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What You Simulate

What You See

Figure 1. PhysGaussian is a unified simulation-rendering pipeline based on 3D Gaussians and continuum mechanics.

Abstract

We introduce PhysGaussian, a new method that seamlessly

integrates physically grounded Newtonian dynamics within

3D Gaussians to achieve high-quality novel motion synthe-

sis. Employing a custom Material Point Method (MPM),

our approach enriches 3D Gaussian kernels with physically

meaningful kinematic deformation and mechanical stress

attributes, all evolved in line with continuum mechanics

principles. A defining characteristic of our method is the

seamless integration between physical simulation and vi-

sual rendering: both components utilize the same 3D Gaus-

sian kernels as their discrete representations. This negates

the necessity for triangle/tetrahedron meshing, marching

cubes, ªcage meshes,º or any other geometry embedding,

highlighting the principle of ªwhat you see is what you sim-

ulate (WS2).º Our method demonstrates exceptional ver-

satility across a wide variety of materials±including elastic

entities, plastic metals, non-Newtonian fluids, and granular

materials±showcasing its strong capabilities in creating di-

verse visual content with novel viewpoints and movements.

Our project page is at: https://xpandora.github.

io/PhysGaussian/.

1. Introduction

Recent strides in Neural Radiance Fields (NeRFs) have

showcased significant advancements in 3D graphics and

vision [24]. Such gains have been further augmented by

the cutting-edge 3D Gaussian Splatting (GS) framework

[16]. Despite many achievements, a noticeable gap re-

mains in the application towards generating novel dynam-

ics. While there exist endeavors that generate new poses for

NeRFs, they typically cater to quasi-static geometry shape

editing tasks and often require meshing or embedding vi-

sual geometry in coarse proxy meshes such as tetrahedra

[12, 28, 47, 51].

Meanwhile, the traditional physics-based visual content

generation pipeline has been a tedious multi-stage process:

constructing the geometry, making it simulation-ready (of-

ten through techniques like tetrahedralization), simulating

it with physics, and finally rendering the scene. This se-

quence, while effective, introduces intermediary stages that

can lead to discrepancies between simulation and final vi-

sualization. Even within the NeRF paradigm, a similar

trend is observed, as the rendering geometry is embedded

into a simulation geometry. This division, in essence, con-

trasts with the natural world, where the physical behavior

and visual appearance of materials are intrinsically inter-

twined. Our overarching philosophy seeks to align these

two facets by advocating for a unified representation of a

material substance, employed for both simulation and ren-

dering. In essence, our approach champions the principle of

ªwhat you see is what you simulateº (WS2) [25], aiming for

a more coherent integration of simulation, capturing, and

rendering.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Building towards this goal, we introduce PhysGaussian:

physics-integrated 3D Gaussians for generative dynamics.

This novel approach empowers 3D Gaussians to encapsu-

late physically sound Newtonian dynamics, including real-

istic behaviors and inertia effects inherent in solid materi-

als. More specifically, we impart physics to 3D Gaussian

kernels, endowing them with kinematic attributes such as

velocity and strain, along with mechanical properties like

elastic energy, stress, and plasticity. Notably, through con-

tinuum mechanics principles and a custom Material Point

Method (MPM), PhysGaussian ensures that both physical

simulation and visual rendering are driven by 3D Gaus-

sians. This eradicates the necessity for any embedding

mechanisms, thus eliminating any disparity or resolution

mismatch between the simulated and the rendered.

We present PhysGaussian’s versatile adeptness in syn-

thesizing generative dynamics across various materials,

such as elastic objects, metals, non-Newtonian viscoplastic

substances (e.g. foam or gel), and granular mediums (e.g.

sand or soil). To summarize, our contributions include

• Continuum Mechanics for 3D Gaussian Kinematics:

We introduce a continuum mechanics-based strategy tai-

lored for evolving 3D Gaussian kernels and their associ-

ated spherical harmonics in physical Partial Differential

Equation (PDE)-driven displacement fields.

• Unified Simulation-Rendering Pipeline: We present an

efficient simulation and rendering pipeline with a unified

3D Gaussian representation. Eliminating the extra effort

for explicit object meshing, the motion generation process

is significantly simplified.

• Versatile Benchmarking and Experiments: We con-

duct a comprehensive suite of benchmarks and experi-

ments across various materials. Enhanced by real-time

GS rendering and efficient MPM simulations, we achieve

real-time performance for scenes with simple dynamics.

2. Related Work

Radiance Fields Rendering for View Synthesis. Radi-

ance field methods have gained considerable interest in re-

cent years due to their extraordinary ability to generate

novel-view scenes and their great potential in 3D recon-

struction. The adoption of deep learning techniques has

led to the prominence of neural rendering and point-based

rendering methods, both of which have inspired a multi-

tude of subsequent works. On the one hand, the NeRF

framework employs a fully-connected network to model

one scene [24]. The network takes spatial position and

viewing direction as inputs and produces the volume den-

sity and radiance color. These outputs are subsequently uti-

lized in image generation through volume rendering tech-

niques. Building upon the achievements of NeRF, further

studies have focused on enhancing reconstruction quality

and improving training speeds [1, 7, 20, 26, 40, 46]. On the

other hand, researchers have also investigated differentiable

point-based methods for real-time rendering of unbounded

scenes. Among the current investigations, the state-of-the-

art results are achieved by the recently published 3D Gaus-

sian Splatting framework [16]. Contrary to prior implicit

neural representations, GS employs an explicit and unstruc-

tured representation of one scene, offering the advantage

of straightforward extension to post-manipulation. More-

over, its fast visibility-aware rendering algorithm also en-

ables real-world dynamics generations.

Dynamic Neural Radiance Field. An inherent evolution

of the NeRF framework entails the integration of a tem-

poral dimension to facilitate the representation of dynamic

scenes. For example, both Pumarola et al. [30] and Park

et al. [27] decompose time-dependent neural fields into

an inverse displacement field and canonical time-invariant

neural fields. In this context, the trajectory of query rays

is altered by the inverse displacement field and then po-

sitioned within the canonical space. Subsequent stud-

ies have adhered to the aforementioned design when ex-

ploring applications related to NeRF deformations, such

as static scene editing and dynamic scene reconstruction

[5, 19, 21, 28, 31, 32, 51]. Additionally, Liu et al. [21], Qiao

et al. [31], Yuan et al. [51] have contributed to the incorpo-

ration of physics-based deformations into the NeRF frame-

work. However, the effectiveness of these methodologies

relies on the usage of exported meshes derived from NeRFs.

To circumvent this restriction, explicit geometric represen-

tations have been explored for forward displacement mod-

eling [16, 46]. In particular, Chen et al. [6], Luiten et al.

[22], Wu et al. [45], Yang et al. [48, 49] directly manipulate

NeRF fields. Li et al. [18] extends this approach by includ-

ing physical simulators to achieve more dynamic behaviors.

In this study, we leverage the explicit 3D Gaussian Splat-

ting ellipsoids as a unified representation for both physics

and graphics. In contrast to previous dynamic GS frame-

works, which either maintain the shapes of Gaussian kernels

or learn to modify them, our approach uniquely leverages

the first-order information from the displacement map (de-

formation gradient) to assist dynamic simulations. In this

way, we are able to deform the Gaussian kernels and seam-

lessly integrate the simulation within the GS framework.

Material Point Method. The Material Point Method

(MPM) is a widely used simulation framework for a broad

range of multi-physics phenomena [10]. The inherent capa-

bility of the MPM system allows for topology changes and

frictional interactions, making it suitable for simulating var-

ious materials, including but not limited to elastic objects,

fluids, sand, and snow [13, 17, 39]. MPM can also be ex-

panded to simulate objects that possess codimensional char-

acteristics [15]. In addition, the efficacy of utilizing GPU(s)
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Figure 2. Method Overview. PhysGaussian is a unified simulation-rendering pipeline that incorporates 3D Gaussian splatting representa-

tion and continuum mechanics to generate physics-based dynamics and photo-realistic renderings simultaneously and seamlessly.

to accelerate MPM implementations has also been demon-

strated in [8, 11, 33, 44]. Owing to its well-documented ad-

vantages, we employ the MPM to support the latent phys-

ical dynamics. This choice allows us to efficiently import

dynamics into various scenarios with a shared particle rep-

resentation alongside the Gaussian Splatting framework.

3. Method Overview

We propose PhysGaussian (Fig. 2), a unified simulation-

rendering framework for generative dynamics based on con-

tinuum mechanics and 3D GS. Adopted from Kerbl et al.

[16], we first reconstruct a GS representation of a static

scene, with an optional anisotropic loss term to regularize

over-skinny kernels. These Gaussians are viewed as the dis-

cretization of the scene to be simulated. Under our novel

kinematics, we directly splat the deformed Gaussians for

photo-realistic renderings. For better physics compliance,

we also optionally fill the internal regions of objects. We

detail these in this section.

3.1. 3D Gaussian Splatting

3D Gaussian Splatting method [16] reparameterizes NeRF

[24] using a set of unstructured 3D Gaussian kernels

{xp, σp,Ap, Cp}p∈P , where xp, σp, Ap, and Cp represent

the centers, opacities, covariance matrices, and spherical

harmonic coefficients of the Gaussians, respectively. To

render a view, GS projects these 3D Gaussians onto the im-

age plane as 2D Gaussians, differing from traditional NeRF

techniques that emit rays from the camera. The final color

of each pixel is computed as

C =
∑

k∈P

αkSH(dk; Ck)

k−1
∏

j=1

(1− αj). (1)

Here αk represents the z-depth ordered effective opacities,

i.e., products of the 2D Gaussian weights and their over-

all opacities σk; dk stands for the view direction from the

camera to xk. Per-view optimizations are performed us-

ing L1 loss and SSIM loss. This explicit representation of

the scene not only significantly accelerates training and ren-

dering speeds, but also enables direct manipulation of the

NeRF scene. The data-driven dynamics are supported by

making xp, Ap time-dependent [45] and minimizing ren-

dering losses over videos. In Sec. 3.1, we show that this

time-dependent evolution can be given by the continuum

deformation map.

3.2. Continuum Mechanics

Continuum mechanics describes motions by a time-

dependent continuous deformation map x = φ(X, t)
between the undeformed material space Ω0 and the de-

formed world space Ωt at time t. The deformation gradient

F (X, t) = ∇Xφ(X, t) encodes local transformations in-

cluding stretch, rotation, and shear [2]. The evolution of the

deformation φ is governed by the conservation of mass and

momentum. Conservation of mass ensures that the mass

within any infinitesimal region B0
ϵ ∈ Ω0 remains constant

over time:
∫

Bt
ϵ

ρ(x, t) ≡

∫

B0
ϵ

ρ(φ−1(x, t), 0), (2)

where Bt
ϵ = φ(B0

ϵ , t) and ρ(x, t) is the density field char-

acterizing material distribution. Denoting the velocity field

with v(x, t), the conservation of momentum is given by

ρ(x, t)v̇(x, t) = ∇ · σ(x, t) + f ext, (3)

where σ = 1
det(F )

∂Ψ
∂F

(FE)FET
is the Cauchy stress ten-

sor associated with a hyperelastic energy density Ψ(F ), and

f ext is the external force per unit volume [2, 14]. Here the

total deformation gradient can be decomposed into an elas-

tic part and a plastic part F = FEF P to support permanent
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rest shape changes caused by plasticity. The evolution of

FE follows some specific plastic flow such that it is always

constrained within a predefined elastic region [2].

3.3. Material Point Method

Material Point Method (MPM) solves the above governing

equations by combining the strengths of both Lagrangian

particles and Eulerian grids [14, 39]. The continuum is

discretized by a collection of particles, each representing

a small material region. These particles track several time-

varying Lagrangian quantities such as position xp, veloc-

ity vp, and deformation gradient Fp. The mass conserva-

tion in Lagrangian particles ensures the constancy of total

mass during movement. Conversely, momentum conserva-

tion is more natural in Eulerian representation, which avoids

mesh construction. We follow Stomakhin et al. [39] to in-

tegrate these representations using C1 continuous B-spline

kernels for two-way transfer. From time step tn to tn+1, the

momentum conservation, discretized by the forward Euler

scheme, is represented as

mi

∆t
(vn+1

i − vn
i ) = −

∑

p V
0
p

∂Ψ
∂F

(FE,n
p )FE,n

p

T
∇wn

ip + fext
i . (4)

Here i and p represent the fields on the Eulerian grid and

the Lagrangian particles respectively; wn
ip is the B-spline

kernel defined on i-th grid evaluated at xn
p ; V 0

p is the

initial representing volume, and ∆t is the time step size.

The updated grid velocity field vn+1
i is transferred back

onto particle to vn+1
p , updating the particles’ positions to

xn+1
p = xn

p + ∆tvn+1
p . We track FE rather than both

F and F P [37], which is updated by FE,n+1
p = (I +

∆t∇vp)F
E,n
p = (I + ∆t

∑

i v
n+1
i ∇wn

ip
T )FE,n

p and reg-

ularized by an additional return mapping to support plastic-

ity evolution: FE,n+1
p ← Z(FE,n+1

p ). Different plasticity

models define different return mappings. We refer to the

supplemental document for details of the simulation algo-

rithm and different return mappings.

3.4. Physics-Integrated 3D Gaussians

We treat Gaussian kernels as discrete particle clouds for

spatially discretizing the simulated continuum. As the con-

tinuum deforms, we let the Gaussian kernels deform as well.

However, for a Gaussian kernel defined at Xp in the ma-

terial space, Gp(X) = e−
1

2
(X−Xp)

TA−1

p (X−Xp), the de-

formed kernel under the deformation map φ(X, t),

Gp(x, t) = e−
1

2
(φ−1(x,t)−Xp)

TA−1

p (φ−1(x,t)−Xp) (5)

is not necessarily Gaussian in the world space, which vio-

lates the requirements of the splatting process. Fortunately,

if we assume particles undergo local affine transformations

characterized by the first-order approximation

ϕ̃p(X, t) = xp + Fp(X −Xp), (6)

the deformed kernel becomes Gaussian as desired:

Gp(x, t) = e−
1

2
(x−xp)

T (FpApF
T
p )−1(x−xp). (7)

This transformation naturally

provides a time-dependent

version of xp and Ap for the

3D GS framework:

xp(t) = φ(Xp, t),

ap(t) = Fp(t)ApFp(t)
T
.

(8)

In summary, given the 3D GS of a static scene

{Xp,Ap, σp, Cp}, we use simulation to dynamize the scene

by evolving these Gaussians to produce dynamic Gaussians

{xp(t),ap(t), σp, Cp}. Here we assume that the opacity and

the coefficients of spherical harmonics are invariant over

time, but the harmonics will be rotated as discussed in the

next section. We also initialize other physical quantities in

Eq. (4): the representing volume of each particle V 0
p is ini-

tialized as background cell volume divided by the number

of contained particles; the mass mp is then inferred from

user-specified density ρp as mp = ρpV
0
p . To render these

deformed Gaussian kernels, we use the splatting from the

original GS framework [16]. It should be highlighted that

the integration of physics into 3D Gaussians is seamless:

on the one hand, the Gaussians themselves are viewed as

the discretization of the continuum, which can be simulated

directly; on the other hand, the deformed Gaussians can be

directly rendered by the splatting procedure, avoiding the

need for commercial rendering software in traditional ani-

mation pipelines. Most importantly, we can directly simu-

late scenes reconstructed from real data, achieving WS2.

3.5. Evolving Orientations of Spherical Harmonics

Surface View Rotated View

Rendering the world-space

3D Gaussians can already

obtain high-quality results.

However, when the ob-

ject undergoes rotations,

the spherical harmonic bases are still represented in the ma-

terial space, resulting in varying appearances even if the

view direction is fixed relatively to the object. The solution

is simple: when an ellipsoid is rotated over time, we rotate

the orientations of its spherical harmonics as well. How-

ever, the bases are hard-coded inside the GS framework. We

equivalently achieve this evolution by applying inverse rota-

tion on view directions. This effect is illustrated in the inset

figure. We remark that the rotation of view directions is not

considered in Wu et al. [45]. Chen et al. [6] tackles this

issue in the Point-NeRF framework, but requires tracking

of surface orientation. In our framework, the local rotation

is readily obtained in the deformation gradient Fp. Denote

f0(d) as a spherical harmonic basis in material space, with
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d being a point on the unit sphere (indicating view direc-

tion). The polar decomposition, Fp = RpSp, leads us to

the rotated harmonic basis:

f t(d) = f0(RTd). (9)

3.6. Incremental Evolution of Gaussians

We also propose an alternative way for Gaussian kinemat-

ics that better fits the updated Lagrangian framework, which

avoids the dependency on the total deformation gradient

F . This approach also paves the way for physical mate-

rial models that do not rely on employing F as the strain

measure. Following conventions from computational fluid

dynamics [4, 23], the update rule for the world-space co-

variance matrix a can also be derived by discretizing the

rate form of kinematics ȧ = (∇v)a+ a(∇v)T :

an+1
p = an

i +∆t(∇vpa
n
p + an

p∇v
T
p ). (10)

This formulation facilitates the incremental update of the

Gaussian kernel shapes from time step tn to tn+1 with-

out the need to obtain Fp. The rotation matrix Rp of each

spherical harmonics basis can be incrementally updated in

a similar manner. Starting from R0
p = I , we extract the

rotation matrix Rn+1
p from (I +∆tvp)R

n
p using the polar

decomposition.

3.7. Internal Filling

The internal structure is occluded by the object’s surface,

as the reconstructed Gaussians tend to distribute near the

surface, resulting in inaccurate behaviors of volumetric ob-

jects. To fill particles into the void internal region, inspired

by Tang et al. [42], we borrow the 3D opacity field from 3D

Gaussians

d(x) =
∑

p σp exp
(

− 1
2 (x− xp)

TA−1
p (x− xp)

)

. (11)

Condition 1 Condition 2

Internal Grid RayExternal Grid

This continuous field is

discretized onto a 3D

grid. To achieve ro-

bust internal filling, we

first define the concept

of ªintersectionº within

the opacity field, guided

by a user-defined threshold σth. Specifically, we consider it

an intersection when a ray passes from a lower opacity grid

(σi < σth) to a higher opacity one (σj > σth). Based on

this definition, we identify candidate grids by casting rays

along 6 axes and checking intersections (condition 1). Rays

originating from internal cells will always intersect with the

surface. To further refine our selection of candidate grids,

we employ an additional ray to assess the intersection num-

ber (condition 2), thus ensuring greater accuracy.

Visualization of these internal particles is also crucial

as they may get exposed due to large deformation. Those

filled particles inherit σp, Cp from their closet Gaussian ker-

nels. Each particle’s covariance matrix is initialized as

diag(r2p, r
2
p, r

2
p), where r is the particle radius calculated

from its volume: rp = (3V 0
p /4π)

1

3 . Alternatively, one may

also consider employing generative models for internal fill-

ing, potentially leading to more realistic results.

3.8. Anisotropy Regularizer

The anisotropy of Gaussian kernels increases the efficiency

of 3D representation while over-skinny kernels may point

outward from the object surface under large deformations,

leading to unexpected plush artifacts. We propose the fol-

lowing training loss during 3D Gaussian reconstruction:

Laniso =
1

|P|

∑

p∈P

max{max(Sp)/min(Sp), r}−r, (12)

where Sp are the scalings of 3D Gaussians [16]. This loss

essentially constrains that the ratio between the major axis

length and minor axis length does not exceed r. If desired,

this term can be added to the training loss.

4. Experiments

In this section, we show the versatility of our approach

across a wide range of materials. We also evaluate the ef-

fectiveness of our method across a comprehensive suite of

benchmarks.

4.1. Evaluation of Generative Dynamics

Datasets We evaluate our method for generating diverse

dynamics using several sources of input. In addition to the

synthetic data (sofa suite) generated by BlenderNeRF [34],

we utilize fox, plane, and ruins from the datasets of Instant-

NGP [26], Nerfstudio [41] and the DroneDeploy NeRF

[29], respectively. Furthermore, we collect two real-world

datasets (referred to as toast and jam) with an iPhone. Each

scene contains 150 photos. The initial point clouds and

camera parameters are obtained using COLMAP [35, 36].

Simulation Setups We build upon the MPM from Zong

et al. [53]. To generate novel physics-based dynamics of

a 3D Gaussian scene, we manually select a simulation re-

gion and normalize it to a cube with edge length 2. The

internal particle filling can be performed before simulation.

The cuboid simulation domain is discretized by a 3D dense

grid. We selectively modify the velocities of specific parti-

cles to induce controlled movement. The remaining parti-

cles follow natural motion patterns governed by the estab-

lished physical laws. All our experiments are performed on

a 24-core 3.50GHz Intel i9-10920X machine with a Nvidia

RTX 3090 GPU.

Results We simulate a wide range of physics-based dy-

namics. For each type of dynamics, we visualize one ex-

ample with its initial scene and deformation sequence, as
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Figure 3. Material Versatility. We demonstrate exceptional versatility of our approach across a wide variety of examples: fox (elastic

entity), plane (plastic metal), toast (fracture), ruins (granular material), jam (viscoplastic material), and sofa suite (collision).

shown in Fig. 3. Additional experiments are included in

the supplemental document. The dynamics include: Elas-

ticity refers to the property where the rest shape of the

object remains invariant during deformation, representing

the simplest form of daily-life dynamics. Metal can un-

dergo permanent rest shape changes, which follows von-

Mises plasticity model. Fracture is naturally supported by

MPM simulation, where large deformations can cause parti-

cles to separate into multiple groups. Sand follows Druker-

Prager plasticity model [17], which can capture granular-

level frictional effects among particles. Paste is modeled

as viscoplastic non-Newtonian fluid, adhering to Herschel-

Bulkley plasticity model [52]. Collision is another key fea-

ture of MPM simulation, which is automatically handled by

grid time integration. Explicit MPM can be highly opti-

mized to run on GPUs. We highlight that some of the cases
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Figure 4. Comparisons. For each benchmark case, we select one

test viewpoint and visualize all comparisons. We zoom in on some

regions to highlight the ability of our method to maintain high-

fidelity rendering quality after deformations. We use a black back-

ground to avoid the interference of the background.

can achieve real-time based on the 1/24-s frame duration:

plane (30 FPS), toast (25 FPS) and jam (36 FPS). While uti-

lizing FEM may further accelerate the elasticity simulation,

it will involve an additional step of mesh extraction and lose

the generalizability of MPM in inelasticity simulation.

4.2. Lattice Deformation Benchmarks

Dataset Due to the absence of ground truth for post-

deformation, we utilize BlenderNeRF [34] to synthesize

several scenes, applying bending and twisting with the lat-

tice deformation tool. For each scene, we create 100 multi-

view renderings of the undeformed state for training, and

100 multi-view renderings of each deformed state to serve

as ground truth for the deformed NeRFs. The lattice defor-

mations are set as input to all methods for fair comparisons.

Comparisons We compare our method with several state-

of-the-art NeRF frameworks that support manual deforma-

tions: 1) NeRF-Editing [51] deforms NeRF using an ex-

tracted surface mesh, 2) Deforming-NeRF [47] utilizes a

cage mesh for deformation, and 3) PAC-NeRF [18] manip-

ulates individual initial particles.

We show qualitative results in Fig. 4 and quantitative re-

Ground Truth Ours Fixed Cov. Rigid Cov. Fixed Harmonics

Figure 5. Ablation Studies. Non-extensible Gaussians can lead to

severe visual artifacts during deformations. Although direct ren-

dering the deformed Gaussian kernels can already obtain good re-

sults, additional rotations on spherical harmonics can improve the

rendering quality.

Table 1. We synthesize a lattice deformation benchmark dataset

to compare with baselines and conduct ablation studies to validate

our design choices. PSNR scores are reported (higher is better).

Our method outperforms the others across all cases.

Test Case Wolf Stool Plant

Deformation Operator Bend Twist Bend Twist Bend Twist

NeRF-Editing [51] 26.74 24.37 25.00 21.10 19.85 19.08

Deforming-NeRF [47] 21.65 21.72 22.32 21.16 17.90 18.63

PAC-NeRF [18] 26.91 25.27 21.83 21.26 18.50 17.78

Fixed Covariance 26.77 26.02 29.94 25.31 23.95 23.09

Rigid Covariance 26.84 26.16 30.28 25.70 24.09 23.53

Fixed Harmonics 26.83 26.02 30.87 25.75 25.09 23.69

Ours 26.96 26.46 31.15 26.15 25.81 23.87

sults in Tab. 1. NeRF-Editing uses NeuS [43] as the scene

representation, which is more suited for surface reconstruc-

tions rather than high-fidelity renderings. Consequently, its

rendering quality is inherently lower than that of 3DGS.

Furthermore, the deformation highly depends on the pre-

cision of the extracted surface mesh and the dilated cage

mesh ± an overly tight mesh might not encompass the en-

tire radiance field, while an excessively large one could re-

sult in a void border, as observed in the twisting stool and

plant examples. Deforming-NeRF, on the other hand, pro-

vides clear renderings and potentially leads to enhanced re-

sults if higher-resolution deformation cages are provided.

However, it employs a smooth interpolation from all cage

vertices, thus filtering out fine local details and failing to

match lattice deformations. PAC-NeRF is designed for

simpler objects and textures in system identification tasks.

While offering flexibility through its particle representation,

it does not achieve high rendering fidelity. Our method

utilizes both zero-order information (the deformation map)

and first-order information (the deformation gradient) from

each lattice cell. It outperforms the other methods across all

cases, as high rendering qualities are well preserved after

deformations. Although not primarily designed for editing

tasks, this comparison showcases our method’s significant

potential for realistic editing of static NeRF scenes.

Ablation Studies We further conduct several ablation

studies on these benchmark scenes to validate the neces-

sity of the kinematics of Gaussian kernels and spherical
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w/o Internal Filling w/ Internal Filling

E ↑ E ↑

ν ↑

Figure 6. Internal filling enables more realistic simulation results.

Our method also supports flexible control of dynamics via material

parameters. A larger Young’s modulus E indicates higher stiffness

while a larger poission ratio ν leads to better volume preservation.

harmonics: 1) Fixed Covariance only translates the Gaus-

sian kernels. 2) Rigid Covariance only applies rigid trans-

formations on the Gaussians, as assumed in Luiten et al.

[22]. 3) Fixed Harmonics does not rotate the orientations

of spherical harmonics, as assumed in Wu et al. [45].

Here we visualize one example in Fig. 5. We can ob-

serve that Gaussians will not properly cover the surface af-

ter deformation if they are non-extensible, leading to severe

visual artifacts. Enabling the rotation of spherical harmon-

ics can slightly improve the consistency with the ground

truth. We include quantitative results on all test cases in

Tab. 1, which shows that all these enhancements are needed

to achieve the best performance of our method.

4.3. Additional Qualitative Studies

Internal Filling Typically, the 3D Gaussian splatting

framework focuses on the surface appearance of objects and

often fails to capture their internal structure. Consequently,

the interior of the modeled object remains hollow, resem-

bling a mere shell. This is usually not true in the real world,

leading to unrealistic simulation results. To address this

challenge, we introduce an internal filling method leverag-

ing a reconstructed density field, which is derived from the

opacity of Gaussian kernels. Fig. 6 showcases our simula-

tion results with varying physical parameters. Objects de-

void of internal particles tend to collapse when subjected to

gravity forces, irrespective of the material parameters used.

In contrast, our approach assisted by internal filling allows

for nuanced control over object dynamics, effectively ad-

justing to different material characteristics.

Volume Conservation Existing approaches to NeRF ma-

nipulation focus primarily on geometric adjustments with-

out incorporating physical properties. A key attribute of

real-world objects is their inherent ability to conserve vol-

ume during deformation. In Fig. 7, we conduct a com-

parison study between our method and NeRF-Editing [51],

which utilizes surface As-Rigid-As-Possible (ARAP) defor-

mation [38]. Unlike NeRF-Editing, our approach accurately

captures and maintains the volume of the deformed objects.

Ours

Stretch

NeRF-Editing

Stretch

Figure 7. Volume Conservation. Compared to the geometry-

based editing method [51], our physics-based method is able to

capture volumetric behaviors, leading to more realistic dynamics.

w/ Regularizer w/o Regularizer

Figure 8. Anisotropy Regularizer. We introduce an anisotropy

constraint for Gaussian kernels, effectively enhancing the fidelity

of the Gaussian-based representation under dynamic conditions.

Anisotropy Regularizer 3D Gaussian models inherently

represent anisotropic ellipsoids. However, excessively slen-

der Gaussian kernels can lead to burr-like visual artifacts,

especially pronounced during large deformations To tackle

this issue, we introduce an additional regularization loss

Eq. (12) to constrain anisotropy. As demonstrated in Fig. 8,

this additional loss function effectively mitigates the arti-

facts induced by extreme anisotropy.

5. Discussion

Conclusion This paper introduces PhysGaussian, a uni-

fied simulation-rendering pipeline that generates physics-

based dynamics and photo-realistic renderings simultane-

ously and seamlessly.

Limitation In our framework, the evolution of shadows

is not considered, and material parameters are manually

set. Automatic parameter assignment could be derived from

videos by combining GS segmentation [3, 50] with a dif-

ferentiable MPM simulator. Additionally, incorporating

geometry-aware 3DGS reconstruction methods [9] could

enhance generative dynamics. Future work will also ex-

plore handling more versatile materials like liquids and in-

tegrating more intuitive user controls, possibly leveraging

advancements in Large Language Models (LLMs).
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