
CAMP: Compiler and Allocator-based Heap Memory Protection

Zhenpeng Lin, Zheng Yu, Ziyi Guo, Simone Campanoni, Peter Dinda, and Xinyu Xing
{zplin, zhengyu2027, n7l8m4}@u.northwestern.edu

{simone.campanoni, pdinda, xinyu.xing}@northwestern.edu
Northwestern University

Abstract
The heap is a critical and widely used component of many
applications. Due to its dynamic nature, combined with the
complexity of heap management algorithms, it is also a fre-
quent target for security exploits. To enhance the heap’s se-
curity, various heap protection techniques have been intro-
duced, but they either introduce significant runtime overhead
or have limited protection. We present CAMP, a new sanitizer
for detecting and capturing heap memory corruption. CAMP
leverages a compiler and a customized memory allocator.
The compiler adds boundary-checking and escape-tracking
instructions to the target program, while the memory alloca-
tor tracks memory ranges, coordinates with the instrumenta-
tion, and neutralizes dangling pointers. With the novel error
detection scheme, CAMP enables various compiler optimiza-
tion strategies and thus eliminates redundant and unneces-
sary check instrumentation. This design minimizes runtime
overhead without sacrificing security guarantees. Our evalu-
ation and comparison of CAMP with existing tools, using both
real-world applications and SPEC CPU benchmarks, show
that it provides even better heap corruption detection capa-
bility with lower runtime overhead.

1 Introduction

The heap is a region of memory that is dynamically allocated
during runtime. It is widely used for dynamic memory allo-
cation and for storing data structures with variable sizes. Due
to its frequent use and complex nature, the heap is vulnera-
ble to spatial and temporal memory errors. The prominence
of heap errors as a source of vulnerabilities has been con-
sistently high over the years. According to Microsoft, heap
errors were responsible for 53% of Remote Code Execution
(RCE) CVEs in their products [40]. Google Project Zero
discovered that heap errors accounted for 69% of zero-day
vulnerabilities observed in the wild [59] in 2022. Until now,
65% vulnerabilities are confirmed as heap-based zero-day in
Linux, 2023 [7].

Over the years, various heap protection techniques have
been introduced to enhance the security of the heap, includ-
ing improved heap management algorithms [49] and the im-
plementation of layout randomization techniques [34, 44].
These advancements have made the heap more secure. How-
ever, the continuous discovery and development of new vul-

nerabilities and exploitation techniques [16, 24, 33, 54, 58]
suggest that heap exploitation remains an ongoing challenge.

To address heap exploitation effectively, we believe that
detecting and capturing heap memory corruption is a key so-
lution. Previously, various research efforts have been made
towards this goal, such as Memcheck [27] and Address San-
itizer (ASAN) [47] for comprehensive protection or works
that mitigate use-after-free errors [11,12,23,31,42,49,53] or
detect out-of-bound access [19, 41, 56] for partial protection.
However, these techniques either introduce significant run-
time overhead or offer weak security guarantees. To be spe-
cific, MemCheck [27], though capable of delivering full heap
detection, suffers from a substantial 26x overhead. ASAN
and its variant ASAN–, as we will discuss in Section 6, face
challenges with false negatives in both temporal and spatial
heap error detection [32]. Other tools like FFmalloc [11],
Delta Pointer [30], and Oscar [18] only offer partial heap
protection, limiting their effectiveness.

In this work, we introduce CAMP (Compiler and Allocator-
based Heap Memory Protection), a novel heap sanitizer, for
detecting and capturing spatial and temporal heap errors. Un-
like previous works [19,22,28,32,46,55,56,61] that require
hardware support, CAMP is a software-only tool, consisting of
a compiler and a seglist allocator. The compiler instruments
the target program to validate the pointer boundary and build
point-to relation at runtime. The customized memory allo-
cator tracks memory ranges for each allocation, supports the
instrumented instructions, and neutralizes dangling pointers
when a memory object is freed.

In comparison with previous works [60, 62], the key nov-
elty of CAMP is mainly manifested in its design that leverages
the run-time guarantee to optimize static instrumentation and
thus reduces overhead. For example, to capture dangling
pointer dereference, previous methods need to check each
pointer dereference. In our design, CAMP introduces a run-
time scheme that could guarantee that no dangling pointer ex-
ists and thus allow CAMP’s compiler to eliminate correspond-
ing pointer dereference checks. Furthermore, as we will de-
tail in Section 4, CAMP implements its run-time scheme based
on the extension of an existing allocator. This allocator has
an O(1) computation complexity in pointer validation. As a
result, CAMP can perform pointer validation more efficiently.

In summary, this paper makes the following contributions.
• We present a novel approach CAMP that employs a cus-

tomized allocator and a compiler to safeguard against heap

memory corruption. Additionally, we propose optimiza-
tion strategies to reduce the performance overhead intro-
duced by the instrumentation.

• We implement CAMP by customizing a segregated list al-
locator – tcmalloc and building our instrumentation opti-
mization mechanism on top of LLVM 12.0 compiler frame-
work. We open-sourced our prototype of CAMP at [8].

• We conduct a thorough evaluation of CAMP using the real-
world application Nginx, as well as the SPEC CPU 2006
and 2017 benchmarks, from both security and runtime
overhead perspectives. The evaluation compares CAMP’
performance with other defense solutions offering similar
heap protection levels.
The rest of the paper is organized as follows. Section 2 in-

troduces the background of memory corruption on the heap
as well as heap allocators. Section 3 discusses the assump-
tions of our research and the threat model. Section 4 de-
scribes the details of the proposed techniques. Section 5
presents our implementation details. Section 6 evaluates the
security and runtime overhead of our proposed techniques.
Section 7 provides the discussion of some related issues, fol-
lowed by the related work in Section 8. Finally, we conclude
the work in Section 9.

2 Background

2.1 Heap Memory Corruption & Protection
In general, there are two main types of heap memory cor-
ruption, overflow and use-after-free. In the following, we
describe those two types of memory corruption in detail and
discuss their protection.
Heap Overflow. Generally, each heap object has its own
memory space. When the access to a heap object exceeds its
memory space, a heap overflow happens. One common way
to detect heap overflow is to reserve some memory as heap
cookies or red zones. Once the magic value in the reserved
area is tempered, the heap overflow could be detected [37].
However, this design naturally has the drawback of being by-
passed. For example, the attacker could fail the detection
by leaking the heap cookie [5] or overflowing the memory
with the red zone intact [45]. An alternative approach is to
validate pointers making sure no out-of-bound access hap-
pens [19, 38, 56]. This approach is effective in general but
often introduces non-negligible overhead [41].
Heap Use-After-Free. When the memory space of a heap
object is freed, the references to the object left become dan-
gling pointers. The program should never deference the dan-
gling pointer. Otherwise, a use-after-free would occur. Re-
searchers have proposed many techniques to detect use-after-
free. ASAN [47] uses shadow memory to record the mem-
ory status and instruments every memory access. Accessing
a freed object could be detected immediately by checking

the shadow memory. Although ASAN’s approach only in-
troduces reasonable overhead, its security guarantee is weak
where the attacker could overwrite the shadow status by re-
allocating the freed object. A more effective approach pro-
posed is to never reuse freed memory [11] or delay the free
of memory [57], so that the attacker would not be able to cor-
rupt freed objects. Other than that, once an object is freed,
one could nullify all its existing references [17,31,53], which
also prevents use-after-free fundamentally.

2.2 Heap Memory Allocator
Heap memory allocators manage dynamic "global" memory
and aim for quick allocation/deallocation with minimal mem-
ory waste. This summary presents three prevalent types.

Firstly, sequential-fit allocators use a freelist connecting
all freed memory objects. When an allocation request is
made, the allocator searches the freelist until an adequately
sized object is found. It splits larger memory objects, real-
locating the excess back into the freelist, and merges neigh-
boring freed objects to minimize fragmentation. Secondly,
Segregated List allocators (seglist) manage an array of freel-
ists, each holding freed objects of identical size. Allocation
and deallocation require identifying the corresponding freel-
ist for the requested size, avoiding the need for splitting and
merging but introducing additional steps. Lastly, the buddy
system allocator, similar to seglist, also maintains freelists
for varying sizes. When the freelist for a requested size is
empty, the allocator splits a larger object to fulfill the request.
On deallocation, it reconsolidates the remaining portion back
into a larger object.

3 Assumptions & Threat Model

CAMP focuses on detecting heap errors, including spatial and
temporal heap errors. We assume the target program (writ-
ten in low-level language) is compiled by CAMP and contains
at least one heap-based memory vulnerability. As our work
focuses on protecting userspace applications, the security of
lower-level kernel is out of the scope. In our threat model,
the attacker, who is aware of the deployment of CAMP, has
access to the heap vulnerability and is seeking to exploit it
for privilege escalation.

4 CAMP

4.1 A vulnerable toy program
List 1 illustrates a toy program that contains two heap mem-
ory corruption vulnerabilities. Specifically, the program al-
locates 16 bytes of memory (line 2), then accesses the mem-
ory object at index 32 which exceeds the boundary of the

1 void main() {
2 char *buf = malloc(16);
3 buf[32] = 'x';
4 free(buf);
5 buf[1] = 'y';
6 }

Listing 1: A toy vulnerable example.

1 void main() {
2 char *buf = malloc(16);
3 __escape(&buf, buf);
4 __check_range(buf, &buf[32], sizeof(char));
5 buf[32] = 'x';
6 // free buf, which neutralizes the dangling

pointer stored in &buf↪→

7 free(buf);
8 __check_range(buf, &buf[1], sizeof(char));
9 buf[1] = 'y';

10 }

Listing 2: The toy program with CAMP’s protection.

memory range (line 3), causing a heap memory overflow.
It is noted that this heap overflow could not be detected by
ASAN because the overflow skips the red zone. In line 4, the
memory object is freed, which makes the pointer buf a dan-
gling pointer. After this, the dangling pointer is dereferenced
(line 5), resulting in a use-after-free memory corruption.

4.2 CAMP’s Protection
Briefly speaking, CAMP instruments the program to detect
memory corruption and prevent exploitation. List 2 illus-
trates the toy program protected by CAMP. In the following,
we describe how CAMP protects the vulnerable toy program.
Pointer Validation. CAMP detects heap overflow by vali-
dating result pointers from pointer arithmetic, making sure
no out-of-bound pointer is generated. This is achieved by
adding a check instruction at the site of the pointer arith-
metic to query the runtime and verify that the result pointer
is within the range of the base pointer. As demonstrated in
List 2, pointers &buf[32] and &buf[1] are generated based on
the buffer buf in lines 5 and 9, respectively. CAMP automati-
cally instruments check instructions in lines 4 and 8 to vali-
date these pointers. If the runtime detection determines that
&buf[32] is an out-of-bound pointer, CAMP will abort the exe-
cution to prevent exploitation. Note that the query requires
CAMP to maintain awareness of each memory allocation and
its associated memory range, which is recorded during run-
time for each heap allocation (line 2).
Neutralizing Dangling Pointers. CAMP prevents use-after-
free by neutralizing dangling pointers. At runtime, CAMP
constructs the point-to relation by instrumenting the program.
When a memory object is freed, CAMP could look up the built
point-to relation and identify the dangling pointers to the
freed memory. By neutralizing those dangling pointers, use-
after-free access is no longer possible. Copying pointers (i.e.,
pointer escapes [51]) is tracked to build the point-to relation.

Binary

Neutralizing
Dangling Pointer

Binary

Tracking Memory
Size

Checking
Memory Range

Building
Point-to Relation

Escape
Cache

CAMP Compiler

m
al

lo
c

ch
ec

k

es
ca

pe

fre
e

CAMP Allocator

LLVM IR

Object File

Range
checks

Escape
tracking

 Optimi-
 zation

Removing
In-bound
Removing
Redundant

Inlining
libc calls

Instrument-
ation

Linking

Source code (C/C++)

COMPLIE TIME RUN TIME

Figure 1: The design overview of CAMP.

For example, the program copies the heap pointer to the vari-
able buf (line 2 of List 2), which is a pointer escape and CAMP
instruments an escape tracking instruction after that (line 3).
The escape tracking instruction takes as input the address of
the variable and the pointer, annotating which address con-
tains a reference to the memory allocation. After this, the
program frees the memory (line 7). Inside the free, CAMP
will identify the existing dangling pointers to the freed mem-
ory and neutralize them as non-congenial. As a result, the
variable buf no longer references the freed memory and the
program crashes when it is dereferenced (line 9).

4.3 Design Overview

Figure 1 shows the core components of CAMP, which consists
of a compiler and a memory allocator. The CAMP compiler,
which is built on top of LLVM, takes the source code as in-
puts and outputs binaries linked with CAMP allocator. Dur-
ing the compile time, the compiler first translates the source
code into LLVM IR and then instruments the range checking
and escape tracking instruction to defend against heap mem-
ory corruption. After this, the compiler applies several novel
compiler optimizations to reduce the overhead of protection,
without sacrificing security guarantees. At run-time, CAMP’s
allocator handles the heap memory allocation/deallocation
request. In addition, it provides support for instrumented
instructions. Specifically, the allocator tracks the memory
range for each allocation, so that the allocator could validate
the bound information of pointers for each range checking

query. The allocator also handles the escape tracking instruc-
tion to build the point-to relation. With this, whenever a
memory object is freed, it is capable of neutralizing the corre-
sponding dangling pointers, preventing the UAF access from
dangling pointers.

4.4 Compiler Instrumentation

Instrumenting Range Checking. As our program model
does not allow casting integers to pointers, initial pointers are
all from either explicit memory allocation (i.e., malloc), or
taking the address from global or stack variables. [41] Those
pointers then are used through pointer arithmetic to create
new pointers, then to access memory. The range checking in
CAMP is to ensure that all pointers after arithmetic are still in-
bound, therefore, preventing heap overflow. As is shown in
List 1, the range checking takes three arguments, which are
the base pointer src, the result pointer dst of the arithmetic,
and dst’s type size size, respectively. The run-time will as-
sert that the memory ranging from dst to dst + size is within
the memory range of src.

It is noted CAMP only protects heap memory, so validating
non-heap memory pointer is redundant. To save unnecessary
validation, CAMP performs dataflow and alias analysis on the
LLVM IR to determine the point-to relation of pointers. If a
pointer could be determined at compile time that it does not
point to the heap, CAMP will not instrument range checking
for it.
Instrumenting Escape Tracking. The inserted escape
tracking allows CAMP to build the point-to relation of mem-
ory objects at run-time. We follow a similar approach intro-
duced in CARAT [51, 52] and DangNull [31] to insert the
tracking after pointer escapes (i.e., copying pointers). As is
described in Section 4.2, the tracking takes the copied pointer
and its stored address as arguments. Different from CARAT
and DangNull, which instrument all the potential pointer es-
capes, CAMP skips pointer escapes if the pointer of which is
determined not to reference the heap at compile time. As the
goal of CAMP is protecting heap memory error, skipping those
non-heap point-to relations does not jeopardize the security
but helps CAMP obtain better performance.

4.5 Runtime Support

The runtime of CAMP provides underlying support of CAMP’s
instrumentation. The performance of executing inserted in-
struction is critical to the overall performance of CAMP. As-
suming that a program has m pieces of memory allocated,
and CAMP maintain the record of the allocated memory in
a linked list. In the worst case, performing a single range
checking will cause O(m) time complexity, which apparently
would introduce unattainable runtime overhead. Likewise, a
dummy design that records n pointer escapes in a linked list

would introduce O(n) time complexity when freeing an ob-
ject. In the following, we describe how our design cooperates
with the allocator to provide fast runtime support.

Seglist Allocator. As we mentioned in Section 2, a Seglist
Allocator uses different free lists for different sizes of mem-
ory objects. For example, tcmalloc [25], a Segregated List
Allocator developed by Google, uses span as the basic mem-
ory management unit. Each span manages a size class of
memory objects on several continuous memory pages. The
spans are stored in a page table where the page is used as the
key. Whenever allocating/deallocating a memory object, tc-
malloc could find its span, and then retrieves the freelist with
constant time complexity.

CAMP’s allocator leverages the design of the Segregated
List Allocator to provide fast runtime support. For each
span, CAMP records the size of memory objects as one of the
metadata. Since the seglist allocator splits the memory page
equally into objects, given a heap pointer denoted as ptr, we
could first calculate the index of the object with:

idx = (ptr− page_base)/size

where idx is the object index to the span, page_base repre-
sents the start address of the page in the span, and size refers
to the size of the object. With this information, the lower
bound of the memory range can be identified as page_base+
idx∗size and the upper bound as page_base+(idx+1)∗size.
This straightforward approach results in constant time com-
plexity for pointer validation.

Maintaining Point-to Relation. CAMP differs from Dan-
gNull [31] and CARAT [51, 52] in its approach to encoding
the point-to relation. While DangNull and CARAT use a red-
black tree structure, which optimizes the time complexity of
finding a relation to O(logN), CAMP integrates the point-to
information into the seglist allocator, optimizing cost to con-
stant time complexity. Specifically, CAMP’s seglist allocator
maintains an escape table for each span, which is a map of ob-
ject indices to their escape lists. The escape lists are linked-
list structures that chain corresponding escapes to their ded-
icated objects. When an escape tracking call is made, CAMP
calculates the memory object’s index in the span, retrieves
its escape list from the table, and inserts a record into the list.
Upon a memory object is freed, CAMP’s allocator checks its
escape list and neutralizes all the existing dangling pointers
to the memory object.

To further boost the overall performance of CAMP, we de-
sign a cache mechanism for maintaining the point-to rela-
tion. New point-to relations are temporarily stored in the
cache until it becomes full, at which point the records are
transferred to the allocator in a batch, while skipping any
duplicates. This cache design boosts runtime speed and re-
duces memory overhead, particularly in scenarios where the
program operates repeatedly in the same block and creates
similar point-to relations.

1 struct obj {
2 int a;
3 int b;
4 };
5 struct obj* bar() {
6 // type-casting from void* to obj*
7 struct obj *o = malloc(sizeof(struct obj));
8 __check_range(o, o, sizeof(struct obj));
9 ...

10 }
11 int foo(struct obj *ptr) {
12 __check_range(ptr, &ptr->a, sizeof(ptr->a));
13 ptr->a = 1;
14 __check_range(ptr, &ptr->b, sizeof(ptr->b));
15 ptr->b = 2;
16 }

Listing 3: An example of optimizing structure field access
checks.

4.6 Compilation Optimization

One of the CAMP’s characteristics is that it leaves a large room
for potential optimization during the compilation time. This
characteristic could boost performance significantly and, at
the same time, preserve security. In the following, we de-
scribe three optimization algorithms we design for CAMP.
Optimizing range checks with type information. A naive
design against out-of-bound access is to have range checks
on every pointer arithmetic to ensure that pointers do not ex-
ceed memory bounds. As an example, consider the func-
tion foo in List 3. The variable ptr in lines 13 and 15 in-
volves two pointer arithmetics, and CAMP must insert range
checks for the result pointers (lines 12 and 14) for security
purposes. An optimization strategy is that if the compiler
knows the pointer is in-bound, the validation of which could
be removed to improve the performance. However, the com-
piler typically lacks information about the memory range of
a pointer, making it challenging to determine which pointers
are within bounds.

To apply the optimization, we use type information to de-
termine the memory range of a pointer during the compila-
tion process. This involves not only validating pointer arith-
metic, but also validating type-casting operations to ensure
the memory space referenced by a typed pointer is adequate
for its corresponding type. For example, in the code shown
in List 3, the function bar allocates a new object obj (line
7). The return type of malloc is void*, not struct obj*, so the
compiler inserts a type-casting instruction, after which CAMP
inserts a range check to ensure the memory space is sufficient
to hold the structure obj (line 8). With this type-casting vali-
dation, the compiler can safely infer that the memory space
of a typed pointer is at least its type size. As a result, the
compiler can conclude that pointers referring to the structure
field are in-bound. Therefore, CAMP can remove the range
checks in lines 12 and 14. Further, The compiler can also
guarantee that the memory of pointer o (line 6) is at least

Algorithm 1: Removing Redundant Validation
1 Input: A function F ;
2 Output: A set of pointer to be validated S ;
3 Initialize: NewPointerSet = getNewPointerSet{F} ;
4 In = Out = changeSet = dict() ;
5 foreach ptr ∈ NewPointerSet do
6 if pointerMapbase[base(ptr)] == NULL then
7 pointerMapbase[base(ptr)] = set() ;

8 pointerMap[base(ptr)].add(ptr) ;

9 In = pointerMap ;
10 changeSet = In−Out ;
11 while changeSet ̸= /0 do
12 foreach key, val ∈ In do
13 if ∃ p, p’ ∈ val and RedundantPair(p, p’) then
14 val.remove(p′) ;
15 val.p.o f f set = MAX(p.o f f set, p′.o f f set) ;
16 Out[key] = val ;
17 break;

18 else
19 Out[key] = val ;

20 changeSet = In−Out ;
21 In = Out ;

22 foreach key, val ∈ Out do
23 S.add(val) ;

the size of its type, so the range check in line 7 can also be
optimized and eliminated.

The optimization is made possible by the unique design of
security checks in CAMP, which eliminates the risk of access-
ing to a dangling pointer, such as ptr in function foo. This
allows for aggressive optimization of range checks for field
pointers without the concern of casing a false-negative for
use-after-free vulnerability. As we will show in Section 6,
the proposed optimization approach above dramatically im-
proves CAMP’s runtime performance, especially for programs
that contain pointers associated with types. It should be
noted that for pointers that have no type information (e.g.,
void*, char *) or their type sizes could not be determined at
compilation time (e.g., elastic objects [16]), we do not apply
the optimization above. As ASAN’s security design cannot
guarantee those conditions, applying this optimization to it
may result in use-after-free and out-of-bound access.
Removing Redundant Instructions. A redundant instruc-
tion in this work refers to a range checking that validates
pointers that have been validated or an escape tracking that
builds point-to relation that has been recorded. The optimiza-
tion opportunity for this is to remove the redundant ones to
obtain better performance.

Intuition suggests that if two range checks validate the
same result pointers from pointer arithmetic, one of them
could be removed. For example, in List 4, the pointer &

↪→ ptr->mem[1] in line 9 and 11 aliases. We could simply

1 struct obj {
2 char *mem;
3 };
4 void foo(struct obj *ptr, bool flag) {
5 __check_range(ptr->mem, &ptr->mem[0x100], 1);
6 ptr->mem[0x100] = 'x';
7 if (flag) {
8 ptr->mem[0x30] = 'y';
9 ptr->mem[0x1] = 'y';

10 }
11 ptr->mem[0x1] = 'z';
12 ptr->mem++;
13 }

Listing 4: Example codes of applying eliminating redundant
optimization.

remove the validation for &ptr->mem[1] in line 9. Further,
CAMP’s security design allows merging several pointer vali-
dations into one validation. Initially, CAMP needs to validate
the result pointers &ptr->mem[0x100] (line 6), &ptr->mem[0x30]

(line 8), and &ptr->mem[0x1] (line 11), respectively. However,
if pointer &ptr->mem[0x100] is in-bound, the other two point-
ers must be in-bound as well. Therefore, we could remove
their validations and move the validation of &ptr->mem[0x100]

to line 5, as is illustrated in List 4. Formally, given two result
pointers ptr1 and ptr2 from the same base pointer ptr, their
validation can be merged if the following function returns
True.

function REDUNDANTPAIR(ptr1, ptr2)
if ptr1.offset >= ptr2.offset then

if dominate(ptr1, ptr2) or
post-dominate(ptr1, ptr2) then

return True
return False

end function

The o f f set in the first condition represents the maximum
access offset from the base pointer. As such, the condition
requires ptr2 to be in the range of [ptr, ptr1]. The second
condition ensures the redundancy of validation, where the
two validations will be executed together. We follow Algo-
rithm 1 to remove redundant pointer validation. The algo-
rithm takes as input a function F , and outputs a set of point-
ers to be validated S. We first collect all the result pointers
(line 3) and categorize them into a map according to their
base pointers (line 5 to 8), where the key is the base pointer,
value is the set of result pointers. Then we follow the fix-
point algorithm [13] to apply the optimization. In each itera-
tion, we go through the element in the map (line 12). if we
find two pointers that satisfy the condition of the redundancy
(line 13), we remove the latter one (line 14) and adjust the
remaining one’s offset with their maximum value (line 15).
After this, we update the output of iteration (line 16) and
exit the loop to start the next iteration. Noted that if no re-
dundancy pair is found, the output will be just the input of
the iteration (line 19). When there is no redundancy pair

left, meaning that the fixed point is reached. Then we col-
lect the remaining pointers from the out to S (line 22 to 23).
List 4 showed CAMP’s instrumentation after applying this op-
timization, where only the validation in line 5 is preserved,
but the security guarantee remains. Note that applying this
optimization to redzone-based protection (e.g., ASAN) may
remove out-of-bound access checks. Assuming that ptr->mem
↪→ is a 0x20 bytes memory chunk with 0x10 bytes red zone,
normally the overflow will be detected through the check for
ptr->mem[0x30] in line 8. However, applying the proposed op-
timization will remove this valid check but keep the one for
ptr->mem[0x100], which skips the red zone and miss the over-
flow detection, thereby leading to false negatives.

In line 12 of List 4, the pointer ptr->mem is self-updated.
If we break this statement down, there are three operations
involved. First, the program retrieves the pointer stored in ad-
dress &ptr->mem. Then, it creates a new pointer based on the
retrieved pointer, where a range checking will be inserted.
This check guarantees the newly created pointer references
to the same memory object as the old one does. Then, the
new pointer is copied into address &ptr->mem, after which
CAMP will insert an escape tracking to the pointer copying.
One key observation is that the address &ptr->mem should
have been initialized somewhere before, which means such
a point-to relation must have been recorded. Because the
memory object of the new pointer is not changed, recording
the same point-to relation is redundant. Therefore, we could
optimize this escape tracking for performance without sac-
rificing precision. Our optimization strategy is to identify
those escape pairs that are doing self-updating.
Merging Runtime Calls. Ideally, for the same memory
pointer (including alias), the validation can be optimized
with the aforementioned approach into a single range check.
However, if the pointer arithmetic is dynamic, where the re-
sult of pointer arithmetic cannot be determined at the com-
pilation time, CAMP has to instrument different range checks
for them. List 5 illustrates such example codes. Line 5 and
7 access the same array ptr that does not have type informa-
tion. Besides, the access is dynamically based on the runtime
value i and j, making the optimization of removing redun-
dancy not applicable. To this end, CAMP needs to instrument
both Line 5 and 7 respectively. Each time executing a range
check, CAMP has to switch its context into the library, query
the memory range, and then validate the pointer. This pro-
cess is time-consuming. One strategy to optimize this is that
we could merge the range checks since they share the same
base pointer. This can reduce the cost of constantly switch-
ing contexts and save the time of querying the memory range.

To do this, we first follow the same approach in Algo-
rithm 1 of constructing a pointer map where the pointer arith-
metic with the same base pointer is categorized into the same
group. Then, for each group, we go through the CFG of the
function and find their nearest dominator instruction, where
a range query is inserted to initialize the memory chunk’s

1 void foo(char *ptr, int i, int j) {
2 unsigned int start, end;
3 __get_range(ptr, &start, &end);
4 assert(&ptr[i]>=start && &ptr[i]+1<end);
5 ptr[i] = 'x';
6 assert(&ptr[j]>=start && &ptr[j]+1<end);
7 ptr[j] = 'y';
8 }

Listing 5: Example codes of applying merging runtime calls
optimization.

range variables. After this, the original range check then is
replaced with assertion to ensure the boundary. List 5 also
shows the result after applying this strategy. Line 3 queries
the memory range of ptr and initializes the memory ranges
into variables start and end. After this, validation for &ptr[i

↪→] and &ptr[j] is done through two assertions in line 4 and
line 6.

5 Implementation

In this section, we describe our implementation of CAMP’s
compiler and the allocator.
CAMP Compiler. CAMP’s compiler is built on top of LLVM
12 compiler framework. We implement the instrumentation
and the optimization in an LLVM pass, loadable by clang.

To defend against heap overflow, it instruments all pointer
arithmetic and type-casting instructions. In the context of
pointer arithmetic, the compiler collects the getelementptr

↪→ instruction from the LLVM IR, which represents the sole
pointer arithmetic instruction as CAMP prohibits casting in-
tegers to pointers. CAMP adds a range checking instruction
after every getelementptr instruction, with three inputs: the
base pointer, the result pointer, and the type size of the result
pointer. The getelementptr instruction’s pointer operand, re-
sult value, and type size serve as these inputs respectively. To
determine if the source operand refers to the heap, CAMP back-
tracks it following LLVM’s SSA to identify its origin. If the
source is a stack or global variable, the system presumes it
doesn’t refer to the heap, skipping the getelementptr instruc-
tion’s instrumentation. The compiler also instruments the
bitcast instruction, which symbolizes type-casting in LLVM.
For each type-casting instruction, CAMP adds a checking in-
struction with two inputs - the result pointer and its type size
- to ensure adequate memory for the object.

Following CARAT’s approach [51,52] to tracking escapes,
CAMP instruments store instructions if their value operand
type is a pointer. If the escape is on heap memory, the com-
piler inserts an escape tracking CALL instruction before the
store instruction.
Memory Allocator. The allocator is built on tcmalloc [25].
Tcmalloc maintains a page table mapping page addresses to
a span. Notably, a span can handle multiple continuous mem-

CWE (number) Good Test
(Selected/Total/Passed)

Bad Test
(Selected/Total/Passed)

Buffer Overflow(122) 3870/3870/3870 2308/3870/2308
Double Free(415) 820/820/820 820/820/820

Use After Free(416) 394/394/394 288/288/288
Invalid Free(761) 288/288/288 288/288/288

Table 1: Security evaluation of CAMP on Juliet Test Suite.

ory pages for larger objects. To ensure any heap pointer can
find its span, we register every memory page used by tcmal-
loc in the page map. Each span is supplemented with two
metadata to facilitate CAMP’s runtime checks: the object size
and a reference to the escape pointer array containing linked
escapes to the objects it manages. For each page, we com-
press its span’s start address and size class into an 8-byte
unit and map it into the size class map. With this design,
CAMP can retrieve the necessary data and validate pointers
in constant time. For unrecorded spans, CAMP resorts to the
original routine of retrieving the span.

To accommodate coding styles that use out-of-bound
pointers as memory boundaries, we reserve one-byte mem-
ory at the end of each allocation, ensuring such pointers re-
main in-bound. Each pointer escape prompts CAMP to create
a record containing the pointer’s location, stored in the span
of the referenced object. Linked escape records for the same
object are created, and all related records are freed when a
memory object is freed. During this process, CAMP neutral-
izes any pointers still referencing the object. CAMP features a
temporal escape array cache mechanism. Every time a new
escape track is invoked, CAMP checks the array for an identi-
cal record before appending. Once full, all records are com-
mitted to the span and the array cleared, ensuring all dangling
pointers are neutralized.

6 Evaluation

In this section, we first evaluate CAMP’s effectiveness in de-
tecting heap overflow and use-after-free memory corruption
on a standard vulnerability benchmark and a set of real-world
vulnerabilities. Then, we show CAMP’s protection in detail
with two case studies on real-world vulnerabilities. After
this, we discuss CAMP’s security capability with a comparison
to related works. Finally, we show CAMP’s performance/mem-
ory overhead using SPEC CPU benchmarks and real-world
applications, and demonstrate its advantage against tools
from the most recent research. All the experiments were
conducted on a bare-metal machine configured with Ubuntu
22.04 system, 12th Gen Intel i7-12700 CPU at 4.9 GHz,
32GB RAM, and 1T SSD storage.

CVE/Issue ID Application Bug Type CAMP ASAN-- Memcheck DangNull MarkUs Delta pointer
CVE-2015-3205 libmimedir Use-After-Free ✔ ✔ ✔ ✔ ✔ /
CVE-2015-2787 PHP 5.6.5 Use-After-Free ✔ ✔ ✔ ✖ ✖ /
CVE-2015-6835 PHP 5.4.44 Use-After-Free ✔ ✔ ✔ ✔ ✖ /
CVE-2016-5773 PHP 7.0.7 Use-After-Free ✔ ✔ ✔ ✔ ✖ /
Issue-3515 [50] mruby Use-After-Free ✔ ✔ ✔ Build Fail ✖ /
CVE-2020-6838 mruby Use-After-Free ✔ ✔ ✔ Build Fail ✖ /
CVE-2021-44964 Lua Use-After-Free ✔ ✔ ✔ Build Fail ✔ /
CVE-2020-21688 FFmpeg Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2021-33468 yasm Use-After-Free ✔ ✔ ✔ ✔ ✔ /
CVE-2020-24978 nasm Use-After-Free ✔ ✔ ✔ ✖ ✔ /
Issue-1325664 [6] Chrome Use-After-Free ✔ ✔ ✔ Build Fail ✖ /
CVE-2022-43286 Nginx Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2019-16165 cflow Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2021-4187 vim Use-After-Free ✔ ✔ ✔ ✖ ✔ /
CVE-2022-0891 libtiff Heap Overflow ✔ ✔ ✔ / / ✔
CVE-2022-0924 libtiff Heap Overflow ✔ ✔ ✔ / / ✔
CVE-2020-19131 libtiff Heap Overflow ✔ ✔ ✔ / / ✔
CVE-2020-19144 libtiff Heap Overflow ✔ ✔ ✔ / / ✔
CVE-2021-4214 libpng Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2021-3156 sudo Heap Overflow Run Well ✔ ✔ / / Build Fail
CVE-2018-20330 libjpeg-turbo Heap Overflow ✔ ✔ ✔ / / ✔
CVE-2020-21595 libde265 Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2020-21598 libde265 Heap Overflow ✔ ✔ ✔ / / Build Fail
Issue-5551 [4] mruby Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2022-0080 mruby Heap Overflow Run Well ✔ ✔ / / Build Fail
CVE-2019-9021 PHP Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2022-31627 PHP Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2021-32281 gravity Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2020-15888 Lua Heap Overflow ✔ ✔ ✔ / / Build Fail
CVE-2021-26259 htmldoc Heap Overflow ✔ ✖ ✔ / / Build Fail
CVE-2022-28966 Wasm3 Heap Overflow ✔ ✔ ✔ / / Build Fail

Table 2: The security evaluation results of CAMP and related tools on real-world vulnerabilities. ✔ represents that the corre-
sponding tool successfully detected the memory corruption in the vulnerability. ✖ indicates the tool failed to detect the memory
corruption that happened. "/" represents the tool does not support protecting the corresponding type of vulnerability. "Run
Well" means the application runs well without causing any memory corruption with the PoC input. "Run Fail" represents that
the tool failed to run due to compatibility issues. "Build Fail" means the tool failed to compile the targeted application to
enforce protection.

6.1 Security Evaluation

Juliet Test Suite. To evaluate the effectiveness of CAMP’s
protection, we conducted experiments using the Juliet Test
Suite, following recent works [23, 32]. The Juliet Test Suite
includes test programs for various vulnerability types, each
with both bad and good tests. The proof-of-concept (PoC) in
the bad tests triggers the corresponding vulnerability, while
the PoC in the good tests does not.

As CAMP focuses on preventing heap memory corruption,
we only included heap-related vulnerability types from the
Juliet Test Suite. It is important to note that CAMP’s over-
flow prevention mechanism is based on the size of the mem-
ory object. Therefore, heap overflows that do not exceed the
memory boundary are treated as benign because they do not
corrupt other memory objects. Following this logic, we used

a customized ASAN1 to exclude the bad tests in which the
overflow is contained within the memory object.

Regarding CAMP’s use-after-free protection, it neutralizes
dangling pointers, so instead of reporting an error, derefer-
encing a dangling pointer will cause the program to abort
without a report. To evaluate the test cases in the use-after-
free category, we used a gdb script to confirm that the abor-
tion of the program was due to the dereference of neutralized
dangling pointers.

The results of the selected tests are presented in Table 1,
which shows the selected vulnerability type, the number of

1A customized ASAN that rounds up each allocation and includes a large
red zone to prevent overflows from affecting adjacent objects and escaping
detection. When evaluating tests for overflow, if ASAN does not report any
issues, it indicates that the overflow occurs within an object. In such cases,
the test can be safely removed from the test suite.

selected tests, the total number of tests, and the number of
tests passed. Some of the tests originally categorized as
Heap-Based Buffer Overflow do not contain heap overflow,
such as cases Heap_Based_Buffer_Overflow__c_src_char_cat_*.
These tests trigger a buffer overflow when copying data from
the heap to the stack, causing a stack overflow rather than a
heap overflow. These cases were excluded from the selected
test cases using the customized ASAN. In all selected tests,
CAMP passed without producing any false-positives or false-
negatives.
Real-world Applications. In addition to the Juliet Test
Suite, we also evaluated the security of CAMP by using a set
of real-world vulnerabilities. We included all the real-world
vulnerabilities used in [11]. Additionally, we collected other
types of vulnerabilities from the CVE database [2,3,10]. Ta-
ble 2 lists the selected vulnerabilities. Our dataset includes
14 use-after-free and 18 heap overflow vulnerabilities across
19 applications, including language interpreters, commonly
used libraries, browsers, web servers, and commonly used
UNIX tools. Our goal was to evaluate CAMP’s effectiveness
in preventing different heap memory corruption vulnerabili-
ties and its scalability over various real-world applications.
As a comparison, we also evaluate related tools, includ-
ing ASAN/ASAN-- [62], Memcheck [27], DangNull [31],
MarkUs [12], and Delta Pointer [30] for their effectiveness
in detecting and preventing heap errors.

Table 2 presents the security evaluation results on real-
world applications. CAMP successfully detected and pre-
vented all use-after-free vulnerabilities. In the case of heap
overflow vulnerabilities, CAMP was able to detect 16 out of
18 and report them. The other two ran well and did not cause
any reports or crashes. But upon manual investigation using
a debugger, we found that the overflow had occurred, but the
memory bounds were not exceeded due to the rounded-up
memory allocation of CAMP’s seglist allocator. As a result,
the overflow is mitigated and no memory corruption hap-
pened. We argue that these two cases do not count as false
negatives of CAMP as the exploitation is prevented.

For tools providing a comparable level of heap protec-
tion, Memcheck was able to detect all the heap errors in the
dataset. ASAN-- reported all the heap errors except CVE-
2021-26259 [1]. The reason behind this is that ASAN uses
red zone to detect heap overflow vulnerabilities. However,
CVE-2021-26259 is a non-linear heap overflow that skips
the red zone, thus ASAN--’s detection is defeated. Unlike
ASAN--, CAMP was able to detect this case successfully as it
detects heap overflow based on the memory boundary, mak-
ing it impossible for non-linear heap overflows to bypass
its protection. We argue that CAMP’s protection is stronger
and more robust than those two tools. As discussed in prior
work [32], ASAN and Memcheck’s use-after-free protection
could be defeated if the attacker reclaims the freed memory
that the dangling pointer refers to, thus enabling a possible
exploitation against use-after-free vulnerabilities. As a com-

parison, CAMP mitigates the heap error fundamentally by nat-
uralizing all dangling pointers.

For tools offering partial heap protection, DangNull and
Delta Pointer showed limited compatibility support. 4 out of
14 use-after-free cases were not able to build with DangNull.
Among 10 use-after-free cases that could be successfully
compiled, only 4 of them were detected. Others just crashed
with the PoC input as if there is no protection. Note that Dan-
gNull has a similar use-after-free protection scheme as CAMP,
but it fails to detect 6 cases that CAMP could detect. This
is because DangNull only tracks the point-to relation from
heap to structured object on the heap, which will miss the
detection if the dangling pointer is on stack/global memory,
or the use-after-free object has no type information. Mark-
sUs showed better compatibility support but failed to detect 6
out of 14 use-after-free vulnerabilities. Delta Pointer showed
even worse compatibility support, which can only compile 5
out of 17 cases, but all the out-of-bound in compatible cases
were detected. However, due to its design weakness, it is not
capable of detecting buffer underflow.

We argue that CAMP provides a much more comprehen-
sive heap error detection capability when compared to sim-
ilar tools. Our evaluation demonstrates that CAMP outper-
forms the combination of partial heap protection tools (such
as Delta Pointer + DangNull/MarkUS) as well as ASAN--.
It is worth mentioning that CAMP does not miss any bugs that
ASAN-- can detect. In addition, CAMP outperforms ASAN--

from the following aspects. First, ASAN--’s detection for
use-after-free is fragile, which could be bypassed by reclaim-
ing free memory with new heap allocation. As such, some
use-after-free vulnerabilities in allocation-intensive applica-
tions could not be detected. We observed such a case when
evaluating ASAN-- in 600.perlbench of SPEC CPU2017,
where ASAN-- missed the bug but CAMP did not. Besides,
some use-after-free POCs that accidentally re-occupy the
freed memory will not be reported by ASAN--. We tweaked
the original POC for CVE-2015-2787 and CVE-2015-6838
and found that the use-after-free was missed by ASAN-- as
the freed memory is reclaimed. Second, ASAN-- utilizes
a red zone mechanism to flag out-of-bound access. In the
case of non-linear overflow, the overflow may jump over the
red zone and thus fail overflow detection. Although it is un-
known how frequently non-linear overflow may happen in
the real world, we argue that the missed detection of such
bugs will cause serious security issues. For example, CVE-
2021-26259 is a non-linear overflow that would lead to code
execution.

6.2 Performance Evaluation
In the following, we evaluate CAMP’s performance on the
two SPEC CPU benchmarks with the comparison with re-
lated tools. Then, we evaluate the effectiveness of each de-
sign component of CAMP, including the compiler optimiza-

Benchmark Time and Memory Overhead
CAMP ASAN−− ASAN ESAN Memcheck

600.perlbench_s 237.95% / 2241.12% 76.95% / 366.92% 143.59% / 358.20% 644.00% / 4.15% 3496.46% / 138.97%
602.gcc_s 78.56% / 135.52% 83.61% / 63.42% 99.47% / 62.77% - 2888.13% / 30.42%
605.mcf_s 14.62% / 31.55% 24.45% / 3.61% 27.88% / 3.61% 109.33% / -4.24% 601.05% / 22.68%
623.xalancbmk_s 138.94% / 1220.66% 107.86% / 428.07% 109.41% / 433.51% 81.67% / 8.60% 4962.60% / 98.81%
625.x264_s 75.07% / 12.68% 62.26% / 13.52% 75.92% / 13.26% 90.94% / -3.55% 2070.57% / 56.96%
631.deepsjeng_s 1.58% / 0.00% 44.23% / -0.23% 64.08% / -0.23% 18.85% / -0.25% 3251.34% / 25.34%
641.leela_s 3.02% / 514.19% 13.97% / 2832.83% 17.33% / 2833.72% 6.65% / -17.52% 4163.69% / 262.82%
657.xz_s 7.79% / 0.00% 17.45% / 2.98% 13.40% / 2.98% 14.61% / -0.70% 718.87% / 24.45%
619.lbm_s 1.34% / 0.01% 37.32% / 5.94% 29.38% / 5.94% 34.14% / -0.36% 2907.53% / 25.98%
638.imagick_s 45.47% / 0.07% 17.23% / 4.46% 28.56% / 4.47% 21.70% / -2.00% 4452.66% / 22.93%
644.nab_s 62.55% / 26.13% 35.18% / 67.52% 35.14% / 66.63% 1988.66% / -1.34% 3722.35% / 31.80%

Geomean 21.27% / 127.47% 38.27% / 104.72% 44.78% / 104.35% 65.31% / -1.94% 2546.88% / 56.49%

Table 3: The relative time and memory overhead of CAMP, ASAN --, ASAN, ESAN, and Memcheck on SPEC CPU2017. "-"
indicates the tool failed to run the corresponding benchmark.

Benchmark Metric CAMP LowFat Delta Pointer DangNull FreeGuard MarkUs FFMalloc

SPEC CPU2006 Time 54.92% 160.62% 37.39% 39.99% 10.40% 15.84% 9.50%
Mem 237.67% 38.60% 0.01% 158.52% 70.89% 2.96% 27.57%

SPEC CPU2017 Time 21.27% 96.96% - 28.61% 8.23% 11.90% 10.94%
Mem 127.47% 54.35% - 314.13% 29.23% 32.35% 62.00%

Table 4: The relative time and memory overhead of CAMP, LowFat, Delta Pointer, DangNull, FreeGuard, MarkUs, and FFmal-
loc on SPEC CPU2006 and SPEC CPU2017.

tion, and the customized allocator. Finally, we evaluate CAMP
on the real-world applications.

SPEC CPU Benchmark. We compared the performance of
CAMP with related tools including ASAN [47], ASAN -- [62],
ESAN [20], Softbound+CETS [41], and Memcheck [27].
All programs in the benchmark suite were compiled using
default configurations and used reference input. Besides, all
tools were configured to ignore detected errors to avoid ter-
mination. Note that, to ensure a fair comparison, we only
enabled ASAN -- and ASAN’s heap error detector. Un-
fortunately, ASAN and Memcheck were unable to compile
and run the omnetpp and dealII programs, and therefore,
they were excluded from the evaluation. Softbound+CETS
showed limited support, failing to compile all programs in
SPEC CPU2017 and only supporting 7 programs in SPEC
CPU2006, so we only compare with it in SPEC CPU2006.
Our evaluation of the tools did not take PACMem [32] into
account, as it requires specialized hardware (ARM PA) for
the detection of heap memory errors. For baseline evaluation,
we used tcmalloc as the default allocator for better compari-
son as CAMP’s allocator is based on tcmalloc. For each tool,
we ran the benchmark 10 times and reported the average re-
sult to minimize the randomness.

The evaluation results in terms of time overhead and mem-
ory overhead are presented in Table 3 for the SPEC CPU2017
benchmark suite. Each row in the table represents a specific
application benchmark, with the benchmark name listed in
the first column and the subsequent columns display the rel-
ative time and memory measured compared to a baseline.
Following the most recent works [23, 32], we utilized ge-
ometric mean value to represent the average overhead of
each tool. CAMP exhibits the best runtime speed compared
to other tools, with an average overhead of 21.27%, while
ASAN --, ASAN, and ESAN have overhead rates of 38.27%,
44.78%, and 65.31%, respectively. Memcheck has the worst
runtime performance, which introduces 2546.88% overhead
compared to the baseline. In terms of memory overhead,
CAMP has a higher rate of 127.47% compared to roughly
104% for ASAN and ASAN --. ESAN has the best memory
overhead performance, with -1.94% which is mainly cased
by the difference of allocators. As we discussed in Sec-
tion 4, CAMP tracks different forms of object point-to relation,
which is more comprehensive and could obtain better secu-
rity guarantee as we showed in Section 6.1. The cost of this
design is that the performance overhead will be higher on
allocation-intensive programs, such as 600.perlbench_s and

��������� ��� ��� #�������� #��	 ���� ���� ����� #$ ��� ������� ���
�

�

�

�

	

�

�

��

�
��
�$
��

��
��

�

!�������
����
���"����!���!
 !�"�!���!
��������!
�����!
��������

Figure 2: Evaluation result of CAMP breakdown on SPEC CPU2017. From left to right, the bars show the normalized time of
tcmalloc replacement, CAMP, CAMP with each optimization disabled, and CAMP without optimization.

623.xalancbmk_s. We found that CAMP recorded a number of
escape tracks, resulting in notable time and memory over-
head. The average time and memory overhead of CAMP with-
out those two cases will be reduced to 13.21% and 44.24%,
respectively. For case 638.imagick_s and 644.nab_s, where
CAMP’s time overhead is higher than ASAN--, we observed
the proposed optimizations are less effective in those two
cases. Specifically, the type-based range checks removing
and redundant checks removing are less effective on them.
For the remaining cases in the benchmark, CAMP’s time over-
head is minimal with an even lower geomean value of 8.86%.

As for SPEC CPU2006, the evaluation results could be
found in Table 8 and Table 9, we put them in Appendix
due to the limited space. CAMP still outperforms all other
tools in terms of runtime speed. Specifically, it introduces an
overhead of 54.92%, while ASAN --, ASAN, ESAN, Soft-
Bound+CETS, and Memcheck have the overhead of 56.77%,
67.02%, 123.08%, 319.75%, and 1990.02%, respectively.
As we discussed before, CAMP performs worse in allocation-
intensive programs. As such, for cases like 400.perlbench,
482.sphinx3, 453.povray, 453.povray, 473.astar, 483.xalancbmk

↪→ , CAMP traces a large number of runtime point-to relations
and costs more memory on maintaining them, which even-
tually slows down the overall speed. The time and mem-
ory overhead without those cases will be reduced to 34.52%,
and 39.3%, respectively. Since the SPEC CPU2006 contains
more allocation-intensive cases than SPEC CPU2017, CAMP
reports higher overhead on SPEC CPU2006.

We further compare CAMP with other tools that offer partial
memory protection, following the same setup of the previous
evaluation on the SPEC CPU Benchmarks, we present the re-
sults in Table 4. LowFat, which only provides out-of-bounds
(OOB) protection, exhibits slower performance than CAMP,
with time overheads of 160.62% and 96.96% on the two
SPEC benchmarks, respectively. Delta Pointer, which could

only run SPEC CPU2006, incurs 37.39% time overhead.
In terms of use-after-free (UAF) protections, FreeGuard,
MarkUs, and FFMalloc introduce approximately 10% over-
head on the benchmarks. DangNull exhibits 28.61% over-
head on SPEC CPU 2017, which is slightly high than CAMP.
It is noted that DangNull only includes a similar but weaker
use-after-free protection scheme, highlighting the fast run-
time speed provided by the CAMP allocator while offering a
stronger security guarantee. We argue that CAMP is the opti-
mal solution for achieving comprehensive heap protection in
comparison to the other tools currently available. Firstly, as
opposed to tools that only offer partial heap protection, CAMP
presents a more holistic solution, with the ability to detect
both spatial and temporal heap errors. Moreover, even when
considering the combination of the faster Out-of-Bounds pro-
tection tool (e.g., Delta Pointer) and Use-After-Free protec-
tion tool (e.g., FFMalloc), the overhead incurred by CAMP is
remarkably similar to their collective overhead (54.92% vs.
46.89%). Despite this, CAMP outperforms this combination
in several ways. On the one hand, due to design limitations,
Delta Pointer is only capable of detecting overflow errors,
leaving underflow errors undetected, a challenge that CAMP
effectively addresses. On the other hand, Delta Pointer’s
support is restricted to a 32-bit address space, allowing for
a maximum of only 4GB of memory. In parallel, FFMalloc
may demand a considerable amount of physical memory if
the program continues to persist [23]. Hence, their combined
use could rapidly exhaust the available 4GB of memory, re-
sulting in incompatibility issues.

Component Evaluation. The configuration of CAMP con-
tains various components, including compiler optimization
and the integration of a seglist allocator. To determine the
impact of each component on performance, we conducted
evaluations using different setups of CAMP.

To analyze the impact of CAMP’s customized allocator, we

Benchmark Time (s) Overhead
Native CAMP

cfrac 2.91 3.82 31.27%
espresso 3.62 3.62 0.00%
barnes 1.35 1.34 -0.74%
redis 2.66 2.68 0.75%
leanN 25.35 26.18 3.27%
alloc-test1 2.99 3.06 2.34%
alloc-testN 2.91 3.42 17.53%
sh6benchN 2.41 2.39 -0.83%
sh8benchN 5.79 8.3 43.35%
xmalloc-testN 2.664 2.306 -13.44%
cache-scratchN 0.43 0.44 2.33%

Geomean - - 9.79%

Table 5: Time Overhead on mimalloc-bench. Native repre-
sents using the default allocator – ptmalloc, CAMP means
using its customized seglist allocator based on tcmalloc.

conducted an evaluation using mimalloc-bench to compare
the allocator differences. The evaluation results are pre-
sented in Table 5. The "Native" column represents the perfor-
mance of the system’s native allocator (ptmalloc), while the
"CAMP " column indicates the results obtained with CAMP’s
customized allocator. The two allocators exhibited distinct
behavior across different test cases. For instance, in the case
of cfrac, the Native allocator was 31.27% faster than CAMP,
whereas in the xmalloc-testN case, it was 13.44% slower.
Overall, CAMP’s allocator demonstrated a 9.79% slowdown
compared to the native allocator.

To evaluate the effectiveness of compiler optimization, we
disabled each optimization one by one in different configura-
tions of CAMP, represented as struct-opt, redundant-opt, merge-
↪→ opt and no-opt in Figure 2. To gain insight into the role of
the allocator cache design, we measured the performance of
CAMP allocator cache disabled. Finally, to assess the impact
of the seglist allocator, we compared the results to a base-
line using tcmalloc. These setups and their results on SPEC
CPU2017 are presented in Figure 2.

Our evaluation results confirm that the seglist allocator of-
fers minimal benefit. The tcmalloc baseline, compared to
default ptmalloc, only improves average speed by 2.26%.
We then took a further look at the contribution of alloca-
tor cache design, we found three programs (perlbench, gcc

↪→ , xalancbmk) experienced memory exhaustion and were un-
able to complete the test, so they were excluded from Fig-
ure 2. The remaining programs resulted in an average over-
head of 40.34%, nearly double the overhead with cache en-
abled (20.94%). Our investigation revealed that these three
programs made many repeated point-to relationships, lead-
ing to a high consumption of memory for metadata mainte-
nance. Specifically, all these programs contain a language

System Output Latency (µs)
(req/s) Average 50% 75% 90% 99%

Native 150,368 643.23 625 635 649 910
CAMP 108,322 880 850 870 910 1070

ASAN-- 103,688 930 880 900 960 1860
ASAN 97,095 970 900 930 1040 1910

Table 6: CAMP, ASAN, and ASAN--’s output and latency
evaluation results on Nginx. In the Latency column, the "Av-
erage" represents the average latency of the requested con-
nection, the others show the latency distribution.

interpreter that builds ASTs during input parsing, which
creates connections that require CAMP to maintain point-to
records. In gcc, as the compiler optimization progressed,
more nodes are connected, leading to more point-to records
being constructed, and eventually, the program exhausted all
the memory available. In perl, after parsing the AST, the
execution of the AST utilized the heap as a stack, leading
to repeated references that further constructed more pointer
escapes. These cases demonstrate the effectiveness of the
cache design. With it, repeated point-to relations could be
saved, thus reducing both memory and time overhead.

In addition, we found that the proposed compiler optimiza-
tion significantly reduced the performance overhead. The
CAMP without compiler optimization imposed an overhead of
204.09%, while the default CAMP had an overhead of 20.94%.
Among the tested programs, imagick saw the best optimiza-
tion results, with its overhead reduced from 368.18% to
48.47%. Upon analyzing the breakdown of each optimiza-
tion, we found that the greatest impact came from the struc-
ture optimization. If this optimization is disabled, the over-
head increases from 20.94% to 113.39%. While disabling
redundant optimization, and merging runtime call optimiza-
tion introduced 64.20%, and 95.73%, respectively.
Nginx. To evaluate the performance of CAMP on a large-
scale, real-world application, we conducted experiments on
Nginx v1.22.1 using the wrk v4.2.0 benchmarking tool. For
these experiments, we configured the tool with 8 threads, 100
connections, and a test duration of 60 seconds. To ensure
consistency, we repeated the test 30 times and recorded the
average results. The findings are presented in Table 6. On
average, CAMP introduces a 27.96% overhead on Nginx’s
request output, In terms of latency, CAMP adds 36.81% more
time. The results reflect CAMP’s efficiency on real-world ap-
plications with mild overhead. As a comparison, ASAN and
ASAN-- incur a 35.43% and 31.04% overhead on request
output and have a latency overhead of 50.80% and 44.58%,
respectively.
Chromium. In addition to Nginx, we also evaluated the
performance of CAMP on Chromium. We used three popu-
lar browser benchmarks: Kraken, SunSpider, and Lite Brite.

Benchmark Time (ms) Overhead
Native CAMP

kraken 1069 1722 61.09%
sunspider 521 813 56.05%
Lite Brite 2930 5520 88.40%

Geomean - - 67.14%
google.com 1101 1427 29.61%

facebook.com 831 1199 44.28%
amazon.com 2298 3120 35.77%
openai.com 1444 1791 24.03%
twitter.com 1479 1708 15.48%
gmail.com 1691 2032 20.17%

youtube.com 2143 2628 22.63%
wikipedia.org 984 1535 56.00%

Geomean - - 28.59%

Table 7: CAMP’s performance evaluation results on the
Chromium browser. In the Benchmark column, kraken, sun-
spider and Lite Brite are three browser benchmarks, whereas
the following are websites used to measure the loading time
of the browser.

Furthermore, we measured the loading time for websites, as
this metric is highly relevant to end users’ browsing experi-
ence. To measure loading time, we utilized a browser exten-
sion and recorded the average loading time for the 8 most
popular websites according to the Top Websites Ranking [9].
Each benchmark experiment was repeated 30 times, and the
mean value was calculated to mitigate any random variations.
The evaluation results are presented in Table 7, with the aver-
age overhead of CAMP represented by the geometric mean.

We observed that CAMP introduced a 67.14% overhead
on the three browser benchmarks. However, the loading time
for web pages increased by only 28.59% on average. It is
important to note that these benchmarks focus on specific
components of the browser, which may not fully reflect the
overall performance. In contrast, loading web pages involves
JavaScript engine execution, DOM processing, and other fac-
tors, thus it is more representative of real-world browsing. In
this regard, we argue that the overhead introduced by CAMP
to Chromium is minimal.

7 Discussion

False Positive and False Negative. As a pointer-based pro-
tection approach, CAMP shares similar weaknesses with prior
works [19, 41, 56]. First, C/C++ allows the use of out-of-
bound pointers as the memory boundary, which may cause
CAMP to generate false positives. To mitigate this, we reserve
additional memory space allocated for each allocation so that
those boundary pointers will be still in bound, as is discussed

in Section 5. This approach of changing the memory layout
effectively mitigated this issue, thus we did not find any false
positives in our evaluation. We consider this to be more of
a compatibility issue that should be resolved at the source
code level. This not only eliminates the potential for false
positives, but also strengthens the security of the code.

Second, in C/C++, integers may be used for pointer arith-
metic instead of actual pointers. This poses a challenge for
CAMP as it may result in out-of-bounds pointer accesses that
go undetected. To address this issue, we enforce a policy
within the compiler that prohibits the casting of integers to
pointers. Thus, the generation of out-of-bounds pointers
from integers can be prevented. In cases where developers
have to perform such casts, they could explicitly indicate
their intention using compiler attributes to disable the policy
locally.

Preventing In-bound Overflow. The design of CAMP’s over-
flow detection is based on memory boundaries, meaning that
it only identifies overflows that cross the boundaries as vio-
lations. Therefore, CAMP’s design shares a similar weakness
with prior works [36, 41, 56], as it cannot be used to prevent
in-bound heap overflows. However, we found that, by lever-
aging a proper implementation, CAMP could mitigate some
in-bound overflow. Specifically, if pointer arithmetic is per-
formed on an array of a structure, we can use the array size
to validate the pointer and ensure that the result pointer stays
within the array of the structure, as such it mitigates the in-
bound overflow with the type information. However, we do
not claim this as CAMP’s capability of preventing in-bound
overflow. Because the type information is not always avail-
able, besides, the array may be dynamic thus CAMP has no
clue how to validate it to make sure no overflow is inside the
structure. Therefore, we consider the prevention of in-bound
overflows to be a future research direction.

Protecting Shared Library. As CAMP uses the compiler for
instrumentation, it naturally supports the protection of any
programs that the compiler can build, including shared li-
braries. To achieve this protection, users must re-compile
the shared library using the CAMP compiler. By doing so, the
library will be instrumented with function calls to the CAMP
runtime, ensuring that protection is enforced.

Supporting Multi-threaded Programs. CAMP is compat-
ible with multi-threaded programs. Data race could be
avoided by employing locks for the metadata in each span. In
addition, we evaluated several multi-threaded programs (e.g.,
PHP, mruby, Lua, FFmpeg, Chrome, Nginx) in Section 6 and
did not observe any incompatibility – CAMP successfully de-
tected the bug in those programs without reporting any false
positive.

8 Related Work

Safe allocator. To combating heap memory corruption at-
tacks [16, 24, 33, 54, 58], various safe heap allocators [11, 18,
23, 29, 35, 39] are proposed. Specifically, FFmalloc [11] pro-
poses a one-time memory allocation. DieHarder [44] ran-
domizes heap address space to unstabilize heap exploitation.
Oscar [18] prevents temporal memory error with shadow
memory allocated for each heap object, thus detecting dan-
gling pointer access. Markus [12] employs a strategy that
quarantines freed memory to eliminate any lingering dan-
gling pointers. DangZero [23] interacts with the kernel page
table to implement an alias-based UAF detection mechanism,
ensuring the virtual memory is never reused. FreeGuard [49]
improves performance with freelist and optimizes shadow
memory scheme. CAMP differs from those works as it does
not exclusively rely on allocators to enable protection.
Pointer invalidation. Several works [15, 21, 30, 31, 36, 41,
42] detect memory errors through pointer invalidation. For
instance, CETS [42] employs a lock-and-key identifier-based
approach to track separate metadata for each pointer to detect
dangling pointers. Undangle [15] uses dynamic taint track-
ing to identify and eliminate unsafe dangling pointers. Dan-
gNull [31] nullifies pointers when their associated objects
are freed. In regards to spatial safety, Redfat [21] combines
redzone and low-fat pointers to detect buffer overflow. Delta
Pointer [30] introduces a pointer tag to invalidate overflow
pointers, thereby preventing errors. Softbound [41] utilizes
shadow memory to track memory bounds and employs run-
time checks for efficient overflow detection. CAMP achieves
full heap protection with pointer validation, however, unlike
the aforementioned works, CAMP cooperates with the com-
piler and the allocator to optimize pointer invalidation.
Memory Sanitizer. Memory sanitizers typically offer full
heap error detection. ASan [47] employs shadow memory
and redzones for detecting temporal and spatial errors. To
reduce its overhead, ASan-- [62] and SANRAZOR [60] pro-
pose several compiler optimizations to reduce instrumented
checks on memory access, without security compromise.
FuZZan [26] presents new metadata structures to decrease
memory management overhead. CUP [14] proposes a hy-
brid metadata scheme that supports all program data includ-
ing globals, heap, and stack. EffectiveSan [20] presents a dy-
namic type system to detect memory errors, but it has some
limitations on detecting temporal errors. Memcheck [27],
part of Valgrind [43], detects full memory errors. CAMP
differentiates itself from those approaches by its protection
scheme, thereby offering superior speed.
Hardware-assisted protection. There are also a bunch of
works [19, 22, 28, 32, 46, 55, 56, 61] that leverage hardware
to enforce memory safety. Specifically, Low-Fat [19] ex-
tends the pointer representation with base and bounds infor-
mation so that the runtime or hardware can prevent spatial
safety violations. In-Fat [56] enhances the hardware-assisted

tagged-pointer scheme, employing three complementary ob-
ject metadata schemes to decrease the number of pointer
tag bits required. Several works, including PtAuth [22],
AOS [28], and PACMem [32], utilize the Pointer Authentica-
tion Code (PAC) feature of ARM to identify memory errors.
HeapCheck [46] leverages pointer bits in 64-bit systems for
a bounds table, aiding in memory error detection with an 8
KB on-chip SRAM cache. BOGO [61] employs Intel MPX
for memory safety, while CHEx86 [48] innovatively targets
memory errors via microcode-level code instrumentation. In
contrast, CAMP doesn’t need extra hardware support.

9 Conclusion

Mitigating memory corruption on the heap is a complex task.
Existing techniques to address heap memory corruption ei-
ther provide limited protection or introduce significant run-
time overhead, making their adoption in real-world prod-
ucts challenging. By leveraging a carefully designed code
instrumentation and a customized allocator, CAMP provides
comprehensive protection against heap memory corruption.
The instrumentation imposes some runtime overhead, but we
demonstrate that this overhead can be significantly reduced
through a series of optimization strategies that eliminate and
consolidate unnecessary instrumentations. Our evaluation of
CAMP using a large-scale real-world application and SPEC
CPU Benchmarks shows that the performance impact is sig-
nificantly reduced. The low overhead, combined with CAMP’
ability to effectively detect and prevent heap memory cor-
ruption, makes it a promising solution for safeguarding pro-
grams against heap memory corruption.

Acknowledgement

We thank our shepherd and other anonymous reviewers
for their insightful feedback. This work was supported
by grants from the Defense Advanced Research Projects
Agency (DARPA) under contract No. N6600122C4026, the
Office of Naval Research (ONR) under Grant No. N00014-
20-1-2008, the U.S. National Science Foundation (NSF) via
award CCF-2119069, CNS-2211508, CNS-2211315, CNS-
1763743, CCF-2028851, CCF-2107042, and CCF-1908488,
and the U.S. Department of Energy (DOE) via project 17-
SC-20-SC and DESC0022268. Any opinions, findings, con-
clusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the funding agency.

References

[1] CVE-2021-26259: A flaw was found in htmldoc in
v1.9.12. Heap buffer overflow. https://nvd.nist.
gov/vuln/detail/CVE-2021-26259.

[2] CVE details: The ultimate security vulnerability data-
source. https://www.cvedetails.com/.

[3] CVE program. https://cve.mitre.org/.

[4] Heap-based Buffer Overflow in
mruby. https://huntr.dev/bounties/
4458e0b9-0ad3-4036-a032-1b3c4705b889/.

[5] Heap Cookies for memory protection. https://
fuzzysecurity.com/tutorials/mr_me/3.html.

[6] Issue 1325664: Security: pdfium use-after-free in
v8. https://bugs.chromium.org/p/chromium/
issues/detail?id=1325664.

[7] Linux Kernel CVE Changes. https://www.
linuxkernelcves.com/.

[8] The source code of CAMP. https://github.com/
cla7aye15I4nd/CAMP.

[9] Top Websites Ranking. https://www.similarweb.
com/top-websites/.

[10] VulnDB: The most comprehensive vulnerability
database and timely source of intelligence available.
https://vuldb.com/.

[11] Preventing Use-After-Free Attacks with Fast Forward
Allocation., 2021.

[12] Sam Ainsworth and Timothy M Jones. Markus: Drop-
in use-after-free prevention for low-level languages.
2020.

[13] Vasile Berinde and F Takens. Iterative approximation
of fixed points, volume 1912. Springer, 2007.

[14] Nathan Burow, Derrick McKee, Scott A Carr, and
Mathias Payer. Cup: Comprehensive user-space pro-
tection for c/c++. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Secu-
rity, pages 381–392, 2018.

[15] Juan Caballero, Gustavo Grieco, Mark Marron, and An-
tonio Nappa. Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabili-
ties. In Proceedings of the 2012 International Sympo-
sium on Software Testing and Analysis, 2012.

[16] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A sys-
tematic study of elastic objects in kernel exploitation.
In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, 2020.

[17] Oracle Corporation. Nullify references after re-
claiming memory. https://docs.oracle.com/cd/
E19159-01/819-3681/abebi/index.html, 2010.

[18] Thurston HY Dang, Petros Maniatis, and David Wag-
ner. Oscar: A practical {Page-Permissions-Based}
scheme for thwarting dangling pointers. In 26th
USENIX security symposium (USENIX security 17),
pages 815–832, 2017.

[19] Gregory J Duck and Roland HC Yap. Heap bounds
protection with low fat pointers. In Proceedings of the
25th International Conference on Compiler Construc-
tion, 2016.

[20] Gregory J Duck and Roland HC Yap. Effectivesan:
type and memory error detection using dynamically
typed c/c++. In Proceedings of the 39th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation, pages 181–195, 2018.

[21] Gregory J Duck, Yuntong Zhang, and Roland HC Yap.
Hardening binaries against more memory errors. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 117–131, 2022.

[22] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long
Lu. {PTAuth}: Temporal memory safety via robust
points-to authentication. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1037–1054,
2021.

[23] Floris Gorter, Koen Koning, Herbert Bos, and Cristiano
Giuffrida. Dangzero: Efficient use-after-free detection
via direct page table access. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2022.

[24] Sean Heelan, Tom Melham, and Daniel Kroening. Au-
tomatic heap layout manipulation for exploitation. In
27th USENIX Security Symposium (USENIX Security
18), pages 763–779, 2018.

[25] Google Inc. Design of TCMalloc from Google. https:
//google.github.io/tcmalloc/overview.html.

[26] Yuseok Jeon, WookHyun Han, Nathan Burow, and
Mathias Payer. {FuZZan}: Efficient sanitizer metadata
design for fuzzing. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), pages 249–263, 2020.

[27] Nicholas Nethercote Julian Seward. Memcheck: a
memory error detector. https://valgrind.org/
docs/manual/mc-manual.html.

[28] Yonghae Kim, Jaekyu Lee, and Hyesoon Kim.
Hardware-based always-on heap memory safety. In

https://nvd.nist.gov/vuln/detail/CVE-2021-26259
https://nvd.nist.gov/vuln/detail/CVE-2021-26259
https://www.cvedetails.com/
https://cve.mitre.org/
https://huntr.dev/bounties/4458e0b9-0ad3-4036-a032-1b3c4705b889/
https://huntr.dev/bounties/4458e0b9-0ad3-4036-a032-1b3c4705b889/
https://fuzzysecurity.com/tutorials/mr_me/3.html
https://fuzzysecurity.com/tutorials/mr_me/3.html
https://bugs.chromium.org/p/chromium/issues/detail?id=1325664
https://bugs.chromium.org/p/chromium/issues/detail?id=1325664
https://www.linuxkernelcves.com/
https://www.linuxkernelcves.com/
https://github.com/cla7aye15I4nd/CAMP
https://github.com/cla7aye15I4nd/CAMP
https://www.similarweb.com/top-websites/
https://www.similarweb.com/top-websites/
https://vuldb.com/
https://docs.oracle.com/cd/E19159-01/819-3681/abebi/index.html
https://docs.oracle.com/cd/E19159-01/819-3681/abebi/index.html
https://google.github.io/tcmalloc/overview.html
https://google.github.io/tcmalloc/overview.html
https://valgrind.org/docs/manual/mc-manual.html
https://valgrind.org/docs/manual/mc-manual.html

2020 53rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 1153–1166.
IEEE, 2020.

[29] Dmitry Vyukov Kostya Serebryany. Scudo
Hardened Allocator. https://llvm.org/docs/
ScudoHardenedAllocator.html.

[30] Taddeus Kroes, Koen Koning, Erik van der Kouwe,
Herbert Bos, and Cristiano Giuffrida. Delta pointers:
Buffer overflow checks without the checks. In Proceed-
ings of the Thirteenth EuroSys Conference, pages 1–14,
2018.

[31] Byoungyoung Lee, Chengyu Song, Yeongjin Jang,
Tielei Wang, Taesoo Kim, Long Lu, and Wenke Lee.
Preventing use-after-free with dangling pointers nullifi-
cation. In NDSS, 2015.

[32] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang,
Mathias Payer, Ying Liu, and Chao Zhang. Pacmem:
Enforcing spatial and temporal memory safety via arm
pointer authentication. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Commu-
nications Security, 2022.

[33] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred:
Escalating privilege in linux kernel. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022.

[34] Zhiqiang Lin, Ryan D Riley, and Dongyan Xu. Poly-
morphing software by randomizing data structure lay-
out. In Detection of Intrusions and Malware, and Vul-
nerability Assessment: 6th International Conference,
DIMVA. Springer, 2009.

[35] Beichen Liu, Pierre Olivier, and Binoy Ravindran.
Slimguard: A secure and memory-efficient heap allo-
cator. In Proceedings of the 20th International Middle-
ware Conference, 2019.

[36] Hongyu Liu, Ruiqin Tian, Bin Ren, and Tongping Liu.
Prober: practically defending overflows with page pro-
tection. In Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
2020.

[37] John McDonald Mark Dowd and Justin Schuh. Magic
Value: Potential Mitigations for Heap Overflow.
https://cwe.mitre.org/data/definitions/122.
html.

[38] John McDonald Mark Dowd and Justin Schuh. Protect
Out-Of-Bound by Validating Pointer. https://cwe.
mitre.org/data/definitions/823.html.

[39] Microsoft. Daan Leijen. 2020. Mimalloc. https://
github.com/microsoft/mimalloc.

[40] M. Miller. A snapshot of vulnerability root cause
trends for Micrsoft Remote Code Execution (RCE)
CVEs, 2006 through 2017. https://twitter.com/
epakskape/status/984481101937651713.

[41] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Mar-
tin, and Steve Zdancewic. Softbound: Highly com-
patible and complete spatial memory safety for c. In
Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
2009.

[42] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin,
and Steve Zdancewic. Cets: compiler enforced tempo-
ral safety for c. In Proceedings of the 2010 interna-
tional symposium on Memory management, 2010.

[43] Nicholas Nethercote and Julian Seward. Valgrind: a
framework for heavyweight dynamic binary instrumen-
tation. ACM Sigplan notices, 42(6):89–100, 2007.

[44] Gene Novark and Emery D Berger. Dieharder: securing
the heap. In Proceedings of the 17th ACM conference
on Computer and communications security, 2010.

[45] Mitch Phillips. Design of Redzone in Address San-
itizer. https://github.com/google/sanitizers/
wiki/AddressSanitizerAlgorithm.

[46] Gururaj Saileshwar, Rick Boivie, Tong Chen, Ben-
jamin Segal, and Alper Buyuktosunoglu. Heapcheck:
Low-cost hardware support for memory safety. ACM
Transactions on Architecture and Code Optimization
(TACO), 19(1):1–24, 2022.

[47] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitry Vyukov. Addresssanitizer: A
fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference,
2012.

[48] Rasool Sharifi and Ashish Venkat. Chex86: Context-
sensitive enforcement of memory safety via microcode-
enabled capabilities. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 762–775. IEEE, 2020.

[49] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang
Lin, and Tongping Liu. Freeguard: A faster secure heap
allocator. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, 2017.

[50] Clayton Smith. Heap use-after-free in mruby. https:
//github.com/mruby/mruby/issues/3515.

https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/823.html
https://cwe.mitre.org/data/definitions/823.html
https://github.com/microsoft/mimalloc
https://github.com/microsoft/mimalloc
https://%20twitter.com/epakskape/status/984481101937651713
https://%20twitter.com/epakskape/status/984481101937651713
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/mruby/mruby/issues/3515
https://github.com/mruby/mruby/issues/3515

[51] Brian Suchy, Simone Campanoni, Nikos Hardavellas,
and Peter Dinda. Carat: A case for virtual memory
through compiler-and runtime-based address transla-
tion. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, 2020.

[52] Brian Suchy, Souradip Ghosh, Drew Kersnar, Siyuan
Chai, Zhen Huang, Aaron Nelson, Michael Cuevas,
Alex Bernat, Gaurav Chaudhary, Nikos Hardavellas,
et al. Carat cake: Replacing paging via compiler/ker-
nel cooperation. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 2022.

[53] Erik Van Der Kouwe, Vinod Nigade, and Cristiano
Giuffrida. Dangsan: Scalable use-after-free detection.
In Proceedings of the Twelfth European Conference on
Computer Systems, 2017.

[54] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang,
Xiaorui Gong, and Wei Zou. {MAZE}: Towards auto-
mated heap feng shui. In 30th USENIX Security Sympo-
sium (USENIX Security 21), pages 1647–1664, 2021.

[55] Jonathan Woodruff, Robert NM Watson, David Chis-
nall, Simon W Moore, Jonathan Anderson, Brooks
Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revis-
iting risc in an age of risk. ACM SIGARCH Computer
Architecture News, 42(3):457–468, 2014.

[56] Shengjie Xu, Wei Huang, and David Lie. In-fat
pointer: hardware-assisted tagged-pointer spatial mem-
ory safety defense with subobject granularity protec-
tion. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, 2021.

[57] Toshihiro Yamauchi and Yuta Ikegami. Heaprevolver:
Delaying and randomizing timing of release of freed
memory area to prevent use-after-free attacks. In Net-
work and System Security: 10th International Con-
ference, NSS 2016, Taipei, Taiwan, September 28-30,
2016, Proceedings 10. Springer, 2016.

[58] Insu Yun, Dhaval Kapil, and Taesoo Kim. Automatic
techniques to systematically discover new heap ex-
ploitation primitives. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 1111–1128, 2020.

[59] Google Protect Zero. 0day "In the Wild".
https://docs.google.com/spreadsheets/d/
1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/
edit#gid=0.

[60] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He,
and Zhendong Su. Sanrazor: Reducing redundant sani-
tizer checks in c/c++ programs. In OSDI, 2021.

[61] Tong Zhang, Dongyoon Lee, and Changhee Jung.
Bogo: Buy spatial memory safety, get temporal mem-
ory safety (almost) free. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 631–644, 2019.

[62] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis,
Nikos Triandopoulos, and Jun Xu. Debloating ad-
dress sanitizer. In 31st USENIX Security Symposium
(USENIX Security 22), 2022.

https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=0
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=0
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit#gid=0

Benchmarks Time
CAMP ASAN−− ASAN ESAN Softbound+CETS MEMCHECK

400.perlbench 300.23% 256.68% 285.49% 629.16% - 3407.29%
401.bzip2 48.90% 43.98% 48.22% 114.70% 354.91% 912.38%
403.gcc 67.86% 175.04% 173.97% 600.95% - 1877.21%
429.mcf 27.25% 24.06% 34.85% 158.27% 634.40% 303.66%
433.milc 9.04% 38.82% 48.64% 50.76% 239.02% 1194.67%
445.gobmk 28.14% 36.86% 38.84% 52.46% 356.30% 2418.05%
456.hmmer 119.45% 90.07% 89.83% 270.44% 477.35% 1647.21%
458.sjeng 10.26% 40.23% 48.64% 13.35% 264.45% 2329.69%
462.libquantum 18.74% 14.75% 20.11% 197.61% - 553.84%
464.h264ref 126.17% 89.88% 125.67% 326.47% - 2689.47%
470.lbm 7.39% 25.82% 28.41% 51.63% 141.17% 5236.58%
482.sphinx3 114.08% 44.70% 52.97% 199.55% - 4207.37%
444.namd 90.43% 75.60% 82.01% 57.64% - 4076.65%
450.soplex 64.42% 42.82% 44.45% 128.66% - 1518.52%
453.povray 113.95% 105.89% 150.95% 266.29% - 5385.34%
473.astar 112.80% 30.62% 37.97% 80.75% - 1085.92%
483.xalancbmk 297.90% 166.85% 203.05% 48.80% - 5158.20%

Geomean 54.92% 56.77% 67.02% 123.08% 319.75% 1990.02%

Table 8: Time overhead of CAMP, ASAN--, ASAN, ESAN, Softbound+CETS, MemCheck on the SPEC CPU2006. "-" means
the case where the tool failed to run the benchmark.

Benchmarks Memory
CAMP ASAN−− ASAN ESAN Softbound+CETS MEMCHECK

400.perlbench 1522.09% 339.64% 285.49% 1.90% - 163.14%
401.bzip2 0.05% 2.75% 48.22% -0.98% 127.90% 33.59%
403.gcc 109.95% 187.98% 173.97% -6.78% - 44.12%
429.mcf 51.66% 12.02% 34.85% -0.56% 396.77% 2.29%
433.milc 379.00% 36.77% 48.64% -1.58% 89.01% 10.50%
445.gobmk 143.05% 612.69% 38.84% -9.29% 638.64% 230.80%
456.hmmer 4.32% 1061.04% 89.83% -39.34% -12.09% 197.22%
458.sjeng -0.10% -1.69% 48.64% -3.26% 1.18% 44.82%
462.libquantum -0.41% 185.86% 20.11% -21.56% - 48.34%
464.h264ref 18.82% 330.51% 125.67% -19.84% - 120.71%
470.lbm -0.01% 11.47% 28.41% -1.41% -1.55% 34.39%
482.sphinx3 4093.04% 650.28% 52.97% -4.03% - 240.28%
444.namd 3.63% 9.93% 82.01% -8.45% - 101.86%
450.soplex 12.65% 44.26% 44.45% -20.79% - 21.20%
453.povray 7101.36% 2020.28% 150.95% -12.61% - 1188.33%
473.astar 1840.76% 176.09% 37.97% 5.29% - 50.27%
483.xalancbmk 1800.53% 187.89% 203.05% 14.54% - 77.51%

Geomean 237.67% 181.81% 180.94% -8.45% 102.25% 97.14%

Table 9: Memory overhead of CAMP, ASAN--, ASAN, ESAN, Softbound+CETS, MemCheck on the SPEC CPU2006. "-"
means the case where the tool failed to run the benchmark.

	Introduction
	Background
	Heap Memory Corruption & Protection
	Heap Memory Allocator

	Assumptions & Threat Model
	CAMP
	A vulnerable toy program
	CAMP's Protection
	Design Overview
	Compiler Instrumentation
	Runtime Support
	Compilation Optimization

	Implementation
	Evaluation
	Security Evaluation
	Performance Evaluation

	Discussion
	Related Work
	Conclusion

