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Fast, reliable logical operations are essential for the realization of useful quantum computers [1–
3], as they are required to implement practical quantum algorithms at large scale. By redundantly
encoding logical qubits into many physical qubits and using syndrome measurements to detect and
subsequently correct errors, one can achieve very low logical error rates. However, for most practical
quantum error correcting (QEC) codes such as the surface code, it is generally believed that due
to syndrome extraction errors, multiple extraction rounds—on the order of the code distance d—
are required for fault-tolerant computation [4–14]. Here, we show that contrary to this common
belief, fault-tolerant logical operations can be performed with constant time overhead for a broad
class of QEC codes, including the surface code with magic state inputs and feed-forward operations,
to achieve “algorithmic fault tolerance”. Through the combination of transversal operations [7]
and novel strategies for correlated decoding [15], despite only having access to partial syndrome
information, we prove that the deviation from the ideal measurement result distribution can be made
exponentially small in the code distance. We supplement this proof with circuit-level simulations in
a range of relevant settings, demonstrating the fault tolerance and competitive performance of our
approach. Our work sheds new light on the theory of quantum fault tolerance, potentially reducing
the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.

Quantum computers have the potential to solve cer-
tain computational problems much faster than their clas-
sical counterparts [1, 16]. Since most known applica-
tions require quantum computers with extremely low er-
ror rates, quantum error correction (QEC) and strate-
gies for fault-tolerant quantum computing (FTQC) are
necessary. These methods encode logical quantum infor-
mation into a QEC code involving many physical qubits,
such that the lowest weight logical error has weight equal
to the code distance d and is therefore unlikely.

Performing large-scale computation, however, comes
with significant overhead [2, 16]. By performing syn-
drome extraction (SE), one can reveal error information
and use a classical decoder to correct physical errors in
software and interpret logical measurement results. How-
ever, in the presence of noisy syndrome measurements [4–
7, 10], one typically requires a number of SE rounds
that scales linearly in d, i.e., Θ(d) [17] (see Fig. 1(a)).
This is the case, for example, for the celebrated surface
code [8–10], one of the leading candidates for practical
FTQC due to its simple 2D layout and competitive er-
ror thresholds. In typical compilations based on lattice
surgery or braiding [11–14, 18], each logical operation re-
quires Θ(d) SE rounds, thus incurring a space-time vol-
ume per logical operation of Θ(d3). This reduces the
logical clock speed by a factor proportional to the code
distance, typically on the order of 10 –100 [14, 16]. The
same considerations also apply when performing logical
operations with many quantum low-density parity-check
(QLDPC) codes [19, 20]. While there have been various
efforts at addressing this challenge [5, 21], these alter-
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FIG. 1. Algorithmic fault tolerance. (a) Conventional FT
analysis separately examines each gadget (red boxes) in the
circuit and ensures they are individually FT [4, 7, 31]. This
requires Θ(d) syndrome extraction (SE) rounds to achieve
FT. (b) Algorithmic FT directly uses all accessible syndrome
information up to a logical measurement (blue box), and guar-
antees FT of the measurement result, even if the gadgets are
not individually FT and if future syndrome information is not
yet accessible (partial decoding). We realize algorithmic FT
through transversal operations, and only require a single SE
round per logical operation, thus allowing constant time im-
plementations of logical operations.

native approaches introduce higher hardware complex-
ity [20, 22–24] or necessitate certain properties of the un-
derlying codes, such as the single shot QEC property [25–
29], often incurring a trade-off between space and time
when executing logical operations [2, 16, 30].
We introduce and develop a novel approach to FTQC

that we refer to as “algorithmic fault tolerance”, and
show that it can lead to a substantial reduction in space-
time cost. We focus on transversal implementations of
Clifford circuits [7, 32] with magic state inputs and feed-
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forward [33], thereby allowing universal quantum com-
putation. Such transversal gate capabilities have already
been demonstrated in multiple hardware platforms, such
as neutral atoms and trapped ions [34–36]. We show
that contrary to the common belief, for any Calderbank-
Shor-Steane (CSS) QLDPC code [6, 37], these opera-
tions can be performed fault-tolerantly with only con-
stant time overhead per operation, provided that decod-
ing can be implemented efficiently. The key idea is to
consider the fault tolerance of the algorithm as a whole
(Fig. 1(b)) [38–40]. We achieve this by performing corre-
lated decoding [15, 30, 36] despite only having access to
partial syndrome information, and ensuring consistency
in the presence of magic states and feed-forward via ad-
ditional operations in software. We verify such algorith-
mic fault tolerance through a combination of proofs and
circuit-level numerical simulations of our protocol, in-
cluding a simulation of state distillation factories [13, 33],
finding very little change to physical error thresholds.
Specializing to the surface code, our results reduce the
per-operation time cost from Θ(d) to Θ(1), including for
Clifford operations used in magic state distillation. Note
that unlike methods that trade space for time, our tech-
niques represent a direct reduction in space-time volume,
which is usually the ultimate quantity of interest.

ALGORITHMIC FAULT TOLERANCE VIA
TRANSVERSAL OPERATIONS

We focus on transversal Clifford circuits with magic
state inputs, where Clifford operations are implemented
with a depth-one quantum circuit (Methods). This is
interleaved with SE rounds using ancilla qubits, which
reveal error information on the data qubits and enable
error correction. In addition to transversal gates [7], we
refer to preparation of data qubits in |0⟩ followed by one
SE round as transversal state preparation, and Z ba-
sis measurement of all data qubits as transversal mea-
surement. To achieve universality, we allow teleporting
in low-noise magic states with feed-forward operations
based on past measurement results, and use the same
Clifford operations above to prepare high quality magic
states via magic state distillation [33]. We make use of
CSS QLDPC codes, where each data or ancilla qubit
interacts with a constant number of other qubits, and
each stabilizer generator consists of all X or all Z oper-
ators [6, 37]. Within this setting, our key result can be
formulated as the following theorem:

Theorem 1 (informal): Exponential error sup-
pression for constant time transversal Clifford
operations with any CSS QLDPC code. For a
transversal Clifford circuit with low-noise magic state
inputs and feed-forward operations, that can be imple-
mented with a given CSS QLDPC code family Qd of grow-
ing code distance d, there exists a threshold pth, such that

if the physical error rate p < pth under the basic model of
fault tolerance [5], then our protocol can perform constant
time logical operations, with only a single SE round per
operation, while suppressing the total logical error rate as
PL = exp(−Θ(dn)).
The formal theorem statement and the corresponding

proof can be found in Supplementary Materials [41]. Our
analysis assumes the basic model of fault tolerance [5]. In
particular, we consider the local stochastic noise model,
where we apply depolarizing errors on each data qubit
every SE round and measurement errors on each SE re-
sult, with a probability that decays exponentially in the
weight of the error event. This can be readily general-
ized to circuit-level noise by noting the bounded error
propagation for constant depth SE circuits in QLDPC
codes. We also assume the most likely error (MLE) de-
coder and fast classical computation (Methods). Finally,
we assume that all code patches are identical, and the
number of qubit locations within a code patch that any
given qubit can be coupled to via transversal gates is
bounded by some constant t, in order to control error
propagation.

A key observation is that by considering the algorithm
as a whole and leveraging the deterministic propagation
of errors through transversal Clifford circuits, one can
use the surrounding syndrome history to correct for noisy
measurements (Fig. 1(b)). This correlated decoding tech-
nique has been shown to enable Θ(1) SE rounds for Clif-
ford circuits without feed-forward [15]. However, a key
component of many schemes for achieving universality is
magic state teleportation, which crucially relies on the
ability to realize feed-forward operations.

As illustrated by the example shown in Fig. 2(a), such
feed-forward operations require on-the-fly interpretation
of logical measurements, followed by a subsequent con-
ditional gate, when only a subset of the logical qubits
have been measured. As we do not yet have future syn-
drome information on the unmeasured logical qubits, one
may be concerned that this can lead to an incorrect as-
signment of logical measurement results. Indeed, prior
work analyzing circuits with magic states assumed that
at least d SE rounds separated state initialization and
measurements or out-going qubits [30, 42, 43]. As shown
in Fig. 2(b) for the Θ(1) SE round case, with new syn-
drome information, one may end up concluding a dif-
ferent measurement result, which leads to an incorrect
feed-forward operation.
Surprisingly, we find that these inconsistencies can be

accounted for in classical processing, with a reinterpreta-
tion of subsequent measurement results (Fig. 2(c), Pauli
frame updates). The inconsistent measurement result
corresponds to an X operator applied right before the Z
measurement. Tracing back, we can find an X operator
on the |+⟩ initial state (Fig. 2(c)) which does not change
the logical state but propagates through to apply X on
the logical measurement, together with some other logi-
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cal Pauli updates on the remaining logical qubits. These
are stabilizers of the logical state, which leave the state
invariant. Indeed, the fact that this measurement result
can be affected by non-fault-tolerant state preparation
implies that the measurement anti-commutes with the
corresponding Pauli stabilizer, necessarily leading to a
50/50 random outcome that is not changed by a logi-
cal flip. Products of individual measurements can have
nontrivial correlations only if they commute with all the
Pauli stabilizers. Because they commute, however, they
are also guaranteed to be insensitive to the state initial-
ization errors.

Therefore, in the second step of our decoding proce-
dure, we apply such Pauli operators on initial input states
until the measurement results are consistent with the pre-
vious commitments (Fig. 2(c)). Beyond this specific cir-
cuit, the required pattern that leads to a consistent as-
signment can always be computed efficiently by solving a
linear system of equations (Methods). In practice, sub-
sets of measurements in which all measurement products
are 50/50 random can be classically assigned in advance,
with the future measurements determined through the
above procedure to ensure consistency. This also implies
that decoding of certain measurements can be delayed
until joint products need to be determined, and some as-
signments can be performed deterministically in specific
cases such as state distillation (Methods).

Our protocol that leads to Theorem 1 thus consists
of two main steps: correlated decoding based on partial
syndrome information, and application of logical stabiliz-
ers to guarantee consistency between multiple decoding
rounds (Fig. 2).

We now sketch the intuition behind our proof of The-
orem 1. There are two types of logical errors that may
occur with our protocol. The first, a heralded inconsis-
tency error, occurs when we are not able to find a set of
operators to apply that yield the same outcome as pre-
viously committed measurement results. The second, a
regular error, occurs when an erroneous logical operator
is applied that results in a different measurement distri-
bution.

Because imperfect readout during transversal measure-
ments are equivalent to data qubit errors followed by per-
fect measurements, transversal measurements produce
reliable syndrome information. Intuitively, this prevents
individual errors from leading to high-weight corrections
on the logical qubits we measure, the main reason for
needing d SE rounds in typical FT state initialization pro-
tocols. At the same time, the use of correlated decoding,
together with the structured error propagation through
transversal Clifford gates, allow us to propagate this syn-
drome information and correct relevant errors happen-
ing throughout the circuit. With these observations, we
prove that for either type of logical error to occur, the to-
tal Pauli weight s of physical error and subsequent correc-
tion in a connected cluster must satisfy s = Θ(d), which
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FIG. 2. Illustration of decoding strategy. (a) Logical
quantum circuit with measurement and feed-forward. All log-
ical operations are transversal and interleaved with a single
SE round, instead of d SE rounds. We must decode and com-
mit mid-circuit to a measurement result for the bottom qubit,
despite lacking complete syndrome information on the top two
qubits (partial decoding). (b) With the measurement result of
the bottom qubit, a feed-forward operation is applied, the re-
maining circuit is executed, and decoding is performed again
on the whole circuit. The second decoding round may assign a
different result to the bottom qubit, causing an inconsistency
in feed-forward operations. (c) To guarantee consistency, we
apply an X operator on the |+⟩ initial state of the middle
qubit, which acts trivially on |+⟩, but changes the interpreted
logical measurement result Ma to be consistent with before.
This also leads to a re-interpretation of the logical measure-
ment result M2.

has probability ps/2 under the MLE decoder. Finally, we
count the number of such connected clusters of size s,
which scales as (ve)s, where e is the natural base and v
is a constant upper-bounding the error connectivity for
a QLDPC code. The combined probability of an error
thus scales as

Perr ∝ ps/2(2ve)s = (2ve
√
p)

Θ(d) → 0 (1)

when the physical error rate is sufficiently low
p ≪ 1/(ve)2 (the factor of 2 comes from a combinatorial
sum), thereby establishing the existence of a threshold
and exponential error suppression.
Specializing to the surface code and utilizing the full

transversal Clifford gate set accessible to the surface code
(Methods), an immediate corollary of our main theorem
is a threshold result for performing constant time logical
operations with an arbitrary transversal Clifford circuit.
This result supports universal quantum computing when
we allow magic state inputs prepared with sufficiently
low noise.
Preparing high quality magic state inputs, in turn, can

be performed simply with the same Clifford operations
and easy-to-prepare non-fault-tolerant magic states [44–
46], a procedure known as magic state distillation [33]
(see ED Fig. 3). We expect that the same algorithmic
FT approach described above achieves a Θ(d) speed-up
in distillation time as well. The distillation factory and
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FIG. 3. Numerical verification of fault tolerance.
(a) Simulation of circuit with repeated ZZ measurement (in-
set), where we commit mid-circuit to each measurement result
of the logical ancilla using only the syndrome information up
to that point. The total logical error rate as a function of
circuit-level physical error rate p, for varying code distance d,
shows clear threshold behavior. (b) Heralded error rate with
and without the second step of our decoding strategy, as a
function of code distance and for different physical error rates,
for the same circuit as (a). Only with both steps do we observe
exponential suppression of the logical error rate. (c) Com-
parison of two different methods for logical state preparation
between three rotated surface codes and subsequent telepor-
tation, for fixed circuit noise p = 0.3%. We use transversal
gates (left) and lattice surgery (right), in both cases with only
a single SE round. (d) With transversal gates, the error rate
decreases exponentially with the code distance. With a single
round of lattice surgery, the error rate instead increases lin-
early with code distance, as a single stabilizer measurement
error affects the logical ZZ measurement result.

main computation can then be combined by applying our
decoding approach to the joint system. In Methods and
Supplementary Information, we further describe an ex-
tension of our results to the case of single-shot code patch
growth, relevant to practical distillation factories [47, 48].
Taken together, these results provide a theoretical foun-
dation for our factor of Θ(d) improvement in logical clock
speed compared to standard FT approaches for universal
quantum computation.

COMPETITIVE NUMERICAL PERFORMANCE

We now turn to circuit-level simulations of our protocol
to numerically evaluate its performance [39], and contrast
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FIG. 4. |Y ⟩ state distillation factory. (a) Illustration of a
|Y ⟩ state distillation factory based on the [[7,1,3]] Steane code,
consisting of state initialization, layers of transversal CNOTs,
followed by a teleported S gate. Each operation involves only
a single SE round. Two of the CNOTs in the first layer act
trivially and can be omitted. (b) The |Y ⟩ resource state is
prepared via state injection at the first level, and via the first-
level factory for the second level. (c) 1-level factory output
state infidelity as a function of input state infidelity, for fixed
circuit noise p = 0.1% and varying levels of artificially injected
Z errors. The ideal curve is calculated assuming the gate
operations in the factory are perfect. (d) Performance for one
and two rounds of distillation, showing good agreement with
the expected scaling.

it with existing methods. We consider various test cases
of our approach that also serve as key subroutines in
large-scale algorithms.
We first consider a simple circuit with intermediate log-

ical measurements (inset of Fig. 3(a)). In this example,
two logical qubits are transversally initialized in |+⟩, and
an ancilla logical qubit is used to measure the ZZ corre-
lation a total of eight times, before the two logical qubits
are transversally measured in the Z basis. While indi-
vidual logical measurement results are random, a correct
realization of this circuit should yield the same result for
ZZ each time, which in turn should be consistent with
the final logical measurement results. We employ our al-
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gorithmic FT protocol to decode the circuit up to each
logical measurement using only the syndrome informa-
tion accessible at that point. We use the rotated surface
code, a circuit-level depolarizing noise model [15, 49], a
MLE decoder based on integer programming [15, 50], and
employ the two-step process described above (see Supple-
mentary Information).

Figure 3(a-b) show the results of numerical simula-
tions. We find that the total logical error rate, de-
fined as the probability that a logical error of either
type mentioned above happened anywhere in the cir-
cuit, shows characteristic threshold behavior, with an es-
timated threshold ≳ 0.85%. As an SE round involves four
layers of CNOT gates, while the transversal CNOT only
involves a single layer, the effective error rate is domi-
nated by SE operations, hence it may be expected that
the threshold is close to the circuit-noise memory thresh-
old. The number of SE rounds can be further optimized:
for example, in Ref. [15], performing one SE round ev-
ery four gate layers minimized the space-time cost per
CNOT, suggesting that the practical improvement may
be ≳ 2d in some regimes [51]. In Fig. 3(b), we further
compare the scaling of heralded failure rates in the pres-
ence and absence of the second step of our decoding pro-
cedure, as a function of code distance d. We find that
this additional step is crucial to achieve exponential sup-
pression with the code distance.

We now contrast our approach with lattice surgery in
a similar setting [11, 12, 18, 52]. We consider the logical
circuit in Fig. 3(c), where a GHZ state preparation circuit
is followed by teleportation of the GHZ state to another
set of logical qubits, and then measurement in the Z ba-
sis [41]. Using transversal gates with only a single SE
round during |+⟩ and |0⟩ state preparation, and decod-
ing each logical measurement with only accessible infor-
mation at that stage, we find that the logical error rate
decreases exponentially with the code distance, consis-
tent with our FT analysis. In contrast, state preparation
based on a single round of lattice surgery [52], which in-
volves performing syndrome extraction with a larger code
patch and then splitting it into three individual logical
qubits, does not yield improved logical error rate as the
code distance increases, as a single error can lead to in-
correct inference of the ZZ correlation of the GHZ state
(Supplementary Information). Unlike transversal mea-
surements, logical information here is contained in noisy
stabilizer products, which require repetition to reliably
infer.

Next, we simulate a state distillation factory. In order
to perform a classical simulation of a full factory, we fo-
cus on distillation of the |Y ⟩ = S|+⟩ state (Fig. 4(a)),
which allows the easy implementation of S gates in the
surface code. Since this circuit has a similar structure to
the practically relevant |T ⟩ magic state distillation fac-
tories (Methods, ED Fig. 3), we expect them to have
similar performance. We fix the error rate of the circuit

to p = 0.1%, and vary the input infidelity Pin in Fig. 4(c).
Examining the output |Y ⟩ of a one-level factory, we find
that as the code distance is increased, the output logical
error rate Pout approaches the fidelity expected for ideal
Clifford logical gates in the factory Pout = 7P 3

in +O(P 4
in)

(see Methods for the full expression), across the explored
fidelity regime.
Finally, we simulate the logical error rate for a two-

level |Y ⟩ state distillation factory, involving a total of 113
logical qubits, where the output |Y ⟩ states of a d1 = 5
factory is fed into a second factory with d2 = 9, with the
distance chosen such that the logical error is dominated
by the input state infidelity. As shown in Fig. 4(d), the
logical error rates at each level of the distillation proce-
dure are consistent with that expected based on the ideal
factory formula (Methods), confirming that our approach
is FT. Since the state injection procedure is agnostic to
the particular state that is injected, we expect that our
results will readily generalize to the setting of |T ⟩ magic
state factories.

DISCUSSION AND OUTLOOK

Transversal operations and correlated decoding were
recently found to be highly effective in experiments with
reconfigurable neutral atom arrays [36]. The principles
of algorithmic fault-tolerance described here are the core
underlying mechanisms of these observations, such as cor-
related decoding of a logical Bell state [36], and our re-
sults here indicate that the same techniques allow for
Θ(d) time reduction for universal computation. While
recent work has provided strong evidence that this re-
duction might be possible for circuits consisting purely
of Clifford gates and Pauli basis inputs [15], up to now
it has generally been believed that this conclusion does
not hold when performing universal quantum computa-
tion [30, 42, 43], which crucially relies on the use of magic
states and feed-forward operations. The present work
not only demonstrates that this Θ(d) time cost reduction
is broadly applicable to universal quantum computing,
but also provides a theoretical foundation for it through
mathematical fault tolerance proofs.
Although our analysis focused on the use of an MLE

decoder, our numerical simulations suggest that algo-
rithms with polynomial runtime can still achieve a com-
petitive threshold [41], and the development of improved,
parallel correlated decoders is an important area of fu-
ture research (Methods). Taking into account the de-
coding time overhead, we may eventually need to insert
more SE rounds to simplify decoding or wait for decoding
completion [53], as is also needed for FT protocols that
rely on single-shot quantum error correction [25]. In that
case, we still expect a significant practical saving over ex-
isting schemes. In light of recent experimental advances
[36], a full compilation and evaluation of the space-time
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savings in parallel reconfigurable architectures such as
neutral atom arrays is an important next step. Finally,
it will be interesting to investigate how these results can
be combined with recent progress toward constant-space-
overhead quantum computation [5, 20, 23, 27, 29, 54–56]
or generalized to transversal non-Clifford gates [30, 57–
62], in order to further reduce the space-time volume of
large-scale quantum computation.
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L. Jiang, and H. Zhou, Constant-overhead fault-tolerant
quantum computation with reconfigurable atom arrays,
Nature Physics 10.1038/s41567-024-02479-z (2024).

[21] H. Yamasaki and M. Koashi, Time-Efficient
Constant-Space-Overhead Fault-Tolerant Quan-
tum Computation, arXiv preprint arXiv:2207.08826
10.48550/arxiv.2207.08826 (2022).

[22] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov,
P. Rall, and T. J. Yoder, High-threshold and low-
overhead fault-tolerant quantum memory, Nature 627,
778 (2024).

[23] M. A. Tremblay, N. Delfosse, and M. E. Beverland,
Constant-Overhead Quantum Error Correction with
Thin Planar Connectivity, Physical Review Letters 129,
050504 (2022).

[24] O. Higgott and N. P. Breuckmann, Constructions and
performance of hyperbolic and semi-hyperbolic Floquet
codes, arXiv preprint arXiv:2308.03750 (2023).

[25] H. Bomb́ın, Single-shot fault-tolerant quantum error
correction, Physical Review X 5, 031043 (2015).

[26] E. T. Campbell, A theory of single-shot error correction
for adversarial noise, Quantum Science and Technology
4, 025006 (2019).

[27] O. Fawzi, A. Grospellier, and A. Leverrier, Constant
overhead quantum fault-tolerance with quantum ex-
pander codes, Proceedings - Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2018-
Octob, 743 (2018).

[28] A. Kubica and M. Vasmer, Single-shot quantum error
correction with the three-dimensional subsystem toric
code, Nature Communications 2022 13:1 13, 1 (2022).

[29] S. Gu, E. Tang, L. Caha, S. H. Choe, Z. He, and A. Ku-
bica, Single-shot decoding of good quantum LDPC
codes, arXiv preprint arXiv:2306.12470 (2023).

[30] M. E. Beverland, A. Kubica, and K. M. Svore, Cost of
Universality: A Comparative Study of the Overhead of
State Distillation and Code Switching with Color Codes,
PRX Quantum 2, 020341 (2021).

[31] D. Aharonov and M. Ben-Or, Fault-Tolerant Quantum
Computation With Constant Error Rate, SIAM Journal
on Computing 38, 1207 (1999).

[32] C. Wang, J. Harrington, and J. Preskill, Confinement-
Higgs transition in a disordered gauge theory and the
accuracy threshold for quantum memory, Annals of
Physics 303, 31 (2003).

[33] S. Bravyi and A. Kitaev, Universal quantum computa-
tion with ideal Clifford gates and noisy ancillas, Physical
Review A 71, 022316 (2005).

[34] L. Postler, S. Heußen, I. Pogorelov, M. Rispler, T. Feld-
ker, M. Meth, C. D. Marciniak, R. Stricker, M. Ring-
bauer, R. Blatt, P. Schindler, M. Müller, and T. Monz,
Demonstration of fault-tolerant universal quantum gate
operations, Nature 605, 675 (2022).

[35] C. Ryan-Anderson, N. C. Brown, M. S. Allman,
B. Arkin, G. Asa-Attuah, C. Baldwin, J. Berg, J. G.
Bohnet, S. Braxton, N. Burdick, J. P. Campora,
A. Chernoguzov, J. Esposito, B. Evans, D. Francois,
J. P. Gaebler, T. M. Gatterman, J. Gerber, K. Gilmore,
D. Gresh, A. Hall, A. Hankin, J. Hostetter, D. Luc-
chetti, K. Mayer, J. Myers, B. Neyenhuis, J. Santi-
ago, J. Sedlacek, T. Skripka, A. Slattery, R. P. Stutz,
J. Tait, R. Tobey, G. Vittorini, J. Walker, and D. Hayes,
Implementing Fault-tolerant Entangling Gates on the
Five-qubit Code and the Color Code, arXiv preprint
arXiv:2208.01863 10.48550/arxiv.2208.01863 (2022).

[36] D. Bluvstein, S. J. Evered, A. A. Geim, S. H.
Li, H. Zhou, T. Manovitz, S. Ebadi, M. Cain,
M. Kalinowski, D. Hangleiter, J. P. Bonilla Ataides,
N. Maskara, I. Cong, X. Gao, P. Sales Ro-
driguez, T. Karolyshyn, G. Semeghini, M. J. Gullans,
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METHODS

Background Concepts

In this section, we review some common concepts and
definitions used to establish the fault tolerance of our
scheme. We will focus on a high-level description here,
and defer the formal definitions to the supplementary in-
formation. Experienced QEC researchers may wish to
skip ahead to the key concepts section, where we dis-
cuss a number of less commonly used concepts that are
key to our results.

We start by reviewing the ideal circuits we aim to per-
form, based on Clifford operations and magic state tele-
portation. We then describe how to turn this into an
error-corrected circuit. First, we define the local stochas-
tic noise model that our proof assumes, which covers a
wide range of realistic scenarios. We then describe the
quantum LDPC codes that we use to perform quantum
error correction and how to perform transversal logical
operations on them. A noisy transversal realization of
the ideal circuit is thus obtained by replacing each ideal
operation by the corresponding transversal gate, followed
by a single SE round. The error-corrected realization also
determines how errors trigger syndromes, which is cap-
tured in the detector error model (decoding hypergraph).
Using the detector error model and observed syndromes,
we can infer a recovery operator which attempts to cor-
rect the actual errors.

Together, these concepts establish the basic procedures
that are typically used for quantum error correction and
conventional FT analysis. However, in order to estab-
lish fault tolerance for our algorithmic FT protocol, we
need to introduce the additional notion of frame vari-
ables, which capture the randomness of initial stabilizer
projections during state preparation, and we discuss how
to interpret logical measurement results in the presence
of such degrees of freedom in the next section.

Ideal circuit C. We consider ideal circuits C in a
model of quantum computation consisting of Clifford op-
erations and magic state inputs. C includes state prepa-
ration and measurement in the computational basis for
any qubit, single-qubit I, Z, H, S gates, CNOT gates
between any pair of qubits. This allows the implemen-
tation of any Clifford unitary. C can also include condi-
tional operations of the above types, conditioned on pre-
vious measurement results. Finally, C can also include
non-Clifford magic state inputs of the form |T ⟩ = T |+⟩
inputs, where the T gate is a π/4 rotation around the Z
axis. This set of operations is known to be universal for
quantum computation [63]. We require that all qubits
are measured by the end of the circuit.

Measurement distribution fC of ideal circuit C.
Ultimately, we are only interested in the classical results
that our quantum computation returns. Denote the total

number of logical measurements performed throughout
C as M . The output of each execution of C is a bit
string b⃗C ∈ ZM

2 , sampled from a probability distribution
fC . This probability distribution fully characterizes the
output of the quantum computation.
Local stochastic noise model. Our proof assumes

the local stochastic noise model that is widely used in
fault-tolerance analysis, see for example Ref. [5]. This
noise model allows for noise correlations, but requires
that the probability of any set of s errors is upper-
bounded by ps, where p is a parameter characterizing
the noise strength. We will use the local stochastic noise
model in Ref. [5, 20], where the noise is applied to data
qubits and the output syndrome bit. A basis of the errors
is denoted as E and its size scales with the space-time vol-
ume of the circuit. For a QLDPC code (see below) and
syndrome extraction circuit with bounded depth, this can
be readily generalized to show a circuit-level threshold
by using the fact that error propagation is bounded in a
constant depth circuit [5, 64, 65].
Quantum LDPC Code. An [[n, k, d]] stabilizer

quantum code Q is an (r, c)-LDPC (low-density parity
check) code if each stabilizer generator has weight ≤ r
and each data qubit is involved in at most c stabilizer
generators. Here, n denotes the number of phyiscal data
qubits, k the number of encoded logical qubits, and d the
code distance. Here and below, we will use an overline to
indicate logical operations and logical states, e.g. U and
|0⟩. Due to the random initial stabilizer projection, we

also use the separate double-bar notation |0⟩ to denote
the ideal logical code state with all stabilizers fixed to
+1.
A widely-used family of quantum LDPC codes is the

surface code, due to its 2D planar layout and high thresh-
old. The surface code, together with its X and Z stabiliz-
ers and logical operators, are illustrated in ED Fig. 1(a).
Transversal operations. Consider a fixed partition

of a code block, where each part contains at most t qubits.
We call a physical implementation U of a logical opera-
tion U transversal with respect to this partition, if it
exclusively couples qubits within the same part [66, 67].
We will also restrict our attention to the case where the
logical operation, excluding SE rounds, has depth 1, mo-
tivated by the fact that the elementary gates in the ideal
circuit C have depth 1. We consider the same, fixed
partition for all logical qubits throughout the algorithm.
This definition includes common transversal gates such as
CNOT on CSS codes, for the partition where each phys-
ical qubit is an individual part. For the surface code, we
can choose a partition of size at most two, which pairs to-
gether qubits connected by a reflection. Common Clifford
operations are transversal with respect to this partition,
see ED Fig. 1(c-d): H can be implemented via a physical
H on each qubit, followed by a code patch reflection in a
single step. The S gate can be implemented via CZ on
pairs of qubits connected by a reflection and S/S† along
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Extended Data Fig. 1. (a) Illustration of the surface code.
White circles indicate data qubits. Orange (green) plaquettes
are Z (X) stabilizers. The logical Z (X) operator runs verti-
cally (horizontally), and we choose our convention for fixing
Z (X) stabilizers to be performing a chain of X (Z) flips to
the left (bottom) boundary, as illustrated by the red line. (b)
Illustration of transversal H gate, consisting of transversal H
gates followed by a reflection along the diagonal. Note that
this differs from the usual transversal H gate, which applies a
rotation in the second step. For the non-rotated surface code,
both choices map X (Z) stabilizers to Z (X) stabilizers and
hence are valid, but our choice leads to a smaller transversal
partition size for the full circuit. (c) Illustration of transver-
sal S gate, consisting of S and S† gates along the diagonal,
together with CZ gates between mirrored qubits.

the diagonal [58, 68–70]. We also refer to the following
state preparation and measurement in the computational
basis as transversal, where |0⟩ state preparation involves
preparing all physical qubits in |0⟩ and measuring all sta-
bilizers once, while measurement involves measuring all
physical qubits in the Z basis. Note that the |0⟩ state
preparation procedure does not prepare the actual code
state, but rather an equivalent version with random X
stabilizers, where information regarding the random sta-
bilizer initialization can be deduced later.

Transversal realization C̃ of ideal circuit C. If the
set of operations involved in the ideal circuit (other than
magic state preparation, see below) admit a transver-
sal implementation with the QEC code Q, then we can
obtain a transversal error-corrected realization C̃ of the
ideal circuit C. C̃ is obtained from C by replacing each
operation by the corresponding transversal operation and
inserting only one round of syndrome extraction following
each gate. Here, all transversal gate operations are Clif-

ford gates, and non-Clifford gates are implemented via
magic state teleportation. The number of syndrome ex-
traction rounds can be further optimized in practice [15].
We denote the noiseless version of this circuit as C̃0, and
the circuit with a given error realization e from the local
stochastic noise model as C̃e.
The surface code provides a concrete example of a code

that admits a transversal implementation of all transver-
sal Clifford operations mentioned above. Although we
use the surface code as a concrete instance that realizes
all required transversal gates, the transversal algorithmic
FT construction we propose works more generally. For a
specific quantum circuit, it may be possible to compile it
into, e.g. transversal CNOTs and fold-transversal gates
for multiple copies of other QLDPC codes [69, 70], where
our results also apply.

When considering magic state inputs, we assume that
the magic state is initialized in the desired state with all
stabilizer values fixed to +1, up to local stochastic noise
on each physical qubit of strength p. However, we also
generalize this in Theorem 3 below to the case where the
magic state input is at a smaller code distance, and show
FT of single step patch growth, closely mirroring the sit-
uation in practical multi-level magic state distillation fac-
tories [47, 48]. Since magic states for the surface code are
typically prepared using magic state distillation, we ex-
pect that our methods allow single-shot logical operations
during these procedures as well, which consist of Clifford
operations and noisy magic state inputs (see the follow-
ing section on State Distillation Factories). Therefore,
compared to standard techniques such as lattice surgery,
we expect the transversal realization C to have a time
cost that is a factor of Θ(d) smaller.

Detector error model. To diagnose errors, we form
detectors (also known as checks), which are products of
stabilizer measurement outcomes that are deterministic
in the absence of errors. A basis of detectors is denoted
as D. We denote the set of detectors that a given error
triggers as ∂e, which can be efficiently inferred [39]. In
other words, we have a linear map

∂ : Z|E|
2 → Z|D|

2 . (2)

The error model, together with the pattern of detectors
a given set of errors triggers, forms a decoding hyper-
graph Γ, also known as a detector error model, see e.g.
Ref. [15, 38, 39, 71, 72]. The vertices of this graph are
detectors, hyperedges are elementary errors, and a hyper-
edge is connected to the detectors that the correspond-
ing error triggers. During a given execution of the noisy
circuit, there will be some pattern of errors e that oc-
cur, giving some detection event ∂e. Since the circuit
is adaptive based on past measurement results, the de-
tector error model must also be constructed adaptively
to incorporate the conditional feed-forward operations.
More specifically, the decoding hypergraph Γ|j for the
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jth logical measurement in a given run is constructed af-
ter committing to the previous j−1 logical measurement
results, and similarly for other objects.

To analyze error clusters, we also introduce the related
notion of the syndrome adjacency graph Ξ [5]. In this
hypergraph, vertices are elementary fault locations, and
hyperedges are detectors connecting the fault locations
they flip.

Inferred recovery operator κ. Given the detection
events and the detector error model, we can perform de-

coding to identify a recovery operator κ ∈ Z|E|
2 which trig-

gers the same detector pattern ∂κ = ∂e. Our proof makes
use of the most-likely-error (MLE) decoder [15, 73, 74],
which returns the most probable error event κ with the
same detector pattern ∂κ = ∂e. We will refer to the com-
bination f = e⊕ κ as the “fault configuration”, where ⊕
denotes addition modulo 2. By linearity, the fault con-
figuration e⊕ κ will not trigger any detectors,

∂(e⊕ κ) = 0. (3)

Forward-propagated error P (e). A Pauli error E
occurring before a unitary U is equivalent to an error
UEU † occurring after the unitary. For a set of errors e,
we can forward-propagate it through the circuit until it
reaches measurements. We denote the final operator the
errors transform into as P (e), and denote its restriction
onto the jth logical measurement as P (e)|j . This is re-
lated to the cumulant defined in Ref. [38] and the spackle
operator in Ref. [75].

Key Concepts

We now introduce a few concepts that are less com-
monly discussed in the literature, but are important for
our analysis. We start by describing the randomness as-
sociated with transversal state initialization and stabi-
lizer projections. To do so, we introduce frame variables
g. To capture the random reference frame corresponding
to random initialization of stabilizer values upon projec-
tion, we introduce frame stabilizer variables gs. These
correspond to certain Pauli Z operators that flip a sub-
set of X stabilizers, and we call both these operators and
the binary vector that describes them as frame variables,
where the meaning should be clear from context. The
Pauli logical initial state, e.g. |0⟩, also has a logical sta-
bilizer Z, which we describe with frame logical variables
gl. Applying frame logical variables on the initial state
does not change the logical state, since we are applying
a logical stabilizer, but this does change the interpreta-
tion of a given logical measurement shot. To interpret
logical measurement results, we must perform a frame
repair operation that returns all stabilizers to +1, mir-
roring the error recovery inference. However, there can
be some degree of freedom in choosing the frame logical

variable, which allows us to ensure consistency between
multiple rounds of decoding. These understandings lead
us to propose the decoding strategy shown in Fig. 2, and
will be crucial to our FT proofs below.
Frame variables g. When performing transversal

state initialization, all physical qubits are prepared in
|0⟩, and stabilizers are measured with an ancilla. The
outcome of the X stabilizers will thus be random. Fol-
lowing the approach taken in Ref. [39], this randomness
can be captured by additional Z operators acting at ini-
tialization. Concretely, for each data qubit i, we add Zi

to a basis of frame operators G if it is not equivalent to
any combination of operators in G up to stabilizers. The
state after random stabilizer projection is equivalent to

starting with the ideal code state |0⟩ and applying a set

of Z operators; in other words, |0⟩ = g|0⟩. We refer to
these operators as frame operators, as they describe the
effective code space (“reference frame”) with random sta-
bilizers that we projected into, and help interpret logical
measurement results. The set of Z operators that pro-
duces a given pattern of initial stabilizer values can be
efficiently determined by solving a linear system of equa-
tions. We choose a basis G for these operators, as defined
above, and denote with g both the Pauli operator corre-
sponding to a frame variable as well as the binary vector
describing it:

g ∈ Z|G|
2 , |G| = B(n− rZ), (4)

where B is the number of code blocks used, n is the num-
ber of data qubits per block and rZ is the number of in-
dependent Z stabilizer generators per block. In the pres-
ence of noise, we can imagine first performing the ran-
dom stabilizer projection perfectly, and then performing
a noisy measurement of the syndromes via ancillae and
recording the results. Although this does not allow the
reliable inference of frame variables, we will show that the
transversal measurement provides enough information to
infer the relevant degrees of freedom for interpreting log-
ical measurement results.
Frame logical variables gl. A special subset of frame

variables are frame logical variables

gl ∈ ZBk
2 , (5)

which are combinations of the Z operators that form a
logical Z operator of the code block, and therefore act
trivially on the code state |0⟩. Here, B is the number
of code blocks and k is the number of logical qubits per
block. While they do not change the initialized physical
state, nor do they flip any stabilizers, different choices
of the frame logical variables when decoding will lead
to different interpretations of the logical measurement
result, as we explain next.
Frame stabilizer variables gs. We refer to frame

variables that are not frame logical variables as frame sta-
bilizer variables. These variables will flip the randomly
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Extended Data Fig. 2. Illustration of error recovery and frame repair procedures. We illustrate the procedure for
the surface code, where a cross-sectional view with one spatial axis and one time axis is shown. We only illustrate X errors
and Z stabilizer measurement errors, which are relevant to interpreting the Z measurement. X errors can terminate on orange
boundaries, but cannot terminate on cyan boundaries. The transversal CNOT copies X errors from the top to the bottom,
resulting in a branching point (black cross) and an error cluster spanning both code blocks. (a) Error chains and frame flips.
Chains of X-type errors (orange lines) lead to syndromes (end points) or terminate on appropriate boundaries. A line segment
in the vertical direction is a data qubit X error, while a line segment in the horizontal direction is a measurement error. Note
that the X-type error cannot terminate on the transversal Z measurement boundary. The random stabilizer initialization leads
to a frame configuration on the logical |+⟩ initialization, as illustrated by the blue line and the flipped Z stabilizer (blue point).
This is similar to the frame stabilizer operator gs illustrated in ED Fig. 1(a). (b) We first infer an error recovery operator, which
has the same boundary as the error chain. Together, the error and recovery operator form the fault configuration, which triggers
no detectors. We illustrate a few examples (orange lines) that do not lead to a logical error: (1) the fault configuration forms a
closed loop and is equivalent to applying a stabilizer; (2) the fault configuration terminates on an initialization boundary; (3)
the fault configuration terminates on a future time boundary (unmeasured logical qubit), but the forward-propagated errors
onto the measured logical qubit are equivalent to a stabilizer. A logical error can only happen when the fault configuration spans
across two opposing spatial boundaries (red line), which requires an error of weight Θ(d). (c,d) The frame repair operation
returns the logical qubit to the code space with all stabilizers +1, corresponding to cancelling any residual flipped stabilizers
on the initialization boundary. Note that the error recovery process may also lead to a change that needs to be accounted
for by frame repair. An example choice of frame repair is shown in (c), which applies an overall X operator on the logical
measurement result. Alternatively, a different choice of frame repair shown in (d), related to the previous one by a frame logical
flip, results in identity operation on the logical measurement result.

initialized stabilizer values. An example is shown in ED
Fig. 1(a), in which a chain of Z errors connecting to the
bottom boundary flips a single stabilizer.

Interpreting logical measurement outcomes in
the presence of frame variables. We now describe
how to interpret logical measurement results in the pres-
ence of randomly initialized frame variables.

First, in the presence of noise, we apply the decoding
procedure and obtain an error recovery operator κ such
that ∂(κ⊕ e) = 0. Note that κ⊕ e may have some non-
trivial projection onto the initialization boundary, such
as string 2 that terminates on the |+⟩ boundary in ED
Fig. 2(b). This projection can modify the effective frame,
and must be taken into account when returning things to
the code space.

Next, we perform an analogous procedure to error re-
covery for the frame variables. Specifically, we perform
a frame repair operation

λ ∈ Z|G|
2 (6)

to return to the code space with all stabilizers set to
+1. This corresponds to an inference of what the ref-
erence frame was after the random stabilizer projection

during initialization, and the repair operation should be
viewed as being applied on the corresponding initial-
ization boundary as well. In other words, we require
(e ⊕ κ) ⊕ (g ⊕ λ) to act as a stabilizer or logical opera-
tor, such that the stabilizer values are the same as the

ideal code state |0⟩. We will refer to the combination
h = g ⊕ λ as the “frame configuration”. Following this
step, all frame stabilizer variables gs have been deter-
mined, but we still have freedom to choose our frame
logical variables gl.
Finally, we evaluate the product of Pauli operators to

determine the logical measurement result. Denote the
raw logical observable inferred from the bit strings as

L(z) =
⊕

zi∈L

zi, (7)

and the corrected logical observable after applying the
error recovery operation κ and frame repair operation λ
as

Lc(z, κ, λ) = L(z)⊕ F (κ)⊕ F (λ), (8)

where F (κ), F (λ) indicates the parity flip of the logical
observable due to the operator κ, λ.
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In the noiseless case, the raw logical measurement re-
sult is equivalent to the ideal measurement result that
one would obtain if one had perfectly prepared the ideal

code state |0⟩, up to the application of F (g ⊕ λ) on the
initial state. However, g ⊕ λ consists of physical Z oper-
ations only and commutes with all stabilizers, so it must
act as a combination of Z stabilizers and logical Z opera-

tor on |0⟩. Therefore, it does not change the distribution
of measurement results, although it can change the inter-
pretation of individual shots. The procedure in the noisy
case can be reduced to the noiseless case after applying
the MLE recovery operator κ, with a suitable modifica-
tion to the repair operation λ to account for fault config-
urations that terminate on initialization boundaries and
therefore forward-propagated to flip some stabilizers on
the relevant logical measurement (ED Fig. 2(c)).

Decoding strategy. A key component of our FT
construction is the decoding strategy. In our setting with
transversal Clifford gates only, classical decoding only be-
comes necessary when we need to interpret logical mea-
surement results. We sort the set of logical measurements
into an ordering {L̄1, L̄2, L̄3, ..., L̄M} based on the time
they occur, and then decode and commit to their results
in this order.

For the jth logical measurement L̄j , we first apply the
most-likely-error (MLE) decoder to the available detec-
tor data D|j and the detector error model Γ|j , where |j
denotes that this information is restricted to information
up to the jth logical measurement. Note that since we
allow feed-forward operations, the decoding hypergraph
may differ in each repetition of the circuit (shot). After
this first step, we will have obtained an inferred recovery
operator κ, similar to standard decoding approaches.

The second step is to apply frame logical variables gl
such that previously-committed logical measurement re-
sults retain the same measurement result. It may not be
clear a priori that this is always possible, but we prove
that below a certain error threshold pth, the probability
of a failure decays to zero exponentially in the code dis-
tance. This guarantees that we are always consistently
assigning the same results to the same measurement in
each round of decoding. The assignment of frame logical
variables can be solved efficiently using a linear system
of equations.

Proof Sketch

In this section, we provide a sketch of our FT proof,
using the concepts introduced above. Our reasoning fol-
lows three main steps:

1. We show that the transversal realization reproduces
the logical measurement result distribution of the
ideal circuit, regardless of the reference frame we
initially projected into.

2. We obtain perfect syndrome information on the log-
ical qubits via transversal measurements, which we
then combine with correlated decoding to handle
errors throughout the circuit and guarantee that
any logical error must be caused by a high-weight
physical error cluster.

3. By counting the number of such high-weight er-
ror clusters, we show that when the physical er-
ror probability is sufficiently low, the growth in
the number of error clusters as the distance in-
creases is slower than the decay of probability of
high-weight clusters, thereby establishing an error
threshold and exponential sub-threshold error sup-
pression.

We now explain a set of useful lemmas that lead to our
main theorem.
Frame variables g do not affect the logical mea-

surement distribution. We show that the choice of
frame variables g does not affect the logical measure-
ment distribution fC̃ . Intuitively, this is because different
choices of frame variables are equivalent up to the appli-

cation of Z̄ logicals on |0⟩, which does not affect the log-
ical measurement distribution. Indeed, as long as we are
able to keep track of which subspace of random stabilizer
values we are in, achieved via the transversal measure-
ment, the measurement result distribution should not be
affected.
fC = fC̃0

. In other words, the noiseless transversal

realization C̃0 produces the same distribution of logical
bit strings as the ideal quantum circuit C. This can be
seen from the previous statement by choosing all frame
variables to be zero and invoking standard definitions of
logical qubits and operations.
Transversal gates limit error propagation. One

major advantage of transversal gates is that they limit
error propagation [4, 7], thereby limiting the effect any
given physical error event can have on any logical qubit.
With the bounded cumulative partition size t defined
above, one can readily show that any error e acting on
at most k qubits can cause at most tk errors on a given
logical qubit, when propagated to a logical measurement
P (e)|j .
Effect of low-weight faults on code space. Con-

sider the syndrome adjacency graph Ξ|j , which is the
line graph of the detector error model Γ|j corresponding
to the first j logical measurements, and any fault con-
figuration f |j = (e ⊕ κ)|j . We show that if the largest
weight of any connected cluster of f |j is less than d/t,

then there exists a choice of frame repair operator λ̂j ,
such that the forward propagation of fault configuration
and frame configuration

P (e|j ⊕ κ|j)⊕ P (g|j ⊕ λ̂j) (9)

acts trivially on the first j logical measurements.
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The intuition for this statement is illustrated in ED
Fig. 2. Suppose without loss of generality that the logi-
cal measurement we are examining is in the Z basis, then
we only need to examine errors that forward-propagate to
X errors. By definition, the fault configuration e⊕κ and
frame configuration g⊕λ should return things to the code
space and not trigger any detectors, implying that the
X basis component of P (e⊕ κ⊕ g ⊕ λ) = P (f ⊕ h) is a
product of X stabilizers and logical operators. Consider
each connected component fi of f |j , then by transver-
sality (previous lemma) and wt(fi) < d/t, we have
wt(P (fi)) < d.
Case 1: If fi does not connect to a Pauli initialization

boundary (fault configurations 1 and 3 in ED Fig. 2(b)),
then it is also a connected component of f ⊕ h, since the
frame configuration lives on the initialization boundary.
Since P (fi) has weight less than d, it must be a stabilizer
and therefore acts trivially on the logical measurement
under consideration.

Note that because magic states are provided with
known stabilizer values up to local stochastic noise, con-
nected components of the fault configuration cannot ter-
minate on them without triggering detectors. The same
also holds for measurement boundaries or boundaries in
which the initialization stabilizer propagates to commute
with the final measurement. Only when the initialization
stabilizer propagates to anti-commute can we connect to
the boundary, as described in case 2, but this also then
implies that the measurement is 50/50 random and can
be made consistent using our methods.

Case 2: Now suppose fi connects to an initialization
boundary (fault configuration 2 in ED Fig. 2(b)) and
its connected component P (fi ⊕ hi) acts as a nontrivial
logical operator L, flipping the logical measurement. In
this case, we can choose a different frame repair operator
such that P (λ̂) = P (λ)⊕L, which does not flip the logical
measurement. In ED Fig. 2(c,d), we can intuitively think
of this as changing whether the frame repair connects in
the middle or to the two boundaries. In one of these
two cases, the total effect of the fault configuration and
frame configuration is trivial on the logical measurements
of interest (ED Fig. 2(d) in this case).

Thus, we see that when the fault configuration only
involves connected clusters of limited size, its effect on the
logical measurement results is very limited. This leads to
a key technical lemma that lower bounds the number of
faults required for a logical error to occur.

Logical errors must be composed of at least d/t
faults. Due to the decoding strategy we employ, there
are two types of logical errors we must account for.

First, we may have a logical error in the usual sense,
where the distribution of measurement results differs
from the ideal quantum circuit fC̃ ̸= fC . It is impor-
tant to note here, however, that this deviation is in the
distribution sense. Thus, if a measurement outcome that
was 50/50 random was flipped, it does not cause a logical

error yet, as the outcome is still random. In this case,
it is only when the joint distribution with other logical
measurements is modified that we say a logical error has
occurred. When analyzing a new measurement result
with some previously committed results, we analyze the
distribution conditional on these previously committed
results.

Second, there may be a heralded logical error, in which
no valid choice of frame repair operation λ exists in the
second step of our decoding strategy. More specifically,
there is no λ that makes all logical measurement results
identical to their previously-committed values.

We show that when the largest weight of any con-
nected cluster in the fault configuration is less than d/t,
neither type of logical error can occur. The absence of
unheralded logical errors can be readily seen from the
above characterization of the effect of low-weight faults
on the code space. To study heralded errors, we make
slight modifications to analyze the consistency of mul-
tiple rounds of decoding, and find that heralded errors
require one of the two rounds of decoding that cannot be
consistently assigned to have a fault configuration with
weight ≥ d/t, thereby leading to the desired result.

Counting lemma. The counting lemma is a useful
fact that bounds the number of connected clusters of a
given size within a graph, with many previous uses in
the QEC context [5, 25, 28, 76, 77]. It shows that for a
graph with bounded vertex degree v and n vertices, as is
the case for the syndrome adjacency graph Ξ of qLDPC
codes, the total number of clusters of size s is at most
n(ve)s−1. This bounds the number of large connected
clusters. When the error rate is low enough, the growth
of the “entropy” factor associated with the number of
clusters will be slower than the growth of the “energy”
penalty associated with the probability, and thus the log-
ical error rate will exponentially decrease as the system
size is increased, allowing us to prove the existence of a
threshold and exponential sub-threshold suppression.

Theorem 1: Threshold theorem for transversal
realization C̃ with any CSS QLDPC code, with re-
liable magic state inputs and feed-forward. With
the preceding lemmas, we can prove the existence of a
threshold under the local stochastic noise model. Us-
ing the counting lemma, we can constrain the number of
connected clusters Ns of a given size s on the syndrome
adjacency graph Ξ. For a connected cluster of size s,
MLE decoding implies that at least s/2 errors must have
occurred, which has bounded probability scaling as ps/2

under the local stochastic noise model. Our characteriza-
tion of logical errors implies that a logical error can only
occur when s ≥ d/t. For each round of logical measure-
ments, the probability of a logical error is then bounded
by a geometric series summation over cluster sizes s, with
an entropy factor from cluster number counting and an
energy factor from the exponentially decreasing proba-
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bility of each error event:

Perr ∝ M
∞∑

s= d
t

Ns2
sps/2

∝ (2ve
√
p)

d/t
=

(
p

1/(2ve)2

)d/2t

, (10)

where v is a bound on the vertex degree of the syndrome
adjacency graph and is dependent on the degrees r and
c of the QLDPC code. When the error probability p
in the local stochastic noise model is sufficiently small,
the latter factor outweighs the former, and the logical
error rate decays exponential to zero as the code distance
increases, with an exponent pd/2t. We can then take
the union bound over rounds of logical measurements to
bound the total logical error probability.

While our theorem assumes reliable magic state inputs
with local stochastic data qubit noise only, we expect our
results to readily generalize to magic state distillation
factories (see next section and discussion in main text),
thereby enabling a Θ(d) saving for universal quantum
computing.

Note that to prove a threshold theorem for FT simu-
lating the ideal circuit C, we need a family of codes {Q}
with growing size that provide a transversal realization
of C. For general high-rate QLDPC codes, this may be
challenging, as the set of transversal gates is highly con-
strained [69, 70]. However, we will now show that the
surface code provides the required code family.

Theorem 2: Fault tolerance for arbitrary Clif-
ford circuits with reliable magic state inputs and
feed-forward, using a transversal realization with
the surface code. We can further specialize the pre-
ceding results to the case of the surface code. With the
transversal gate implementations of H, S and CNOT , we
can implement arbitrary Clifford operations with cumu-
lative partition size t = 2. Note that with more detailed
analysis of the error events and gate design, it may be
possible to recover the full code distance d (instead of
the d/2 proven here), which we leave for future work.
Our threshold and error suppression results are indepen-
dent of the circuits implemented, e.g. whether the cir-
cuit has a large depth or width. The resulting logical
error rate scales linearly with the circuit space-time vol-
ume and number of logical measurements, and is expo-
nentially suppressed in the code distance, similar to the
usual threshold theorems.

A straight-forward application of the previous theo-
rem shows the existence of a threshold and exponential
sub-threshold error suppression. Importantly, the surface
code provides all elementary Clifford operations, thereby
giving a concrete code family for the FT simulation of
any ideal circuit C, as long as we are provided with the
appropriate magic state inputs, which can in turn be ob-
tained in the same way via magic state distillation.

Single-shot code patch growth. To further extend
the applicability of our results, we also analyze a set-
ting in which reliable magic states are provided at a code
distance d1 smaller than the full distance d of the main
computation. This is relevant, for example, to multi-
stage magic state distillation procedures that are com-
monly employed to improve the quality of noisy injected
magic state inputs. Lower levels of magic state distilla-
tion are typically performed at a reduced code distance,
due to the less stringent error rate requirements, before
they are grown into larger distance for further distilla-
tion, as is the case in Fig. 4.
By analyzing which stabilizers are deterministic dur-

ing the code patch growth process, we find that a strip of
width d1 has deterministic values. A fault configuration
that causes a logical error must span across this region,
and thus have weight at least d1. Therefore, in this case
we still have fault tolerance and exponential error sup-
pression, but with an effective distance now modified to
scale as d1 instead of d, set by the smaller patch size of
the magic state input as expected.

State Distillation Factories

In this section, we provide more details on state distil-
lation factories. First, we derive the output fidelity of the
|Y ⟩ state distillation factory described in the main text,
as a function of input |Y ⟩ state fidelity and assuming
ideal Clifford operations within the factory. Second, we
illustrate the 15-to-1 |T ⟩ magic state distillation factory
and comment on a few simplifications that our decoding
strategy enables in executing this factory.
The |Y ⟩ state distillation factory described in the main

text prepares a Bell pair between a single logical qubit
and seven logical qubits further encoded into the [[7, 1, 3]]
Steane code. Applying a transversal S gate on the Steane
code then leads to a S gate on the output logical qubit
due to the Bell pair. Error detection on the Steane code
further allows one to distill a higher-fidelity logical state.
For this distillation factory, we can directly count the er-
ror cases for the magic state input that lead to a logical
error, conditional on post-selection results. For example,
there are seven logical Z representatives of weight three
and one logical representative of weight seven, and the
application of a logical representative leads to an unde-
tectable error. Counting all possible combinations, we
arrive at the following formula for noisy magic state in-
puts and ideal Clifford operations

Pout =
7P 3

in(1− Pin)
4 + P 7

in

(1− Pin)7 + 7P 3
in(1− Pin)4 + 7P 4

in(1− Pin)3 + P 7
in

≈ 7P 3
in, (11)

where Pout is the output logical error rate and Pin is the
input logical error rate. For our numerical simulations,
we artificially inject Z errors for the input state.
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In ED Fig. 3, we illustrate the 15-to-1 |T ⟩ state distil-
lation factory, which takes 15 noisy |T ⟩ states and distills
a single high quality |T ⟩ state. As described in Ref. [33],
assuming ideal Clifford operations, the rejection proba-
bility scales linearly with the input infidelity, while the
output logical error rate scales with the cube of the input
infidelity. The |T ⟩ factory bears a lot of similarities with
the |S⟩ factory in the main text: In both cases, we start
with Pauli basis states, apply parallel layers of CNOT
gates, and then perform resource state teleportation us-
ing a CNOT. The resource states at the lowest level can
be prepared using state injection, which is agnostic to
the precise quantum state being injected and therefore
should apply equally to a |S⟩ and |T ⟩ state, while the
resource states at the higher levels are obtained by lower
levels of the same distillation factory. The main differ-
ence is that because the feed-forward operation is now a
Clifford instead of a Pauli, the feed-forward gate must be
executed in hardware, rather than just kept track of in
software.

When performing magic state distillation and teleport-
ing the magic state into the main computation, the first
step of our protocol requires correlated decoding of the
distillation factory and main computation together. It
will be interesting to formally extend our threshold anal-
ysis to incorporate noisy magic state injection and state
distillation procedures. As low-weight logical errors are
localized around the state injection sites, we expect com-
mon arguments regarding the error scaling of distillation
factories to hold, as is also supported by our numerical
results. We leave a detailed proof of this to future work.
In practice, to reduce the decoding cost, one can also in-
sert Θ(d) SE rounds on the single output logical qubit
of the factory, in order to separate the system into mod-
ular blocks [71]. Since we only need to insert the Θ(d)
SE rounds on a single logical qubit, while a two-level
distillation factory typically involves hundreds of logical
qubits [47, 48], we expect that this will only cause a slight
increase in the total distillation cost.

Using our decoding strategy, it is possible to reduce
the number of feed-forward operations that need to be
executed. As illustrated in ED Fig. 3, we can apply an
X operator on the |+⟩ logical initial states, which is a log-
ical stabilizer of the resulting quantum state. Applying
this operator flips the interpreted results of some subset
of logical measurements. Thus, we can always choose to
not apply a feed-forward S on the first |T ⟩ teleportation,
but instead change what feed-forward operations are ap-
plied on the remaining |T ⟩ teleportations. There are 15
|T ⟩ teleportations to be implemented and 5 |+⟩ logical
state initialization locations. Therefore, we expect that
at most 10 feed-forward operations need to be applied.
Using these techniques, the logical qubit locations where
the feed-forward operations need to be applied may also
be adjusted, which may be beneficial for the purpose of
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Extended Data Fig. 3. Illustration of a 15-to-1 |T ⟩ magic
state distillation factory, adapted from Ref. [30]. The green
lines illustrate the application of a logical stabilizer, which
allows re-interpretation of measurement results and changes
which feed-forwards should be performed.

control parallelism [36].

Finally, we also comment on the relation of our re-
sults to other computational models that make use of
magic state inputs and Clifford operations. In particu-
lar, Pauli-based computation [78, 79] has been shown to
provide a weak simulation of universal quantum circuits
using only magic state inputs, apparently removing the
need of |0⟩ and |+⟩ logical states altogether, and clari-
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fying the importance of |T ⟩ state preparation in partic-
ular. However, this model relies on the logical measure-
ments being non-destructive, and continues to use a given
logical qubit after measurement, which is not possible
for transversal measurements on logical qubits without
Pauli basis initialization. Thus, in an error-corrected im-
plementation, Pauli basis initialization is still necessary,
and the use of our FT framework is necessary to achieve
low time overhead. This comparison to other computa-
tional models highlights the generality of the algorithmic
fault-tolerance framework, and indicates that universally
across these various computational models, such tech-
niques allow a Θ(d) saving.

Importance of Shallow Depth Algorithmic Gadgets

In this section, we discuss the importance of shallow-
depth algorithmic gadgets in many practical compilations
of quantum algorithms. This highlights the need for FT
strategies that do not require a Θ(d) separation between
initialization and measurement, as we developed in the
main text.

In general, circuit components that involve an ancilla
logical qubit often have a shallow depth between initial-
ization and measurement, whether this ancilla is used for
algorithmic reasons or compilation reasons. For instance,
temporary ancilla registers are used in algorithmic gad-
gets such as adders [80, 81] or quantum read-only memo-
ries [82], where the bottom rail of a ripple carry structure
is initialized, two or three operations are performed on
it, and then the ancilla qubit is measured. A useful tech-
nique for performing multiple circuit operations in par-
allel is time-optimal quantum computation [14, 16, 83],
which is also related to gate teleportation [63] and Knill
error correction [84]. In this case, a pair of logical qubits
are initialized in a Bell state. One qubit is then sent
as the input into a circuit fragment A, while the other
qubit executes a Bell basis measurement with the output
of another circuit fragment B. The combined circuit is
equivalent to the sequential execution of B and A. This
allows the two circuit fragments to be executed in par-
allel, despite them originally being sequential, thereby
reducing the total circuit depth and idling volume. How-
ever, to fully capitalize on this advantage, it is desirable
to only have a constant number of SE rounds separating
the Bell state initialization and Bell basis measurement,
in order to minimize the extra circuit volume incurred
by the space-time trade-off. Thus, a depth O(1) sepa-
ration between state initialization and measurement is
again highly desirable.

Another common situation in which there is a low-
depth separation between initialization and measurement
is magic state distillation [33] and auto-corrected magic
state teleportation [85]. Many magic state factories in-
volve a constant-depth Clifford circuit (e.g. depth 4 for

the 15-to-1 distillation factory), followed by application
of non-Clifford rotations [13, 30, 33, 86]. The non-Clifford
rotations are often implemented via noisy magic states
and gate teleportation, which therefore require logical
measurements. If the Clifford circuit depth has to be at
least d to maintain FT, as is assumed in e.g. Ref. [42], the
time cost of the magic state factory will be much larger
than the case in which we can execute the circuit fault-
tolerantly in constant depth, as we demonstrate here.

Decoding Complexity

In this section, we discuss the decoding complexity of
our FT construction, and highlight important directions
of future research. While a detailed analysis and high-
performance implementation of large-scale decoding is
beyond the scope of this work, this will be important for
the large-scale practical realization of our scheme and to
maximize the savings in space-time cost. We therefore
sketch some key considerations and highlight important
avenues of research that can address the decoding prob-
lem. We emphasize that much of our discussion is not
specific to our FT strategy, and may also apply to other
hypergraph decoding problems and existing discussions
of single-shot QEC [25] (Supplementary Information).
Compared with usual decoding problems, there are two

main aspects that may increase the complexity in our set-
ting. First, the decoding problem is now by necessity a
hypergraph decoding problem, involving hyperedges con-
necting more than two vertices, which are not decompos-
able into existing weight-two edges [15]. Second, the size
of the relevant decoding problem (decoding volume) may
be much larger, as one needs to jointly decode many logi-
cal qubits, in the worst-case reaching the scale of the full
system.
The hypergraph decoding problem has been stud-

ied in a variety of different settings [15, 87–90], and
heuristic decoders appear to handle this fairly well in
the low error rate regime in practice. For example,
polynomial-time decoders such as belief propagation +
ordered statistic decoding (BPOSD) [91], hypergraph
union find (HUF) [15, 90], and minimum-weight parity
factor (MWPF) [92] have been shown to result in compet-
itive thresholds. Decoding on hypergraphs is also often
required for high-rate QLDPC codes, or to appropriately
handle error correlations. Therefore, we expect that hy-
pergraph decoding does not pose any serious challenge in
practice.
There are several ways in which the increased decoding

volume can be dealt with. First, error inferences that
are sufficiently far Ω(d) away from measurements or out-
going qubits can be committed to without affecting the
logical error rate [71]. This reduces the relevant decoding
volume. Moreover, for underlying codes with the single-
shot QEC property [25], it may be possible to further
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reduce this depth.

Second, extra QEC rounds can also be inserted to re-
duce the relevant decoding volume and give more time
for the classical decoder to keep up with the quantum
computer and avoid the backlog problem [53]. Asymp-
totically, this may be necessary for both our scheme and
for computation schemes based on single-shot quantum
error correction [25, 93], unless O(1)-time classical de-
coding is possible. In both cases, the time cost will grow
from Θ(1) to Θ(d/C), where the improvement factor C
over conventional schemes with d SE rounds can be made
arbitrarily large as the classical computation is sped up.

Third, we expect algorithms based on cluster growth
(HUF and MWPF) and belief propagation to be readily
amenable to parallelization across multiple cores [94–97],
with the decoding problems merging only when an error
cluster spans multiple decoding cores. As an error clus-
ter of size Θ(d) is exponentially unlikely, we expect it to
be unlikely for many decoding problems to have to be
merged together. Indeed, fast parallel decoders for the
surface code [96, 97] and QLDPC codes [98] have been
argued to achieve average runtime O(1) per SE round, al-
though they still have an O(d) or O(log d) latency. There-
fore, although the original decoding problem is not mod-
ular (input-level modularity) [71, 99, 100], in practice
we may expect the decoder to naturally split things into
modular error clusters (decoder-level modularity).

Finally, there are many additional optimizations that
can be applied in practice. Because the decoding prob-
lems have substantial overlap, it may be possible to make
partial use of past decoding results, particularly when us-
ing clustering decoders. The decoding and cluster growth
process can also be initiated with partial syndrome in-
formation and continuously updated as more informa-
tion becomes available. Decoding problems with specific
structure, such as circuit fragments in which the flow of
CNOTs are directional (ED Fig. 3), may also benefit from
specialized decoders [30]. We also note that although the
relevant decoding hypergraph for any given measurement
is now larger, for a given rate of syndrome extraction on
the hardware, the amount of incoming data is compa-
rable to the usual FT setting. Although the individual
correlated decoding problem is larger, we will only need

to solve very few of them. In both algorithmic FT and
conventional FT, we expect the total amount of classical
decoding resources to scale with the number of logical
qubits. When decomposing correlated decoding into in-
dividual cluster decoding problems, we therefore expect
the aggregate classical decoding resources required for
our protocol to still remain competitive with conventional
approaches.

Hardware Considerations

In this section, we briefly comment on the hardware
requirements to implement our scheme. It is worth em-
phasizing that these requirements may be relaxed with
future improvements to our construction.
Our algorithmic FT protocol makes important use

of transversal gate operations between multiple logical
qubits. As such, a direct implementation likely requires
two key ingredients: long-range connectivity and recon-
figurability. Long-range connectivity is used to entan-
gle physical qubits that are located at matching posi-
tions in large code patches, which are otherwise spatially-
separated. Reconfigurability is useful because a given
logical qubit may perform transversal gates with many
other logical qubits throughout its lifetime, such that a
high cumulative connectivity degree is required, or multi-
ple swaps and routing must be used. Given that common
routing techniques based on lattice surgery incur a Θ(d)
time cost, it is desirable to perform direct connections
via reconfigurable qubit interactions.
These considerations make dynamically-reconfigurable

hardware platforms such as atomic systems [35, 36, 101,
102] particularly appealing. In particular, neutral atom
arrays have demonstrated hundreds of transversal gate
operations on tens of logical qubits, making use of the
flexible connectivity afforded by atom moving [36]. In
comparison, while systems with connections based on
fixed wiring can support long-range connectivity and
switching [22, 103], transversal connections between mul-
tiple logical qubits likely increases the cumulative qubit
degree which may significantly increase the hardware
complexity. From a clock speed perspective, for typi-
cal assumed code distances of d ∼ 30, our techniques
correspond to a 10 –100× speed-up by using transversal
operations in a reconfigurable architecture.
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