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Quantum error correction is believed to be essential for scalable quantum computation, but its
implementation is challenging due to its considerable space-time overhead. Motivated by recent ex-
periments demonstrating efficient manipulation of logical qubits using transversal gates (Bluvstein
et al., Nature 626, 58-65 (2024)), we show that the performance of logical algorithms can be sub-
stantially improved by decoding the qubits jointly to account for physical error propagation during
transversal entangling gates. We find that such correlated decoding improves the performance of
both Clifford and non-Clifford transversal entangling gates, and explore two decoders offering dif-
ferent computational runtimes and accuracies. By considering deep logical Clifford circuits, we find
that correlated decoding can significantly improve the space-time cost by reducing the number of
rounds of noisy syndrome extraction per gate. These results demonstrate that correlated decoding
provides a major advantage in early fault-tolerant computation, and indicate it has considerable
potential to reduce the space-time cost in large-scale logical algorithms.

Quantum error correction (QEC) is believed to be es-
sential for large-scale quantum computation [1-5]. It is a
rapidly developing frontier, with recent milestone demon-
strations of the preservation of a logical qubit and univer-
sal logic gates [6-16]. However, implementing large-scale
algorithms with protected, logical qubits is challenging
due to its considerable space-time overhead. Most re-
cently, reconfigurable neutral atom arrays have realized
quantum algorithms with tens of logical qubits and hun-
dreds of logical entangling gates [17], opening the door
to early fault-tolerant computation. Key to these re-
sults was the ability to efficiently perform fault-tolerant
transversal entangling gates by dynamically reconfigur-
ing qubits during the computation [18], similar to prior
work with trapped ions [9, 10, 13, 15].

These experiments [17] motivate theoretical explo-
rations of the optimal ways to design and decode error-
corrected circuits, in order to accurately infer which
physical errors occurred such that they can be cor-
rected [19, 20]. In particular, transversal entangling gates
apply the same operation to the physical qubits within
the codes, resulting in highly structured error propaga-
tion: errors spread in a known way between, but not
within, logical code blocks. As a result, errors detected
on one logical qubit can contain information about which
errors occurred on other logical qubits, and these corre-
lations can be utilized to improve the accuracy of the
decoder. Such correlated decoding was already used in
Ref. [17], demonstrating its utility for near-term experi-
ments. In addition, it may impact the resource require-
ments of complex large-scale quantum algorithms [21-
23], as transversal gates can comprise core subroutines
in both QEC [24, 25] and algorithms [26].

In this Letter, we analyze the benefits of jointly decod-
ing the logical qubits in an algorithm to account for er-
ror propagation during transversal entangling gates. We

explore two decoders which utilize the space-time decod-
ing hypergraph of the logical algorithm [27-32], one of
which is highly accurate, and another which is approx-
imate but guaranteed to have an efficient runtime. We
find that correlated decoding improves the performance
of both Clifford and non-Clifford transversal entangling
gates. We also show that it enables the number of syn-
drome extraction rounds to be substantially reduced in
deep logical Clifford circuits. These results provide the
theoretical foundation for recent experimental observa-
tions [17], highlight the utility of correlated decoding in
early fault-tolerant computation, and indicate its consid-
erable potential to reduce the space-time cost of large-
scale logical algorithms.

The key idea of this work can be understood as follows.
We consider a quantum algorithm with logical qubits,
each comprised of redundant physical qubits [3, 33] (see
Fig. 1(a)). The logical information of each code is stored
in the simultaneous +1 eigenspace of its stabilizer op-
erators. Physical errors can be detected by measuring
the stabilizers, as any error which anticommutes with a
stabilizer will flip its measurement outcome to —1. A de-
coding algorithm can use these stabilizer measurements,
or syndromes, to predict which physical error(s) likely
caused the observed syndromes. Decoding succeeds if
the associated correction does not erroneously apply a
logical operation.

Errors during transversal entangling gates can create
correlations in the stabilizer measurements of different
logical qubits, which can be utilized to improve the ac-
curacy of the decoder. In a transversal CNOT, for ex-
ample, physical X errors are copied from the control to
the target qubit, and Z errors are copied from the target
to the control qubit (Fig. 1(a)). Although this propa-
gation increases the density of errors, it is deterministic
and can be deduced from correlations in the measured
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FIG. 1. Decoding logical algorithms with transversal gates. (a) Transversal CNOT gates copy physical errors between logical
qubits. (b) These transferred errors flip the same stabilizers on both logical qubits after the CNOT, generating a hyperedge
in the decoding hypergraph connecting the control and target check vertices. (¢) Given a physical error model, the decoding
hypergraph for a logical algorithm can track these transferred errors, which can appear as hyperedges connecting checks from

multiple logical qubits at different points in time.

stabilizers. For instance, assuming that X errors occur
only before a transversal CNOT, one can infer that a
flipped Z stabilizer on both logical qubits originates from
a single X error copied from the control, effectively halv-
ing the density of errors in the decoding. Similarly, a
physical error can propagate onto N logical qubits after
N sequential CNOTs. Although this process flips many
stabilizers, tracking the error propagation again reveals
that the syndrome originated from just a single error.

Correlated decoding algorithms.— To formalize this ap-
proach, we define the decoding hypergraph of the logi-
cal algorithm [27-31], which relates each possible physi-
cal error mechanism to the stabilizer measurement(s) it
flips. The hypergraph vertices correspond to N measured
checks of the logical qubits {C;};=1.. n, which compare
consecutive stabilizer measurements in time. Each check
is defined as the product of a stabilizer measurement and
its previous measurement (if one exists), obtained from
back-propagating the stabilizer operator through the cir-
cuit to the point it was previously measured. If one stabi-
lizer measurement in the check detects an error, the check
flips from +1 to —1. Each error mechanism is associated
with a hyperedge connecting the check(s) it flips. Errors
copied during transversal entangling gates therefore cor-
respond to hyperedges connecting the checks of multiple
logical qubits (Fig. 1(b)). We use Stim [27], a Clifford cir-
cuit simulator, to identify the M hyperedges {E;}j=1..m
and their probabilities {p;};=1..as under a chosen circuit
error model, and which error source(s) I(C;) flip each
check C; (Fig. 1(c)).

In order to realize QEC in practice, a specific decoder
should be chosen. Many conventional decoders such as
minimum weight perfect matching (MWPM) [34, 35], a
widely used surface code decoder, are constrained to op-
erate on decoding graphs, whose edges connect at most
two vertices. In contrast, here we explore two decoders
which take as input a general decoding hypergraph of a
logical algorithm, which can include hyperedges connect-
ing more than two vertices. The first decoder exactly
computes the most-likely error (MLE) consistent with the

measured syndrome. It maximizes the total error proba-
bility HJNil pfj (1 — p;)*~Fi over the binary variables E;,
which are equal to one if the error E; occurred and zero
otherwise. The errors are constrained to be consistent
with the measured syndrome: if C; = +1 (—1), then an
even (odd) number of errors occurred in I(C;). We map
this problem to a mixed-integer program, and find its op-
timal solution using a state-of-the-art solver [32, 36-38].

Because finding the MLE exactly is NP-hard, we ex-
pect the runtime of the above algorithm to grow expo-
nentially in M in the worst-case [39, 40]. This motivates
our second algorithm, hypergraph union-find with belief
propagation (belief-HUF) [41, 42], which instead approx-
imates the MLE and has an efficient time complexity of
O(M?31og(M)) [32]. Belief-HUF first uses belief propa-
gation to update the error probabilities {p;};=1..a to
approximate the probability of each error given the mea-
sured syndrome [29]. Leveraging the insight that errors
are typically localized, belief-HUF then expands clusters
of error mechanisms and checks on the decoding hyper-
graph at a rate dependent on the error probabilities,
merging clusters that meet. A cluster stops expanding
when it contains an error mechanism consistent with its
measured checks, and the algorithm terminates when all
clusters stop expanding.

Decoding transversal Clifford gates.— As a simple il-
lustrative example, we apply these techniques to decode a
transversal CNOT, which is available for all Calderbank-
Shor-Steane (CSS) codes [43]. A key property of error-
correcting circuits is that their performance can be im-
proved for physical error rates below some threshold pyy
by increasing the code distance (the minimum weight of
a logical Pauli operator), which is related to how many
errors can be corrected [3, 25]. The threshold fundamen-
tally depends on the decoder, as more accurate decoders
can tolerate higher physical error rates. To explore the
optimal advantage of correlated decoding, we will com-
pare decoding two surface codes jointly with MLE, and
independently with MWPM [34, 35].

We study the performance of the transversal CNOT
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FIG. 2. Decoding the transversal CNOT. (a) We generate a
logical Bell pair using a noisy transversal CNOT, with phys-
ical errors before and after the CNOT with probabilities pfi
and p(1 — fu), respectively. (b) When the errors occur before
the CNOT (f, = 1), the threshold of uncorrelated MWPM
(pink) is half that of MLE (blue). (¢) As f, increases, more
errors are transferred between the logical qubits, and MLE
increasingly outperforms MWPM.

by numerically generating a Bell pair between rotated
surface codes, followed by noiseless syndrome extrac-
tion. Using Stim [27], we prepare the codes noiselessly
in |[4+.0r), then perform a CNOT with single-physical-
qubit X and Z errors before and after with probabilities
pfy and p(1 — fp), respectively (Fig. 2(a)). We use this
simplified error model, parameterized by f;, to modulate
the fraction of errors transferred between qubits during
the CNOT. Following the CNOT, the codes are first mea-
sured noiselessly in the X or Z basis to extract the syn-
drome, then decoded to compute the mean of the X7 X7
and Zi Z% populations as a proxy for fidelity [44]. Our
decoding hypergraph includes vertices corresponding to
the final stabilizer measurements, and inter- and intra-
logical qubit hyperedges corresponding to the possible
errors before and after the CNOT (see Fig. 1(b)) [32].

Because errors before the CNOT are copied between
logical qubits, we expect the benefits of correlated decod-
ing to grow with f,. When the errors occur exclusively
before the CNOT (f, = 1), the density of errors on one
logical qubit is doubled due to these copied errors. There-
fore, the numerically-fitted [32] threshold of MWPM
(pen = 4.9(1)%) is half that of MLE (pg, = 10.1(1)%)
(Fig. 2(b)). In Figure 2(c), we study the thresholds of
MLE and MWPM as a function of f,. When f, = 0,
no errors are transferred between logical qubits, so the
thresholds of MWPM and MLE are equal.

Decoding deep logical Clifford circuits.— In realistic
quantum algorithms, stabilizer measurements are used
to remove entropy from the logical qubit by tracking
physical errors over time. A challenge, however, is that
the stabilizer measurements are also noisy. As a re-
sult, entangling gates based on lattice surgery require d

rounds of syndrome extraction to ensure fault tolerance
to these errors, creating considerable space-time over-
head [45]. We now explore if we can perform fewer than
d rounds between transversal CNOTs, by leveraging the
deterministic propagation of stabilizer measurement er-
rors through CNOTs to verify stabilizer measurements
using surrounding rounds of syndrome extraction.

When constructing the decoding hypergraphs of cir-
cuits with noisy syndrome extraction, however, we ob-
serve that stabilizer measurement errors near transversal
CNOTs generate hyperedges that make conventional de-
coding approaches challenging. To see this, consider two
surface codes with syndrome extraction at times ¢t — 1, ¢,
and ¢t + 1, with a transversal CNOT controlled on qubit
1 between times ¢ and ¢ + 1. The checks associated with
a particular Z stabilizer on both qubits are Z} | Z}! and
Z} .\ Z2 (212}, and Z2Z} Z2 ) for the first (last) two
rounds, the latter of which comes from back-propagating
the stabilizers through the CNOT. A measurement error
on Z} will thus flip three checks: Z! | Z}, Z}Z} |, and
z}z}Z2 | (Fig. 3(a)). Because this hyperedge has order
three (meaning it connects three vertices) and cannot
be decomposed into existing lower-order edges [32, 34],
MWPM cannot be directly applied, as it only operates on
edges of order < 2. In the Supplementary Materials [32],
we find that MWPM can be applied at the expense of
d syndrome extraction rounds before a CNOT, but its
threshold is substantially lower than that of the corre-
lated decoders.

In contrast, because the correlated decoders can be
applied to general decoding hypergraphs, they can po-
tentially decode circuits with fewer than d syndrome ex-
traction rounds between CNOTs. To study this, we nu-
merically simulate deep logical Clifford circuits between
four surface codes. The codes are initialized noiselessly
in |+2)%*, then entangled with 32 layers of transversal
gates, with n, rounds of syndrome extraction between
layers (Fig. 3(b)). Each layer is comprised of a random
transversal Hadamard Hj or Pauli gate {X,Yr,ZL},
followed by a random pairing of CNOTs with random-
ized designation of control and target. We add depolar-
izing noise to each circuit-level physical operation with
probability p, as in Refs. [29, 32]. Finally, we noiselessly
measure the X and Z stabilizers and the logical stabiliz-
ers of the resulting state, then decode to find the logical
error rate Pp, [46]. In the Supplementary Materials [32],
we confirm that our results are insensitive to boundary
effects from the final noiseless measurements, and repre-
sentative of different randomly sampled circuits.

We first study the case of one round of syn-

drome extraction per CNOT (n,=1). Fig-
ure 3(c) shows the logical error rate per
round,  Pp max [1 —(1- pL/pL,max)l/(S%r)], where

Promax =1— 2%1 is the error rate of the maximally mixed
logical state, as a function of p [32]. The numerical
results are consistent with the existence of a threshold
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FIG. 3. Correlated decoding of deep logical circuits. (a) Stabilizer measurement errors near transversal CNOTs can appear as
hyperedges connecting the checks of both logical qubits at different times. (b) We study deep logical Clifford circuits with n,
rounds of syndrome extraction between CNOTs. (c) Setting n, = 1, our results are consistent with thresholds of pt, > 0.56%

for belief-HUF (green) and pen > 0.87% for MLE (blue).

for both belief-HUF and MLE. Though we cannot reli-
ably fit the thresholds because Pr,/Pr max — 1 near the
threshold, we estimate that pg, > 0.56% for belief-HUF
and pyp, > 0.87% for MLE from the largest physical error
rate at which Py, decreases with d [32]. Furthermore, in
the Supplementary Materials [32] we observe that the
MLE scaling is consistent with achieving the full code
distance.

Next, we investigate whether the space-time cost per
CNOT, at a fixed physical error rate of p = 0.001, can
be reduced by optimizing n,. We express the space-
time cost as (n, + 1)d?, corresponding to a cost of d?
for the CNOT and n,d? for syndrome extraction. In
Figure 4(a), we plot Pp, for various code distances and
ny € {%, %, %, 1,...,d} (n. < 1 corresponds to multiple
CNOTSs before a round of syndrome extraction). These
results suggest that n, can be reduced to n, =~ % and
n, ~ 3 for MLE and belief-HUF, respectively, without
increasing Pr. Pr, is expected to decrease exponentially
with d according to the heuristic formula [25, 32]

d+1

Pr(n,,d) = 320nr(anr)%. (1)
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FIG. 4. Reducing the space-time cost of deep logical circuits.
(a) The rounds of syndrome extraction per CNOT can be re-
duced to n, ~ % for MLE (bottom) and n, ~ 3 for belief-HUF
(top), without increasing Pr. (b) The extrapolated space-
time cost to reach P, = 107° is minimized at n, = 1 for
belief-HUF and n, = i for MLE.

By fitting the coefficient C' and exponent base «,,., we
extrapolate the code distance needed to suppress Py, to
1079, from which we compute the space-time cost per
CNOT (Fig. 4(b)). The space-time cost is minimized at
n, = 1 for belief-HUF and n,. = i for MLE. Note that at
N, = i, the errors from the four transversal CNOTs bal-
ance the four physical CNOT layers from syndrome ex-
traction [25, 32]. Therefore, the space-time cost of these
logical circuits can be substantially reduced by using cor-
related decoding to optimize n,..
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FIG. 5. Decoding the transversal CCZ. (a) A
physical XII error before a CCZ propagates to

%(X]I—&—XIZ—&—XZI—XZZ)‘ (b) The decoding hy-
pergraph includes a hyperedge for each Pauli error in the
superposition. (c) The logical error rate is suppressed by a
factor of ~ 1.5 by decoding the logical qubits jointly.

Decoding transversal non-Clifford gates.— Correlated
decoding can also be applied to non-Clifford transver-
sal gates. As a proof-of-concept, we study a transver-
sal CCZ between three fifteen-qubit quantum Hamming
codes, with perfect syndrome extraction [32, 47]. We
perfectly initialize each code in an X or Z-basis prod-
uct state, then perform a CCZ with single-physical-qubit
depolarizing noise beforehand. Because the CCZ is non-
Clifford, these errors can propagate to a superposition
of Pauli errors on multiple logical qubits, each generat-
ing a hyperedge in the decoding hypergraph (Fig. 5(a-
b)) [32, 48]. We analyze initial states for which the circuit
outputs a logical stabilizer state, which can be efficiently



simulated [32]. We then noiselessly measure the X and
Z stabilizers and logical stabilizers, and decode to com-
pute the average logical error rate over initial states [46].
Figure 5(c) shows that correlated decoding with MLE
outperforms decoding the qubits independently by a fac-
tor of ~ 1.5. Note that the gain here is smaller than
with Clifford gates, as the error propagation is no longer
fully deterministic. This motivates additional analysis of
correlated decoding with non-Clifford gates as an avenue
for future research.

Outlook.— Our results show that correlated decoding
constitutes a powerful tool for improving the performance
of logical algorithms. In particular, because stabilizer
measurement errors can be tracked through the circuit,
d rounds of syndrome extraction are not necessarily re-
quired between transversal CNOTs. These insights were
used in the experiments of Ref. [17] to improve the en-
tanglement fidelity of a logical Bell pair between surface
codes, and to fault-tolerantly prepare logical GHZ states.
Looking forward, these theoretical results indicate that
the number of syndrome extraction rounds can be opti-
mized for each particular circuit. In circuits where ~ 1
round per CNOT is optimal, the space-time cost can be
reduced by a factor of ~ d.

While this technique already offers key performance
advantages in the era of early fault-tolerant quantum
computation, in the long term it has the potential to
substantially reduce the space-time cost of large-scale al-
gorithms [49, 50]. In particular, correlated decoding can
be potentially applied to core algorithmic subroutines,
such as magic-state distillation [24, 25] and quantum
arithmetic [22, 26]. Moreover, the decoders we consider
are readily applicable to other codes and gates, such as
the recently developed quantum LDPC codes [51], space-
time codes [28, 31], and the transversal S gate in the
two-dimensional color code, whose decoding problem is
challenging for standard decoders [52-54].

Our results can be extended in several directions.
Although the computational runtime of belief-HUF
is efficient, its threshold is lower than that of MLE
on certain circuits (Fig. 3(c)). Alternative decoders,
such as those utilizing tensor networks [55-57], belief
propagation with ordered statistics decoding [58], or
machine learning [59-61] could potentially close this per-
formance gap. The runtime of belief-HUF can be further
optimized by iteratively decoding fault-tolerant blocks
rather than the full circuit [62-64]. These techniques can
also be adapted to realistic experimental noise models,
such as non-Pauli errors, biased noise [65], and erasure
errors [66—68]. These considerations indicate that by
co-designing the logical algorithm, error correcting code,
and decoding strategy with experimental hardware
in mind, the performance and resource requirements
of logical algorithms can continue to be improved [65, 69].
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1. DECODING ALGORITHMS

Here we describe the implementation details of the two decoding algorithms used to decode the transversal logical
circuits considered in this work. Both decoders take in the check measurements and the decoding hypergraph, and
return a physical error which could have generated the measured syndrome.

A. MLE decoder

The goal of the most-likely error (MLE) decoder is to exactly solve for the physical MLE consistent with the
measured syndrome. We map the problem of finding the MLE onto a mixed-integer program, similar to the approaches
in Refs. [36, 37]. Mixed-integer programs maximize a linear objective function over integer, binary, or real variables,
subject to linear constraints on the variables. To solve for the MLE, we associate each potential physical error
mechanism in the circuit (hyperedge in the decoding hypergraph) with a binary variable E; that is equal to one if that
error occurs, and zero otherwise. Our objective is then to maximize the total error probability, Hﬁl pf" (1—pj)t=Fi,
over the error variables {E;};=1. . To make this objective function linear in the error variables, we will maximize
the logarithm of the total error probability,

M M
log (prj(l _ pj>1—Ej> - Zlog(pj)Ej +log(1 —p;)(1 — Ej). (S1)
j=1 j=1

The total error is then constrained to be consistent with the measured syndrome. This means that if the ith
check C; = +1 (—1), then an even (odd) number of errors occurred in the set of errors which flip C;, denoted I(C;).
This constraint can be stated equivalently as > B,€I(Cy) E; = %(1 + C;) mod 2, which is almost linear, except for the
modulo. To linearize the constraint, we introduce an integer slack variable K; to the ¢th constraint which can add
any multiple of 2 to the summation. The resulting mixed-integer program can be summarized as:

maximize 3277, log(p;) Ej + log(1 — p;)(1 — E))

subject to Y ey, Bj — 2Ki = 5(1+ Ci) Vi=1,...,N
KiEZZO Vi=1,...,N
E; € {0,1} Vji=1,..., M.

To correct a given set of check measurements {C;};—1. n, we solve this mixed-integer program to optimality using
Gurobi, a state-of-the-art solver [38], and apply the physical correction associated with the error indices j for which
E; =1 in the optimal assignment.

B. Belief-HUF decoder

The original union-find (UF) decoder is a heuristic, almost-linear time surface code decoder which takes as input
the decoding Tanner graph [41]. The decoding Tanner graph has vertices corresponding to both the checks and
error mechanisms of the original decoding hypergraph, and an edge between each check vertex and error mechanism
vertex which flips that check. UF operates in two main stages: first, it associates each Tanner graph vertex with
a cluster, and grows each cluster along the edges of the Tanner graph, ceasing growth on a particular cluster once
it is satisfied, meaning it contains a subset of error mechanisms which (if they occured) would generate a syndrome
pattern consistent with the observed checks in that cluster. If two clusters meet, they merge into a single cluster.
This process continues until each cluster is satisfied. In the second stage, UF applies the peeling decoder [70] to each
cluster to find an error consistent with the measured checks, and applies a correction based on the predicted errors.

A key component of UF is the termination condition, which signifies that a cluster is satisfied. On the surface code,
UF typically has two termination conditions: the total number of flipped checks in that cluster is even, or the cluster
contains an error mechanism that flips only one check. Both of these conditions indicate that the cluster is satisfied,
since errors in the bulk of the surface code only flip a pair of checks [25]. Note that the termination condition for a
cluster can be evaluated in constant time by tracking the parity of the number of flipped checks, and the existence of
an error mechanism in the cluster which flips one check.
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FIG. S1. Hypergraph union-find decoder. Clusters of vertices, each of which corresponds to a check or an error mechanism,
are defined on the decoding Tanner graph. Each cluster expands along edges and merges with nearby clusters until it contains
an error configuration consistent with its measured checks.

For logical circuits with transversal entangling gates, the presence of high-order errors (such as stabilizer measure-
ment errors near CNOTSs) requires the termination condition to be generalized (see Fig. 3(a), main text). Following
Ref. [78], we replace this condition with the satisfiability of a linear system of equations, which directly checks whether
a satisfying solution exists for the current cluster. A benefit of this approach is that solving the linear system of equa-
tions automatically provides the associated correction. As a trade-off, this termination condition increases the time
complexity of the decoder by a polynomial overhead.

Concretely, the hypergraph union-find (HUF) decoder works by expanding clusters on the decoding Tanner graph.
As illustrated in Figure S1, the decoding Tanner graph is a bipartite graph G = (V, £) constructed from the original
decoding hypergraph. The vertices are comprised of two types, V = {C;}i=1,...m U {E;}j=1,.. .~ where each C; or
E; represents a check or an error mechanism, respectively, in the original decoding hypergraph. The edges £ form
a subset of {C;}i=1,.. v X {E;}j=1,.. n, such that (C;, E;) € &£ if and only if the edge E; is incident to C; in the
original hypergraph, i.e., E; € I(C;). Edges are weighted according to the error probability of its connecting error
mechanism:

log (122-)
wE,0p = (52)
g,
where rg; is the order of the hyperedge E; (meaning the number of vertices it connects in the original decoding
hypergraph), and ¢ is a hyperparameter of the HUF decoder. In Section 2B, we compare the performance of HUF

for different settings of ¢.

Clusters are then defined as subsets of vertices in the decoding Tanner graph. An edge is called a boundary edge
of a cluster if exactly one vertex in the edge is in that cluster. A vertex v is called internal to a cluster S, denoted
as v € S, if all of its neighboring vertices belong to S. Given a sample of observed check measurements, a cluster is
called satisfiable if there exists a configuration of internal error vertices consistent with the given observed checks in
the cluster. Otherwise, it is called unsatisfiable.

The satisfiability of a cluster can be checked by a linear system solver over the binary field Fy. Similar to the
MLE algorithm in Section 1 A, the value of each error E; can be regarded as an Fo-valued variable, where E; = 1 (0)
indicates that the error E; did (did not) occur. To be consistent with the observed check measurements, if the ith
check C; = +1 (—1), then an even (odd) number of errors occurred I(C;). This condition can be equivalently stated
as

= [ ™. (S3)
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Consequently, o; can also be regarded as a variable in o that is linearly dependent on the error variables. In the rest
this section, we will also refer to o; as a check variable for convenience. The satisfaction check algorithm is described
in Algorithm 1.

Algorithm 1 Satisfaction check for a cluster
1: function CHECKSATISFACTION(G = (V,€),d,S)
2. Initialize E|s < (0,...,0) € F,?.
3: Let Cs be all check vertices in S.
4
5

Let E5 be all internal error vertices in S.
Let H be a |Cs| x |Eg| matrix over Fy such that

Hciij =1iff (Ci7Ej) eé&.

6: if HE|5 = &|s has a solution then

7 Let E|s be a solution and update E|s.
8: return (satisfiable, E|s)

9: else

10: return (unsatisfiable, E|g)

11: end if

12: end function

As detailed in Algorithm 2, after assigning the value of the measured checks & = (o1,...,0n), the HUF decoder
expands clusters on the decoding Tanner graph, prioritizing edges with lower weight wg, ¢, in order to search for a
satisfiable configuration of errors within a cluster. The edge weights, and therefore the cluster growth, depend on
the probability p; of each error mechanism FEj, the number of checks rg; flipped by E;, and the hyperparameter .
Note that if one sets ¢ = —1 and applies Algorithm 2 to a decoding graph without hyperedges of order > 3, then the
expanding strategy reduces to the one defined on the split-edge graph proposed in Ref. [71].

The computational runtime of HUF grows polynomially with the size of the decoding Tanner graph M. In the worst
case, one must merge all vertices into a single cluster to find a satisfiable error configuration, requiring O(M + N) =
O(M) total merge operations. By utilizing the union-find data structure [42], the complexity of each merge operation is
only O(a(M + N)), where « is the slowly-growing inverse Ackermann function. Each merge also requires a satisfaction
check (Algorithm 1), which involves solving a linear system over Fy. Naively, the linear system can be solved in O(n?)
time using Gaussian elimination, where n is the number of variables in the system, corresponding to a worst-case
total runtime of

O(M(M? + a(M))) = O(M*). (S5)

However, in the circuits considered in this work, the linear system has constant sparsity, because each error mechanism
flips a constant (in M) number of checks, and each check can be flipped by a constant number of error mechanisms.
Therefore, the Wiedemann method can be used to solve the sparse linear system in O(n?log(n)) time [72]. Conse-
quently, the time complexity of the HUF decoder in this setting is at most

O(M(M?1log(M) 4+ a(M))) = O(M?3log(M)). (S6)

Note that in practice, a merged cluster from the current round is unlikely to be updated in the next round, so the
cluster update operations can be parallelized to improve the runtime. We leave further optimization of the HUF
runtime as an avenue for future research.

The performance of HUF can be further augmented by using belief propagation (BP) before cluster expansion [29],
yielding the belief-HUF algorithm we use in the main text. BP takes the decoding Tanner graph and the check
measurements ¢ as input and, if converged, outputs the posterior probability of each error mechanism E;, given &.
Although BP is not guaranteed to converge because the decoding Tanner graphs of quantum codes have short loops,
it can nevertheless be used to improve the performance of HUF. Following Ref. [29], we use the approximate posterior
probabilities predicted by BP to update the error probabilities p; used to weight the edges of the decoding Tanner
graph in Eq. (S2). HUF then uses this updated decoding Tanner graph as input, expanding clusters at rates based on
the updated probabilities. We use the sum-product message update rule, and execute a constant number of update
rounds for the BP algorithm used in belief-HUF. We find in Section 2B that belief-HUF significantly outperforms
HUF in decoding the transversal CNOT with noisy syndrome extraction.
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Algorithm 2 Hypergraph union-find decoder

1: function HYPERGRAPHUNIONFIND(G, w, &)
2: Initialize a dictionary f : & — R to record the expansion state, such that f(C;, E;) < 0
3: Initialize a union-find data structure to maintain clusters of vertices in G:

C+ {{Ci},....{Cu},{Er}, ..., {ENn}};

4: Initialize a vector of unsatisfiable clusters as

Cunsat — [{C]} | 0 = ]-7 .7: 177M]v

5: while Cynsat # 0 do

6: Let S € Cunsat be the cluster with the smallest size and least recently updated

7 Delete S from Cunsat

8: Let Bs be the set of boundary edges of S

9: Let Ay min(ciij)es W, ,E; — f(CZ, Ej)
10: for (Ci,Ej) € Bs do
11: f(ClaEJ)%f(ClvE])+Af
12: end for
13: for (Ci, E;) € Bs s.t. f(Ci, E;) = we,,5; do
14: if C; € S then
15: Let S’ be the cluster that contains E;
16: else

17: Let S’ be the cluster that contains C;
18: end if

19: Let S + MERGE(C, S, S")
20: end for
21: (R, E|s) + CHECKSATISFACTION(G, &, S)
22: if R is unsatisfiable then
23: Add S into Cunsat
24: end if
25: end while
26: return A global error configuration E = Usec Els

27: end function

2. NUMERICAL SIMULATIONS

Here we describe the numerical simulations conducted to evaluate the performance of our correlated decoding
algorithms. In general, in order to simulate a logical circuit, three components are specified:

e A physical circuit with syndrome measurements and logical observable measurements.

e A noise model applied to the physical circuit.
e A decoder.

The logical error rate is estimated by Monte-Carlo sampling the physical errors over the chosen noise model, then
generating the syndrome and logical observable measurements corresponding to the sampled set of physical errors. The
decoders then predict which errors occurred based on the syndrome measurements, and correct the logical observable
based on this prediction. A logical error occurs if the corrected logical observable measurement differs from the true,
noiseless value. In this work, we only simulate Clifford circuits with a noise model consisting of Pauli errors, with the
exception of Section 2D. These simulations can be performed in polynomial time in the number of physical qubits,
according to the Gottesman-Knill theorem [73]. We use the open-source Clifford simulation package, Stim [27], to
simulate the circuits studied in this work. Unless otherwise stated, the error bars for the numerically computed logical
error rates are the Clopper-Pearson confidence interval based on a Beta distribution with a significance level of 0.05.

A. Surface code Bell state with perfect syndrome measurements

Here we give additional details for the numerical simulations in Figure 2 of the main text, which study preparing a
logical Bell pair using a transversal CNOT. Using Stim [27], we first noiselessly prepare two rotated surface codes in
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TABLE S1. Threshold comparison between different decoding algorithms.

Decoder Hyperparameters Decompose errors Threshold
MWPM — True ~ 0.49%
HUF 1 e=-1 False ~0.31%
HUF 2 e=0 False ~ 0.59%
HUF 3 e=-1 True ~ 0.53%
HUF 4 e=0 True ~ 0.78%

belief-HUF ¢ = 0,bp_rounds = 5 True ~ 0.95%

MLE — False ~ 1.02%

|[+.0L), such that all stabilizers are initially +1. Next, we perform a noisy transversal CNOT by applying physical
CNOT gates between the logical qubits. We insert single-physical-qubit X and Z errors with probability pf, before
the CNOT and p(1 — fp) after the CNOT. Finally, we measure the physical qubits in the X or Z basis, allowing us to
determine the stabilizer measurements and logical observables in that basis. We compare the MLE decoder described
in Section 1A against independently decoding the surface codes using the MWPM algorithm implemented in the
open-source package PyMatching [34, 35].

As with the other logical circuits in this work, we use Stim to construct the decoding hypergraph. Because the
codes are initialized perfectly, we define the checks simply as the stabilizers measured at the end of the circuit, as no
information is gained from comparing the final stabilizer measurement with the +1 stabilizers during state preparation.
These checks form the vertices of the hypergraph. The hyperedges correspond to the possible single-physical-qubit
X and Z errors occuring before or after the CNOT. As illustrated in Fig. 1(b) of the main text, physical X (2)
errors before the CNOT on the control (target) qubit are transferred to the other logical qubit, in the bulk flipping
four checks with probability pfp, two for each code. Physical X (Z) errors before the CNOT on the target (control)
qubit are not transferred to the other qubit, as well as errors after the CNOT. In the bulk, these errors only flip
two checks on one surface code. Because MWPM cannot handle error sources that flip more than two checks, we
decompose the hyperedges that flip four checks into two existing hyperedges that flip two checks within a code, using
the decompose_errors = True hyperparameter in Stim. Because these edges already exist in the hypergraph, the
error probabilities of the decomposed edges are combined with the existing error probabilities (see Ref. [27]).

To compare the performance of MLE and MWPM, we estimate the threshold pt, of both algorithms at different
values of fj,. To estimate the logical error rate for each value of fj, physical error rate p, and code distance d, we
sample at least 40000 total samples or 6000 samples with logical errors, whichever condition is met first. For each fj,
we estimate the threshold by fitting the logical error rate Py, to the universal scaling hypothesis [74],

log Pr, = a + bx + ca?, (S7)

where z = (p — pth)dl/y. We fit the parameters a,b, c, pyn, v using a least-squares fit for physical error rates p =
[Deh, guess — 0.017, Den, guess +0.027] and code distances d € {17,19,21, 23,25}, where pen, guess is an initial guess for the
threshold which is close to the fitted value. The error bars plotted in Figure 2(c) of the main text are the 20 error
bars from the fit.

B. Surface code Bell state with 2d rounds of noisy syndrome measurements

Next, we consider using a transversal CNOT to prepare a Bell state between two rotated surface codes, with d
rounds of noisy syndrome extraction before and after the CNOT, and circuit-level noise. We compare the performance
of several decoders: MWPM (using PyMatching [34, 35]), MLE, belief-HUF, and HUF with several hyperparameter
settings. In Table S1 and Figure S2(a) and (b), we show the approximate thresholds for each algorithm, estimated
from the physical error rate at which the logical error rates of the two largest code distances intersect. For each
algorithm, we obtain at least 10000 noisy samples per physical error rate and code distance.
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To generate the circuit, we first initialize the rotated surface codes in |+107). We initialize a code in |01) (|+L))
by initializing the physical qubits in |0) (|+)), then measuring the X and Z stabilizers d times. During each round
of stabilizer measurements, we first reset the ancilla qubits used to measure the X (Z) stabilizers in |+) (|0)), then
perform four CNOT gates between an ancilla qubit and its corresponding data qubits, using the same gate ordering and
designation of control and target qubit as in Ref. [12], Fig. S12. Finally, we measure the ancilla qubits corresponding
to the X (Z) stabilizers in the X (Z) basis. After state preparation, we perform a transversal CNOT controlled on
the first qubit to generate a Bell pair, followed by d additional rounds of syndrome extraction, then a final projective
measurement of the physical qubits in either the X or Z basis.

Throughout the circuit, we apply the circuit-level noise model in Ref. [29] to each physical operation. In this
noise model, each physical two-qubit gate is followed by uniform two-qubit depolarizing noise with probability p.
Qubits involved in a single-qubit gate or qubits which idle during a gate duration experience a single-physical-qubit
depolarizing channel with probability p. Physical qubits initialized in the X (Z) basis are followed by a Z (X) error
with probability 2p/3, and measurements in the X (Z) basis are preceded by a Z (X) error with probability 2p/3.

We decode using the 2d rounds of stabilizer measurements and the syndromes extracted from the final projective
measurement. The checks of the decoding hypergraph are constructed from the product of each stabilizer measurement
and the previous measurement of its backwards-propagated operator, if one exists. This means that a check comparing
stabilizer measurements directly before and after the transversal CNOT can include stabilizer measurements from
both the control and target logical qubit, as described in the main text. A check comparing two consecutive rounds
of stabilizer measurements will simply be the product of those measurements. Using these checks, the decoding
hypergraph is then constructed using Stim [27]. Finally, we compute the mean populations of X} X2 and Z} Z% as a
proxy for fidelity [44], as in Section 2 A.

1. MWPM

First, we discuss the decoding strategy of MWPM. As discussed in the main text, stabilizer measurement errors
directly before the transversal CNOT generate order-three hyperedges in the decoding hypergraph. These hyperedges
cannot be decomposed into a set of existing lower-order errors which together produce the same syndrome as the
original hyperedge. Consequently, applying MWPM directly to the full decoding hypergraph will not yield a threshold,
as MWPM cannot handle these order-three hyperedges. For example, if these hyperedges are removed from the
decoding hypergraph in order to apply MWPM, then a perfect matching for a stabilizer measurement error directly
before the CNOT (an order-three hyperedge) must connect to an order-one hyperedge on the boundary of the surface
code, as errors in the bulk of the surface code only flip two checks. This procedure can erroneously apply a physical
correction to the data qubits along the pairing, potentially creating a logical error.

In order to apply MWPM, we instead decode the circuit up to the CNOT, apply the associated correction, then
decode and correct the circuit after the CNOT. To decode the first d syndrome extraction rounds before the CNOT,
we associate higher-order hyperedges arising from stabilizer measurement errors directly before the CNOT with a
time boundary in the decoding hypergraph. For example, a stabilizer measurement error directly before the CNOT
flips a single check before the CNOT, and two checks after the CNOT (see main text). This generates an order-one
time boundary edge in the decoding hypergraph before the CNOT, which can be handled by MWPM. We apply the
correction associated with the edges in the matching, which resets the check measurements before the CNOT to +1.
As a result of applying this correction, if the matching is paired to a stabilizer measurement error time boundary near
the CNOT, we also flip the other checks after the CNOT that are affected by that error. We then decode and correct
the final d rounds of syndrome extraction normally using MWPM.

To construct the decoding hypergraphs used to decode before and after the CNOT, we take the decoding hypergraph
of the full circuit generated by Stim [27], and split it into two halves. The first half includes only checks whose stabilizer
measurements occurred before the CNOT. Its hyperedges include all error mechanisms which only flip checks before the
CNOT, as well as hyperedges connecting checks from both halves (including the order-three hyperedges from stabilizer
measurement errors). These hyperedges on the boundary of the halves are filtered to only include their connections
to checks before the CNOT. This filtering process may result in error sources which, when restricted to the checks
before the CNOT, flip identical sets of checks. We merge these duplicate error sources into a single hyperedge with a
combined probability >, (1 L o I1 j( 1- pj)) where p; is the probability of each error source ¢ in a group of duplicates.
We use this modified hypergraph to decode before the CNOT, using the decompose_errors=True hyperparameter in
Stim. To construct the decoding hypergraph after the CNOT, we only keep error mechanisms which flip checks solely
after the CNOT. By using this hypergraph splitting strategy, MWPM achieves a threshold of py, ~ 0.49% (Table S1).

Note that this decoding approach requires d syndrome extraction rounds before the CNOT to be fault-tolerant to
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FIG. S2. Surface code Bell state with 2d rounds of noisy syndrome extraction. (a) The threshold of belief-HUF exceeds that of
HUF 1 (light purple), HUF 2 (dark purple), and HUF 4 (orange). (b) Belief-HUF and MLE have similar thresholds, and both
algorithms outperform MWPM. (c¢) The laptop runtimes of HUF 4 and belief-HUF grow polynomially with code distance for
p = 0.001 (solid lines) and p = 0.003 (dotted lines), whereas the runtime of MLE appears to grow more rapidly for p = 0.003.
The fitted laptop runtime of belief-HUF for p = 0.001 is approximately linear in the size of the decoding hypergraph M (black).

stabilizer measurement errors before the CNOT. As a result, this procedure is not fault-tolerant for logical algorithms
with ~ 1 syndrome extraction round between transversal CNOTs.

2. Correlated decoding algorithms

In contrast to MWPM, the correlated decoding algorithms we consider can utilize general decoding hypergraphs.
Therefore, they can naturally handle the higher-order hyperedges arising from stabilizer measurement errors directly
before a transversal CNOT. Here we benchmark four variants of HUF, which have different settings of the hyperpa-
rameter €, which affects how quickly clusters grow along higher-order hyperedges (see Section 1B). We also explore
different settings of the decompose_errors parameter in Stim, which describes whether or not high-order hyperedges
are decomposed into existing low-order hyperedges, resulting in an input decoding hypergraph with only essential
hyperedges [27]. The thresholds of belief-HUF, MLE, and most variants of HUF exceed that of the MWPM (Ta-
ble S1). Furthermore, the threshold of belief-HUF exceeds that of the HUF variants, and is comparable to that of
MLE (Fig. S2(a) and (b)).

We also observe that the hyperparameter settings for HUF have a significant effect on performance (Ta-
ble S1). For example, HUF 3 and HUF 4 gain a remarkable improvement over HUF 1 and HUF 2 by setting
decompose_error = True. This is because although HUF can in principle handle higher-order hyperedges, decom-
posing the hyperedges restricts the rate of cluster expansion, as the size of a cluster increases more rapidly when
expanding along high-order hyperedges compared to low-order ones. Concretely, as described in Section 1B, an
order-k hyperedge in the decoding hypergraph corresponds to k equally-weighted edges in the decoding Tanner graph.
Therefore, the size of the cluster can increase by at most k£ — 1 during one expansion step along this error mechanism.
Excessively large clusters can result in decoding failures, as they involve solving a global linear system to find a
satisfiable error, with no preference for choosing a high-probability error. Setting € = 0 also decreases the priority
by which the decoder expands clusters along hyperedges, further improving the performace of HUF 4 over HUF 3.
Finally, the performance is further enhanced by introducing belief propagation with five rounds of belief propaga-
tion (bp-rounds = 5), yielding the belief-HUF algorithm. Note that both the transversal CNOT thresholds of HUF
(0.78%) and belief-HUF (0.95%) with the setting of decompose_errors = True and ¢ = 0 match the thresholds of UF
(0.795(1)%) and belief-find (0.937(2)%), respectively, in the surface code memory simulations reported in Ref. [29].
This confirms that the correlated decoders perform optimally compared to their uncorrelated versions, as we expect
the memory threshold to be an upper bound on the threshold for the circuit we study with 2d rounds of syndrome
extraction and a transversal CNOT.

Finally, we note that although the worst-case runtime of HUF derived in Section 1B is O(M?3log(M)), where M
is the size of the decoding hypergraph, in practice its runtime scaling is more favorable. In Figure S2(c), we plot the
computational runtime per shot on a laptop for HUF, belief-HUF, and MLE for the physical error rates p = 0.001
and p = 0.003. A least-squares fit to the data at p = 0.001 to the functional form y = ax® yields a fit to the exponent
parameter of b = 1.00(3). Therefore, the runtime of HUF is linear in M at this physical error rate. We emphasize
that the computational runtime of belief-HUF is not optimized for constant factors, and we anticipate that it can be
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FIG. S3. Benchmarking deep logical circuits. (a) For the depth 32 logical circuit studied in the main text with n, = 1 round
of syndrome extraction per CNOT, the logical error rate decreases monotonically with code distance at physical error rates of
p = 0.87% for MLE and p = 0.56% for belief-HUF (top). The same trend persists at a lower physical error rate of p = 0.1%
(bottom). (a) We plot the logical error rate Pr as a function of the physical error rate p for the same circuit, and fit the
coefficient A in the functional form P, = Ap{¢*1/2 to the data for the five smallest physical error rates studied (black lines).
The quality of the fit suggests that MLE achieves the full code distance. (c) The average logical error rates over ten deep
circuits with 32 (circles) and 40 (squares) layers of gates are similar as a function of n,. Furthermore, the depth 32 instance
studied in the main text (diamonds) has similar performance to the average over the depth 32 circuits.

substantially improved. We leave further optimization of the computational runtime as a subject for future research.

C. Deep logical transversal Clifford circuits

The deep logical Clifford circuits we study consist of four rotated surface code qubits and 32 layers of transversal
gates, each consisting of single-qubit logic gates drawn from {Hp,X,Yr,Z.}, followed by a random pairing of
transversal CNOTs with randomized designation of control and target. The transversal Pauli X, Yy, and Z}, gates
are performed by applying physical X,Y, and Z gates to all physical qubits within a code, respectively. The transversal
Hadamard Hj, gates are performed by applying H gates to all the qubits within a code, then noiselessly rotating the
physical qubits by 90 degrees. After each layer of transversal CNOT gates, we perform n, rounds of syndrome
extraction, using the same circuit as in Section 2B. Throughout the circuit, we apply the circuit-level noise model
in Ref. [29] (see Section 2B), except during state preparation, the final round of stabilizer measurements in the last
transversal gate layer, the logical stabilizer measurements, and code rotation during transversal Hj, gates, which are
noiseless.

Figure 3(c) in the main text shows the logical error rate per round Pf, yound as a function of the physical error rate
p. The logical error rate per round is given by the formula

PL,round = PL,max [1 - (1 - PL/PL,max)l/(gznr)]; (SS)

=1 -4 = 15 i5 the error rate of the maximally mixed logical state. This formula can be derived by

where P, max 5 = g

treating the process as a Markov chain, assuming that P, ;ound is a constant over different rounds, and that the four
logical stabilizers each have an equal probability of flipping per round. If the input state to a round is the correct
logical state, there is a probability of 1 — Pr ouna of obtaining the correct output state. If the input state is an
incorrect logical state, then the output state can be flipped back to the correct logical state with a probability of
Pr round/15. Note that when Pp younda equals 0 (Pr max), Pr achieves its minimum (maximum).

Although our numerical results in Figure 3(c) of the main text are consistent with the existence of a threshold
when n, = 1, we cannot fit the exact threshold to the universal scaling hypothesis [74] because Pr/PpL max — 1 at
physical error rates near the threshold. Nevertheless, here we obtain a lower bound on the thresholds for belief-HUF
and MLE by identifying the largest physical error rate consistent with a monotonic decrease in logical error rate per
round with code distance. Figure S3(a) (top) demonstrates that the thresholds of belief-HUF and MLE are bounded
by pin > 0.56% and py, > 0.87%, respectively. Figure S3(a) (bottom) additionally shows that the logical error rate
decreases exponentially for a larger range of code distances, at a lower physical error rate of p = 0.1%.

In Figure S3(b), we show the logical error rate Py, as a function of the physical error rate p. We fit the coefficient A
in the functional form Py, = Ap(¢t1)/2 for the smallest five physical error rates p studied for both belief-HUF and MLE
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(black lines). This quality of the fits suggests that MLE achieves the full code distance, with exponential suppression
of P, in (d+1)/2. In contrast, the results for belief-HUF are less clear, and merit future research.

Next, we investigate whether the spacetime cost of the logical circuit needed to reach a fixed logical error rate can
be reduced by optimizing n,. To do so, we collect data at different values of n, and d, displayed in Fig. 4(a) in the
main text. The error bars in Figure 4(a), as with the rest of the text, correspond to the Clopper-Pearson confidence
interval based on a Beta distribution with a significance level of 0.05. We use this data to fit the parameters C' and
Q. in the heuristic formula,

r

d+1

Pr(n,,d) =32Cn(an,) = , (S9)

at different n,. This formula comes from applying the standard formula for logical error rate as a function of code
distance [25], modified so that the prefactor, 32Cn,, grows linearly with the circuit depth 32n,., similar to the
numerical simulations in Ref. [75]. The fitted parameters for belief-HUF and MLE, obtained from a least-squares fit
to the logarithm of Eq. (S9), are listed in Table S2. We only fit the exponent base a,, at values of n, for which we
have data for at least three different code distances, and for which the decoder is above the threshold at p = 0.001
(the latter condition is not fulfilled for belief-HUF at n, = 1/8). Based on the fitted parameters, we can solve for the
potentially fractional code distance needed to reach a target logical error rate of P;, = 10~ for each value of n,.. This
gives us the extrapolated spacetime cost, expressed as n,.d?, plotted in Fig. 4(b) in the main text. Note that the fitted
exponent base v, should not be interpreted as an accurate estimate of the ratio p/pyn, as previously observed in the
literature [25, 76]. Additionally, we note that the fitted parameters may be subject to a small systematic errors due
to the finite range of code distances studied. However, the resulting estimation error in the spacetime cost is likely
small, as the target logical error rate P;, = 107 is not significantly smaller than the minimum measured logical error
rates Py, ~ 1074,

Finally, we study whether our results are sensitive to finite size effects. In Figure S3(c), we compute the logical error
rate as a function of n,, averaged over ten randomly generated circuits with depths 32 and 40 (circles and squares,
respectively). The results for both circuit depths are qualitatively similar, and quantitatively differ by an overall
constant factor. This suggests that our results are not subject to finite-size effects due to the depth of the circuit.
Furthermore, in Figure S3(c) we observe that the data for different random circuits at depth 32 is quantitatively similar
to the particular depth 32 circuit studied in the main text (diamonds), indicating that our results are representative
of other randomly generated circuits.

TABLE S2. Fit parameters for the heuristic scaling formula.

Parameter MLE belie-HUF
C 1.13(21) 0.464(65)
o1 0.097(7) —
o 0.070(5) 0.458(19)
o 0.055(4) 0.240(10)
o1 0.049(3) 0.170(7)
o9 0.039(3) 0.146(6)
a3 0.039(3) 0.120(5)
oy 0.044(2) 0.109(4)
as 0.041(2) 0.102(4)
a6 — 0.103(4)
a7 — 0.097(4)
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D. Transversal CCZ with perfect syndrome measurements

Here we study the performance of the transversal CCZ between three quantum Hamming codes, each comprised
of fifteen physical qubits encoding seven logical qubits, with code distance three. This code is self-dual, meaning
that the X and Z stabilizers are supported on the same physical qubits. The check matrix for each of the X and Z
stabilizers is given by

(S10)

o o o
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= -0 O
o o = O

0
1
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where H;; = 1 if qubit j is in the support of check ¢, and 0 otherwise. Each code block has seven logical qubits,
six of which are gauge qubits, and one of which is used for the transversal CCZ. We work in the basis where the
representation of the latter is transversal (X = ®1121 X, Zp, = ®1121 Z;) [47].

The circuit we simulate prepares the three codes perfectly in an initial product state in the logical X or Z basis, then
applies a single-physical-qubit depolarizing channel with probability p to the physical qubits, followed by a transversal
CCZ. Because the transversal CCZ gate is non-Clifford, it cannot directly be simulated with a Clifford circuit via the
Gottesman-Knill theorem [73]. Nevertheless, for particular initial states, the circuit can be efficiently simulated using
a Clifford circuit, enabling us to probe the performance of the transversal CCZ on those initial states.

In particular, we efficiently simulate the circuit for initial product states for which the CCZ generates a known logical
stabilizer state, |1)r). Some example initial states fulfilling this condition are |11.15),|1.1.+%), and |1p +1 +1),
which after a CCZ generate the states |11.1.),[11,—r1), and |11) (|0241) 4+ [1.—1))/V/2, respectively. Notice
that the output logical stabilizer state |¢1) can be efficiently constructed from a Clifford circuit using the Aaronson
and Gottesman algorithm [77]. To simulate the noisy circuit efficiently, we therefore observe that introducing Pauli
noise before the CCZ gate is equivalent to perfectly preparing |¢1), then subsequently applying the Clifford error
obtained by propagating the Pauli error before the CCZ through the CCZ gate.

Therefore, we simulate the circuit by first generating |¢ 1) efficiently, then add the Clifford noise onto [¢1). To
sample the Clifford error, we Monte-Carlo sample a random Pauli error before the CCZ drawn from a single-physical-
qubit depolarizing channel, then propagate the sampled Pauli errors through the CCZ operation. In general, Z errors
commute through the CCZ, and X (Y) errors propagate to an X (Y') error on the same qubit and a CZ error on the
other two qubits in the CCZ. We then apply this propagated Clifford error onto the perfect state |1r). Because the
error itself is a Clifford gate, we can simulate the entire circuit efficiently [73] by repetitively sampling different error
patterns.

We complete the circuit by noiselessly measuring the X and Z stabilizers and the logical stabilizer operators. The
logical error rate for a given initial state is then computed from the corrected logical stabilizers [46], averaged over
20000 shots. To compute the total logical error rate, we average the logical error rate over five possible initial logical
states: [0,0.0.),]0L00+1),|0r +r +1),|11+1), and |1 +1 +7). This choice comes from first symmetrizing over
the three logical qubits, then using the fact that the [0z) /|1z) and |+1) /|—L) states will behave identically under
noise.

To decode, we construct an approximate decoding hypergraph for the logical circuit. The decoding hypergraph is
approximate because errors before the CCZ can propagate to a Clifford error after the CCZ [48], which can equivalently
be written as a superposition of Pauli errors. Therefore, each error mechanism does not necessarily deterministically
flip a particular set of checks. As an approximation, we therefore construct the decoding hypergraph to include a
hyperedge for every Pauli error in the superposition. Concretely, for each group of three physical qubits undergoing a
CCZ, we compute the input distribution of Pauli errors, e.g. the error X 1Z occurs with probability (p/3)%(1 —p). We
then propagate each input Pauli error through the circuit, giving us a superposition of Pauli errors, e.g. XI1Z goes to
%(X I1Z+ XII+XZZ — XI1Z). We add a hyperedge to the decoding hypergraph corresponding to each term in the
superposition. For example, the above error will generate hyperedges corresponding to the errors X1Z, XI1I, XZZ,
and XIZ. To approximate the probability of each output error, we take the probability of the error before the
CCZ, and normalize by the number of outputs (e.g., each of the above errors is associated with a probability of
(p/3)%(1 — p)/4). If two different Pauli error sources propagate to the same error (e.g., the errors X 11 and XI1Z will
both propagate to a superposition of Pauli errors which includes X ZT), then we sum the resulting error probabilities
in the decoding hypergraph.

To compare correlated decoding against independently decoding the logical qubits, we construct two different
decoding hypergraphs: one which includes all error sources, as described above, and one which includes only error
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sources acting with a single logical qubit. For correlated decoding, we use the MLE algorithm (Section 1 A) with the
former decoding hypergraph as input. To independently decode the qubits, we use MLE with the latter decoding
hypergraph as input.
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