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Abstract

Polar molecules confined in an optical lattice are a versatile platform to explore spin-motion
dynamics based on strong, long-range dipolar interactions'*?. The precise tunability® of Ising and
spin-exchange interactions with both microwave and dc electric fields makes the molecular
system particularly suitable for engineering complex many-body dynamics*®. Here, we used
Floquet engineering’ to realize interesting quantum many-body systems of polar molecules.
Using a spin encoded in the two lowest rotational states of ultracold KRb molecules, we
mutually validated XXZ spin models tuned by a Floquet microwave pulse sequence against those
tuned by a dc electric field through observations of Ramsey contrast dynamics, setting the stage
for the realization of Hamiltonians inaccessible with static fields. In particular, we observed two-
axis twisting® mean-field dynamics, generated by a Floquet-engineered XYZ model using
itinerant molecules in 2D layers. In the future, Floquet-engineered Hamiltonians could generate
entangled states for molecule-based precision measurement’ or could take advantage of the rich
molecular structure for quantum simulation of multi-level systems!'®!!



Introduction

Periodic driving of a quantum system, known as Floquet engineering, can substantially modify
the symmetries and dynamics of the system, leading to exciting new physics and applications.
1213 consisting of repeated spin-echo pulses, enables
rejection of noise, extending coherence in quantum computing'# and metrology'® applications.
By periodically modulating optical lattices, motion of atoms can be controlled'®, enabling

For example, dynamical decoupling

simulation of gauge theories'” and anyonic statistics'®. By driving internal degrees of freedom in
spin systems, time crystals'®?? and tunable quantum magnets?!*> have been created. Many other
possible applications of Floquet engineering techniques are being explored, including the

realization of topological insulators with ultracold molecules* and generation of metrologically

useful GHZ-like** or spin-squeezed states®.

Floquet engineering of interacting spin systems has been demonstrated in a range of physical
2628 superconducting qubits®’, Rydberg atoms>!-*°, solid state

defects”1%2231 trapped ions2, and ultracold molecules’. Optically trapped ultracold
3334

platforms, including nuclear spins
molecules™™ " present a unique combination of features advantageous for studying many-body
physics'. Scalable systems with tunable geometry and high-fidelity, state-resolved imaging of
single particles®>°3® can be realized using optical tweezers>>-¢3840 or lattices*!**. With
appropriate trapping conditions**#’, disorder and particle loss can be rendered much weaker than
interactions, enabling study of highly coherent many-body systems. Rich rotational and
hyperfine level structures allow tuning of interactions through choice of states* and simulation of

higher-spin systems*®. Microwave pulses enable fast, high-fidelity state control**!%.

In prior work* using itinerant molecules, dc electric fields enabled tuning across a range of U(1)-
symmetric XXZ interactions, ranging from pure spin exchange to an Ising-interaction dominated
regime. However, less symmetric spin Hamiltonians exhibit interesting phases and dynamics,
including efficient generation of spin-squeezed states through two-axis twisting (TAT)?, but
remain inaccessible with electric field tuning. Such systems can be explored through Floquet
engineering, which can break U (1) symmetry through rotation of the spins about arbitrary axes
on the Bloch sphere.

Despite its broad utility, Floquet engineering has not been self-consistently validated against
static Hamiltonians on an experimental platform. Such benchmarking could yield insight into
how experimental imperfections limit Floquet engineering schemes. Here, we utilize the unique
molecular level structure to validate that Floquet-engineered XXZ models produce similar
Ramsey contrast decay dynamics, which probe energy shifts arising from interactions between
molecules**°, to those tuned by electric field for both pinned and itinerant molecules. Our
measurements reveal regimes where Floquet engineering works well, but also settings where its
performance can be further improved. These verification protocols between different
experimental implementations are important for the progress of quantum information science in
general®!,



Building upon the comparison of XXZ spin dynamics, we designed and implemented a Floquet
pulse sequence for generating TAT®, which can produce spin-squeezed states with Heisenberg
scaling applicable to precision measurements using molecules’. While TAT has been challenging
to realize experimentally®?, our molecular system with strong dipolar interactions provides a
surprisingly robust platform to implement this Hamiltonian via Floquet engineering. We
characterized the dynamics of the Bloch vector under TAT using itinerant molecules, finding
excellent agreement with a collective mean-field model.

Floquet spin models

The dynamics of a quantum system under periodic driving can be described with a Magnus
expansion™. Its leading order for small t. /T, where t, is the period of the cycle and 7 is the
characteristic timescale of interactions, is average Hamiltonian theory (AHT)*. Under AHT, the

. : . o t
system evolves under the interaction picture Hamiltonian Hyye = ti ) o “H(t)dt where H(t) =
c

H(t — t.) is the periodic Hamiltonian. If H consists of periods of free evolution separated by

rapid changes of the Hamiltonian, Hyyg = %2 ; T;H;, where 1; is the time spent under
c

Hamiltonian H; in each cycle. In spin systems studied experimentally, this can be realized by
applying rapid microwave pulses that rotate each spin by an angle 6 about an axis 7 on the Bloch

. . . .t . .
sphere. Higher order corrections accounting for finite f and pulse time can be accounted for in

designing Floquet pulse sequences'.

The so-called XYZ spin models of the form Hyy; = Yi<;/ij (gxsis) + gysi's/ + gzsfsf),
where i and j index the spins and J;; encodes the geometric scaling of the coupling strengths g,
describe fundamental phenomena in magnetism®. In particular, the subspace of XXZ models with
9x = gy = g1, which can be parametrized by the anisotropy y = gz — g., includes the Ising
(gL = 0), XY (g7 = 0), and Heisenberg (y = 0) models. Spins encoded in rotational levels

|0) = [N = 0,my = 0) and |1) = |1,0) of polar molecules natively realize dipolar XXZ models

1-3cos? 8;;

with J;; « . where 0, ; is the angle between the quantization axis defined by the electric

frijl”
field E and the displacement r;;, N is the rotational quantum number, and my, is its projection

along the quantization axis*>

. At low electric fields, g, = 0, so the molecules predominantly
interact via spin exchange XX + YY interactions. The ratio of Ising interactions g, to spin
exchange interactions g, can be tuned by applying a dc electric field that mixes rotational states,
inducing a dipole moment in the lab frame (Fig. 1A). Microwave pulses can rotate the state on
the Bloch sphere, transforming the XX + YY interaction into XX + ZZ orYY + ZZ
interactions (Fig. 1B). By choosing the ratio of times ty y ; spent in the different frames, a range

of XYZ models can be realized (shaded triangle in Fig. 1C).
Tunable XXZ Hamiltonians

Dipolar XXZ spin models have been realized in a variety of platforms, including Rydberg
atoms?!**, magnetic atoms>®, nitrogen vacancy centers®?, and polar molecules. With molecules,



bulk magnetization dynamics of the XY model in a disordered 3D lattice*'** were explored.

Similar observations were recently made in a 2D system with a quantum gas microscope’, where
the evolution of spin correlations was observed under a Floquet pulse sequence that engineered
an XXZ model at |E| = 0. Previously, we used electric fields to tune interactions between
itinerant molecules in a stack of 2D layers*, which at short times approximates an all-to-all spin
model®’. In Ref. 6, we studied electric field-tuned lattice spin models, including generalized t-]
models.

Here, we present a systematic study of a range of Floquet-engineered Hamiltonians, including an
XYZ model for two-axis twisting. In doing so, we demonstrate the applicability of advanced
pulse sequences for robust engineering of interactions and cancellation of disorder, explore the
efficacy of Floquet engineering in systems involving both spin dynamics and motion, and cross
verify the Floquet engineering and electric field tuning of Hamiltonians, showing the broad
utility of this approach. We first explore XXZ spin models in a 3D lattice, which can be
compared to measurements in Ref. 6 using electric field tuning. Our system is again
characterized using Ramsey spectroscopy. Molecules were produced in the rovibrational ground
state |0). A microwave /2 pulse on the |0) < |1) transition prepared them in the state |+Y)®V,
after which they evolved for a time t, during which a microwave pulse sequence was applied,
before another /2 pulse with phase ¢ completed the Ramsey sequence. We then measured the
numbers of molecules in |0) and |1)**. The fraction of the molecules in |1), f;, was measured
twice for 8 values of ¢ equally spaced between 0 and 2m radians, then the Ramsey contrast was
computed from the standard deviation of f; as in Ref. 42. This process allows the length of the
Bloch vector to be measured even when the phase is randomized shot to shot at longer evolution
times.

To generate XXZ Hamiltonians with Floquet engineering, the molecules were produced at |E| =
1 kV/cm, where the interaction Hamiltonian is still predominantly spin-exchange, but where the
hyperfine and rotational structure is sufficiently split that numerous pulses on the |0) < |1)
transition can be driven with only modest loss to other states. Instead of the Knill dynamical
decoupling (KDD) sequence'* used in Ref. 6, which only removes single-particle dephasing, we
used a DROID-R2D2 pulse sequence®, which also can tune XYZ interactions, during the
evolution time. We used an average pulse spacing of 100 us, which optimizes the coherence time
for an XXX model (see Methods). By varying the time in the different frames in the sequence,
the interaction Hamiltonian can be tuned between approximately g, ; = ( g%,0)and g 1z =

0
(gz—l, gg) (dashed blue trace in Fig. 2A), which corresponds to |E| = 10.5 kV/cm. Here, g9 is the

native spin-exchange interaction. For comparison, in Ref. 6, by varying |E| between 1 and 12.7
kV/cm, the coefficients g, , of the XXZ Hamiltonian were tuned between 2m X (210, 6) Hz and

2w X (75,177) Hz for molecules on adjacent lattice sites in the plane perpendicular to E (solid
red trace in Fig. 2A).

The contrast was then measured for different t by varying the number of times the pulse
sequence was repeated. The contrast decay curve is fit with a stretched exponential model

4



C(t) = e~ where I is the contrast decay rate and v is the stretching parameter describing
sub-exponential decay due to number loss or glassy dynamics®*°. Sample contrast decay traces
for initial densities of approximately 1.6 X 107 cm™2 are shown in Fig. 2B for spin exchange
interactions (blue circles), Floquet-engineered XXX interactions (orange squares) and XXX
interactions realized with electric field (green triangles). The contrast decay is much slower for
both realizations of XXX interactions than for the spin-exchange interactions. The contrast decay
for the Floquet-engineered XXX interaction is slightly faster than for the electric field-tuned
XXX interaction, possibly because of a slower rate of dynamical decoupling pulses or higher
order terms not fully symmetrized by the Floquet engineering.

To ensure that the measured contrast decay is due to dipolar many-body interactions and not
particle loss or one-body dephasing, we measured contrast decay curves at several initial average
densities n (see Methods). In Fig. 2C, the fitted I is plotted as a function of 2D density for spin
exchange interactions (blue circles) and Floquet-engineered XXX interactions (orange squares).
We fit a linear model I' = k n + T, to the data (lines in Fig. 2C), extracting the slope x, which
describes the density dependence of contrast decay due to interactions. Linear fits to the data
show a much stronger density dependence of the contrast decay rate for the spin-exchange model
than the XXX model, which has a vanishing density dependence within measurement
uncertainty. The nonzero y-intercepts [}, are a measure of residual single particle dephasing.

We equate the XXZ Hamiltonians realized by electric fields and Floquet engineering by
determining the value of |E| that yields the same ratio of g, to g as a set of Floquet timings
(Fig. 2A). Because the overall strength of the interaction decreases for higher electric fields but
remains constant for the Floquet sequences, we rescale the Floquet data’s k by the ratio of g,
under | E| to its value under the Floquet Hamiltonians. We plot k as a function of y for both
datasets (Fig. 2D). There is good agreement between their dynamics, suggesting that Floquet
engineering is realizing the desired spin models. When the molecules are confined in a deep 3D
lattice, we find that k changes approximately linearly as a function of | x|, decreasing to
approximately zero at the Heisenberg point where y = 0, then increasing as the Ising interactions
come to dominate. This trend agrees with a moving average cluster expansion simulation®® of the
contrast decay from Ref. 6.

To investigate the limitations of Floquet engineering, we applied the same pulse sequence to
itinerant molecules confined in a 1D optical lattice (Fig. 2E), where motion and collisions
complicate the Hamiltonian®. In the spin exchange regime where the Floquet engineering only
slightly modifies the Hamiltonian, we observe excellent agreement between the electric field-
tuned and Floquet-engineered dynamics. However, in the Heisenberg and Ising regimes, the
Floquet-engineered model shows a higher rate of density-dependent contrast decay than the
electric field-controlled version. We expect this to occur since the contrast decay in an itinerant
system is dominated by short-range collisions between molecules*, which was modeled in Ref. 6
by a Monte Carlo simulation (solid line in Fig. 2E) incorporating two-particle scattering. The
collisions take place over durations comparable to the Floquet pulse spacing and have scattering



properties set by the electric field. Nevertheless, a similar overall trend is observed with Floquet
engineering, indicating that control is still possible over itinerant models.

Realizing two-axis twisting

Beyond providing an alternative to electric field tuning to realize XXZ models, Floquet pulse
sequences can engineer general XYZ models, which breaks the symmetries of models realized
using only a static electric field. One special case, with gy = —g,, gy = 0, generates TAT
dynamics. TAT can achieve spin squeezing with number scaling reaching the Heisenberg limit,
exceeding the performance of one-axis twisting (OAT) generated by XXZ Hamiltonians®®°.
Generation of spin-squeezed states with ultracold molecules could enhance applications in
precision metrology, including detection of beyond-standard-model physics’. However, despite
several proposals?>®°, TAT mean-field dynamics have only recently been observed in a cavity
QED system®?, since the required XYZ Hamiltonians are not native to common platforms.

Ultracold molecules in a 1D optical lattice provide a platform with sufficient control to study
TAT. We implemented TAT and observed the evolution of Bloch vectors under the Hamiltonian
by Floquet engineering the interactions between itinerant molecules in two-dimensional layers,
which approximate all-to-all interactions**’. The native spin-exchange interactions generate
OAT about the Z axis (Fig. 3C) plus an isotropic XXX interaction, with Hamiltonian Hgpt =
91 2i<jlij (Sl- " 8j - st st ) The Hamiltonian is invariant under dynamical decoupling sequences
consisting solely of  pulses such as XY8 (Extended Data Fig. 1A). Because rotations on the
Bloch sphere preserve the trace gy + gy + g of the interaction Hamiltonian, the native low
field Hamiltonian g, > 0, g, = 0 cannot be transformed into pure TAT. Instead, we realize the

Hamiltonian Hrar = g1 Yi<;/ij (g S+ S;+ % (s¥sf —sts? ), as proposed in Ref. 25. Since

any point on the surface of the Bloch sphere is an eigenstate of the §; - §j term in HoaT and Hyar,
the term does not affect the short-time dynamics. To engineer TAT while cancelling
inhomogeneous disorder, we used a modified XY 8 pulse sequence, XY8-TAT (Extended Data
Fig. 1B), in which the m pulses about the Y axis are split into pairs of 7 /2 pulses. For pulse
spacing T, this results in 47 being spent with XX + ZZ interactions and 87 with XX + YY
interactions, realizing Hpat on average (see Methods).

We first prepared the spins in |0) and applied a pulse with area 8 about axis —sin¢ X + cos ¢ ¥
on the Bloch sphere, giving an initial average Bloch vector (S,) =

% (cos ¢ sin @, sin ¢p sin 8, cos 8). We then repeated either XY8-TAT or a standard XY8 pulse

sequence for 2.4 ms before measuring the collective Bloch vector in the X, Y or Z bases. This
measurement requires excellent shot-to-shot phase coherence, so we operated at |E| = 0 to
reduce fluctuations in the transition frequency from electric field noise. The data is compared to
a mean-field, all-to-all simulation of the dynamics (see Methods) where the interaction strength
and dephasing rate are fit to the data.

One-axis twisting has two stable fixed points at the +Z poles of the Bloch sphere. Between the
poles, interactions rotate the Bloch vector about the Z axis (Fig. 3A). As observed in previous
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work 4, the phase shift A¢p = arctan % — arctan g—g under OAT is proportional to (SZ) (Fig.
3C). We also see that (SZ) does not depend on ¢ (Fig 3E). By contrast, TAT has two unstable
fixed points at the +Y poles of the Bloch sphere and four stable fixed points where the +X and
+7 axes intersect the Y = 0 plane®'%2. Between the fixed points, the Bloch vector moves
alternately upward and downward as a function of angle in the X — Z plane, completing two
oscillations around the circumference of the sphere (Fig. 3B). This behavior is apparent in our

data (Fig. 3F).

Two-axis twisting can prepare spin squeezed states from initial coherent states at the poles of the
Bloch sphere by compressing and extending the quasiprobability distribution in orthogonal
directions rotated by 7 /4 radians relative to the twisting axes®! (Fig. 4A). We observed the
mean-field version of these dynamics by preparing a ring of initial states in an X-Z plane of the
Bloch sphere for different values of (SY) and fitting their positions after evolution under TAT for
2.4 ms to an ellipse (positions before (after) evolution in blue (orange) are shown in insets in Fig.
4B). We plot the ratio of the sizes of the fitted ellipses along the X = +Z directions as a function
of (S¥) (Fig. 4B). Near (S)) = +0.5, the ellipses are more stretched, with the major axis in
opposite directions. The measured shapes agree well with a mean-field simulation of the
experiment (solid line in Fig. 4D). The reduced size of the ellipse after time evolution relative to
the initial circle is likely a result of dephasing from collisions and inhomogeneous dynamics
between the layers.

Near the +Y poles, the rate of rotation of the Bloch vector is proportional to the Bloch vector’s
angle from the pole, resulting in exponential growth of the displacement with time. We measured
the change in the angle 8, between (S) and the ¥ axis for an evolution time of 2.4 ms after

preparing states at a range of (SJ ) values for (S§) = +(SZ), where % should be extremized,

and (S&) = 0 where it should be zero (green, purple, and gray lines in Fig. 4C, respectively). We
observe good agreement with the mean-field model at 2.4 ms evolution time (green ({(S&) =
(S&)), purple ((S&) = —(S&)), and gray ((S&) = 0) points and solid lines in Fig. 4D). Because of
the finite time, Ay (gray points in Fig. 4D) is nonzero for (Sg) = 0, although the % =0att=
0.

Outlook

In this work, we systematically characterize Floquet engineering methods for controlling
interactions between ultracold molecules and demonstrate their application to realizing spin
Hamiltonians applicable to metrology and many-body physics. Comparing Ramsey contrast
dynamics produced by Floquet engineering against those generated by a dc electric field helps
verify its efficacy. These Hamiltonian engineering tools will enable diverse future research. If an
interacting ensemble was prepared in a single layer of an optical lattice and detection efficiency
was improved, it should be possible to verify entanglement of a spin-squeezed state prepared via
OAT or TAT through noise measurements®’. Time-reversal of the dynamics®*%*, implemented
using another rotational level*, may enable quantum-enhanced sensing with relaxed detection
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requirements. More generally, in combination with tunneling in an optical lattice and evaporative
cooling®®, Floquet engineering can realize highly tunable z-J and Hubbard models, allowing
investigation of phenomena in superfluidity, quantum magnetism>%>, or topological matter?>.
The rich level structure of molecules will also enable investigation of dynamics of higher spins,
for which similar Hamiltonian engineering techniques'' exist, and exploration of synthetic

dimensions encoded in rotational states'?.
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Fig. 1. KRb Hamiltonian engineering. (A) At low electric fields, molecules interact via spin
exchange. XXZ and XYZ models can be realized with dc electric fields and microwave pulse
sequences, respectively. (B) Microwave /2 pulses rotate the spins on the interaction picture
Bloch sphere, transforming the spin exchange XX + Y'Y interactions into XX +ZZ or YY + ZZ
interactions. (C) A range of XXZ (blue line) and XYZ (shaded triangle) interaction Hamiltonians
can be realized by spending different amounts of time in the different frames, starting with the
low-electric-field spin exchange Hamiltonian between the |0) and |1) states. The orange star
indicates the Hamiltonian used to study two-axis twisting dynamics. The axes represent the
strength of the couplings in the XYZ Hamiltonian.
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Fig. 2. Benchmarking XXZ spin dynamics. (A) XXZ Hamiltonians can be prepared with
electric fields (red solid line) and Floquet engineering (blue dashed line). The dashed diagonal
lines show the subspaces of coefficients with equal ratio g, /g, corresponding to the most Ising
Hamiltonian that can be prepared with Floquet engineering (left) and the Heisenberg XXX
model (right). (B) Ramsey contrast as a function of time is shown for a spin exchange model
(blue circles), a Floquet engineered XXX model (orange squares) and an XXX model realized
with electric fields (green triangles) with initial densities of about 1.6 X 107 cm™2. The lines are
fits to a stretched exponential. The error bars on the data are 1 s.d. from bootstrapping. (C) The
fitted contrast decay rate is plotted as a function of 2D density for a spin exchange model (blue
circles) and a Floquet engineered XXX model (orange squares). The I error bars are 1 s.e. from
stretched exponential fits and the n error bars are 1 s.e. from the initial density of an exponential
fit. (D) The density-normalized contrast decay rate k is plotted as a function of y = g, — g, and
(effective, in the case of the Floquet data) electric field for simulations (black line), electric field
data (red circles) and Floquet data (blue squares) for molecules pinned in a deep 3D lattice
(schematic in inset). The error bars are 1 s.e. from a linear fit. (E) Same as (D), but for itinerant
molecules in a 1D vertical lattice. The electric field-tuned data and simulations in this figure are
from Ref. 6.
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Fig. 3. Engineering one-axis and two-axis twisting. The Bloch vector phase portraits for OAT
(A) and TAT (B) are shown on the Bloch sphere. The blue, dark gray, and red latitudinal lines

mark 6 = %,%, %ﬂ respectively. The projection of the average Bloch vector in the Y (C and D)
and Z (E and F) directions is shown for OAT (C and E) and TAT (D and F) as a function of the

phase (x axis) and tipping angle (color) of the initial state after 2.4 ms evolution. The points are
experimental data, and the solid lines are results from a mean-field simulation.
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Fig. 4. Two-axis twisting mean-field dynamics. (A) TAT mean-field dynamics are plotted
around the +Y pole of the Bloch sphere, where spin squeezing would be generated. In a mean-
field analog to squeezing, points along the blue circle evolve to points along the orange ellipse.
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Similar dynamics mirrored about the Y-Z plane would be observed near the -Y pole. (B) An
ellipse is fit to data (orange points in insets) prepared at different phases ¢ in the X-Z plane and
angles 6y from the +Y axis (blue points in inset) after 2.4 ms evolution time. The aspect ratio of
the ellipse, as measured along axes with angle % and —% from the +Z axis, is plotted as a

Cos
2
is plotted as the black line. The insets show the X and Z components of the initial and final Bloch

0
Oy (black points). The same fit to the mean-field simulations

function of the initial spin (Sy) =

vectors for 89 = m/4 and 3m/4. The axis range is -0.5 to 0.5. (C) TAT mean-field dynamics are
plotted around the +Y pole of the Bloch sphere. The contours at ¢p = — %, 0 and g are plotted in

green, dark gray, and purple, respectively. (D) Measured values of (6y) after 2.4 ms evolution
under TAT dynamics is plotted as a function of 89 for ¢ = % (green circles), 0 (gray diamonds),

and — % (purple squares). The lines are mean-field simulation results under the same conditions.

Methods
Molecule production

We produced fermionic “’K®’Rb (KRb) molecules from quantum degenerate gases of potassium
and rubidium by magnetoassociation followed by stimulated Raman adiabatic passage (STIRAP)
to the rovibrational ground state>*$76. The molecules were produced in a 3D lattice formed from
1064 nm light with a spacing of a,,,, = (532,540, 532) nm, where y is the direction of gravity
and our dc electric and magnetic fields. Due to harmonic confinement from the lattice and an
additional crossed dipole trap, the positions of the molecules approximated a Gaussian
distribution with a standard deviation of oy ,, , = (16,2.8,20) microns. The vertical extent of the
2

distribution was measured to be L = ZNNZ = 18.5(10) layers with layer-resolved gradient

k N
spectroscopy*?. Here, N is the total molecule number and N, is the number of molecules in the
kth layer.

For the XXZ contrast decay measurements, around 12000 molecules were created in a lattice of
depth Uy, , = (25, 65, 25) E,, yielding a maximum average filling fraction of about 13%.
Following STIRAP, the lattice was ramped to Uy, , = (65, 65,65) E,., where E, is the recoil
energy, in 5 ms to suppress tunneling in the x-z plane for the pinned measurements or Uy ,, , =
(0, 65,0) for the itinerant measurements. For the OAT and TAT measurements, we used a
vertical lattice of depth 40 E,., the shallower vertical lattice resulting in lower temperature and
reduced ac Stark shifts from the lattice’s non-magic polarization*>*. About 10000 molecules
were produced in 2D layers at a temperature of 158(10) nK. For all measurements, the molecules
were made and imaged at the target electric field, with the frequencies of the STIRAP lasers
tuned to remain resonant with the molecular transitions.

To prepare systems at different densities, we used a microwave pulse with area 6 to shelve
partially the molecules in |1) while removing the molecules in |0) using a pulse of resonant light
from the STIRAP down leg*. This procedure reduced the density by a factor of sin? /2.
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Microwave control of rotational states

We encoded a spin 1/2 system in the rotational states |0) = [N = 0,my = 0,mg = —4, mgp, =
1/2) and |[1) = [N = 1,m, = 0,mg = —4, mg, = 1/2). The frequency of the |0) & |1)
transition varies between 2.228 GHz at zero electric field and 4.225 GHz at |E| = 12.7 kV/cm.
We generated microwaves to drive Rabi oscillations between |0) and |1) using a custom FPGA-
based RF synthesizer whose output was mixed with a microwave local oscillator. The
microwaves were bandpass filtered, amplified, and then coupled to the molecules through the in-
vacuum electrodes using a bias tee. We used rectangular pulses with Rabi frequency () =

2m x 100 kHz except at |E| = 0 kV/cm, where we reduced Q to 2w X 50 kHz to suppress off-
resonant driving to other rotational and hyperfine states.

To reduce inhomogeneous broadening, we used magic angle optical traps for the crossed dipole
trap and the two horizontal lattices***. Due to geometric constraints, the vertical lattice was not
magic.

We characterized the fidelity of our microwave pulses using the one qubit randomized
benchmarking sequence described in Ref. 69. At 1 kV/cm, we measured fidelities of 0.99941(9)
per /2 pulse with itinerant molecules confined by a 65 E,. vertical lattice and 0.99915(14) with
molecules pinned in a 65 E, 3D lattice. At 0 kV/cm, we measured a lower fidelity of 0.9941(9)
with itinerant molecules, which we attribute to off-resonant driving of other nearby hyperfine
states.

A substantial fraction of the molecules are lost during the application of hundreds or thousands
of microwave pulses, particularly at 0 kV/cm. Because we image both |0) and |1), we can reject
the effect of these erasure errors’’. During our TAT pulse sequence, the number decays with an
exponential time constant of 11.2(6) ms (Extended Data Fig. 4), which is long compared to the
2.4 ms measurement time.

Optimizing Floquet timing

To optimize the pulse spacing for the Floquet XXZ data, we measured the contrast decay rate for
an XXX Hamiltonian with pinned molecules, realized with a variety of pulse spacings between
25 and 400 us (Extended Data Fig. 3). If the pulse spacing is too long, interactions between the
molecules will not be well symmetrized and dephasing from inhomogeneous single-particle
noise will not be effectively canceled. If the pulse spacing is too short, pulse errors can
accumulate more quickly and more molecules will be driven into other hyperfine states, causing
increased loss. We therefore used a pulse spacing of 100 us for the Floquet XXZ and XYZ
Hamiltonians, which was the longest spacing that shows near-optimal contrast decay rates. For
the KDD pulse sequence in Ref. 6, we used a 50 us pulse spacing, as the molecules are more
sensitive to fluctuating electric fields as the dipole moment increases at larger fields, so faster
dynamical decoupling improves contrast.

Imaging and image analysis
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We imaged both the |0) and |1) states of the molecules using state selective STIRAP***. At all
electric fields used except 1 kV/cm, we transferred the population in |0) to the Feshbach state,
then detected the potassium atoms in the Feshbach molecules by absorption imaging. The
reported number derives from a 2D Gaussian fit to the in-situ distribution of the atoms. We then
applied a 7 pulse to transfer the molecules in |1) to |0) and repeated the STIRAP and absorption
imaging. At 1 kV/cm, the STIRAP depletes the molecules in |1), so we shelved the population in
|1) to [N = 2, my = 0) during the first STIRAP. To calibrate the STIRAP efficiency, we
performed repeated STIRAP transfers between the Feshbach state and |0) and fit an exponential
decay to the molecule number. The one-way STIRAP efficiency is approximately 90% at 0
kV/em, 85% at 1 kV/cm, and as low as 70% at 12.7 kV/cm and the efficiency of imaging
Feshbach molecules is approximately 70%°®. Both efficiencies are factored into the reported
molecule number and densities. The reported 2D densities are computed assuming the average
molecule number in a layer N, = N/L and a Gaussian distribution with the fitted size from in-
situ images.

We also characterized systematic errors introduced during the imaging process by preparing a
superposition cos 6 |0) + sin 8 |1) with a microwave pulse immediately before our imaging
sequence. For itinerant molecules, we find that for 8 close to 0 or = fewer molecules are in the
minority state than would be expected from the state preparation. We attribute this to loss from
inelastic collisions between the Ramsey sequence and imaging. Since these collisions occur
nearly 100 times more rapidly for distinguishable molecules*?, their effect on the density can be

dni
t

modeled as o & —pBpn;n; for i # j where the indices are over the states |0) and |1). By fitting

the solution to this system of differential equations to the measured molecule numbers, we
correct the density and spin data for this loss process (Extended Data Fig. 2).

Mean-field OAT and TAT models

Per the Ehrenfest theorem’!, the expectation values of the collective Bloch vector S under the all-

d(s; ..
B = 2% €4jk 9,(5;)(Si) where i, j, k €

O X 5 . . . J_ . _ J_ . .
y 4 . ’ l
{X,Y,Z}. We also include dephasing with rate y—, adding a term —y~(S;) to the equations for

% and %. We numerically solve the equations of motion to obtain final values for (S;).

For OAT, gxyz = (9,9,0) and for TAT, gxyz = (39,29, g)/3 under AHT. When y* is set to
zero, we observe excellent agreement between simulations using the AHT interaction strengths
and simulations of applying the XY8-TAT pulse sequence with XY interactions. To properly
simulate the dephasing, which is partially transformed into depolarization by the Floquet pulse
sequence, we chose to model the TAT dynamics by modeling the application of the XY8-TAT

to-all Hamiltonian Hyyz = ¥.; g;S? evolve as

pulse sequence with instantaneous pulses and XY interactions between pulses.

To find the values of g and y, we fit the output of our simulations to the OAT and TAT data. To
ensure that the fit is not dominated by points with abnormal molecule number, we only included
measurements where the number is within 2 standard deviations of the average number for the
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TAT data. We found that the sum of squares of the errors was minimized when g = 360 s™* and

vyt =130 s for our typical molecule density of 1.08(9) X 107 cm™2.
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Extended Data Figures

RN RS aE

Extended Data Fig. 1. Pulse sequences Pulse sequences for generating OAT (XY8; A) and
TAT (XYS8-TAT; B) dynamics are shown using the notation of Ref. 7. Narrow (wide) rectangles
represent 1w /2 (1) pulses, red (blue) rectangles pulses about the +X (2Y) axes, and pulses above

(below) the line about the + (-) axes. The frame matrix representation shows which axis points
along the +Z direction as a function of time, with yellow (green) blocks representing axes
originally along the + (-) directions.
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Extended Data Fig. 2. Imaging correction The measured value of (S?) is plotted (blue circles)
as a function of the value prepared by a microwave pulse. The dashed curve is a fit to the loss
model (see Methods). By inverting the model, the data can be corrected for loss during imaging
(orange crosses).

19



50 .

—~ 40 i

-1

VSO- -
20 1

10 F |
v

0 L 1 1 1
0 100 200 300 400
t (us)

Extended Data Fig. 3. Optimizing Floquet pulse timing The fitted contrast decay rate I' is
plotted as a function of pulse spacing t for molecules with initial densities around

1.8(5) x 107 cm™2 in a 3D lattice with parameters set to produce the XXX model. The green
point is the electric field-tuned data with a KDD pulse sequence and the orange points are the
Floquet data with a DROID-R2D2 pulse sequence. The error bars on the plot are 1 s.e. from
stretched exponential fits.
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Extended Data Fig. 4. Number loss during TAT Floquet engineering The average molecule
density is plotted as a function of time as the XY8-TAT pulse sequence is repeatedly applied.
The solid curve shows an exponential fit to the data, with time constant 11.2(6) ms.
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