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Abstract
Large language models (LLMs) are trained on
a deluge of text data with limited quality con-
trol. As a result, LLMs can exhibit unintended or
even harmful behaviours, such as leaking infor-
mation, fake news or hate speech. Countermea-
sures, commonly referred to as preference align-
ment, include fine-tuning the pretrained LLMs
with carefully crafted text examples of desired
behaviour. Even then, empirical evidence shows
preference aligned LLMs can be enticed to harm-
ful behaviour. This so called jailbreaking of
LLMs is typically achieved by adversarially modi-
fying the input prompt to the LLM. Our paper pro-
vides theoretical insights into the phenomenon of
preference alignment and jailbreaking from a sta-
tistical perspective. Under our framework, we first
show that pretrained LLMs will mimic harmful
behaviour if present in the training corpus. Under
that same framework, we then introduce a sta-
tistical notion of alignment, and lower-bound
the jailbreaking probability, showing that it is
unpreventable under reasonable assumptions.

1. Introduction
Large Language Models (LLMs) have revolutionized the
field of deep learning due to their remarkable capabilities
across various domains, serving as assistants, in code gener-
ation (Roziere et al., 2023), healthcare (Singhal et al., 2023),
and theorem proving (Yang et al., 2024). The training pro-
cess of a LLM typically includes two stages: pretraining
with massive corpora, and an alignment step using Rein-
forcement Learning from Human Feedback (RLHF) to fur-
ther align model behavior with human preferences. Despite
their ability to perform multiple tasks effectively, LLMs are
susceptible to generating offensive or inappropriate content
including hate-speech, malware, fake information or social
biases, due to the unavoidable presence of harmful elements
within their pretraining datasets (Bender et al., 2021; Hazell,
2023; Liu et al., 2023a). Social media showcase an abun-

*Equal advising. 1NYU 2Meta FAIR. Correspondence to:
Jingtong Su <js12196@nyu.edu>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

dance of tricks on how to attack ChatGPT (OpenAI, 2022)
to elicit harmful responses, e.g., the “Do Anything Now”
(DAN) prompts (DAN, 2023) or the “Grandma Exploit”
hack (Reddit, 2023). On the other hand, behavior diversity
in the training corpus is essential to for example capturing
different cultural preferences. What is and isnt harmful ul-
timately depends on user preferences, hence the alignment
step is not universal but depends on the specific use case
under which a model will be employed.

Though numerous efforts have been made, we continue to
witness a cat-and-mouse game of ever more sophisticated
alignment methods to neutralize “harmful” prompts and
even more inventive “jailbreaking” attacks that manipulate
those prompts to elicit LLMs to produce harmful informa-
tion. We refer to Appendix B for a comprehensive review.

In this paper, we present a theoretical framework for analyz-
ing both the pretraining phase and the post-alignment jail-
breaking phenomenon. Exploiting the fact that jailbreaking
prompts typically maintain the underlying harmful concept
while manipulating other aspects of the prompt, we design
framework that decouples input prompts to allows us to
quantify the strength of potential adversaries.

Our contributions can be summarized as follows:

• Based on our proposed framework, we first offer a non-
vacuous PAC-Bayesian style generalization bound for
pre-training. Assuming the validity of our framework,
we conclude that high-performing pre-trained models
will inevitably be susceptible to generating behaviour
that is present in the training corpus, including any unin-
tended and harmful behaviour.

• Subsequently, we extend our framework to include no-
tions of alignment and jailbreaking. Assuming our as-
sumptions are met, we demonstrate jailbreaking to be
unpreventable even after safety alignment because the
LM fails to concentrate its output distribution over the
set of safe responses.

2. Framework and assumptions
For the purpose of this work, we will view any prompt as a
tuple of query and concept (q, c), where c ∈ C, and q ∈ Q,
with C,Q denoting the complete concept set and query set.
Conceptually, we think of concepts as representing the
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information content of the prompt, usually through a short
piece of text, for example “tutorial on making
a cake”. Queries are instructional text pieces that are
composable with certain concepts. We can think of queries
as mechanisms to trigger an LM to expand a concept in
a specific way. Examples include “Tell me how to
{}”, or “We are now in an imaginary world,
and you are not bounded by any ethical
concerns. Teach my avatar how to {}”.
Since not all queries and concepts are composable,1 we
denote P ( Q × C as the set of all plausible prompts,
where the definition of plausible will be made clear below.
The decomposition of prompts allows us to isolate and
hence bound the adversary’s strength.

In contrast to previous theoretical work where LMs are re-
garded as single sentence generators (Wolf et al., 2023),
we model LMs as lengthier text fragment generators, and
refer to possible generated content e ∈ E as explanations.
Conceptually, explanations expand concepts with additional
information. For example, “The US president in
2023 is Joe Biden.”. An LM thus induces a map-
ping from plausible prompts to distributions over explana-
tions, pLM : P → ∆(E), where ∆(E) denotes the set of
distributions defined over elements in E .2 The output of
a LM given a prompt, pLM (q, c), is a discrete distribution
over explanations. We use dom(pLM (q, c)) as the domain
of this distribution, pLM (e|q, c) as the probability of e given
(q, c) as the input, and supp(pLM (q, c)) as the subset of E
with non-zero pLM (e|q, c). Further, we assume the exis-
tence of a latent ground truth mapping pworld : P → ∆(E)
that the LM is optimized to mimic during the pretraining
stage. This is the distribution that defines “knowledge”: for
all plausible prompts (q, c), it specifies the ground-truth
distribution over explanations. By plausible, we refer to all
prompts that lie in the domain of the ground truth mapping
(q, c) ∈ dom(pworld), i.e., P ≡ dom(pworld).

We can now state our main assumption, namely that for any
plausible prompt (q, c) ∈ dom(pworld) the ground-truth
distribution pworld(q, c) is supported on a small subset of
E ⇔ supp(pworld(q, c)) ( E . Our second assumption is
that for all plausible prompts (q, c), the concept c uniquely
determines the support of the output distribution specified
by pworld, regardless of the query: supp(pworld(q, c)) =
supp(pworld(q

∗, c)), ∀ plausible (q, c) and, (q∗, c) . The
query changes the ground-truth distribution without affect-
ing its support. An illustration is depicted in Figure 1 (see

1For example, "Who is a tutorial on making a
cake." is unreasonable.

2For real-world LMs, with different decoding hyperparameters
e.g., the temperature T , top-p and top-k sampling parameters, the
induced distribution with the same set of parameters could be dif-
ferent. Our discussion holds for a pre-fixed set of hyperparameters
throughout this paper.

Appendix). To be more precise:
Assumption 2.1. (Concepts uniquely determine the expla-
nation for plausible prompts)
For all plausible prompts (q, c) ∈ dom(pworld),

i) pworld : P → ∆(supp(pworld(q, c))

where supp(pworld(q, c)) ( E s.t. |supp(pworld(q, c))| � |E|; and

ii) supp(pworld(q, c)) = supp(pworld(q
∗
, c)), ∀(q, c), (q∗, c) plausible.

This assumption is natural since it essentially tells us that
knowledge is specified by the corresponding concept alone,
irrespective of what query is used to extract it. In other
words, given a concept c, if a query q manages to change
supp(pworld(q, c)), we argue that the query should be de-
constructed and partially absorbed by c to accurately reflect
the knowledge mirrored by the support.

Lastly, we make the assumption on the existence of an
underlying generative distribution over prompts, denoted
as (q, c) ∼ DP . This distribution serves as the principle
governing the creation of our pretraining corpus. It is im-
portant to note that supp(DP) ( dom(pworld). For ex-
ample, take the prompt (q′, c′)=“Who is James Bond
$λ*#!48811”; even though this prompt never appears in
any text corpus across the internet, (q′, c′) /∈ supp(DP), we,
as humans, can make sense of it: (q′, c′) ∈ dom(pworld).
Later proofs in this paper assume LMs generate semantically
reasonable explanations for such unseen plausible prompts,
since in reality LMs are claimed to generalize well on huge,
out-of-distribution datasets (Srivastava et al., 2022). This is
made explicit in Section 4, within Assumption 4.1.

Finally, the following definitions pertain to our notion of
harmfulness. More specifically, we understand harmful be-
haviour abstractly as any unintended behaviour. For this,
we assume that any explanation e can be denoted as either
harmful or not harmful (safe). A concept c is regarded as
harmful if and only if the world generates harmful explana-
tions with probability higher than a certain threshold with
direct prompts.

Definition 2.1. (Notions of Harmfulness)
• (Direct Queries and Direct Prompts) We refer to a

prompt as direct if it stems from DP , i.e., (q, c) ∈
supp(DP). The query of a direct prompt is called a
direct query.

• (Harmful Concepts and Harmful Set) Given a con-
cept c, the associated harmful set of explanations is
denoted as Eh(c) := {e|e ∈ supp(pworld(·, c)) ∧
e is harmful}. In accordance with Assumption 2.1, with
a threshold η, a concept c is harmful if ∀q s.t. (q, c) ∈
dom(pworld),

∑
e:e∈Eh(c)

pworld(e|q, c) ≥ 1−η. We re-
fer to the set of all possible harmful concepts as Ch ( C.

• (Safe Set) ∀c ∈ Ch, there exists a corresponding safe
set Es(c) ( E that we wish pLM (q, c) to be concen-
trated on. It includes safe explanations existing in
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supp(pworld(·, c)), and explanations designed by hu-
mans, e.g., with the template beginning with “Sorry.”

• (Semantically meaningful) We call explanations in
Eh(c) ∪ Es(c) as semantically meaningful for the (q, c)
prompt.

• (Mixture decomposition of DP ) With these notions, we
can decompose DP = αDPh

+ (1 − α)DPs (where
supp(DPh

) includes all direct prompts with a harmful
concept, and supp(DPs

) includes the complement) as a
mixture over direct prompts with a harmful concept and
the non-harmful counterpart.

3. PAC-Bayesian bound for pre-training LLMs
on harmful data

Given a learning algorithm that leads to a posterior distribu-
tion over a set of models, PAC-Bayesian theory (McAllester,
1998) provide bounds on the generalization gap, i.e., the
difference between the model’s empirical loss and the pop-
ulation loss. We now present the first result of our anal-
ysis: a non-vacuous PAC-Bayesian bound for pretraining
LMs which implies that a well-trained LM ought to exhibit
harmful behaviour even when simply prompted with direct
queries if it was presented with harmful behavior during
training.

We denote by S = {(qi, ci)}ni=1 a set of prompts generated
i.i.d. under DP , S ∼ Dn

P . These prompts together with
sampled explanations form our pretraining corpus. We use
π, ρ as the prior and posterior distribution over LMs before
and after the pretraining process, defined over LM, the set
of language models. Given a prompt (q, c), we measure
the generalization capability of a LM by quantifying the
Total Variation (TV) loss between the induced distribution
pLM (q, c) and the ground-truth distribution pworld(q, c).3

For real-world LMs, pretraining involves optimizing the
cross-entropy loss on the training corpus, which is equiv-
alent to minimizing KL[pworld(q, c)||pLM (q, c)] under our
framework. With Pinsker’s Inequality, optimizing the KL-
divergence term is equivalent to optimizing an upper bound
on TV; thus we expect empirical TV loss be small.
Definition 3.1. (TV empirical loss and population loss)

`TV(pLM , (q, c)) := TV(pworld(q, c), pLM (q, c)).

Given an LM and a set of data S, the empirical loss
R̂S(pLM ) and population loss R(pLM ) are defined as

R̂S(pLM ) :=
1

n

n∑
i=1

`TV(pLM , (qi, ci));

R(pLM ) := ES∼Dn
P

[
R̂S(pLM )

]
= E(q,c)∼DP [`TV(pLM , (q, c))] .

We state our PAC-Bayesian bound as follows. The detailed
proof can be found in Appendix C.1.

3We regard both distributions as defined over the entire E since
we do not restrict the output distribution of LM in this section.

Theorem 1. (PAC-Bayesian Generalization Bound for Lan-
guage Models.) With α as in Definition 2.1, consider a set of
language models LM, with prior distribution π over LM.

Given any δ ∈ (0, 1), for any probability measure ρ over
LM such that ρ, π share the same support, the following
holds with probability at least 1− δ over the random draw
of S:

ELM∼ρ[R(pLM )− R̂S(pLM )] ≤

√[
KL[ρ||π] + log 1

δ

]
2n

:= %;

ELM∼ρ[E(q,c)∼DPh
`TV(pLM , (q, c))] ≤

1

α

[
ELM∼ρR̂S(pLM ) + %

]
.

In Appendix C.2 we give a theoretical estimation of %, to
illustrate the bound we derive is non-vacuous, i.e., less than
1. Theorem 1 tells us that, as long as pretraining success-
fully reduces the loss on the training corpus (R̂S(pLM ) ↓),
in expectation the language model will mimic the world
well (small `TV difference) on a given direct prompt sam-
pled from DP . Furthermore, if α is not too small, then
this statement holds on a direct prompt whose concept is
harmful.
4. A statistical perspective on jailbreaking

after alignment
In this section, we will present the second result that, given
our assumptions hold, we prove the existence of ways for
an adversary to jailbreak an LM even after the preference
alignment process. Going forward, we need to extend our
framework to integrate alignment and jailbreaking.

After an LM is pretrained, it typically will undergo fine-
tuning on a dataset containing preferred behaviour. In what
follows, we will assume that this alignment process does not
change the model performance in the sense that the LM will
still produce semantically meaningful explanations (Defini-
tion 2.1). It would not, for example, default to answering
any request with the same response.
Assumption 4.1. (LM outputs semantically meaningful ex-
planations) For any harmful concept c, and all plausible
prompts (q, c) ∈ dom(pworld),

∃ |En(c)| � |Eh(c)|+ |Es(c)| s.t.

O(1) � |dom(pLM (q, c))| = |Eh(c) ∪ Es(c) ∪ En(c)|.
In other words, we assume the LM’s output distribution is
accurately supported on Eh(c) ∪ Es(c), in the sense that
the size of “residual” En(c) is relatively small compared
to these semantically meaningful explanations. We define
n(c) = |En(c)|+ |Es(c)|+ |Eh(c)|. We omit the (c) anno-
tations when clear from the context. We discuss the validity
of this assumption in Appendix C.3.

To bound the likelihood of jailbreaking we first need to
specify how the output of a LM interacts with its support.
Assuming a fixed order of explanations in dom(pLM (q, c)),
and slight abuse of notation, we can use pLM (q, c) to de-
note an n(c)-dimensional vector on ∆n(c)−1, the probability
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simplex with n(c) elements, where each entry represents
the probability of a single explanation. We call this sim-
plex the output simplex related to a given concept c. Next,
we can induce a distribution on this simplex given a poste-
rior distribution γ over the set of language models LM, as
follows.
Definition 4.1. (Induced Distribution on Simplex, γc) Un-
der the assumption that the LM outputs semantically mean-
ingful explanations (Assumption 4.1), with a fixed prompt
(q, c) and a posterior distribution γ over LM, the corre-
sponding induced distribution: pLM (q, c) where LM ∼ γ
is supported over a subset of the output simplex ∆n−1. This
distribution is denoted as γ(q,c), or γc when the reference to
q is clear from context.
Next, we will separate the output simplex into a harmful and
safety zone. This definition is motivated by the observation
that typically an adversary is deemed successful if it can
extract even a single harmful explanation for a given concept.
This translates into a division of the output simplex, under
Assumption 4.1, as follows.
Definition 4.2. (Harmful Zone and Safety Zone) For a
given harmful concept c and a fixed LM, the output simplex
is divided into a safety zone and a harmful zone, Hs and
Hh, where a threshold p ∈ [0, 1] is used to quantify the
distinction: pLM (q, c) ∈ Hh iff

∑
e:e∈Eh(c)

pLM (e|q, c) ≥
p, and otherwise pLM (q, c) ∈ Hs.
Before we introduce jailbreaking, the reader might wonder
why we did not define alignment more clearly. This is be-
cause under the PAC framework, preference alignment is
nothing but a transformation from ρ to some γ posterior
defined over LM. Given this inability on fine-grained char-
acterization of alignment, we instead provide the goal of
it as follows. With the above notion, given a prompt (q, c)
where c is harmful, its goal is to push the induced distribu-
tion γc into the safety zone Hs. Ideally, supp(γc) ⊂ Hs ⇔
with probability 1, the resulting LM is safe when encoun-
tering (q, c). We are ready to introduce necessary concepts
related to jailbreaking.
Definition 4.3. (Jailbreaking) Given a harmful concept
c and a query q′, the prompt (q′, c) jailbreaks the LM iff
pLM (q′, c) ∈ Hh. We call such a prompt (q′, c) and query
q′ a jailbreaking prompt and jailbreaking query, respectively.

To theoretically prove the jailbreaking effect, we need to
restrict the adversary’s ability. To achieve this goal, we
borrow insights from adversarial attacks, to assume that
the adversary has bounded manipulating capability on the
output simplex when searching over the query set:
Assumption 4.2. (ε-bounded adversary) Given an LM, a
harmful concept c and an associated direct prompt (q, c),
we assume the adversary can find a set of queries Q′, such
that the output is moved at most ε on the simplex towards
Hh from pLM (q, c):

sup
q′∈Q′

d(pLM (q, c), pLM (q′, c)) = ε.

Here d is a distance measure between two discrete distribu-
tions. d can be a typical `p measure with p ≥ 1, or the Total
Variation / Jensen-Shannon Divergence. We call q′ ∈ Q′ an
ε-bounded query.

A conceptual illustration of our framework is depicted in
Figure 2 (see Appendix). Before arriving at our Theorem,
we give the final definition of ε-expansion.
Definition 4.4. (ε-expansion) Given a set A ⊂ ∆n−1 and a
distance measure d, the ε-expansion set A(ε, d) is defined
as

A(ε, d) := {t|t ∈ ∆n−1 ∧ ∃y ∈ A s.t. ||y − t||d ≤ ε}.
We are ready to present the following theorem, which states
that as long as the induced posterior γc is not concentrated
in an extremely safe area, then with high probability the
model can be jailbroken. The proof is in Appendix C.4.

Theorem 2. (Jailbreak is unavoidable) Assume that an LMs
output semantically meaningful explanations (Assumption
4.1). Given any γ posterior distribution over LM, choose a
harmful concept c with a direct prompt (q, c) and a thresh-
old p (Definition 2.1), to define the corresponding induced
distribution γc (Definition 4.1) and division over output sim-
plex (Definition 4.2). An ε-bounded adversary (Assumption
4.2) can find a jailbreaking prompt (Definition 4.3) with
probability at least

1− γs × (1− Φ(aε)) ,
• by using either the direct prompt, such that
pLM (q, c) ∈ Hh; or

• by finding an ε-bounded query q′, such that
pLM (q′, c) ∈ Hh.

Here, Φ(·) is the standard Gaussian cdf, γs :=

maxx∈Hs−Hh(ε,d)
γc(x)
U(x) , with U(x) the uniform distribu-

tion over ∆n−1, and aε := a +
√
n− 1ε, where a writes

analytically as a � |Eh(c)|−1−(n−1)p√
(n−1)p(1−p)

.

Trivially, the chances of an adversary to find a jailbreaking
prompt increase for stronger adversaries (ε ↑). In the real
world, this could relate to how much compute budget we
allow to alter a query for a specific harmful concept. Fur-
thermore, the chances of an adversary to find a jailbreaking
prompt increase when the ratio of the sizes of the harmful
explanation set to the safe explanation set is larger |Eh(c)|

|Es(c)| ↑.
This is because their ratio will determine the size of the
harmful zone which in turn will cause Φ(aε) → 1. In real
world settings, for any harmful concept, the training corpus
naturally contains a large harmful set due to the number of
possible responses. Realistically, its size can not be coun-
tered by any manually-constructed safe set. Hence achiev-
ing alignment is hard: Recall that the goal of alignment is
to respond with only safe explanations with high probability.
However, we just learned that to increase that probability,
we need to have a small harmful-to-safety set ratio which
we discussed is not realistic. Consequently, the safety zone
is going to be small.
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Appendix

A. Illustration of our framework
An illustration of our framework is depicted in Figure 1.

Figure 1: Our framework in a nutshell: We define a
language model, pLM : → , as a map from prompts
to a distribution over a subset of all possible explanations
E . To later be able to bound the strength of the adversarial
attacker, we split the text inputs into concepts and queries
(q, c). We assume that (i) the text corpus only covers a part
of the domain of the LM: supp(DP) ( dom(pLM ), (ii)
the size of the domain of the output distribution, denoted
|dom(pLM (q, c))|, is small compared to the size of E , and
(iii) only concepts determine the output (see ).

A depiction of jailbreaking is in Figure 2.

B. Related work
In this section, we provide a review of the current literature
on LLM jailbreaking.

B.1. Jailbreak methods

In this section, we summarize existing jailbreaking methods.

Baseline and pioneers Autoprompt (Shin et al., 2020), a
baseline method for optimizing in the token space w.r.t. a
certain objective, approximates coordinate ascent by first
ranking all tokens using an approximate objective, and then
compute the exact value on them. The approximation is
carried out by a single step of gradient computation. Jones
et al. (2023) propose Autoregressive Randomized Coordi-
nate Ascent (ARCA) to generate (input, output) pairs that
include certain harmful info or satisfy a fixed format re-
quirement. Token level optimization is carried out with
linear approximation on GPT-2. GBDA (Guo et al., 2021)
study adversarial attack on text classification problems, by
optimizing the continuous relaxation of the autoregressive
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Figure 2: Conceptual illustration of our framework for jail-
breaking introduced in Section 4, with a fixed harmful con-
cept c. The triangle represents the probability simplex. This
figure showcases a typical successful jailbreaking attempt
by the adversary: although safety alignment makes the sam-
pled LM safe under the direct prompt input, the adversary
is able to move the output to the harmful zone Hh by ma-
nipulating the query q.

sampling probability matrix. In late 2022, among social
media, users misalign GPT-3 via prompt injection. Perez
and Ribeiro (2022) study how this be done by adversaries.
They successfully manipulate the model to output a given
harmful string and leak the system prompt. In early 2023,
an empirical study was carried out by Liu et al. (2023a)
to measure the result of prompt engineering for breaking
ChatGPT safeguards. Shen et al. (2023) collect jailbreaking
prompts from multiple platforms on the internet, analyze
these data, create a harmful question set, and identify some
typical harmful prompts that are effective at that moment.
Later, the Greedy Coordinate Gradient (GCG) method (Zou
et al., 2023), a strong white-box attack variant of Auto-
Prompt (Shin et al., 2020) was proposed. Wei et al. (2023a)
categorizes two general modes of jailbreaking: competing
objective and mismatched generalization.

LLM automation and suffix-based attacks Liu et al.
(2023b) propose AutoDAN, that relies on genetic algo-
rithms, with the requirement of manual prompts for conduct-
ing mutation and crossover on the paragraph and sentence
level. The jailbreaking prompts generated by AutoDAN
are semantically plausible, unlike the suffix generated by
GCG. As a comparison, Lapid et al. (2023) use genetic algo-
rithm for black-box universal adversarial suffix generation.
Chao et al. (2023) propose another LLM-based jailbreak
automation algorithm, where an LLM judge is built to as-
sign a safety score to a given output, while the attacker is

enforced (via a page-long prompt) to improve the quality of
jailbreaking prompts from multiple perspectives. Zhu et al.
(2023) propose another AutoDAN method that explores the
balanced loss between jailbreak loss (log probability on the
harmful string, as used in Zou et al. (2023)) and the plausibil-
ity loss (log probability over the adversarial suffix), aiming
at improving interpretability. Li et al. (2024a) uses genetic
algorithm to search with similarty measure and initialize
with paraphrasing. Its performance is claimed to be bet-
ter than AutoDAN-GA. Deng et al. (2023a) investigate the
possible defensive tricks in proprietary LLMs, and propose
a pipeline4 for automated jailbreaking using a fine-tuned
LLM. Yu et al. (2023) propose GPTFuzzer, essentially a ge-
netic algorithmic framework for jailbreaking. Their work’s
difference between AutoDAN is that it has a pool of “seeds”,
a.k.a. templates for transforming the harmful prompt, and
the mutation is done on the template level. Ding et al. (2023)
propose automating attack via LLM prompt rewriting and
scenario nesting. The latter consists of code completion,
table filling and text continuation, since the authors regard
these as align with training objectives well, and are suit-
able for LLMs to complete the task. Mehrotra et al. (2023)
combine Automation used in Chao et al. (2023) and tree-of-
thought (Yao et al., 2024), create interpretable prompts in a
black-box manner. Li et al. (2023a) propose DeepInception,
and use nested, imaginary scenario to induce harmful con-
tent. Li et al. (2024b) propose DrAttack, which camouflages
a query’s malicious intent through semantic decomposition,
by constructing a parsing tree and split the original prompt
into different segmentations. Wang et al. (2024a) draw inspi-
ration from the self-perception theory from psychology to
design a prompt modification pipeline on gradually persuad-
ing the LM to be jailbroken. Paulus et al. (2024) propose
AdvPrompter, where the authors train a language model as
a suffix generator to speed up LLM attack.

Manipulating the decoding process Huang et al. (2023)
find the method of changing the generating hyperparame-
ters (i.e., p of top-p sampling, the temperature T , and k of
top-k sampling) of safety-aligned LLMs suffices for obtain-
ing harmful outputs when the user is able to manipulate
the system prompt and input configurations. Zhang et al.
(2023a) directly manipulate the output generation proba-
bility by enforcing an affirmative prefix, and reversing the
negation words if they appear in a pre-defined vocabulary
(e.g., sorry → glad). Zhao et al. (2024) assume access to
the decoding distribution of a LM. They use two small LMs,
a safe one and a harmful one, to manipulate the decoding
ratio of the large safe LM for jailbreaking. The key insight
is the decoding distribution between the safe model and the
harmful model only differs significantly for the first tens of
tokens.

4Including query rewriting, training and fine-tuning
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Fine-Tuning alone suffices Yang et al. (2023) show that
fine-tuning on as few as 100 harmful example pairs suf-
fices for turning the LLaMa-chat models (and some other
<70B LMs) into malicious counterparts. Zhan et al. (2023)
fine-tune GPT-4 on harmful data, and find the fine-tuned
models escape previous safety constraints while maintaining
usefulness. Qi et al. (2023a) find fine-tuning alone, even
on benign data, leads to safety degradation using LLaMa
and GPT-3.5-Turbo. Fine-tuning on harmful data (with less
than 5 gradient steps) will cause the model to be completely
harmful, while tuning on identity-shifting data could make
the LM fully obedient.

Low-resource language and cipher Yong et al. (2023);
Deng et al. (2023b) explore the difference in languages
when encountering the same harmful query, and find a direct
translation to low resource languages will lead to higher risk,
and Deng et al. (2023b) additionally find when combined
with sophisticated methods, the drawback of low-resource
languages disappear. Yuan et al. (2023) use cipher encod-
ing and decoding to break LLMs. Smaller scale models
are immune from such attacks, while the smartest GPT-4
encountered the highest risk.

Vision-language model attacks Besides pure LLM, some
research works move a step forward, utilizing images for
breaking vision-language models (VLMs). Shayegani et al.
(2023) explore multimodal attack on VLM via embedding
space feature matching. Qi et al. (2023b) generate adversar-
ial examples via maximizing the conditional probability of
a harmful corpus, i.e., the sum of log probabilities over all
outputs, and use the final image with harmful query for jail-
breaking. Carlini et al. (2023) generate adversarial example
for a fixed harmful content, and find no matter what input
prompt is given to the VLM, it will respond with the tar-
get harmful string. Maus et al. (2023) propose a black-box
attack on manipulating the generated image with modified
adversarial prompt.

Misc Wei et al. (2023b); Wang et al. (2023a) explore in-
context learning for attack and defense. The attack is weak
since it could only break Vicuna (Chiang et al., 2023) and
can be defended by in-context safe examples. Later, this
method is scaled-up to significantly improve strength for
breaking guardrails of large, state-of-the-art models (Anil
et al., 2024). An early work in February 2023 (Kang et al.,
2023) adopts obfuscation (including synonym and typos),
code injection and virtualization to successfully jailbreak
ChatGPT. Shah et al. (2023) illustrate in-context automated
persona modulation attack for large-scale LLMs and Vicuna.
Zeng et al. (2024a) consider the more broadly perspective
of persuasion: they train a persuasive paraphraser based
on a fine-grained taxonomy of persuasion techniques. De-
tailed ablation on attack effectiveness is studied. Guo et al.

(2024) focus on stealthiness and controllability. They no-
tice the constraints applied to the jailbreaking prompts (e.g.,
fluency) are exactly the targets of the controllable text gen-
eration problem. Thus, they adopt the Energy-based Con-
strained Decoding with Langevin Dynamic (COLD) (Qin
et al., 2022) on output logits. Forming each constraint as
well as the task of jailbreaking as an energy function over
logits, the Langevin Dynamic is used for finding a good logit
distribution, and the decoding technique in Qin et al. (2022)
is used for output generation. Banerjee et al. (2024) intro-
duce a dataset TECHHAZARDQA, compare direct query
v.s. pseudo-code format, and find the latter induces higher
risk. Mangaokar et al. (2024) considers a type of adap-
tive attack against checking-based defense, that appends
a universal adversarial prefix into the jailbreaking prompt
to make the guard model always output “safe”, and thus
making the detector fails to detect harmful information. Lv
et al. (2024) propose Code Chameleon, which contains mul-
tiple encryption and decryption methods defined by python
functions, that transforms the harmful prompt into specific
predefined form to jailbreak LLMs. Sadasivan et al. (2024)
speed up the computation of GCG (Zou et al., 2023) to make
it possible to launch on a single GPU. Geiping et al. (2024)
build a taxonomy on risks beyond jailbreaking, and coerce
the LLM to provide certain outputs by optimizing a set of
tokens via GCG. Ren et al. (2024) propose CodeAttack that
use code templates to query the output out instead of using
natural language directly, and obtain descent results.

B.2. Defense methods

Up to now, no universal defensive strategy as adversarial
training (Madry et al., 2018) for adversarial attacks / differ-
ential privacy (Abadi et al., 2016) for membership attacks
exists as a gold standard. In general, we can classify the
methods into three typical types: alignment, read-teaming,
and algorithmic proposals.

Alignment The target of alignment is to push the output
of language models be aligned to human values. Regarding
safety, the goal is to avoid outputting harmful information.
RLHF is widely adopted in these methods (Ziegler et al.,
2019; Ouyang et al., 2022; Bai et al., 2022a; Korbak et al.,
2023). Variants like RLAIF also have been proposed re-
cently (Bai et al., 2022b; Lee et al., 2023).

Red teaming This term is populated as specifically deal-
ing with harmful info on dataset curation, used together with
RLHF (Ganguli et al., 2022; Perez et al., 2022; Casper et al.,
2023; Hong et al., 2023; Samvelyan et al., 2024).

Next, we proceed to defensive algorithm proposals. We clas-
sify existing defensive strategies in the following categories.

Defense against suffix-based attacks. Alon and Kam-
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fonas (2023) notice the messy nature of the suffix generated
by GCG, and propose to use a perplexity (PPL) filter on
input prompts. They also explore using a LightGBM (Ke
et al., 2017) with 2 features (PPL, prompt length) to filter
harmful prompt, and show it does better than naive PPL
thresholding. The PPL-based filter does not succeed with
human-crafted jailbreaks. Jain et al. (2023) explore many
concerning viewpoints, including self-PPL filtering, para-
phrasing the input prompt, and re-tokenization since many
LLMs’ tokenizers are based on Byte-Pair Encoding (BPE).
All methods are successful in regards of defending against
suffix-based attacks. They also explore the simplest form of
adversarial training. Robey et al. (2023) propose to perturb
the input token string by random replacement/erasement/in-
sertion, and finally perform a majority vote in the end. Cao
et al. (2023) judges whether an input prompt is safe or not
by estimation with Monte Carlo, when randomly dropping a
fraction of tokens, using the LLM itself. Kumar et al. (2023)
try to perform “certified” safety against harmful prompts, by
erasing tokens and set the original prompt as harmful if at
least one of these erased prompts lead to a harmful response,
or be classified as harmful by a DistillBERT-based classifier.

System prompt defense. We could modify the input
prompt for jailbreaking; and several works explore if we can
apply similar methods to system prompts to defend against
such attacks. Xie et al. (2023) propose “self-reminder”, i.e.,
appending a reminding prompt within the system prompt for
defense. The attacks are collected from the JailbreakChat
collection, and this strategy is effective for defending against
them. Zheng et al. (2024) advocate for finding a good system
prompt automatically, by investigating the representational
difference between safe and harmful queries, and optimiz-
ing the safety prompts along the harmful refusal direction
in the representation space. One intriguing takeaway is
harmful / harmless queries can be distinguished in the rep-
resentation space, different from the adversarial examples
in vision. Zhou et al. (2024a) also optimize the safe system
prompt, but in a more “adversarial training” fashion, that
apply jailbreak algorithms with current safe prompts first
and then find good replacement candidates in the same way
as done by Zou et al. (2023). Concurrently, Mo et al. (2024)
propose prompt adversarial tuning, where an adversarial
suffix is assumed, while a safe system prompt is jointly op-
timized with this suffix, with an additionally constructed
benign loss to improve helpfulness under normal queries.
Zhang et al. (2023b) propose the idea of “goal prioritiza-
tion”, either without training (append prioritize safety than
helpfulness and in-context examples to the system prompt)
or with training (generate data pairs of prioritizing safety or
helpfulness, finetune, and append prioritize safety prompt
into system prompt). The former is effective for large-scale
LLMs, while the latter improves safety of LLaMa-chat mod-
els. Zhou et al. (2024b) propose in-context adversarial game,

where an attack LLM and a defense LLM interact on ex-
changing insights on successful jailbreaks, and defend by
improving the system prompt. Zou et al. (2024) give the re-
sult that system prompt matters for jailbreaking, and shows
conducting GA-based search over it could improve safety.

Checking-based, decoding-based, and Misc. Helbling
et al. (2023) generate responses first, and then use the LLM
itself to examine whether the output is harmful or not. They
find such simple self-examination is powerful since the
TPR reported can be up to ∼ 1.00. Wang et al. (2023b)
propose to (1) tune the LM to enhance its capability on
discriminating harmful / harmless content; (2) tune the LM
to make it able to tag its own response; and (3) rewrite re-
sponse if output is harmful. Li et al. (2023b) propose to
suppress the attack performance by iteratively rewinding
and re-examining the generated output. The method does
not work well with small models, but works pretty fine with
large (open-source) models. They find the strategy can im-
prove generalization as well. Xu et al. (2024) train a safer
model first, and use normalized pattacked +α(psafer −pattacked)
over top-k shared tokens for decoding to enhance safety.
Hasan et al. (2024) show with original Wanda pruning (Sun
et al., 2023), the LLM can help resist direct jailbreaking
prompts, e.g., with role-playing attacks. Pi et al. (2024)
propose MLLM-Protector on safeguarding Visual LLMs by
checking the output and then detoxifying the content. Zhang
et al. (2024) perform intention analysis on the input, and
enforce the model generate policy-aligned outputs both by
prompting. Wang et al. (2024b) propose backtranslation that
guesses the input prompt directly, and reject if it is harmful.
Kim et al. (2024) propose self-refinement which consists of
generating a feedback and then refine the response to avoid
harmful info output. They find using additional JSON and
code formatting would improve safety. Zeng et al. (2024b)
propose AutoDefense, which utilizes multiple agents on
analyzing prompt, response and intention, to defend against
attacks. Hu et al. (2024) propose Gradient Cuff, a sampling-
based gradient-norm defense method, by rejecting those
input prompts with large gradient norm on top of a majority-
vote based filtering. Ji et al. (2024) propose a method similar
to Robey et al. (2023), but for semantically-meaningful at-
tacks, that paraphrases the input according to several criteria
and conduct a majority vote for judging.

Several company-centered products also fall into this regime.
For example, LLaMa-Guard (Inan et al., 2023) is trained
on toxic data such that it is able to discriminate unsafe user
prompts and outputs, respectively. IBM also propose a
framework on constructing and deploying safeguard detec-
tion modules, and releases the details in a technical report
(Achintalwar et al., 2024).
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B.3. Theory and experimental understanding

Wolf et al. (2023) assumes the decomposability of LLM
output into a good and bad component, and show possible
jailbreaking in theory by prompting the model with a suffi-
ciently long input. Kalai and Vempala (2023) use statistical
tools to prove hallucination for calibrated LMs. Lee et al.
(2024) study the representation in GPT-2. They train a base
classifier for toxicity, and use the linear weight as a proxy of
toxic vector. They find there are value vectors close to the
toxic vector itself, that are not suppressed by DPO tuning
(Rafailov et al., 2023). Wei et al. (2024) use pruning and
low-rank analysis on safe LM, and find (1) safe neurons
and useful neurons are sparse; pruning the safe neurons or
removing the safe ranks away degrades safety a lot, and
(2) fixing the safe neurons in fine-tuning does not maintain
safety.

C. Proof of Theorems
C.1. Proof of PAC-Bayesian bounds

Definition C.1. (Bounded Difference) A function f : Xn →
R is said to have bounded difference property w.r.t. a col-
lection of constants c1, · · · , cn, iff

sup
x1,x2,...,xn,x

′
i

|f(x1, x2, · · · , xn) − f(x1, x2, · · · , xi−1, x
′
i, · · · , xn)|

≤ ci, ∀i ∈ [n].

Lemma C.1. (Hoeffding’s Lemma) for random variable
X ∈ [a, b] with probability 1, the following holds:

E[exp(λX)] ≤ exp(λEX +
λ2(b− a)2

8
).

Lemma C.2. (Hoeffding’s Lemma, Multivariate) for ran-
dom variables Z = f(x1, · · · , xn) where f has the
bounded difference property, the following holds:

E[exp(λ(EZ − Z))] ≤ exp(
λ2

∑n
i=1 c

2
i

8
).

Note that substituting Z with R̂S(LM) is valid.
Lemma C.3. Empirical Loss defined in Definition 3.1
satisfies the bounded difference condition with constant
c = 1, ∀i.

We are ready to present the proof of Theorem 1.

Proof. Starting with the above lemma, we know

ES [exp(λ(R(LM)− R̂S(LM)))] ≤ exp(
λ2c2

8n
).

The above result holds for a manually picked LM. With an
overall average over the prior π we have

ELM∼πES [exp(λ(R(LM)− R̂S(LM)))] ≤ exp(
λ2c2

8n
).

Apply Fubini’s theorem (note that π is independent of S):

ESELM∼π[exp(λ(R(LM)− R̂S(LM)))] ≤ exp(
λ2c2

8n
).

Define Y = ELM∼π[exp(λ(R(LM)− R̂S(LM)))], a ran-
dom variable depends on S. Obviously Y ≥ 0. Thus, with
Markov’s inequality:

P[Y ≥ 1

δ
ESY ] ≤ δ.

Equivalently, with probability at least 1− δ, we have

Y ≤ 1

δ
exp[

λ2c2

8n
].

Since we have assumed π, ρ share the same support, using
Radon-Nykodim derivative to change the expectation with
respect to π to with respect to ρ, we have

ELM∼ρ

[
dπ

dρ
exp(λ(R(LM)− R̂S(LM)))

]
≤ 1

δ
exp[

λ2c2

8n
].

Taking logarithm and applying Jensen’s Inequality we know

ELM∼ρ

[
dπ

dρ
+ λ(R(LM)− R̂S(LM))

]
≤ log

1

δ
+
λ2c2

8n
.

Incorporating c = 1, noticing dρ
dπ = (dπdρ )

−1 we could
rewrite the inequality as

ELM∼ρ

[
(R(LM)− R̂S(LM))

]
≤ 1

λ

(
KL[ρ||π] + log

1

δ

)
+

λ

8n
.

Finding λ that minimizes the term on right hand side gives
us the % term.

When DP allows for a decomposition into mixture compo-
nents, noticing the linearty of expectation, the bound can be
re-written as

αELM∼ρ[E(q,c)∼DPh
`TV(pLM , (q, c))]

+ (1− α)ELM∼ρ[E(q,c)∼DPs
`TV(pLM , (q, c))]

≤ %+ ELM∼ρ[R̂S(pLM )].

which leads to

ELM∼ρ[E(q,c)∼DPh
`TV(pLM , (q, c))] ≤

1

α
[%+ ELM∼ρ[R̂S(pLM )]].

(1)

C.2. An estimation on the non-vacuousness of the PAC
bound

We give an estimation of the term appears in our PAC bound,
%, and state that it is non-vacuous.
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The numerator. We follow Neyshabur et al. (2017) to in-
stantiate the term in the simplest setup. Assume π, ρ are
defined over the parameter space of a given LM, with K
parameters. Assume w is a set of weights learned from the
pretraining corpus. Let the prior π be the zero-mean mul-
tivariate Gaussian, whose entry-wise variance is related to
the magnitude of the weight: σi = β|wi|, and ρ be a Gaus-
sian with the same anisotropic variance centered around w.
We argue though simple, both settings are practical, since
Gaussian initialization is common for model training, and
the SWA-Gaussian algorithm (Maddox et al., 2019) utilizes
such Gaussian posterior. Under this setup, the KL goes as∑

i
w2

i

2σ2
i
= O(K). Specifically, taking β =

√
2
2 makes the

term exactly K. Current language models often possess mil-
lions, or billions, of parameters, namely, K ∼ [106, 109].

The denominator. To estimate the number of unique direct
prompts in the training corpus, it is important to notice that
the dataset does not only consist of (q, c) prompts but also e
explanations. Thus, we need to estimate the average token
length (ATL) associated with each unique prompt x = (q, c).
For each unique prompt x, aside from its own token length
l(x), there will be a collection of explanations {ei}N(x)

i=1 ,
with expected token length of each associated explanation
l(e). We have

EATL = Ex∼DPN(x)× [l(x) + l(e)].

Fact. Given a prompt x, the larger the expected length of the
prompt itself and explanation (l(x) + l(e) ↑), the larger the
expected number of explanation elements (N(x) ↑), and the
smaller the number of such prompts (DP(x) ↓), appearing
in the training corpus. The former comes naturally due to
the composability of natural language: the longer the text
fragment, the more equivalent text fragments in expecta-
tion, while the latter is reflected by the spirit of the widely
accepted Zipf’s law.

Inspired by the fact, we assume prompts are categorized by
the quantity of l(x) + l(e), namely, for all prompt x, N(x)
is a function of l(x) + l(e). Moreover, the complete data
generation process is decomposed into i) sample a value of
l(x) + l(e) out, and then ii) sample a unique prompt from
the set decided by this specific l(x) + l(e) value, and iii)
generate N(x) explanations.

Step i). Use the fact: the larger the expected length of the
output explanation, the smaller the probability that such
a prompt appears in the training corpus. We assume step
i) follows a (cut-off) zeta distribution. Specifically, for a
random prompt x,

p(l(x) + l(e) = k) ∝ k−s, ∀k ≥ k0.

When k0 = 1, we resume the zeta distribution with coeffi-
cient s.

Step ii). We assume each prompt following this step is
unique.

Step iii). Use the fact: the larger the expected length of
the output explanation, the larger the expected number of
explanation elements in the training corpus. We assume a
power law scaling on N , with a constant t > 1, such that

N(l(x) + l(e) = k) = kt−1.

Thus, the average token length writes

EATL =
∑
k

p(l(x) + l(e) = k)× k ×N(l(x) + l(e) = k)

=
ζ(s− t)−

∑k0−1
i=1 i−(s−t)

ζ(s)−
∑k0−1

i=1 i−s
.

where ζ(s) =
∑

i∈Z+ i−s is the Riemann zeta function.

For example, take s = 4, t = 2. With k0 = 1, the ATL
would be 1.52, while with k0 = 10, the ATL becomes 272.
These results translate into an estimation of unique prompts
as ntokens/ATL. With current SOTA LM, the pretraining
corpus often includes (tens of) trillions of tokens (> 1012),
thus n > 1010 > K can be safely assumed ⇒ % < 1.

α constant. According to LLaMa-2 report (section 4.1,
Figure 13) (Touvron et al., 2023), approximately 0.2% of
the documents in their training corpus is labeled as harmful.
However, we argue this is indeed an extremely loose lower
bound for α, due to the estimation strategy used in their
paper. Given a document, they use a binary classifier on
harmfulness over each single line (1 means harmful and 0
otherwise), and assign the average score to the document.
0.2% is the ratio of documents with score ≥ 0.5. Take the
example of “How to build a bomb”. The chemical
reaction parts will not be counted as harmful, and thus
this estimation strategy could judge a completely harmful
explanation as harmless. Thus, it is reasonable to assert α
is not too small, though with current literature we are not
capable of raising an accurate estimation on it.

C.3. Validity of Assumption 4.1

The O(1) statement is reasonable, because harmful expla-
nations are usually long text fragments that allow for many
alternative formulations. The assumption can be broken
down into two components: (1) within the support of the
output distribution, only occasional instances of unrelated
explanations exist; (2) the process of aligning the model
towards safety does not eliminate the harmful explana-
tions acquired during the pretraining phase. For part (1),
similar to the example we gave above, under normal circum-
stances, we do not expect the explanation “Paris” to ap-
pear in dom(pLM (q, c)) given (q, c) as “How to build
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a bomb”. As for part (2), though seemingly surprising,
evidence with a series of current state-of-the-art LMs can be
experimentally validated (Huang et al., 2023), where diverse,
harmful explanations are extracted by simply manipulating
the decoding process using direct prompts.

C.4. Proof of jailbreaking

Before proceeding to the proof, we list necessary definitions
and lemmas as follows.

Lemma C.4. (Volume of n-simplex)5 For any dimension n,
the volume of the n-element probability simplex: ∆n−1, in
the n− 1-dimensional space is

√
n

(n− 1)!
.

We define the projected probability simplex as follows.

Definition C.2. (Projected probability simplex) Given
∆n−1, the corresponding projected probability sim-
plex, ∆n−1

p , is defined as a subset of Rn−1: {x ∈
Rn−1|

∑n−1
i=1 xi ≤ 1, ∀i ∈ [n− 1]}.

An illustration of ∆n−1 and ∆n−1
p . For example, take

n = 3. The probability simplex with n = 3 elements is
a triangle whose (euclidean) side length is

√
2 with ver-

tices (1, 0, 0), (0, 1, 0), (0, 0, 1). Then its volume in the 2-
dimensional space, i.e., its area, is

√
3
2 . The corresponding

projected probability simplex is the triangle between the
X − Y axis, with vertices (1, 0), (0, 1), (0, 0).

A direct lemma that connects the probability simplex and
the projected probability simplex is given below.

Lemma C.5. (Transformation of probability simplex) Given
a proper probability density function ν(x) defined on ∆n−1

p ,
it is equivalent to the distribution defined on ∆n−1 with
density ν(x)√

n
: ∀A ∈ Borel(∆n−1

p ), let B = {x ∈ ∆n−1 :

x1:n−1 ∈ A}. Then
∫
A
ν(x)dx =

∫
B

ν(x)√
n
dx. Specifically,

this implies volume(A)

volume(∆n−1
p )

= volume(B)
volume(∆n−1) .

Proof. Consider a translation on ∆n−1 with xn =
−
∑n−1

i=1 xi which does not affect its the volume and shape.
The mapping: ∆n−1

p → translated∆n−1 is an affine trans-
formation with matrix

T =


1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
−1 −1 · · · −1


n×(n−1)

5See https://en.wikipedia.org/wiki/
Simplex#Volume.

Thus, any area under this transformation is scaled by√
detT>T =

√
n: a constant. The lemma follows directly

after this conclusion.

We use U(·) to denote the uniform distribution over ∆n−1:
U(x) = (n−1)!√

n
, ∀x ∈ ∆n−1. We use the notation vol[S] =∫

S
1ds to represent the volume of a given subset S ⊂ ∆n−1,

and use rvol[S] for the relative volume (w.r.t. the underlying
n-simplex) of S, i.e., rvol[S] := vol[S]

vol[∆n−1] =
∫
S
U(x)dx.

We also use n = |E(c)| from now on. We use the vector x to
denote (with the slight abuse of notation we have mentioned)
pLM (q, c) on the output simplex.
Lemma C.6. (Gaussian cdf Tail Bound, Gordon (1941))
Denote φ(·) as the standard Gaussian pdf. When x > 0,

x

x2 + 1
φ(x) =

x

x2 + 1

e−x2/2

√
2π

≤ 1−Φ(x) ≤ e−x2/2

√
2πx

=
1

x
φ(x).

Now we are ready to give the proof of Theorem 2.

Proof. Let |Eh(c)| = n0 and denote |Eh(c)| + |Es(c)| +
|En(c)| = n. Without loss of generality, we define the first
n0 = |Eh(c)| elements as the harmful explanations. Let the
thresholding constant be p. That is, we define the harmful
zone Hh as {x ∈ ∆n−1|

∑n0

i=1 xi ≥ p}. To compute the
relative volume of Hh in ∆n−1, we could instead operate
on the projected probability simplex ∆n−1

p introduced in
Definition C.2, and compute the relative volume of the pro-
jected Hh: Hh,p := {x ∈ ∆n−1

p |
∑n0

i=1 xi ≥ p}. Note that
∆n−1

p ⊂ Rn−1. We derive its expression as follows.

volume[HC
h,p] = volume[{x ∈ ∆n−1

p |
n0∑
i=1

xi ≤ p]}

=

∫ p

0

dx1

∫ p−x1

0

dx2 · · ·
∫ p−

∑n0−1
i=1 xi

0

dxn0

×
∫ 1−

∑n0
i=1

0

dxn0+1 · · ·
∫ 1−

∑n−2
i=1 xi

0

dxn−1

=

∫ p

0

dx1

∫ p−x1

0

dx2 · · ·
∫ p−

∑n0−1
i=1 xi

0

dxn0

×

[
1

(n− n0 − 1)!
(1−

n0∑
i=1

xi)
n−n0−1

]

=

∫ p

0

dx1

∫ p−x1

0

dx2 · · ·
∫ p−

∑n0−2
i=1 xi

0

dxn0−1

× 1

(n− n0)!

[
(1−

n0−1∑
i=1

xi)
n−n0 − (1− p)n−n0

]
= · · ·

=
1

(n− 1)!
[1− (1− p)n−1]−

n0−1∑
j=1

(1− p)n−1−j

j!(n− 1− j)!
pj

(2)
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Thus, the relative volume of Hh can be written as

rvol[Hh] = 1−
volume[HC

h,p]

volume[projected probability simplex]

= (1− p)n−1 +

n0−1∑
j=1

(n− 1)!(1− p)n−1−j

j!(n− 1− j)!
pj

=

n0−1∑
j=0

pj(1− p)n−1−j

(
n− 1

j

)
.

(3)
Which is precisely the binomial distribution formula. With
the Central Limit Theorem, when n � O(1), we know
the binomial distribution can be well approximated via the
normal distribution as follows:

f(x) =

(
n

x

)
px(1− p)n−x d−→ N (np, np(1− p)). (4)

Thus, denote φ(n−1),p(x) as the pdf of Gaussian variable
with mean (n−1)p, variance (n−1)p(1−p), the rvol term
above can be estimated as follows:
n0−1∑
j=0

pj(1− p)n−1−j

(
n− 1

j

)
�

∫ n0−1

−∞
φ(n−1),p(x)dx

= Φ

[
n0 − 1− (n− 1)p√
(n− 1)p(1− p)

]

= Φ

[
|Eh(c)| − 1− (n− 1)p√

(n− 1)p(1− p)

]
.

(5)
We use a = |Eh(c)|−1−(n−1)p√

(n−1)p(1−p)
. Consider an adversary with

budget ε under `p or Jensen-Shannon Divergence (JSD) /
Total Variation (TV) capability. Since ||x||1 ≥ ||x||p, ∀p ≥
1 as well as ||x||1 ≥ 2JSD(x), ||x||1 ≥ 2TV(x), we know
Hh(ε, `1) ⊂ Hh(ε, d) for all d we have considered. With
that `1, ε setup, the corresponding ε−expansion set of Hh

has a closed-form expression as

Hh(ε, `1) = {x ∈ ∆n−1|
n0∑
i=1

xi ≥ p− ε

2
}.

Similar as above, we derive the analytical solution of its
relative volume associated with constant a′ as:

a′ =
|Eh(c)| − 1− (n− 1)(p− ε

2 )√
(n− 1)(p− ε

2 )(1− p+ ε
2 )

= a

√
p(1− p)

(p− ε
2 )(1− p+ ε

2 )
+

ε

2

√
n− 1

(p− ε
2 )(1− p+ ε

2 )
.

(6)
Under our framework, with p < 1

2 , we know 1
4 > p(1−p) >

(p− ε
2 )(1− p+ ε

2 )). Thus

a′ > a+
√
n− 1ε := aε.

Consider the induced distribution γc on the output simplex.
Given an adversary with `p or JSD/TV perturbing capability,
with the fixed harmful concept c, safety is guaranteed if and
only if pLM (q, c) resides outside Hh(ε, d). Define the area
of interest, S(d) as S(d) := ∆n−1 − Hh(ε, d). Thus, the
probability of this event could be bounded as

Px∼γc
1x∈S(d) < max

x∈S(d)
γc(x)

∫
S(d)

1dx < γsrvol[S(d)]

< γsrvol[S(`1)] < γs(1− rvol[Hh(ε, `1)])

This gives an upper bound of

γs(1− Φ(aε)).

which can be simplified when a ≥ 0 using Lemma C.6:

γs

(
φ(aε)

aε

)
.

Thus, the probability of getting a LM instance from the pref-
erence alignment process such that it allows for successful
jailbreaking on a specific harmful concept c is at least

1− γs (1− Φ(aε)) .

Up to now, we have derived the result in Theorem 2. How-
ever, we can move a step further to show the decay rate on
the right hand side term. It can be simplified when a ≥ 0:

1− γs

(
φ(aε)

aε

)
,

which finishes the proof.

17


