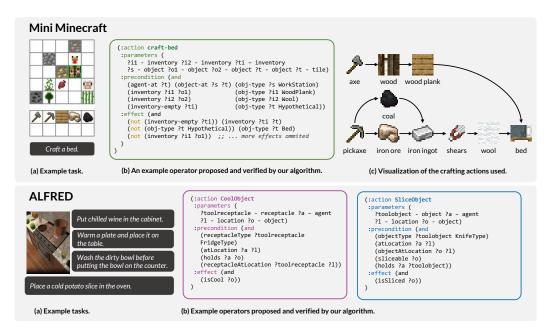


Figure 5: *Top*: (a) The Mini Minecraft environment, showing an intermediate step towards *crafting a bed*. (b) Operator proposed by an LLM and verified by our algorithm through planning and execution. (c) Low-level actions involved in crafting the bed. *Bottom*: (a) The ALFRED household environment. (b) Example operators proposed by LLM and verified by our algorithm, which are composed to solve the *cold potato slice* task.

complex, extended planning. The agent can use tools to mine resources and craft objects. The ability to create new objects that themselves permit new actions yields an enormous action space at each time step (>2000 actions) and very long-horizon tasks (26 high-level steps for the most complex task, without path-planning.) *ALFRED* (Fig. 5, *bottom*) is a household planning benchmark of human-annotated but formally verifiable tasks defined over a simulated Unity environment (Shridhar et al., 2020). The tasks include object rearrangements and those with object states such as heating and cleaning. Ground-truth high-level plans in the ALFRED benchmark compose 5-10 high-level operators, and low-level action trajectories have on average 50 low-level actions. There over 100 objects that the agent can interact with in each interactive environment. See the Appendix for details.

Experimental setup. We evaluate in an iterative continual learning setting; except on the compositional evaluations, we learn from n=2 iterations through all (randomly ordered) tasks and report final accuracy on those tasks. All experiments and baselines use GPT-3.5. For each task, at each iteration, we sample n=4 initial goal proposals and n=4 initial task decompositions, and n=3 operator definition proposals for each operator name. We report *best-of* accuracy, scoring a task as solved if verification passes on at least one of the proposed goals. For Minecraft, we set the motion planning budget for each subgoal to ≤ 1000 nodes. For ALFRED, which requires a slow Unity simulation, we set it to 50 nodes. Additional temperature and sampling details are in the Appendix.

We evaluate on three *Mini Minecraft* benchmark variations to test how our approach generalizes to complex, compositional goals. In the simplest **Mining** benchmark, all goals involve mining a target item from an appropriate initial resource with an appropriate tool (e.g., Mining *iron* from *iron_ore* with an *axe*). In the harder **Crafting** benchmark, goals involve crafting a target artifact (e.g., a *bed*), which may require mining a few target resources. The most challenging **Compositional** benchmark combines mining and crafting tasks, in environments that only begin with raw resources and two starting tools (axe and pickaxe). Agents may need to compose multiple skills to obtain other downstream resources (see Fig. 5 for an example). To test action generalization, we report evaluation on the *Compositional* using *only* actions learned previously in the **Mining** and **Crafting** benchmarks.

We similarly evaluate on an *ALFRED* benchmark of **Simple and Compositional** tasks drawn from the original task distribution in Shridhar et al. (2020). This distribution contains simple tasks that require picking up an object and placing it in a new location, picking up objects, applying a single household skill to an object and moving them to a new location (e.g., *Put a clean apple on the dining table*), and compositional tasks that require multiple skills (e.g., *Place a hot sliced potato on the*

Mini Minecraft (n=3)	LLM Predicts?	Library?	Mining	Crafting	Compositional	
Low-level Planning Only	Goal	Х	31% (σ=0.0%)	9% (σ=0.0%)	9% (σ=0.0%)	
Subgoal Prediction	Sub-goals	×	33% (σ =1.6%)	36% (<i>σ</i> =5.6%)	6% (σ =1.7%)	
Code Policy Prediction	Sub-policies	/	15% (σ =1.2%)	39% (σ =3.2%)	$10\% \ (\sigma=1.7\%)$	
Ada (Ours)	Goal+Operators	✓	100% (σ=0.0%)	100% (σ=7.5%)	100% (σ=4.1%)	
ALFRED (n=3 replications)	LLM Predicts?	Library?	Original (Simple + Compositional Tasks)			
Low-level Planning Only	Goal	Х		21% (σ=1.0%)		
Subgoal Prediction	Sub-goal	×	2% (σ=0.4%)			
Code Policy Prediction	Sub-policies	✓	2% (σ=0.9%)			
Ada (Ours)	Goal+Operators	✓		79% (σ = 0.9%)		

Table 1: (Top) Results on *Mini Minecraft*. Our algorithm successfully recovers all intermediate operators for mining and crafting, which enable generalization to more compositional tasks (which use up to 26 operators) without any additional learning. (Bottom) Results on ALFRED. Our algorithm recovers all required household operators, which generalize to more complex compositional tasks. All results report mean performance and STD from n=3 random replications for all models.

counter). We use a random subset of n=223 tasks, selected from an initial 250 that we manually filter to remove completely misspecified goals (which omit any mention of the target object or skill).

Baselines. We compare our method to three baselines of language-guided planning.

Low-level Planning Only uses an LLM to predict only the symbolic goal specification conditioned on the high-level predicates and linguistic goal, then uses the low-level planner to search directly for actions that satisfy that goal. This baseline implements a model like **LLM+P** (Liu et al., 2023), which uses LLMs to translate linguistic goals into planning-compatible formal specifications, then attempt to plan directly towards these with no additional representation learning.

Subgoal Prediction uses an LLM to predict a sequence of high-level subgoals (as PDDL pre/postconditions with object arguments), conditioned on the high-level predicates, and task goal and initial environment state. This baseline implements a model like **SayCan** (Ahn et al., 2022), which uses LLMs to directly predict goal *and* a sequence of decomposed formal subgoal representations, then applies low-level planning over these formal subgoals.

Code Policy Prediction uses an LLM to predict the definitions of a library of imperative local code policies in Python (with cases and control flow) over an imperative API that can query state and execute low-level actions.) Then, as FastDownward planning is no longer applicable, we also use the LLM to predict the function call sequences with arguments for each task. This baseline implements a model like Voyager (Wang et al., 2023a), which uses an LLM to predict a library of skills implemented as imperative code for solving individual tasks. Like Voyager, we verify the individual code skills during interactive planning, but do not use a more global learning objective to attempt to learn a concise or non-redundant library.

4.1 RESULTS

What action libraries do we learn? Fig. 5 shows example operators learned on each domain (Appendix A.3 contains the full libraries of operators learned on both domains from a randomly sampled run of the n=3 replications). In *Mini Minecraft*, we manually inspect the library and find that we learn operators that correctly specify the appropriate tools, resources, and outputs for all intermediate mining actions (on Mining) and crafting actions (on Crafting), allowing perfect direct generalization to the Compositional tasks without any additional training on these complex tasks. In *ALFRED*, we compare the learned libraries from all runs to the ground-truth operator library hand-engineered in Shridhar et al. (2020). The ground-truth operator set contains 8 distinct operators corresponding to different compositional skills (e.g., *Slicing*, *Heating*, *Cleaning*, *Cooling*). Across all replications, model reliably recovers semantically identical (same predicate preconditions and postconditions) definitions for *all* of these ground-truth operators, except for a single operator that is defined disjunctively (the ground-truth *Slice* skill specifies either of two types of knives), which we occasionally learn as two distinct operators or only recover with one of these two types.

We also inspect the learning trajectory and find that, through the interactive learning loop, we successfully *reject* many initially proposed operator definitions sampled from the language model that turn out to be redundant (which would make high-level planning inefficient), inaccurate (including apriori reasonable proposals that do not fit the environment specifications, such as proposing to *clean* objects with just a *towel*, when our goal verifiers require washing them with water in a *sink*), or

underspecified (such as those that omit key preconditions, yielding under-decomposed high-level task plans that make low-level planning difficult).

Do these actions support complex planning and generalization? Table 2 shows quantitative results from n=3 randomly-initialized replications of all models, to account for random noise in sampling from the language model and stochasticity in the underlying environment (ALFRED). On Minecraft, where goal specification is completely clear due to the synthetic language, we solve all tasks in each evaluation variation, including the challenging Compositional setting — the action libraries learned from simpler mining/crafting tasks generalize completely to complex tasks that require crafting all intermediate resources and tools from scratch. On ALFRED, we vastly outperform all other baselines, demonstrating that the learned operators are much more effective for planning and compose generalizably to more complex tasks. We qualitatively find that failures on ALFRED occur for several reasons. One is goal misspecification, when the LLM does not successfully recover the formal goal predicate (often due to ambiguity in human language), though we find that on average, 92% of the time, the ground truth goal appears as one of the top-4 goals translated by the LLM. We also find failures due to low-level policy inaccuracy, when the learned policies fail to account for low-level, often geometric details of the environment (e.g., the learned policies are not sufficiently precise to place a tall bottle on an appropriately tall shelf). More rarely, we see planning failures caused by slight operator overspecification (e.g., the Slice case discussed above, in which we do not recover the specific disjunction over possible knives that can be used to slice.) Both operator and goal specification errors could be addressed in principal by sampling more (and more diverse) proposals.

How does our approach compare to using the LLM to predict just goals, or predict task sequences? As shown in Table 2, our approach vastly outperforms the Low-level Planning Only baseline on both domains, demonstrating the value of the action library for longer horizon planning. We also find a substantial improvement over the Subgoal Prediction baseline. While the LLM frequently predicts important high-level aspects of the task subgoal structure (as it does to propose operator definitions), it frequently struggles to robustly sequence these subgoals and predict appropriate concrete object groundings that correctly obey the initial problem conditions or changing environment state. These errors accumulate over the planning horizon, reflected in decreasing accuracy on the compositional Minecraft tasks (on ALFRED, this baseline struggles to solve any more than the basic pick-and-place tasks, as the LLM struggles to predict subgoals that accurately track whether objects are in appliances or whether the agent's single gripper is full with an existing tool.)

How does our approach compare to using the LLM to learn and predict plans using imperative code libraries? Somewhat surprisingly, we find that the Code Policy prediction baseline performs unevenly and often very poorly on our benchmarks. (We include additional results in A.2.1 showing that our model also dramatically outperforms this baseline using GPT-4 as the base LLM.) We find several key reasons for the poor performance of this baseline relative to our model, each which validate the key conceptual contributions of our approach. First, the baseline relies on the LLM as the planner – as the skills are written as general Python functions, rather than any planner-specific representation, we do not use an optimized planner like FastDownward. As with Subgoal Prediction, we find that the LLM is not a consistent or accurate planner. While it retrieves generally relevant skills from the library for each task, it often struggles to sequence them accurately or predict appropriate arguments given the initial problem state. Second, we find that imperative code is less suited in general as a hierarchical planning representation for these domains than the high-level PDDL and low-level local policy search representation we use in our model. This is because it uses control flow to account for environment details that would otherwise be handled by local search relative to a high-level PDDL action. Finally, our model specifically frames the library learning objective around learning a compact library of skills that enables efficient planning, whereas our Voyager re-implementation (as in Wang et al. (2023a)) simply grows a library of skills which are individually executable and can be used to solve individual, shorter tasks. Empirically, as with the original model in Wang et al. (2023a), this baseline learns hundreds of distinct code definitions on these datasets, which makes it harder to accurately plan and generalize to more complex tasks. Taken together, these challenges support our overarching library learning objective for hierarchical planning.

5 RELATED WORK

Planning for language goals. A large body of recent work attempts to use LLMs to solve planning tasks specified in language. One approach is to directly predict action sequences (Huang et al., 2022; Valmeekam et al., 2022; Silver et al., 2022; Wang et al., 2023b), but this has yielded mixed

results as LLMs can struggle to generalize or produce correct plans as problems grow more complex. To combat this, one line of work has explored structured and iterative prompting regimes (e.g., 'chain-of-thought' and feedback) (Mu et al., 2023; Silver et al., 2023; Zhu et al., 2023). Increasingly, other neuro-symbolic work uses LLMs to predict formal goal or action representations that can be verified or solved with symbolic planners (Song et al., 2023; Ahn et al., 2022; Xie et al., 2023; Arora & Kambhampati, 2023). These approaches leverage the benefits of a known planning domain model. Our goal in this paper is to leverage language models to *learn* this domain model. Another line of research aims at using LLMs to generate formal planning domain models for specific problems (Liu et al., 2023) and subsequently uses classical planners to solve the task. However, they are not considering generating grounded or hierarchical actions in an environment and not learning a library of operators that can be reused across different tasks. More broadly, we share the broad goal of building agents that can understand language and execute actions to achieve goals (Tellex et al., 2011; Misra et al., 2017; Nair et al., 2022). See also Luketina et al. (2019) and Tellex et al. (2020).

Learning planning domain and action representations from language. Another group of work has been focusing on learning latent action representations from language (Corona et al., 2021; Andreas et al., 2017; Jiang et al., 2019; Sharma et al., 2022; Luo et al., 2023). Our work differs from them in that we are learning a planning-compatible action abstraction from LLMs, instead of relying on human demonstrations and annotated step-by-step instructions. The more recent Wang et al. (2023a) adopts a similar overall problem specification, to learn libraries of actions as imperative code-based policies. Our results show that learning planning abstractions enables better integration with hierarchical planning, and, as a result, better performance and generalization to more complex problems. Other recent work (Nottingham et al., 2023) learns an environment model from interactive experience, represented as a task dependency graph; we seek to learn a richer state transition model (which represents the effects of actions) decomposed as operators that can be formally composed to verifiably satisfy arbitrarily complex new goals. Guan et al. (2024), published concurrently, seeks to learn PDDL representations; we show how these can be grounded hierarchically.

Language and code. In addition to Wang et al. (2023a), a growing body of work in program synthesis, both by learning lifted program abstractions that compress longer existing or synthesized programs (Bowers et al., 2023; Ellis et al., 2023; Wong et al., 2021; Cao et al., 2023). These approaches (including Wang et al. (2023a)) generally learn libraries defined over imperative and functional programming languages, such as LISP and Python. Our work is closely inspired by these and seeks to learn representations suited specifically to solving long-range planning problems.

Hierarchical planning abstractions. The hierarchical planning knowledge that we learn from LLMs and interactions in the environments are related to hierarchical task networks (Erol et al., 1994; Nejati et al., 2006), hierarchical goal networks (Alford et al., 2016), abstract PDDL domains (Konidaris et al., 2018; Bonet & Geffner, 2020; Chitnis et al., 2021; Asai & Muise, 2020; Mao et al., 2022; 2023), and domain control knowledge (de la Rosa & McIlraith, 2011). Most of these approaches require manually specified hierarchical planning abstractions; others learn them from demonstrations or interactions. By contrast, we leverage human language to guide the learning of such abstractions.

6 DISCUSSION AND FUTURE WORK

Our evaluations suggest a powerful role for language within AI systems that form complex, long-horizon plans — as a rich source of background knowledge about the right *action abstractions* for everyday planning domains, which contains broad human priors about environments, task decompositions, and potential future goals. A core goal of this paper was to demonstrate how to integrate this knowledge into the search, grounding, and verification toolkits developed in hierarchical planning.

We leave open many possible extensions towards future work. Key **limitations** of our current framework point towards important directions for further integrating LMs and hierarchical planning to scale our approach: here, we build on an existing set of pre-defined symbolic predicates for initially representing the environment state; do not yet tackle fine-grained, geometric motor planning; and use a general LLM (rather than one fine-tuned for extended planning). **Future work** might generally tackle these problems by further asking how else linguistic knowledge and increasingly powerful or multimodal LLMs could be integrated here: to *propose* useful named predicates over initial perceptual inputs (e.g., images) (Migimatsu & Bohg, 2022); or to speed planning by bootstrapping hierarchical planning abstractions using the approach here, but then to progressively transfer planning to another model, including an LLM, to later compose and use the learned representations.

Acknowledgement. We thank anonymous reviewers for their valuable comments. We gratefully acknowledge support from ONR MURI grant N00014-16-1-2007; from the Center for Brain, Minds, and Machines (CBMM, funded by NSF STC award CCF-1231216); from NSF grant 2214177; from NSF grant CCF-2217064 and IIS-2212310; from Air Force Office of Scientific Research (AFOSR) grant FA9550-22-1-0249; from ONR MURI grant N00014-22-1-2740; from ARO grant W911NF-23-1-0034; from the MIT-IBM Watson AI Lab; from the MIT Quest for Intelligence; from Intel; and from the Boston Dynamics Artificial Intelligence Institute. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of our sponsors.

REFERENCES

- Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as I Can, Not as I Say: Grounding Language in Robotic Affordances. *arXiv:2204.01691*, 2022. 1, 2, 7, 9
- Ron Alford, Vikas Shivashankar, Mark Roberts, Jeremy Frank, and David W Aha. Hierarchical Planning: Relating Task and Goal Decomposition with Task Sharing. In *IJCAI*, 2016. 9
- Jacob Andreas, Dan Klein, and Sergey Levine. Modular Multitask Reinforcement Learning with Policy Sketches. In *ICML*, 2017. 9
- Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. In *NeurIPS*, 2017. 5
- Daman Arora and Subbarao Kambhampati. Learning and Leveraging Verifiers to Improve Planning Capabilities of Pre-trained Language Models. *arXiv*:2305.17077, 2023. 9
- Masataro Asai and Christian Muise. Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Voyage Home (To Strips). In *IJCAI*, 2020. 9
- Blai Bonet and Hector Geffner. Learning First-Order Symbolic Representations for Planning from the Structure of the State Space. In *ECAI*, 2020. 9
- Matthew Bowers, Theo X Olausson, Lionel Wong, Gabriel Grand, Joshua B Tenenbaum, Kevin Ellis, and Armando Solar-Lezama. Top-Down Synthesis for Library Learning. *PACMPL*, 7(POPL): 1182–1213, 2023. 9
- David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova. Babble: Learning Better Abstractions with E-graphs and Anti-unification. *PACMPL*, 7(POPL): 396–424, 2023. 9
- Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask Your Humans: Using Human Instructions to Improve Generalization in Reinforcement Learning. In *ICLR*, 2021. 5, 13
- Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. GLiB: Efficient Exploration for Relational Model-Based Reinforcement Learning via Goal-Literal Babbling. In *AAAI*, 2021. 9
- Rodolfo Corona, Daniel Fried, Coline Devin, Dan Klein, and Trevor Darrell. Modular Networks for Compositional Instruction Following. In NAACL-HLT, 2021.
- Tomás de la Rosa and Sheila McIlraith. Learning Domain Control Knowledge for TLPlan and Beyond. In *ICAPS 2011 Workshop on Planning and Learning*, 2011. 9
- Thomas G Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. *JAIR*, 13:227–303, 2000. 1
- Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. DreamCoder: Growing Generalizable, Interpretable Knowledge with Wake–Sleep Bayesian Program Learning. *Philosophical Transactions of the Royal Society*, 381(2251):20220050, 2023. 9

- Kutluhan Erol, James Hendler, and Dana S Nau. HTN Planning: Complexity and Expressivity. In *AAAI*, 1994. 1, 9
- Richard E Fikes and Nils J Nilsson. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. *Artif. Intell.*, 2(3-4):189–208, 1971. 2
- Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Integrated Task and Motion Planning. Ann. Rev. Control Robot. Auton. Syst., 4:265–293, 2021. 1
- Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pretrained large language models to construct and utilize world models for model-based task planning. *Advances in Neural Information Processing Systems*, 36, 2024. 9
- Malte Helmert. The Fast Downward Planning System. JAIR, 26:191–246, 2006. 3, 5
- Mark K Ho, David Abel, Carlos G Correa, Michael L Littman, Jonathan D Cohen, and Thomas L Griffiths. People Construct Simplified Mental Representations to Plan. *Nature*, 606(7912):129–136, 2022. 1
- Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents. In *ICML*, 2022. 8
- Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an Abstraction for Hierarchical Deep Reinforcement Learning. In *NeurIPS*, 2019. 9
- George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From Skills to Symbols: Learning Symbolic Representations for Abstract High-Level Planning. *JAIR*, 61:215–289, 2018. 9
- Steven LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Planning. *Research Report* 9811, 1998. 5
- Vladimir Lifschitz. On the Semantics of STRIPS. In Workshop on Reasoning about Actions and Plans, 1986. 3
- Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. LLM+ P: Empowering Large Language Models with Optimal Planning Proficiency. arXiv:2304.11477, 2023. 2, 7, 9
- Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette, Shimon Whiteson, and Tim Rocktäschel. A Survey of Reinforcement Learning Informed by Natural Language. In *IJCAI*, 2019. 9
- Zhezheng Luo, Jiayuan Mao, Jiajun Wu, Tomás Lozano-Pérez, Joshua B Tenenbaum, and Leslie Pack Kaelbling. Learning Rational Subgoals from Demonstrations and Instructions. In *AAAI*, 2023. 5, 9, 13
- Jiayuan Mao, Tomas Lozano-Perez, Joshua B. Tenenbaum, and Leslie Pack Kaelbing. PDSketch: Integrated Domain Programming, Learning, and Planning. In *NeurIPS*, 2022. 9
- Jiayuan Mao, Tomás Lozano-Pérez, Joshua B. Tenenbaum, and Leslie Pack Kaelbling. What planning problems can a relational neural network solve? In *NeurIPS*, 2023. 9
- Toki Migimatsu and Jeannette Bohg. Grounding Predicates through Actions, 2022. 2, 9
- Dipendra Misra, John Langford, and Yoav Artzi. Mapping Instructions and Visual Observations to Actions with Reinforcement Learning. In *EMNLP*, 2017. 9
- Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai, Yu Qiao, and Ping Luo. EmbodiedGPT: Vision-Language Pre-training via Embodied Chain of Thought. *arXiv*:2305.15021, 2023. 9
- Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, and Chelsea Finn. Learning Language-Conditioned Robot Behavior from Offline Data and Crowd-Sourced Annotation. In *CoRL*, 2022.

- Negin Nejati, Pat Langley, and Tolga Konik. Learning Hierarchical Task Networks by Observation. In *ICML*, 2006. 1, 9
- Kolby Nottingham, Prithviraj Ammanabrolu, Alane Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer Singh, and Roy Fox. Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision Making using Language Guided World Modelling. In *ICML*, 2023. 9
- Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill Induction and Planning with Latent Language. In *ACL*, 2022. 9
- Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks. In *CVPR*, 2020. 2, 5, 6, 7, 13
- Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. Learning Symbolic Operators for Task and Motion Planning. In *IROS*, 2021. 3
- Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. PDDL Planning with Pretrained Large Language Models. In *NeurIPS Foundation Models for Decision Making Workshop*, 2022. 8
- Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Pack Kaelbling, and Michael Katz. Generalized Planning in PDDL Domains with Pretrained Large Language Models. *arXiv*:2305.11014, 2023. 9
- Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models. In *ICCV*, 2023. 9
- Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning. Artif. Intell., 112(1-2):181–211, 1999.
- Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Banerjee, Seth Teller, and Nicholas Roy. Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation. In *AAAI*, 2011. 9
- Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots That Use Language. *Annual Review of Control, Robotics, & Autonomous Systems*, 3:25–55, 2020. 9
- Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large Language Models Still Can't Plan (A Benchmark for LLMs on Planning and Reasoning about Change). In *NeurIPS Foundation Models for Decision Making Workshop*, 2022. 8
- Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models. *arXiv:2305.16291*, 2023a. 1, 2, 7, 8, 9
- Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents, 2023b. 8
- Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. Leveraging Language to Learn Program Abstractions and Search Heuristics. In *ICML*, 2021. 9
- Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating Natural Language to Planning Goals with Large-Language Models. *arXiv*:2302.05128, 2023. 9
- Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in the Minecraft: Generally Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory, 2023. 9

A APPENDIX

We will release a complete code repository containing our full algorithm implementation, all baselines, and benchmark tasks. Here, we provide additional details on our implementational choices.

A.1 BENCHMARKS

Mini Minecraft (Fig. 5, top) is a procedurally-generated Minecraft-like benchmark (Chen et al., 2021; Luo et al., 2023) that requires complex, extended planning. The environment places an agent on a 2D map containing various resources, tools, and crafting stations. The agent can use appropriate tools to mine new items from raw resources (e.g. use an axe to obtain wood from trees), or collect resources into an inventory to craft new objects (e.g. combining sticks and iron ingots to craft a sword, which itself can be used to obtain feathers from a chicken). The ability to create new objects that themselves permit new actions yields an enormous action space at each time step (>2000 actions, considering different combinations of items to use) and very long-horizon tasks (26 steps for the most complex task, even without path-planning.) The provided environment predicates allow querying object types and inventory contents. Low-level actions allow the agent to move and apply tools to specific resources. To focus on complex crafting, we provide a low-level move-to action to move directly to specified locations. Linguistic goal specifications are synthetically generated from a simple grammar over craftable objects and resources (e.g. Craft a sword, Mine iron ore).

ALFRED (Fig. 5, bottom) is a household planning benchmark of human-annotated but formally verifiable tasks defined over a simulated Unity environment (Shridhar et al., 2020). The interactive environment places an agent in varying 3D layouts, each containing appliances and dozens of household objects. The provided environment includes predicates for querying object types, object and agent locations, and classifiers over object states (eg. whether an object is hot or on). Low-level actions enable the agent to pick up and place objects, apply tools to other objects, and open, close, and turn on appliances. As specified in Shridhar et al. (2020), ground-truth high-level plans in the ALFRED benchmark compose 5-10 high-level operators, and low-level action trajectories have on average 50 low-level actions. There over 100 objects that the agent can interact with in each interactive environment.

As with Minecraft, we provide a low-level method to move the agent directly to specified locations. While ALFRED is typically used to evaluate detailed instruction following, we focus on a *goal-only* setting that only uses the goal specifications. The human-annotated goals introduce ambiguity, underspecification, and errors with respect to the ground-truth verifiable tasks (eg. people refer to *tables* without specifying if they mean the *side table*, *dining table*, or *desk*; a *light* when there are multiple distinct lamps; or a *cabbage* when they want *lettuce*).

A.2 ADDITIONAL METHODS IMPLEMENTATION DETAILS

A.2.1 LLM PROMPTING

We use gpt-3.5-turbo-16k for all experiments and baselines. Here, we describe the contents of the LLM few-shot prompts used in our method in more detail. **Symbolic Task Decomposition** For all unsolved tasks, at each iteration, we sample a set of symbolic task descriptions as a sequence of named high-level actions and their arguments. We construct a few-shot prompt consisting of the following components:

- 1. A brief natural language header (;;;; Given natural language goals, predict a sequence of PDDL actions);
- 2. A sequence of example (l_t, P_A) tuples containing linguistic goals and example task decompositions. To avoid biasing the language model in advance, we provide example task decompositions for similar, constructed tasks that do not use any of the skills that need to be learned in our two domains.

For example, on ALFRED, these example task decompositions are for example tasks (bake a potato and put it in the fridge, place a baked, grated apple on top of the dining table, place a plate in a full sink., and pick up a laptop and then carry it over to the desk lamp, then restart the desk lamp.), and our example task decompositions suggest named operators

- BakeObject, GrateObject, FillObject, and RestartObject, none of which appear in the actual training set.
- 3. At iterations > 0, we also provide a sequence of sampled (l_t, P_A) tuples randomly sampled from any solved tasks and their discovered high-level plans. This means that few-shot prompting better represents the true task distribution over successive iterations.

In our experiments, we prompt with temperature=1.0 and draw n=4 task decomposition samples per unsolved task.

Symbolic Operator Definition For all unsolved tasks, at each iteration, we sample proposed operator definitions consisting of *args*, *pre*, *eff* conditioned on all undefined operator names that appear in the proposed task decompositions.

For each operator name, we construct a few-shot prompt consisting of the following components:

- 1. A brief natural language header (You are a software engineer who will be writing planning operators in the PDDL planning language. These operators are based on the following PDDL domain definition.
- 2. The full set of environment predicates vocabulary of high-level environment predicates \mathcal{P} , as well as valid named argument values (eg. object types).
- 3. A sequence of example *name*, *args*, *pre*, *eff* operator definitions demonstrating the PDDL definition format. As with task decomposition, of course, we do not provide any example operator definitions that we wish to learn from our dataset.
- 4. At iterations > 0, we include as many possible validated *name*, *args*, *pre*, *eff* operators defined in the current library (including new learned operators). If there are shared patterns between operators, this means that few-shot prompting also better represents the true operator structure over successive iterations.

In our experiments, we prompt with temperature=1.0 and draw n=3 task decomposition samples per unsolved task. However, in our pilot experiments, we actually find that sampling directly from the token probabilities defined by this few-shot prompt does not produce sufficiently diverse definitions for each operator name. We instead directly prompt the LLM to produce up to N distinct operator definitions sequentially.

We find that GPT 3.5 frequently produces syntactically invalid operator proposals – proposed operators often include invent predicates and object types that are not defined in the environment vocabulary, do not obey the predicate typing rules, or do not have the correct number and types of arguments. While this might improve with finetuned or larger LLMs, we instead implement a simple post-processing heuristic to correct operators with syntactic errors, or reject operators altogether: as operator pre and postconditions are represented as conjunctions of predicates, we remove any invalid predicates (predicates that are invented or that specify invalid arguments); we collect all arguments named across the predicates and use the ground truth typing to produce the final *args*, and we reject any operators that have 0 valid postcondition predicates. This post-processing procedure frequently leaves operators underspecified (e.g., the resulting operators now are missing necessary preconditions, which were partially generated but syntactically incorrect in the proposal); we allow our full operator learning algorithm to verify and reject these operators.

Symbolic Goal Proposal Finally, as described in 3.2, we also use an LLM to propose a set of candidate goal definitions as FOL formulas F_t' defined over the environment predicates \mathcal{P} for each task. Our prompting technique is very similar to that used in the rest of our algorithm. For each task, we we construct a few-shot prompt consisting of the following components:

- 1. A brief natural language header (You are a software engineer who will be writing goal definitions for a robot in the PDDL planning language.
- 2. The full set of environment predicates vocabulary of high-level environment predicates \mathcal{P} , as well as valid named argument values (eg. object types).
- 3. A sequence of example l_t , f_t language and FOL goal formulas. In our experiments, during training, unlike in the previous prompts (where including ground truth operators would solve the learning problem), we do sample an initial set of goal definitions from the training

Mini Minecraft	LLM Predicts?	Library?	Mining	Crafting	Compositional
Code Policy Prediction Ours	Sub-policies Goal+Operators	<i>y</i>	12% 100%	37% 100%	11% 100%
ALFRED (n=3 replications)	LLM Predicts?	Library?	Original	(Simple + Co	ompositional Tasks)
Code Policy Prediction Ours	Sub-policies Goal+Operators	1		119 709	·

Table 2: **Results with GPT-4 as the LLM backbone**: On both *Mini Minecraft (Top)* and ALFRED (*Bottom*), our algorithm recovers all required operators, which generalize to more complex compositional tasks. Switching to GPT-4 does not impact performance trends observed across the *Code as Policies (Voyager)* baseline and our method.

distribution as our initial example supervision. We set supervision to a randomly sampled fraction (0.1) of the training distribution.

4. At iterations > 0, we also include l_t , f_t examples from successfully solved tasks.

In our experiments, we prompt with temperature=1.0 and draw n=4 task decomposition samples per unsolved task. As with the operator proposal, we also find that sampling directly from the token probabilities defined by this few-shot prompt does not produce sufficiently diverse definitions for each linguistic goal to correct for ambiguity in the human language (eg. to define the multiple concrete *Table* types that a person might mean when referring to a *table*). We therefore again instead directly prompt the LLM to produce up to N distinct operator definitions sequentially.

We also post-process proposed goals using the same syntactic criterion to remove invalid predicates in the FOL formula, and reject any empty goals.

A.2.2 POLICY LEARNING AND GUIDED LOW-LEVEL SEARCH

Concretely, we implement our policy-guided low-level action search as the following. We maintain a dictionary D that maps subgoals (a conjunction of atoms) to a set of candidate low-level action trajectories. When planning for a new subgoal sg, if D contains the trajectory, we prioritize trying candidate low-level trajectories in D. Otherwise, we fall back to a brute-force breadth-first search over all possible action trajectories. To populate D, during the BFS, we compute the difference in the environment state before and after the agent executes any sampled trajectory and the corresponding trajectory t that caused the state change. Here the state difference can be viewed as a subgoal sg achieved by executing t. Rather than directly adding the (sg, t) as a key-value pair to D, we *lift* the trajectory and environment state change by replacing concrete objects in sg and t by variables. Note that we update D with each sampled trajectory in the BFS even if it doesn't achieve the subgoal specified in the BFS search.

When the low-level search receives a subgoal sg, we again lift it by replacing objects with variables, and try to match it with entries in D. If D contains multiple trajectories t for a given subgoal sg, we track how often a given trajectory succeeds for a subgoal and prioritize trajectories with the most successes.

A.3 EXPERIMENTS

Learned Operator Libraries on Minecraft The following shows the full PDDL domain definition including the initial provided vocabulary of symbolic environment constants and predicates, initial pick and place operators and example operator, and all ensuing learned operators combined from the **Mining** and **Crafting** benchmarks.

```
(define (domain crafting-world-v20230404-teleport)
(:requirements :strips)
(:types
tile
object
inventory
object-type
)
(:constants
```

```
Key - object-type
10
     WorkStation - object-type
11
     Pickaxe - object-type
12
     IronOreVein - object-type
13
     IronOre - object-type
14
     IronIngot - object-type
15
     CoalOreVein - object-type
16
     Coal - object-type
17
18
     GoldOreVein - object-type
19
     GoldOre - object-type
     GoldIngot - object-type
20
     CobblestoneStash - object-type
21
     Cobblestone - object-type
22
     Axe - object-type
23
24
     Tree - object-type
     Wood - object-type
25
     WoodPlank - object-type
26
     Stick - object-type
27
     Sword - object-type
28
     Chicken - object-type
29
     Feather - object-type
30
     Arrow - object-type
31
     Shears - object-type
32
     Sheep - object-type
33
     Wool - object-type
34
     Bed - object-type
35
     Boat - object-type
36
     SugarCanePlant - object-type
37
     SugarCane - object-type
38
     Paper - object-type
39
     Bowl - object-type
40
     PotatoPlant - object-type
41
     Potato - object-type
42
     CookedPotato - object-type
43
     BeetrootCrop - object-type
44
45
     Beetroot - object-type
     BeetrootSoup - object-type
46
47
     Hypothetical - object-type
48
     Trash - object-type
49
50
   (:predicates
51
      (tile-up ?t1 - tile ?t2 - tile)
52
      (tile-down ?t1 - tile ?t2 - tile)
53
      (tile-left ?t1 - tile ?t2 - tile)
54
      (tile-right ?t1 - tile ?t2 - tile)
55
56
      (agent-at ?t - tile)
57
      (object-at ?x - object ?t - tile)
58
      (inventory-holding ?i - inventory ?x - object)
59
      (inventory-empty ?i - inventory)
60
61
      (object-of-type ?x - object ?ot - object-type)
62
   )
63
64
   (:action move-to
65
     :parameters (?t1 - tile ?t2 - tile)
66
     :precondition (and (agent-at ?t1))
67
     :effect (and (agent-at ?t2) (not (agent-at ?t1)))
68
69
   (:action pick-up
70
71
     :parameters (?i - inventory ?x - object ?t - tile)
     :precondition (and (agent-at ?t) (object-at ?x ?t) (inventory-empty ?i)
       )
```

```
:effect (and (inventory-holding ?i ?x) (not (object-at ?x ?t)) (not (
73
        inventory-empty ?i)))
74
    (:action place-down
75
      :parameters (?i - inventory ?x - object ?t - tile)
76
      :precondition (and (agent-at ?t) (inventory-holding ?i ?x))
77
      :effect (and (object-at ?x ?t) (not (inventory-holding ?i ?x)) (
78
        inventory-empty ?i))
79
    (:action mine-iron-ore
80
      :parameters (?toolinv - inventory ?targetinv - inventory ?x - object ?
81
        tool - object ?target - object ?t - tile)
      :precondition (and
82
        (agent-at ?t)
83
        (object-at ?x ?t)
84
        (object-of-type ?x IronOreVein)
85
        (inventory-holding ?toolinv ?tool)
86
        (object-of-type ?tool Pickaxe)
87
        (inventory-empty ?targetinv)
(object-of-type ?target Hypothetical)
89
90
91
      :effect (and
        (not (inventory-empty ?targetinv))
92
        (inventory-holding ?targetinv ?target)
93
        (not (object-of-type ?target Hypothetical))
94
        (object-of-type ?target IronOre)
95
96
97
    (:action mine-wood_2
98
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
99
        targetiny - inventory ?target - object)
100
     :precondition (and
101
       (agent-at ?t)
102
       (object-at ?x ?t)
103
104
       (object-of-type ?x Tree)
       (inventory-holding ?toolinv ?tool)
105
       (object-of-type ?tool Axe)
106
       (inventory-empty ?targetinv)
107
       (object-of-type ?target Hypothetical)
108
109
     :effect (and
110
       (not (inventory-empty ?targetinv))
111
       (inventory-holding ?targetinv ?target)
112
113
       (not (object-of-type ?target Hypothetical))
       (object-of-type ?target Wood)
114
115
     )
116
    (:action mine-wool1_0
117
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
118
        targetinv - inventory ?target - object)
119
     :precondition (and
120
121
       (agent-at ?t)
       (object-at ?x ?t)
122
       (object-of-type ?x Sheep)
123
       (inventory-holding ?toolinv ?tool)
124
       (object-of-type ?tool Shears)
125
       (inventory-empty ?targetinv)
126
       (object-of-type ?target Hypothetical)
127
128
129
     :effect (and
       (not (inventory-empty ?targetinv))
130
       (inventory-holding ?targetinv ?target)
131
       (not (object-of-type ?target Hypothetical))
132
```

```
(object-of-type ?target Wool)
133
134
135
    (:action mine-potato_0
136
     :parameters (?t - tile ?x - object ?targetinv - inventory ?target -
137
        object)
138
     :precondition (and
139
140
       (agent-at ?t)
141
       (object-at ?x ?t)
       (object-of-type ?x PotatoPlant)
142
       (inventory-empty ?targetinv)
143
       (object-of-type ?target Hypothetical)
144
145
146
     :effect (and
       (not (inventory-empty ?targetinv))
147
       (inventory-holding ?targetinv ?target)
148
       (not (object-of-type ?target Hypothetical))
149
       (object-of-type ?target Potato)
150
151
152
    (:action mine-sugar-cane_2
153
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
154
        targetinv - inventory ?target - object)
155
     :precondition (and
156
       (agent-at ?t)
157
       (object-at ?x ?t)
158
       (object-of-type ?x SugarCanePlant)
159
       (inventory-holding ?toolinv ?tool)
160
       (object-of-type ?tool Axe)
161
       (inventory-empty ?targetinv)
162
       (object-of-type ?target Hypothetical)
163
164
     :effect (and
165
       (not (inventory-empty ?targetinv))
166
       (inventory-holding ?targetinv ?target)
167
       (not (object-of-type ?target Hypothetical))
168
       (object-of-type ?target SugarCane)
169
170
171
    (:action mine-beetroot<sub>-</sub>1
172
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
173
        targetinv - inventory ?target - object)
174
     :precondition (and
175
       (agent-at ?t)
176
       (object-at ?x ?t)
177
       (object-of-type ?x BeetrootCrop)
178
       (inventory-holding ?toolinv ?tool)
179
180
       (inventory-empty ?targetinv)
       (object-of-type ?target Hypothetical)
181
182
183
     :effect (and
       (not (inventory-empty ?targetinv))
184
       (inventory-holding ?targetinv ?target)
185
       (not (object-of-type ?target Hypothetical))
186
       (object-of-type ?target Beetroot)
187
188
189
    (:action mine-feather_1
190
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
191
        targetiny - inventory ?target - object)
192
     :precondition (and
193
```

```
(agent-at ?t)
194
       (object-at ?x ?t)
195
       (object-of-type ?x Chicken)
196
       (inventory-holding ?toolinv ?tool)
197
       (object-of-type ?tool Sword)
198
       (inventory-empty ?targetinv)
199
       (object-of-type ?target Hypothetical)
200
201
202
     :effect (and
203
       (not (inventory-empty ?targetinv))
       (inventory-holding ?targetinv ?target)
204
       (not (object-of-type ?target Hypothetical))
205
       (object-of-type ?target Feather)
206
207
208
    (:action mine-cobblestone_2
209
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
210
        targetinv - inventory ?target - object)
211
     :precondition (and
212
       (agent-at ?t)
213
       (object-at ?x ?t)
214
       (object-of-type ?x CobblestoneStash)
215
       (inventory-holding ?toolinv ?tool)
216
       (object-of-type ?tool Pickaxe)
217
       (inventory-empty ?targetinv)
218
       (object-of-type ?target Hypothetical)
219
220
     :effect (and
221
       (not (inventory-empty ?targetinv))
222
       (inventory-holding ?targetinv ?target)
223
       (not (object-of-type ?target Hypothetical))
224
       (object-of-type ?target Cobblestone)
225
226
227
228
    (:action mine-gold-ore1_2
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
229
        targetinv - inventory ?target - object)
230
     :precondition (and
231
       (agent-at ?t)
232
       (object-at ?x ?t)
233
       (object-of-type ?x GoldOreVein)
234
       (inventory-holding ?toolinv ?tool)
235
236
       (object-of-type ?tool Pickaxe)
       (inventory-empty ?targetinv)
237
       (object-of-type ?target Hypothetical)
238
239
     :effect (and
240
       (not (inventory-empty ?targetinv))
241
       (inventory-holding ?targetinv ?target)
242
       (not (object-of-type ?target Hypothetical))
243
       (object-of-type ?target GoldOre)
244
245
246
    (:action mine-coal1_0
247
     :parameters (?t - tile ?x - object ?toolinv - inventory ?tool - object ?
248
        targetiny - inventory ?target - object)
249
     :precondition (and
250
       (agent-at ?t)
251
252
       (object-at ?x ?t)
       (object-of-type ?x CoalOreVein)
253
       (inventory-holding ?toolinv ?tool)
254
       (object-of-type ?tool Pickaxe)
255
```

```
(inventory-empty ?targetinv)
256
       (object-of-type ?target Hypothetical)
257
258
     :effect (and
259
       (not (inventory-empty ?targetinv))
260
       (inventory-holding ?targetinv ?target)
261
       (not (object-of-type ?target Hypothetical))
262
       (object-of-type ?target Coal)
263
264
265
    (:action mine-beetroot1_0
266
     :parameters (?t - tile ?x - object ?targetinv - inventory ?target -
267
        object)
268
     :precondition (and
269
       (agent-at ?t)
270
       (object-at ?x ?t)
271
       (object-of-type ?x BeetrootCrop)
272
       (inventory-empty ?targetinv)
273
       (object-of-type ?target Hypothetical)
274
275
     :effect (and
276
       (not (inventory-empty ?targetinv))
277
       (inventory-holding ?targetinv ?target)
278
       (not (object-of-type ?target Hypothetical))
279
       (object-of-type ?target Beetroot)
280
281
282
    (:action craft-wood-plank
283
      :parameters (?ingredientinv1 - inventory ?targetinv - inventory ?
284
        station - object ?ingredient1 - object ?target - object ?t - tile)
      :precondition (and
285
        (agent-at ?t)
286
        (object-at ?station ?t)
287
        (object-of-type ?station WorkStation)
288
        (inventory-holding ?ingredientinv1 ?ingredient1)
289
        (object-of-type ?ingredient1 Wood)
290
        (inventory-empty ?targetinv)
291
        (object-of-type ?target Hypothetical)
292
293
      :effect (and
294
        (not (inventory-empty ?targetinv))
295
        (inventory-holding ?targetinv ?target)
296
        (not (object-of-type ?target Hypothetical))
297
298
        (object-of-type ?target WoodPlank)
        (not (inventory-holding ?ingredientinv1 ?ingredient1))
299
        (inventory-empty ?ingredientinv1)
300
        (not (object-of-type ?ingredient1 Wood))
301
        (object-of-type ?ingredient1 Hypothetical)
302
303
304
    (:action craft-arrow
305
      :parameters (?ingredientinv1 - inventory ?ingredientinv2 - inventory ?
306
        targetiny - inventory ?station - object ?ingredient1 - object ?
        ingredient2 - object ?target - object ?t - tile)
      :precondition (and
307
        (agent-at ?t)
308
        (object-at ?station ?t)
309
        (object-of-type ?station WorkStation)
310
        (inventory-holding ?ingredientinv1 ?ingredient1)
311
        (object-of-type ?ingredient1 Stick)
312
        (inventory-holding ?ingredientinv2 ?ingredient2)
313
314
        (object-of-type ?ingredient2 Feather)
        (inventory-empty ?targetinv)
315
        (object-of-type ?target Hypothetical)
316
```

```
317
      :effect (and
318
        (not (inventory-empty ?targetinv))
319
        (inventory-holding ?targetiny ?target)
320
        (not (object-of-type ?target Hypothetical))
321
        (object-of-type ?target Arrow)
322
        (not (inventory-holding ?ingredientinv1 ?ingredient1))
323
        (inventory-empty ?ingredientinv1)
324
        (not (object-of-type ?ingredient1 Stick))
325
        (object-of-type ?ingredient1 Hypothetical)
        (not (inventory-holding ?ingredientinv2 ?ingredient2))
327
        (inventory-empty ?ingredientinv2)
328
        (not (object-of-type ?ingredient2 Feather))
329
        (object-of-type ?ingredient2 Hypothetical)
330
331
332
    (:action craft-beetroot-soup_0
333
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
334
        ingredient1 - object ?ingredientinv2 - inventory ?ingredient2 -
        object ?targetinv - inventory ?target - object)
335
     :precondition (and
336
       (agent-at ?t)
337
       (object-at ?station ?t)
338
       (object-of-type ?station WorkStation)
339
       (inventory-holding ?ingredientinv1 ?ingredient1)
340
       (object-of-type ?ingredient1 Beetroot)
341
       (inventory-holding ?ingredientinv2 ?ingredient2)
342
       (object-of-type ?ingredient2 Bowl)
343
       (inventory-empty ?targetinv)
344
       (object-of-type ?target Hypothetical)
345
346
     :effect (and
347
       (not (inventory-empty ?targetinv))
348
       (inventory-holding ?targetinv ?target)
349
       (not (object-of-type ?target Hypothetical))
350
       (object-of-type ?target BeetrootSoup)
351
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
352
       (inventory-empty ?ingredientinv1)
353
       (not (object-of-type ?ingredient1 Beetroot))
354
       (object-of-type ?ingredient1 Hypothetical)
355
356
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
       (inventory-empty ?ingredientinv2)
357
       (not (object-of-type ?ingredient2 Bowl))
358
359
       (object-of-type ?ingredient2 Hypothetical)
360
361
    (:action craft-paper<sub>-</sub>0
362
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
363
        ingredient1 - object ?targetinv - inventory ?target - object)
364
     :precondition (and
365
       (agent-at ?t)
366
367
       (object-at ?station ?t)
       (object-of-type ?station WorkStation)
368
       (inventory-holding ?ingredientinv1 ?ingredient1)
369
       (object-of-type ?ingredient1 SugarCane)
370
       (inventory-empty ?targetinv)
371
       (object-of-type ?target Hypothetical)
372
373
     :effect (and
374
375
       (not (inventory-empty ?targetinv))
       (inventory-holding ?targetinv ?target)
376
       (not (object-of-type ?target Hypothetical))
377
       (object-of-type ?target Paper)
378
```

```
(not (inventory-holding ?ingredientinv1 ?ingredient1))
379
       (inventory-empty ?ingredientinv1)
380
       (not (object-of-type ?ingredient1 SugarCane))
381
       (object-of-type ?ingredient1 Hypothetical)
382
383
384
    (:action craft-shears2_2
385
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
386
        ingredient1 - object ?targetinv - inventory ?target - object)
387
     :precondition (and
388
       (agent-at ?t)
389
       (object-at ?station ?t)
390
       (object-of-type ?station WorkStation)
391
       (inventory-holding ?ingredientinv1 ?ingredient1)
392
       (object-of-type ?ingredient1 GoldIngot)
393
       (inventory-empty ?targetinv)
394
       (object-of-type ?target Hypothetical)
395
396
     :effect (and
397
       (not (inventory-empty ?targetinv))
398
       (inventory-holding ?targetinv ?target)
399
       (not (object-of-type ?target Hypothetical))
400
       (object-of-type ?target Shears)
401
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
402
       (inventory-empty ?ingredientinv1)
403
       (not (object-of-type ?ingredient1 GoldIngot))
404
       (object-of-type ?ingredient1 Hypothetical)
405
406
407
    (:action craft-bowl_1
408
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
409
        ingredient1 - object ?ingredientinv2 - inventory ?ingredient2 -
        object ?targetinv - inventory ?target - object)
410
411
     :precondition (and
412
       (agent-at ?t)
       (object-at ?station ?t)
413
       (object-of-type ?station WorkStation)
414
       (inventory-holding ?ingredientinv1 ?ingredient1)
415
       (object-of-type ?ingredient1 WoodPlank)
416
       (inventory-holding ?ingredientinv2 ?ingredient2)
417
       (object-of-type ?ingredient2 WoodPlank)
418
       (inventory-empty ?targetinv)
419
       (object-of-type ?target Hypothetical)
420
421
     :effect (and
422
       (not (inventory-empty ?targetinv))
423
       (inventory-holding ?targetinv ?target)
424
       (not (object-of-type ?target Hypothetical))
425
       (object-of-type ?target Bowl)
426
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
427
       (inventory-empty ?ingredientinv1)
428
       (not (object-of-type ?ingredient1 WoodPlank))
429
       (object-of-type ?ingredient1 Hypothetical)
430
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
431
       (inventory-empty ?ingredientinv2)
432
       (not (object-of-type ?ingredient2 WoodPlank))
433
       (object-of-type ?ingredient2 Hypothetical)
434
435
    )
436
    (:action craft-boat_0
437
     :parameters (?t - tile ?station - object ?ingredientinv - inventory ?
438
        ingredient - object ?targetinv - inventory ?target - object)
439
```

```
:precondition (and
440
441
       (agent-at ?t)
       (object-at ?station ?t)
442
       (object-of-type ?station WorkStation)
443
       (inventory-holding ?ingredientinv ?ingredient)
444
       (object-of-type ?ingredient WoodPlank)
445
       (inventory-empty ?targetinv)
446
       (object-of-type ?target Hypothetical)
447
448
449
     :effect (and
       (not (inventory-empty ?targetinv))
450
       (inventory-holding ?targetinv ?target)
451
       (not (object-of-type ?target Hypothetical))
452
       (object-of-type ?target Boat)
453
       (not (inventory-holding ?ingredientinv ?ingredient))
454
       (inventory-empty ?ingredientinv)
455
       (not (object-of-type ?ingredient WoodPlank))
456
       (object-of-type ?ingredient Hypothetical)
457
458
459
    (:action craft-cooked-potato_1
460
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
461
        ingredient1 – object ?ingredientinv2 – inventory ?ingredient2 –
        object ?targetinv - inventory ?target - object)
462
     :precondition (and
463
       (agent-at ?t)
464
       (object-at ?station ?t)
465
       (object-of-type ?station WorkStation)
466
       (inventory-holding ?ingredientinv1 ?ingredient1)
467
       (object-of-type ?ingredient1 Potato)
468
       (inventory-holding ?ingredientinv2 ?ingredient2)
469
       (object-of-type ?ingredient2 Coal)
470
       (inventory-empty ?targetinv)
(object-of-type ?target Hypothetical)
471
472
473
     :effect (and
474
       (not (inventory-empty ?targetinv))
475
       (inventory-holding ?targetinv ?target)
476
       (not (object-of-type ?target Hypothetical))
477
       (object-of-type ?target CookedPotato)
478
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
479
       (inventory-empty ?ingredientinv1)
480
       (not (object-of-type ?ingredient1 Potato))
481
482
       (object-of-type ?ingredient1 Hypothetical)
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
483
       (inventory-empty ?ingredientinv2)
484
       (not (object-of-type ?ingredient2 Coal))
485
       (object-of-type ?ingredient2 Hypothetical)
486
487
488
    (:action craft-gold-ingot_1
489
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
490
        ingredient1 - object ?ingredientinv2 - inventory ?ingredient2 -
        object ?targetinv - inventory ?target - object)
491
     :precondition (and
492
       (agent-at ?t)
493
       (object-at ?station ?t)
494
       (object-of-type ?station WorkStation)
495
       (inventory-holding ?ingredientinv1 ?ingredient1)
496
497
       (object-of-type ?ingredient1 GoldOre)
498
       (inventory-holding ?ingredientinv2 ?ingredient2)
       (object-of-type ?ingredient2 Coal)
499
       (inventory-empty ?targetinv)
500
```

```
(object-of-type ?target Hypothetical)
501
502
     :effect (and
503
       (not (inventory-empty ?targetinv))
504
       (inventory-holding ?targetinv ?target)
505
       (not (object-of-type ?target Hypothetical))
506
       (object-of-type ?target GoldIngot)
507
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
508
509
       (inventory-empty ?ingredientinv1)
510
       (not (object-of-type ?ingredient1 GoldOre))
       (object-of-type ?ingredient1 Hypothetical)
511
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
512
       (inventory-empty ?ingredientinv2)
513
       (not (object-of-type ?ingredient2 Coal))
514
       (object-of-type ?ingredient2 Hypothetical)
515
516
517
    (:action craft-stick_0
518
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
519
        ingredient1 - object ?targetinv - inventory ?target - object)
520
     :precondition (and
521
       (agent-at ?t)
522
       (object-at ?station ?t)
523
       (object-of-type ?station WorkStation)
524
       (inventory-holding ?ingredientinv1 ?ingredient1)
525
       (object-of-type ?ingredient1 WoodPlank)
526
       (inventory-empty ?targetinv)
527
       (object-of-type ?target Hypothetical)
528
529
     :effect (and
530
       (not (inventory-empty ?targetinv))
531
       (inventory-holding ?targetinv ?target)
532
       (not (object-of-type ?target Hypothetical))
533
       (object-of-type ?target Stick)
534
535
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
       (inventory-empty ?ingredientinv1)
536
       (not (object-of-type ?ingredient1 WoodPlank))
537
       (object-of-type ?ingredient1 Hypothetical)
538
539
540
    (:action craft-sword_0
541
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
542
        ingredient1 - object ?ingredientinv2 - inventory ?ingredient2 -
        object ?targetinv - inventory ?target - object)
543
     :precondition (and
544
       (agent-at ?t)
545
       (object-at ?station ?t)
546
       (object-of-type ?station WorkStation)
547
       (inventory-holding ?ingredientinv1 ?ingredient1)
548
       (object-of-type ?ingredient1 Stick)
549
       (inventory-holding ?ingredientinv2 ?ingredient2)
550
551
       (object-of-type ?ingredient2 IronIngot)
       (inventory-empty ?targetinv)
552
       (object-of-type ?target Hypothetical)
553
554
     :effect (and
555
       (not (inventory-empty ?targetinv))
556
       (inventory-holding ?targetinv ?target)
557
       (not (object-of-type ?target Hypothetical))
558
       (object-of-type ?target Sword)
559
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
       (inventory-empty ?ingredientinv1)
561
       (not (object-of-type ?ingredient1 Stick))
562
```

```
(object-of-type ?ingredient1 Hypothetical)
563
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
564
       (inventory-empty ?ingredientinv2)
565
       (not (object-of-type ?ingredient2 IronIngot))
566
       (object-of-type ?ingredient2 Hypothetical)
567
568
569
    (:action craft-bed_1
570
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
571
        ingredient1 - object ?ingredientinv2 - inventory ?ingredient2 -
        object ?targetinv - inventory ?target - object)
572
     :precondition (and
573
       (agent-at ?t)
574
       (object-at ?station ?t)
575
       (object-of-type ?station WorkStation)
576
       (inventory-holding ?ingredientinv1 ?ingredient1)
577
       (object-of-type ?ingredient1 WoodPlank)
578
       (inventory-holding ?ingredientinv2 ?ingredient2)
579
       (object-of-type ?ingredient2 Wool)
580
       (inventory-empty ?targetinv)
581
       (object-of-type ?target Hypothetical)
582
583
     :effect (and
584
       (not (inventory-empty ?targetinv))
585
       (inventory-holding ?targetinv ?target)
586
       (not (object-of-type ?target Hypothetical))
587
       (object-of-type ?target Bed)
588
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
589
       (inventory-empty ?ingredientinv1)
590
       (not (object-of-type ?ingredient1 WoodPlank))
591
       (object-of-type ?ingredient1 Hypothetical)
592
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
593
       (inventory-empty ?ingredientinv2)
594
       (not (object-of-type ?ingredient2 Wool))
595
596
       (object-of-type ?ingredient2 Hypothetical)
597
598
    (:action craft-iron-ingot_2
599
     :parameters (?t - tile ?station - object ?ingredientinv1 - inventory ?
600
        ingredient1 - object ?ingredientinv2 - inventory ?ingredient2 -
        object ?targetinv - inventory ?target - object)
601
     :precondition (and
602
603
       (agent-at ?t)
       (object-at ?station ?t)
604
       (object-of-type ?station WorkStation)
605
       (inventory-holding ?ingredientinv1 ?ingredient1)
606
       (object-of-type ?ingredient1 IronOre)
607
       (inventory-holding ?ingredientinv2 ?ingredient2)
608
609
       (object-of-type ?ingredient2 Coal)
       (inventory-empty ?targetinv)
(object-of-type ?target Hypothetical)
610
611
612
     :effect (and
613
       (not (inventory-empty ?targetinv))
614
       (inventory-holding ?targetinv ?target)
615
       (not (object-of-type ?target Hypothetical))
616
       (object-of-type ?target IronIngot)
617
       (not (inventory-holding ?ingredientinv1 ?ingredient1))
618
       (inventory-empty ?ingredientinv1)
619
       (not (object-of-type ?ingredient1 IronOre))
620
       (object-of-type ?ingredient1 Hypothetical)
621
       (not (inventory-holding ?ingredientinv2 ?ingredient2))
622
       (inventory-empty ?ingredientinv2)
623
```

```
(not (object-of-type ?ingredient2 Coal))
(object-of-type ?ingredient2 Hypothetical)

(object-of-type ?ingredient2 Hypothetical)

(object-of-type ?ingredient2 Hypothetical)
```

Learned Operator Libraries on ALFRED The following shows the full PDDL domain definition including the initial provided vocabulary of symbolic environment constants and predicates, initial pick and place operators, and all ensuing learned operators.

```
(define (domain alfred)
        (:requirements :adl
2
3
            agent location receptacle object rtype otype
5
6
        (:constants
7
            CandleType - otype
            ShowerGlassType - otype
            CDType - otype
10
            TomatoType - otype
11
            MirrorType - otype
12
            ScrubBrushType - otype
13
            MugType - otype
14
            ToasterType - otype
15
            PaintingType - otype
16
17
            CellPhoneType - otype
18
            LadleType - otype
            BreadType - otype
19
20
            PotType - otype
            BookType - otype
21
22
            TennisRacketType - otype
            ButterKnifeType - otype
23
            ShowerDoorType - otype
24
            KeyChainType - otype
25
26
            BaseballBatType - otype
27
            EggType – otype
            PenType - otype
28
            ForkType - otype
29
            VaseType - otype
30
31
            ClothType - otype
            WindowType - otype
32
            PencilType - otype
33
            StatueType - otype
34
            LightSwitchType - otype
35
            WatchType - otype
36
            SpatulaType - otype
37
            PaperTowelRollType - otype
38
            FloorLampType - otype
39
40
            KettleType – otype
            SoapBottleType - otype
41
            BootsType - otype
42
            TowelType - otype
43
            PillowType - otype
44
            AlarmClockType - otype
45
            PotatoType - otype
46
            ChairType - otype
47
            PlungerType - otype
48
49
            SprayBottleType - otype
            HandTowelType - otype
50
            BathtubType - otype
51
            RemoteControlType - otype
52
            PepperShakerType - otype
53
            PlateType - otype
54
```

```
BasketBallType - otype
55
             DeskLampType - otype
56
             FootstoolType - otype
57
             GlassbottleType - otype
58
             PaperTowelType - otype
59
             CreditCardType - otype
             PanType - otype
61
             ToiletPaperType - otype
62
             SaltShakerType - otype
63
64
             PosterType - otype
             ToiletPaperRollType - otype
65
             LettuceType - otype
66
             WineBottleType - otype
67
             KnifeType - otype
68
69
             LaundryHamperLidType - otype
             SpoonType - otype
70
             TissueBoxType - otype
71
             BowlType - otype
BoxType - otype
72
73
             SoapBarType - otype
74
             HousePlantType - otype
75
             NewspaperType - otype
76
             CupType - otype
77
             DishSpongeType - otype
78
             LaptopType - otype
79
             TelevisionType - otype
80
             StoveKnobType - otype
81
82
             CurtainsType - otype
             BlindsType - otype
83
             TeddyBearType - otype
84
             AppleType - otype
85
             WateringCanType - otype
87
             SinkType - otype
88
             ArmChairType - rtype
89
90
             BedType - rtype
91
             BathtubBasinType - rtype
             DresserType - rtype
92
             SafeType - rtype
93
             DiningTableType - rtype
94
             SofaType - rtype
95
             HandTowelHolderType - rtype
96
             StoveBurnerType - rtype
97
             CartType - rtype
98
99
             DeskType - rtype
             CoffeeMachineType - rtype
100
101
             MicrowaveType - rtype
             ToiletType - rtype
102
             CounterTopType - rtype
103
             GarbageCanType - rtype
104
105
             CoffeeTableType - rtype
             CabinetType - rtype
106
             SinkBasinType - rtype
107
108
             OttomanType - rtype
             ToiletPaperHangerType - rtype
109
             TowelHolderType - rtype
110
             FridgeType - rtype
111
             DrawerType - rtype
112
             SideTableType - rtype
114
             ShelfType - rtype
             LaundryHamperType - rtype
115
116
117
        ;; Predicates defined on this domain. Note the types for each
118
        predicate.
```

```
(:predicates
119
        (atLocation ?a - agent ?I - location)
120
             (receptacleAtLocation ?r - receptacle ?l - location)
121
             (objectAtLocation ?o - object ?l - location)
122
             (inReceptacle ?o - object ?r - receptacle)
123
             (receptacleType ?r - receptacle ?t - rtype)
             (objectType ?o - object ?t - otype)
125
             (holds ?a - agent ?o - object)
126
             (holdsAny ?a – agent)
127
128
             (holdsAnyReceptacleObject ?a - agent)
129
             (openable ?r - receptacle)
130
             (opened ?r - receptacle)
131
             (isClean ?o - object)
132
             (cleanable ?o - object)
133
             (isHot ?o - object)
134
             (heatable ?o - object)
135
             (isCool ?o - object)
136
             (coolable ?o - óbject)
137
             (toggleable ?o - object)
138
             (isToggled ?o - object)
139
             (sliceable ?o - object)
140
             (isSliced ?o - object)
141
142
    (:action PickupObjectNotInReceptacle
143
             :parameters (?a - agent ?l - location ?o - object)
144
             :precondition (and
145
                  atLocation ?a ?1)
146
                  (objectAtLocation ?o ?I)
147
                 (not (holdsAny ?a))
148
                 (forall
149
                      (?re - receptacle)
                      (not (inReceptacle ?o ?re))
151
152
153
             :effect (and
154
                 (not (objectAtLocation ?o ?l))
155
                 (holds ?a ?o)
156
                 (holdsAny ?a)
157
             )
158
159
160
    (:action PutObjectInReceptacle
161
             :parameters (?a - agent ?l - location ?ot - otype ?o - object ?r
162
        receptacle)
             :precondition (and
163
                  atLocation ?a ?1)
164
                 (receptacleAtLocation ?r ?l)
165
                 (objectType ?o ?ot)
166
                 (holds ?a ?o)
167
                 (not (holdsAnyReceptacleObject ?a))
168
169
             :effect (and
170
171
                 (inReceptacle ?o ?r)
                 (not (holds ?a ?o))
172
                 (not (holdsAny ?a))
173
                 (objectAtLocation ?o ?l)
174
             )
175
176
177
    (:action PickupObjectInReceptacle
178
179
             :parameters (?a - agent ?l - location ?o - object ?r - receptacle
             :precondition (and
180
                 (atLocation ?a ?I)
181
```

```
(objectAtLocation ?o ?l)
182
                  (inReceptacle ?o ?r)
183
                 (not (holdsAny ?a))
184
185
             :effect (and
186
                  (not (objectAtLocation ?o ?l))
187
                  (not (inReceptacle ?o ?r))
188
                  (holds ?a ?o)
189
190
                  (holdsAny ?a)
191
             )
192
193
         (:action RinseObject_2
194
             :parameters (?toolreceptacle - receptacle ?a - agent ?l -
195
        location ?o - object)
196
             :precondition (and
197
             (receptacleType ?toolreceptacle SinkBasinType)
198
             (atLocation ?a ?l)
199
             (receptacleAtLocation ?toolreceptacle ?I)
200
             (objectAtLocation ?o ?l)
201
             (cleanable ?o)
202
203
             :effect (and
204
             (isClean ?o)
205
206
207
208
    (:action TurnOnObject_2
209
             :parameters (?a - agent ?l - location ?o - object)
210
211
             :precondition (and
212
             (atLocation ?a ?I)
213
             (objectAtLocation ?o ?l)
214
             (toggleable ?o)
215
216
             :effect (and
217
             (isToggled ?o)
218
219
220
221
    (:action CoolObject_0
222
             :parameters (?toolreceptacle - receptacle ?a - agent ?l -
223
        location ?o - object)
224
             :precondition (and
225
             (receptacleType ?toolreceptacle FridgeType)
226
             (atLocation ?a ?I)
227
             (receptacleAtLocation ?toolreceptacle ?1)
228
             (holds ?a ?o)
230
              effect (and
231
             (isCool ?o)
232
233
234
    (:action SliceObject_1
235
             :parameters (?toolobject - object ?a - agent ?l - location ?o -
236
        object)
237
             :precondition (and
238
             (objectType ?toolobject ButterKnifeType)
239
             (atLocation ?a ?I)
240
             (objectAtLocation ?o ?l)
             (sliceable ?o)
242
             (holds ?a ?toolobject)
243
```

```
244
              effect (and
245
             (isSliced ?o)
246
247
248
    (:action SliceObject_0
249
             :parameters (?toolobject - object ?a - agent ?l - location ?o -
250
        object)
251
252
              :precondition (and
              (objectType ?toolobject KnifeType)
(atLocation ?a ?l)
253
254
              (objectAtLocation ?o ?I)
255
256
              (sliceable ?o)
              (holds ?a ?toolobject)
257
258
               effect (and
259
              (isSliced ?o)
260
261
262
    (:action MicrowaveObject_0
263
              :parameters (?toolreceptacle - receptacle ?a - agent ?l -
264
        location ?o - object)
265
              :precondition (and
266
              (receptacleType ?toolreceptacle MicrowaveType)
267
              (atLocation ?a ?I)
268
              (receptacleAtLocation ?toolreceptacle ?I)
269
              (holds ?a ?o)
270
271
              :effect (and
272
             (isHot ?o)
273
274
275
276
277
```