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Figure 1. DreamDistribution learns a prompt distribution D∗ that represents a distribution of descriptions corresponding to a set of

reference images. We can sample new prompts from D∗ or modified D∗ by text-guided editing to generate images of diverse new instance

that follows the visual attributes of reference training images (top). We can also apply a learned distribution flexibly to, for example, a

pretrained text-to-3D model, and generate diverse new 3D assets following the reference images (bottom).

Abstract

The popularization of Text-to-Image (T2I) diffusion mod-

els enables the generation of high-quality images from text

descriptions. However, generating diverse customized im-

ages with reference visual attributes remains challenging.

This work focuses on personalizing T2I diffusion models at

a more abstract concept or category level, adapting com-

monalities from a set of reference images while creating

new instances with sufficient variations. We introduce a

solution that allows a pretrained T2I diffusion model to

learn a set of soft prompts, enabling the generation of

novel images by sampling prompts from the learned distri-

bution. These prompts offer text-guided editing capabilities

and additional flexibility in controlling variation and mix-

ing between multiple distributions. We also show the adapt-

ability of the learned prompt distribution to other tasks,

such as text-to-3D. Finally we demonstrate effectiveness of

our approach through quantitative analysis including auto-

matic evaluation and human assessment. Project website

https://briannlongzhao.github.io/DreamDistribution

1

a
rX

iv
:2

3
1
2
.1

4
2
1
6
v
1
  
[c

s.
C

V
] 

 2
1
 D

e
c
 2

0
2
3



1. Introduction

Dreams have long been a source of inspiration and novel

insights for many individuals [5, 6, 47]. These mysterious

subconscious experiences often reflect our daily work and

life [6]. However, these reflections are not mere replicas;

they often recombine elements of our reality in innovative

ways, leading to fresh perspectives and ideas. We aim to

emulate this fascinating mechanism in the realm of text-to-

image generation.

Text-to-image (T2I) generation has recently been pop-

ularized due to the astonishing performance of state-of-

the-art diffusion models such as Stable Diffusion [37] and

DALL·E 2 [35]. Variations of the T2I models have en-

abled several fascinating applications that allow user to con-

trol the generation, such as conditioned generation based

on other input modalities [23, 53, 55], inpainting [27, 52],

image editing [1, 29]. One such interesting application is

personalization of T2I models, where user provides some

reference images of the same instance (e.g. their pet dog),

and the personalized model can generate images based on

the references, with the flexibility of text-guided editing for

new context. This is generally achieved by associating a to-

ken with the personalized concept through fine-tuning the

model parameters [20, 38] or newly added learnable token

embeddings [7, 48].

In many cases, however, user may want to personalize

T2I generation over a more abstract visual attribute instead

of a specific instance-level personalization. For example,

a designer may seek inspiration by generating a variety of

novel cartoon characters or scenery images following sim-

ilar visual attributes presented in their previous works. In

this case, trying over text prompts is not scalable and hard to

get desired result that follows the desired visual attributes.

On the other hand, using the existing personalization meth-

ods aforementioned is likely to fail when training images

when the training images do not represent the same in-

stance, but rather encompass a distribution sharing certain,

yet challenging-to-articulate, commonalities. Additionally,

existing personalization methods often result in limited di-

versity and variation during generation (Fig. 3). Since the

associated token is fixed, these methods will typically learn

a token that is either overfitted to a combination of visual

features, or learn a token that is overly generalized, which

introduces more randomness into the uncontrollable diffu-

sion process, thereby failing to follow desired visual at-

tributes in generated images.

In this work, we propose DreamDistribution, a prompt

distribution learning approach on T2I diffusion model for

various downstream tasks (Fig. 1). Our proposed solution

has three key components (Fig. 2). First, to adapt a pre-

trained fixed T2I model, instead of fine-tuning diffusion

model parameters, our method builds on prompt tuning

[58, 59], where we use soft learnable prompt embeddings

with the flexibility to concatenate with text, to associate

with the training image set. This design have several ad-

vantages: (1) It prevents catastrophic forgetting of the pre-

trained model, enabling it to learn an almost infinite variety

of target prompt distributions using the same T2I diffusion

model. (2) It is highly efficient in terms of parameters, re-

quiring only the prompt itself as the learnable element. (3)

The learned prompts remain within the semantic space of

natural language, offering text-guided editing capabilities

and generalizing to other pre-trained diffusion models, such

as text-to-3D. (4) The learned distribution increased flexi-

bility in managing variations. Second, we introduce a dis-

tribution of prompts to model various attributes described

by reference images at a broader level. The prompt dis-

tribution is modeled by a set of learnable prompt embed-

dings to associate with the training image set as a whole.

The learned prompt distribution can be treated as a distribu-

tion of learned “descriptions” of the reference images and

should be able to model the commonalities and variations

of visual attributes, e.g., foreground, style, background, tex-

ture, pose. During inference, we sample from the prompt

distribution, which should have a similar semantic mean-

ing, understood by the downstream denoising network, to

produce in-distribution outputs with appropriate variations.

Lastly, to effectively optimize the set of soft prompts that

models the distribution, we apply a simple reparameteriza-

tion trick [19] and an orthogonal loss to update the prompts

at token embedding space simultaneously and orthogonally.

We first demonstrate the effectiveness of our approach in

customizing image generation tasks (§4). By taking a small

set of images of interest as training images, we demonstrate

that our approach can generate diverse in-distribution im-

ages where baseline methods fail to generate desired output.

The diversity and the quality of our synthetic images are

verified via automatic and human evaluation (Section 4.2).

We show that the learned distribution holds the capability of

text-guided editing, as well as further controllability such as

scaling the variance and composition of distributions (Sec-

tion 4.3). Next we highlight that the learned prompt distri-

bution can be easily applied to other text-guided generation

tasks such as pretrained text-to-3D models (Section 4.4).

Lastly we show the effectiveness of our method on per-

sonalized distribution generation through classification task

with synthetic training data as a proxy (Section 4.5).

In summary, our contributions are:

• We propose a distribution based prompt tuning methods

for personalized distribution generation by learning soft

prompt distribution using T2I diffusion model.

• Using a public available pretrained T2I diffusion model,

we experiment our approach on customization T2I gener-

ation tasks and show that our approach can capture visual

attributes into prompt distribution and can generate di-

verse in-distribution images that follows text-guided edit-
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Figure 2. Overview of DreamDistribution for learning a prompt distribution. We keep a set of K learnable soft prompts and model a

distribution of them at the CLIP text encoder feature space. Only prompts are learnable, CLIP encoder and the T2I diffusion model are all

fixed. We use a reparameterization trick to sample from the prompt distribution and update the learnable prompts through backpropagation.

The training objective is to make the generated images aligns with the reference image. An additional orthogonal loss is incorporated to

promote differentiation among learnable prompts. For inference, we similarly sample from the prompt distribution at text feature space to

guide the pretrained T2I generation.

ing.

• Further experiments show that our learned distribution is

controllable and flexible and easy to be adapted to other

generation tasks that requires text as input.

• We further quantitatively demonstrate the effectiveness

of our approach using synthetic image dataset generation

tasks as a proxy and also through automatic evaluation

metrics and human evaluation.

2. Related Works

2.1. Text­to­image Diffusion Models

Diffusion models [4, 16, 44] have achieved great success in

various image generation tasks. State-of-the-art T2I models

such as Imagen [40] and DALL·E 2 [35] trained on large

scale data demonstrate remarkable synthesis quality and

controllability. Latent Diffusion Models [37] and its open-

source implementation, Stable Diffusion [37], have also be-

come a prevailing family of generative models. In these T2I

diffusion models, text is encoded into latent vectors by pre-

trained language encoders such as CLIP [33], and the de-

noising process is conditioned on latent vectors to achieve

text-to-image synthesis. However, such models trained on

large scale text-image pairs are not designed to generate per-

sonalized images such as images of one’s pet dog, therefore

only the text conditioning cannot provide fine-grained con-

trol over the generated images.

2.2. Personalized text­to­image Generation

Various approaches are proposed to better control the text-

guided diffusion models and achieve personalization. Tex-

tual Inversion [7] proposed to search for a new token in

the embedding space representing a visual concept via op-

timizing a word embedding vector. DreamBooth [38] fine-

tunes all parameters of the model to associate a personalized

subject into an rarely used token. Custom Diffusion [20]

employs that fine-tuning method but only fine-tune cross-

attention layers to reduce the training time, with the abil-

ity to learn multiple concepts jointly. Subsequent works

[42, 48, 50] mainly borrow the ideas from these works and

focus on solving their drawbacks.

2.3. Prompt Learning

Prompt learning is a popular method in natural language

processing (NLP). The main idea is to transfer various

downstream NLP tasks to masked language modeling prob-

lems via adopting proper prompt templates [2, 21, 22,

32] instead of fine-tuning the pretrained language model.

Searching for the appropriate prompts is the key of this

method. Prompt engineering [2, 32] adopts carefully-

designed discrete (hard) prompts crafting by human, while

prompt tuning [21, 22] automatically searches for the de-

sired prompts in the embedding space via learning continu-

ous (soft) prompts. The great success of NLP inspires com-

puter vision researchers and prompt engineering is explored

in pretrained vision-language models such as CLIP [33] and

ALIGN [17]. CoOp [59] applies the idea of prompt tuning

in vision-language tasks, which learns a continuous prompt

via minimizing the classification loss of the downstream

tasks. ProDA [26] learns a distribution of diverse prompts to

capture various representations of a visual concept instead

of a single prompt in CoOp [59], which achieves better gen-

eralization.

Most relevant to our work are Textual Inversion [7] and

ProDA [26]. Textual Inversion learns a fixed token embed-

ding associated with a pseudo-word. Ours learns a distribu-

tion of prompts in the CLIP feature space like ProDA [26],

allowing for learning the visual concept with diverse visual
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representations and capturing the details for reconstructions

and plausible synthesis.

3. Method

Given a set of images with some common visual attributes

(e.g. same category, similar style), our goal is to capture the

visual commonalities and variations and model by a prompt

distribution in the text feature space, which could be com-

patible with natural language. The commonalities among

reference images may be challenging to articulate with nat-

ural language prompts. We can thus sample prompts from

the distribution to guide T2I diffusion model to generate

diverse unseen images while at the same time following

the common traits distribution. The inherent characteris-

tics of the learned prompts are compatible with natural lan-

guage instructions and other pretrained text-guided genera-

tion models.

3.1. Text­to­Image Diffusion

Text-to-image diffusion models are a class of generative

models that learns image or image latent distribution by

gradually denoising a noise sampled from Gaussian distri-

bution. Specifically, given a natural language text prompt, a

tokenizer followed by a text embedding layer map the input

text to a sequence of embedding vectors p. A text encoder

converts the text embedding into text features c = E(p)
used for conditioning the generation process. An initial

noise ϵ is sampled from N (0, I), and the denoising model

ϵθ predicts the noise added to a noisy version of image of

image latent x. The denoising model ϵθ is optimized using

the objective:

L = Ex,c,ϵ,t

[

∥ϵ− ϵθ (xt, c, t)∥22
]

(1)

where x is the ground-truth image or image latent obtained

from a learned autoencoder, xt is the noisy version of x at

time-step t, and ϵ ∼ N (0, I).

3.2. Prompt Tuning

Our proposed method is grounded in the notion of prompt

tuning, which aims to learn a soft continuous prompt on

target task and is widely used in fine-tuning NLP models.

[11, 21, 22, 24, 25] Specifically, for a pretrained model

that takes natural language prompt as input, we can formu-

late a prompt with continuous learnable token embeddings

P = [PREFIX]V [SUFFIX] ∈ R
L×d, where [PREFIX]

and [SUFFIX] are word embeddings of natural language

prefix and suffix if needed, and L represents the prompt

length or the total number of tokens, and d represent the

dimension of word embeddings. V = [v]1 . . . [v]M ∈
R

M×d represents a sequence of M learnable token em-

bedding vectors with same dimension as word embeddings.

During fine-tuning, the parameters of the pretrained gen-

eration model remain fixed, and only the learnable to-

ken embeddings V are updated through direct optimiza-

tion employing the corresponding loss function backprop-

agated through generator ϵθ and text encoder E . Formally,

prompt tuning aims to find optimized embedding vectors

V∗ = argmaxV P (Y | P, X), where X and Y are input

data and output label, respectively.

Prior works have shown the efficacy of adopting prompt

tuning techniques on vision-language models for image

classification tasks [18, 58, 59]. Gal et al. [7] adopts simi-

lar prompt tuning methods that enable personalized gener-

ation. However, the limitation of this approach lies in its

constraint to personalize only one particular concept, such

as a specific dog, as it employs a fixed token embedding for

concept encoding.

3.3. Learning Prompt Distribution

We aim to model more general commonalities and varia-

tions presented in the reference image set and generate di-

verse images of new instances that visually align, therefore

we propose to model a learnable distribution of prompts for

the reference images. Inspired by Lu et al. [26], which pro-

posed to estimate a distribution of prompt for image classifi-

cation tasks, we propose to model a distribution of learnable

prompts over a sequence of M token embeddings to capture

the distribution of visual attributes on T2I generation task

leveraging diffusion model.

Our methods builds on Stable Diffusion [37], where

a pretraind CLIP [33] text encoder is used for obtaining

text feature of the prompt. Due to the contrastive train-

ing objective of CLIP, features of texts that have similar

semantic meaning have high cosine similarity and there-

fore close to each other in CLIP feature space [33]. Lu

et al. [26] have also shown that for text prompts that de-

scribe images of the same category, the CLIP text fea-

ture c output from pretrained CLIP text encoder are ad-

jacent to each other in a cluster. Therefore, it is natu-

ral to model a Gaussian distribution of c that describes

images of same category or with shared attributes. To

do so, instead of keeping one learnable soft prompt to

optimize during training, we maintain a set of K learn-

able prompts PK = {Pk = [PREFIX]Vk [SUFFIX]}Kk=1

corresponds to a set of similar reference images. Our

goal is to optimize the set of learnable token embeddings

{Vk}Kk=1
. With K learnable prompts, we can estimate the

mean µc = µ
(

E
(

PK
))

∈ R
L×dE and standard deviation

Ãc = Ã
(

E
(

PK
))

∈ R
L×dE at E text encoder space, where

dE is the feature dimension of text encoder space.

Applying to the training objective of T2I diffusion

model, Eq. (1) becomes:

L
(

PK
)

= Ex,c̃,ϵ t

[

∥ϵ− ϵθ (xt, c̃, t)∥22
]

(2)
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where c̃ ∼ N
(

µc,Ã
2
c

)

and ϵ ∼ N (0, I) is the sampled

Gaussian noise added to the image or image latent. How-

ever, sampling c̃ from a distribution makes it not differen-

tiable for optimization, therefore we apply the reparameteri-

zation trick similar to that used in VAE [19]. Formally, since

c̃ ∼ N
(

µc,Ã
2
c

)

, we can rewrite the optimization objective

Eq. (2) as:

L
(

PK
)

= Ex,É,ϵ,t

[

∥ϵ− ϵθ (xt,µc + ÉÃc, t)∥22
]

(3)

where É ∼ N (0, I) has the same dimension as µc and

Ãc. Since the exact computation of L
(

PK
)

is intractable,

we use a Monte Carlo approach to sample É for S times to

approximate the expected value for optimization:

L
(

PK
)

=
1

S

S
∑

s=1

∥ϵ− ϵθ (xt,µc + ÉsÃc, t)∥22 (4)

In order to avoid the scenario wherein multiple prompt fea-

tures converge to a same vector, which will result in a non-

representative low-variance distribution, we apply a similar

orthogonal loss proposed in [26] to penalize on the cosine

similarity and encourage orthogonality between each pair

of prompts:

Lortho =
1

K(K − 1)

K
∑

i=1

K
∑

j=i+1

|ïE(Pi), E(Pj)ð| (5)

where ï·, ·ð is cosine similarity between a pair of vectors.

The total loss is therefore:

L = L(PK) + λLortho (6)

where λ is a hyperparameter.

Implementation Details In all experiments, we use Sta-

ble Diffusion 2.1 [37] and keep all the default hyperparam-

eters. We use S = 4 and λ = 5 × 10−3. We use K = 32
prompts in all personalized generation experiments, and

K = 10 prompts to reduce computation in synthetic dataset

experiments. We use 1,500 steps with constant learning rate

of 10−3.

4. Experiments

In this section, we demonstrate several experiments and ap-

plications of our approach and show visual results of gen-

erated images. We show the ability of our approach to

capture a distribution of reference images and generate in-

distribution novel images in Sec. 4.1. We present additional

quantitative results including automatic evaluation and user

studies in Sec. 4.2. We also show the flexibility and effects

of manipulating and text-guide editing learned prompt dis-

tribution in Sec. 4.3. We further highlight easy application

of our learned prompt distribution to other text-based gen-

eration tasks using text-to-3D as an example in Sec. 4.4.

Finally in Sec. 4.5 we present experiments that show the ef-

fectiveness of our approach in generating synthetic training

dataset.

4.1. Diverse Personalized Generation

We first demonstrate the ability of our approach to generate

images that preserve general visual features shown in train-

ing set and at the same time generate new images with high

diversity. Given a diverse set of few training images (typ-

ically 5-20) that are not easily describable in texts and at

the same time share some similar visual attributes, we can

generate diverse in-distribution images by simply sampling

from the learned distribution as the input prompt text em-

bedding to T2I diffusion model. Our learned prompt distri-

bution can be therefore treated as a distribution of descrip-

tions corresponding to the set of training images.

Baselines. We compare with popular instance-level per-

sonalization methods including Textual Inversion [7],

DreamBooth [38], Custom Diffusion [20]. We also eval-

uate against Short Caption that uses a short description as

text prompt, and Long Caption that uses a longer text cap-

tion with detailed descriptions. These comparisons empha-

size our method’s ability to take care of both similarity and

diversity referencing the training images. We use the same

pretrained Stable Diffusion version 2.1 with default hyper-

parameters provided in baseline works. We use M = 8
context vectors without adding any prefix or suffix texts in

either training or inference process for DreamDistribution.

Results Fig. 3 shows visualized comparison with base-

lines. In general, both short and long text prompting meth-

ods fail to generate results that visually follow the reference

images since there is no training involved and the image de-

tails are hard to describe in language. Images generated us-

ing baseline methods generally show limited variation or in-

consistent visual attributes in all examples. All these meth-

ods try to associate different visual concepts with a fixed to-

ken, which does not provide any semantic variations itself.

Although the denoising process enables some randomness,

the training objective of associating various concepts with

a fixed token will either fail to capture a distribution due to

non-convergence, leading to underfitting to generic image

category information, or overfits to a visual combination of

the training images. By modeling multiple concepts using

multiple prompts and optimizing the prompt distribution,

our proposed method is able to produce substantial varia-

tions of style and view points, for example, following the

reference images in the cathedral example (first column).

Ours method can also model the texture and background in-

formation and generate new instance with significant vari-
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Figure 3. Comparison of results with existing methods. Given a set of training images (typically 5-20, we only show 4 here), we compare

generation results with other existing methods. We use Stable Diffusion version 2.1 for all methods. As can be seen on the bottom row,

our method is able to generate more diverse and coherent images (also quantitatively analyzed by automatic and human evaluation in

Section 4.2).

ations in color and pose following the reference images of

the Gundam example (second column), as well as patterns,

lines, style as a whole and generate novel artistic creations

as shown in the Basquiat’s painting example (third column).

In all, DreamDistribution is able to produce substantial vari-

ations on style, viewpoints, pose, layout, etc., with appro-

priate visual attributes following the reference images.

4.2. Generation Quality and Diversity Evaluation

Model FID↓ CLIP-I↑ DINO↑ Density↑ Coverage↑

DreamBooth [38] 234.9071.87 0.790.06 0.460.10 0.910.52 0.740.32

Textual Inversion [7] 224.2375.49 0.830.04 0.480.10 1.280.44 0.820.17

Custom Diffusion [20] 236.6172.76 0.800.05 0.460.07 1.450.79 0.870.18

Ours 215.1572.65 0.840.03 0.500.09 1.590.47 0.930.09

Table 1. Our method achieves the best quality and diversity auto-

matic metrics across 12 scenarios. Mean metrics are reported with

standard deviations shown in subscript.

We quantitatively assess our methods in terms of di-

versity and quality, and further use synthetic ImageNet

classification performance as a proxy in Section 4.5. We

train DreamBooth, Textual Inversion, Custom Diffusion

and DreamDistribution on 12 diverse image scenarios in-

cluding photos of real objects in large and small scales,

works of famous artists, as well as illustrations of car-

toon characters and scenery images with prominent styles,

sourced from illustrators from online communities. For our

approach we use M = 4 learnable context with no prefix

and suffix in both training and generating stages.

Automatic Metrics We evaluate the generative images

on established automatic evaluation metrics that measure

the diversity of synthetic images and the similarity be-

tween real and synthetic images. Following prior works

[15, 30, 38, 56], in Tab. 1 we evaluate image quality us-

ing FID [15] that measures the distance between the dis-

tribution of generated images and the distribution of real

images via InceptionV3 [45]; CLIP-I and DINO [38] that

measures average pairwise cosine similarity between CLIP

[33] and DINOv1 [3] embeddings. Our method achieves the

best quality across all three quality measurements, suggest-

ing that our method is capable of creating more high-quality

images that fulfill the prompt requirement. Additionally,

we report Density and Coverage [30] in Tab. 1. Density

measures samples in regions where real samples are densely

packed, while coverage calculates fraction of real samples

whose neighbourhoods contain at least one generated sam-
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ple. Both metrics are calculated with DINOv2 [31]. Our

method achieves the best coverage and diversity across the

board.

Figure 4. Human Evaluation on image diversity (Section 4.2)

aligns with automatic evaluation (Tab. 1). Our method shows sig-

nificantly greater diversity, which may explain why it was able to

better train image classifiers in Tab. 2.

Human Evaluation Admittedly, automatic evaluation

does not fully capture the richness perceived by human ob-

servers. We further investigate if Tab. 1 correlates with hu-

man perception via conducting human evaluation based on

those 12 sets of reference images. For each reference im-

age set, we generate images using DreamBooth, Textual In-

version, Custom Diffusion, and our method, with 40 im-

ages per method, resulting in a total of 1,920 generated im-

ages in the evaluation set. We assign 10 independent an-

notators. For each of the 12 reference sets, annotators are

asked to choose the most preferable set of generated im-

ages based on their perceived similarity with the reference

set and the diversity within the generated set. The methods

are anonymized so annotators are unaware of which gener-

ated set corresponds to which method. We collect a total of

120 samples and count the frequency of preferences. Fig. 4

demonstrates that our generated images exhibit superior di-

versity compared to three baseline models, reinforcing our

intuition that by learning distribution we are able to generate

diverse images with coherent content and visual attributes

presented in the reference image.

4.3. Controllability of Prompt Distribution

Since our learned prompt distribution is in the CLIP text

feature space, it is natural to manipulate the learned distri-

bution based on the property of CLIP text feature space. We

show several interesting distribution manipulation methods,

including text-guided editing, scaling the variance for diver-

sity control, interpolation between multiple distributions.

Figure 5. Effect of scaling the variance of a learned prompt distri-

bution. Image diversity increases as the scaling factor γ increases.

Figure 6. Composition of prompt distributions using linear inter-

polation between Chinese painting and Van Gogh. Mixing ratio

changes linearly from left to right. The middle columns show mix-

tures of two styles.

Text-guide Editing Similar to existing personalization

methods [7, 20, 38], our learned distribution preserves the

flexibility of text-guided editing . As shown in Fig. 1 and

Fig. 7, we are able to generate diverse in-distribution Gun-

dam figures that follows the style of reference images but

with different pose, style, context, using user provided text-

guidance at inference time. With a set of learned prompt,

we concatenate them with the same text prefix and/or suf-

fix to fit a new distribution at the CLIP text feature space

to enable text-guided editing of a prompt distribution. Ap-

plication includes but not limited to, generating objects of

interests in a different background or context, transferring

style using text, and controlling the pose, viewpoints, lay-

out, of objects of interests.

Scaling Variance for Diversity Control Once a prompt

distribution is learned, we can easily control the diversity

of generated images by changing the variance or standard

7



Figure 7. Results on text-editability of our methods. Left column

shows samples of reference images, right columns are generated

results with corresponding prompts.

deviation of the learned distribution. We show an example

of the effect of multiplying different scale factors γ to the

variance of a learned prompt distribution in Fig. 5. When

γ = 0, the generated images show very similar patterns

following some of the reference images. As γ increases,

more different layouts emerge, and when we further scale

the variance for γ = 2, the generated images become more

diverse with significant randomness.

Composition of Distributions Given multiple prompt

distributions in CLIP feature space, we can composite dis-

tributions by finding a linearly interpolated distribution be-

tween them. This distribution in the CLIP feature space

should represent a text with semantic meaning that is a

weighted mixture of the given prompt distributions, thereby

showing a mixture of visual attributes in the generated im-

ages. We naively use a weighted sum of the distributions to

interpolate between distributions:

µ
∗

c
=

N
∑

i=1

αiµci
, Ã

∗

c
=

N
∑

i=1

√
αiÃci

(7)

where µ
∗
c

and Ã
∗
c

are mean and standard deviations of the

interpolated distribution, and αi is the weight of i-th prompt

distribution with mean and standard deviation µci
and Ãci

respectively, and
∑N

i=1
αi = 1 are mixing weight parame-

ters.

We show an example of mixing distributions of Chinese

paintings and Van Gogh paintings in Fig. 6. From the left

column to right, we adjust the mixing ratio to increase the

weight of Van Gogh and decrease the weight of Chinese

painting.

4.4. Applying to Text­to­3D Generation

Our learned distribution can be flexibly applied to other

text-driven tasks, as long as the generation pipeline uses the

Figure 8. 3D generation results by learning a prompt distribution

over the reference images and then inference using MVDream [43]

(without extra texts).

Figure 9. 3D generation results by learning a prompt distribution

over the reference images and then inference with text-guided edit-

ing using MVDream [43].

same pretrained text encoder as the text feature extractor.

In this section, we highlight and demonstrate the flexibil-

ity of our method by using a prompt distribution trained on

T2I diffusion for text-to-3D task. We use MVDream [43],

a state-of-the-art text-to-3D model that train a NeRF [28]

and render a 3D asset following a text prompt, which in

our case is a prompt sampled from prompt distribution. As

shown in Fig. 1 and Fig. 8, although MVDream incorpo-

rates some extra prior in its modified multi-view diffusion

model that leads to reduced diversity, our prompt distribu-

tion can still generate 3D assets with significant variation in

design details. Moreover, as shown in Fig. 9, the pipeline

possesses text-guided editing capabilities akin to those of

DreamBooth3D [34], yet it can generate instances that ex-

hibit more diverse appearances.

4.5. Applying to Synthetic Dataset Generation

Our proposed method can also be effectively used in gen-

erating synthetic image classification datasets. By giving
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Top-1 Top5 Top-1 Top5 Top-1 Top5 Top-1 Top5 Top-1 Top5

Real 88.0 96.7 85.1 94.9 45.1 63.9 66.1 85.2 26.7 65.8

Class Names 45.5 70.0 46.2 72.5 24.1 43.3 53.6 75.8 8.1 38.8

CLIP Prompts [33] 45.6 69.2 46.1 69.6 36.2 60.1 58.8 81.1 12.2 45.7

ImageNet-SD [41] 55.4 77.5 55.8 77.5 29.4 49.0 59.8 80.0 15.9 49.4

DreamDistribution (Ours) 64.3 84.0 61.7 81.6 25.2 45.8 53.0 74.8 15.7 50.4

Training Dataset IN [46] IN-V2 [36] IN-Sketch [49] IN-R [13] IN-A [14]

Table 2. Classification accuracy on different real test sets after training a classifier on synthetic ImageNet (IN) generated by a given method.

When training on images from our method, the resulting classifier performs better on the respective test sets, indicating that the images

synthesized by our method allowed the classifier to learn those object categories better.

several dozens to hundreds of images that correspond to a

class in a classification dataset, our method can capture and

encode distributions of the dataset images into the learnable

prompt distributions, and thereby generate diverse training

images with similar distribution as the training set.

We generate “synthetic copy” [8–10, 41] of ImageNet

[39] via DreamDistribution using Stable Diffusion version

2.1 with default hyperparameters. Due to the large size of

ImageNet-1K, we follow previous works [41] to mainly ex-

periment on ImageNet-100 [46], a 100-class subset. For

each class, we generate 2,000 synthetic images and use

CLIP [33] to select top 1,300 images with highest cosine

similarity to the embedding vector of the corresponding

class name, resulting the same total number of images as

real ImageNet training set. We also compare with four

baselines: Real uses the real ImageNet training set, Class

Names and CLIP Prompts generate images by feeding

Stable Diffusion class name of each class or 80 diverse text

prompts from CLIP. 1 ImageNet-SD [41] generates images

using prompts in the form of “c, hc inside b”, where c repre-

sents the class name, hc represents the hypernym (WordNet

parent class name) of the class, and b is a random back-

ground description from the class names from Places365

dataset [57].

We train a ResNet-50 [12] classifier on synthetic images

only for 300 epochs using 0.2 alpha for mixup augmentation

[54] and auto augment policy v0 via timm [51].

To analyze generalizability, we also evaluate the trained

model on validation set of ImageNet variants including Im-

ageNetV2 [36], ImageNet-Sketch [49], ImageNet-R [13],

and ImageNet-A [14]. Top-1 and top-5 accuracy is reported

in Tab. 2. In all settings, the classifier is exclusively exposed

to synthetic images, but images generated using our method

shows the highest classification accuracy on ImageNet val-

idation set. This is because DreamDistribution can gener-

ate a diverse set of high-quality images following training

set distribution, while other prompt engineering methods

cannot follow the real image distribution and tend to show

limited diversity within classes, therefore resulting in per-

1e.g. “a photo of c”, “a drawing of c”, where c is the class name.

formance degradation. We also achieve the best results on

ImageNet-V2 and comparable results on ImageNet-A. For

the Sketch and Rendition variant, in contrast to our method,

CLIP Prompts and ImageNet-SD offer specific prompts to

generate images of other domains, which may account for

our comparatively lower performance.

5. Limitations

Despite the ability of our method to generate diverse novel

in-distribution images, it does have certain limitations.

Specifically, our method may struggle to capture visual fea-

tures when the number of training images is limited and

very diverse. Moreover, the Gaussian distribution assump-

tion could be overly restrictive depending on the training

images and the text encoder’s latent space. In the future,

we hope to find a more robust approach to learning distribu-

tions from a few, highly diverse images, with more accurate

assumptions and resilient distribution forms.

6. Conclusion

We introduced DreamDistribution, a distribution based

prompt tuning method for personalizing T2I diffusion mod-

els to generate diverse in-distribution images following a

small set of reference images. The key idea of our methods

lies in modeling the commonalities and variations of visual

attributes using a prompt distribution at text feature space.

We show a variety of experiments and application that is

enabled by our method.

7. Acknowledgment

This work was supported by the National Science Foun-

dation (award 2318101), C-BRIC (one of six centers in

JUMP, a Semiconductor Research Corporation (SRC) pro-

gram sponsored by DARPA), the Army Research Office

(W911NF2020053), and Amazon ML Fellowship. The au-

thors affirm that the views expressed herein are solely their

own, and do not represent the views of the United States

government or any agency thereof.

9



References

[1] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-

structpix2pix: Learning to follow image editing instructions.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 18392–18402, 2023.

2

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-

guage models are few-shot learners. Advances in neural in-

formation processing systems, 33:1877–1901, 2020. 3

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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DreamDistribution: Prompt Distribution Learning for

Text-to-Image Diffusion Models

Supplementary Material

8. More Implementation Details

In all experiments, we use Stable Diffusion 2.1, which is

the latest version. We use the default parameters, including

7.5 guidance scale and 50 denoising steps. For all visual

results, we generate images in 768×768 resolution, and for

synthetic dataset experiments, we generate 256 × 256 im-

ages to save time and resources. We provide a pseudocode

for learning a prompt distribution in Algorithm 1.

Algorithm 1 Training prompt distribution

Require: Set of reference images I = {xi}
N
i=1

Require: Set of learnable prompts PK = {Pi}
K
i=1

Require: Text encoder E , noise predictor ϵθ, hyperparam-

eter λ

1: Random initialize all learnable embeddings V in PK

2: for image x ∈ I do

3: Sample time step t

4: Sample noise ϵ ∼ N (0, I)
5: xt ← x with noise added based on ϵ and t

6: Compute µc of E(PK)

7: Compute Ãc of E(PK)
8: for s ∈ [S] do

9: Sample És ∼ N (0, I)

10: Ls

(

PK
)

= ∥ϵ− ϵθ (xt,µc + ÉsÃc, t)∥
2
2

11: end for

12: L
(

PK
)

= 1
S

∑S

s=1 Ls(P
K)

13: Lortho = 1
K(K−1)

∑K

i=1

∑K

j=i+1 |ïE(Pi), E(Pj)ð|

14: L = L
(

PK
)

+ λLortho

15: Update learnable embeddings V in PK based on L
16: end for

9. Evaluation Set

We show samples of reference images from our evaluation

set in Fig. 11. Each row shows 8 samples reference images

from the same set.

10. Additional Result

10.1. Diverse Image Instance Generation

We show additional image generation results of our method

in Fig. 12 using the reference images from our evaluation

set. Each row is generated using reference images of the

corresponding row in Fig. 11.

10.2. Text­guided Editing

We show more results on the ability of our method to gener-

ate diverse images with text-guided editing in Fig. 13 using

different sets of reference images.

10.3. Scaling Variance for Diversity Control

We show more results on generating images from prompt

distribution with scaled standard deviations in Fig. 14

10.4. Composition of Distribution

In Fig. 15 we show more results on composition of two dif-

ferent learned prompt distributions with various weights.

11. Ablation study

We additionally ablate K, the number of prompts in person-

alized generation. We randomly select 4 sets of reference

images from our evaluation set and compute the average

performance based on automatic quality and diversity met-

rics introduced in main Section 4.1. In Fig. 10, we show the

effect of K in terms of both generation quality and diversity.

We observe a positive correlation between the performance

(in terms of both quality and diversity) and the number of

prompts. More prompts offer more flexibility for our meth-

ods to model a better distribution of prompts, thus enabling

the model to encapsulate content better (quality) and adapt

to various nuances of the training images (diversity).

12. Synthetic dataset

12.1. More Analysis on Synthetic Dataset

Number of training images We experiment with differ-

ent number of training images. We use randomly selected

10, 100, 500 images per class, as well as all ImageNet train-

ing images to train our learnable prompts and generate same

size synthetic dataset. From results shown in Fig. 16 col-

umn 1 & 2, we found that using about 100-500 images per

class (7%-38% of the real training set) would be enough

to reach high classification accuracy on real validation set,

while using more data would not further improve accuracy.

For validation sets of ImageNet variants, less training data

would obtain higher accuracy due to the domain gap be-

tween the real training set and different validation sets.

Mixing synthetic data with real training data We also

experiment with mixing different sizes of synthetic image

data with the real training images. We mix additional 20%,

13



Figure 10. In general, with more prompts, the performance increases in terms of both quality and diversity.

40%, 60%, 80% and 100% synthetic data with real training

data, where 100% means the size of the mixed dataset is

twice of the size of the ImageNet training set, and the ratio

of the number of real images to the number of synthetic im-

ages is approximately 1:1. As shown in Fig. 16 column 3 &

4, adding more synthetic data would improve the accuracy

on ImageNet validation set. On the validation sets of dif-

ferent domains, however, adding more synthetic data would

not show significant improving trends on accuracy.

12.2. Implementation detail

For training on ImageNet dataset, we use the same training

hyperparameters except for reducing the number of learn-

able prompts to 10 per class. We train for 5 epochs for train-

ing prompt distribution and 300 epochs for training ResNet-

50 using generated or mixed dataset. All results are aver-

aged over 3 runs of training using the generated or mixed

dataset. For ImageNet-R and ImageNet-A, we only evalu-

ate on the overlapping classes with ImageNet-100.

12.3. Visual result

We show some generated training images using our method

and compare them with generated images using solely class

names as text prompts for generation in Fig. 17. Compared

to the images generated using class names, our generated

images shows more diversity with different real-world con-

texts.
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Figure 11. Samples of reference images from our evaluation set
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Figure 12. Samples of generated image results using reference images from the evaluation set. Each row is generated using reference

images of the corresponding row in Fig. 11.
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Figure 13. More results on text-editability of our methods. Left column shows samples of reference images, right columns are generated

results with corresponding prompts.
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Figure 14. More results on scaling standard deviation of learned prompt distribution.
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Figure 15. More results on composition of multiple prompt distributions using different weights.
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Figure 16. Column 1 & 2: Top-1 and top-5 accuracy on ImageNet validation set versus using different number of training images to train

prompt distribution. Column 3 & 4; Top-1 and top-5 accuracy on ImageNet validation set versus percentage of synthetic images added to

the real training set.
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Figure 17. Comparison between training images generated using our method and image generated using solely class names as text prompts.

For each group of two rows, the top row shows samples of our generated training images, and the bottom row shows the training images

generated using class names as text prompts.

21


	. Introduction
	. Related Works
	. Text-to-image Diffusion Models
	. Personalized text-to-image Generation
	. Prompt Learning

	. Method
	. Text-to-Image Diffusion
	. Prompt Tuning
	. Learning Prompt Distribution

	. Experiments
	. Diverse Personalized Generation
	. Generation Quality and Diversity Evaluation
	. Controllability of Prompt Distribution
	. Applying to Text-to-3D Generation
	. Applying to Synthetic Dataset Generation

	. Limitations
	. Conclusion
	. Acknowledgment
	. More Implementation Details
	. Evaluation Set
	. Additional Result
	. Diverse Image Instance Generation
	. Text-guided Editing
	. Scaling Variance for Diversity Control
	. Composition of Distribution

	. Ablation study
	. Synthetic dataset
	. More Analysis on Synthetic Dataset
	. Implementation detail
	. Visual result


