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Abstract:

Strongly interacting electronic systems possess rich phase diagrams resulting from the competition
between different quantum ground states. A general mechanism that relieves this frustration is the
emergence of microemulsion phases, where regions of different phase self-organize across
multiple length scales. The experimental characterization of these phases often poses significant
challenges, as the long-range Coulomb interaction microscopically mingles the competing states.
Here, we use cryogenic reflectance and magneto-optical spectroscopy to observe the signatures of
the mixed state between an electronic Wigner crystal and an electron liquid in a MoSez monolayer.
We find that the transit into this “microemulsion” state is marked by anomalies in exciton
reflectance, spin susceptibility, and Umklapp scattering, establishing it as a distinct phase of
electronic matter. Our study of the two-dimensional electronic microemulsion phase elucidates the

physics of novel correlated electron states with strong Coulomb interactions.
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The interplay between Coulomb interactions and kinetic energy is at the heart of correlated electron
physics and underlies the emergence of many exotic phases of matter. Despite a plethora of
complex phenomena, such systems share general principles. Of particular importance is the fact
that long-range Coulomb forces forbid direct first-order phase transitions, which are instead
replaced by intermediate phases with intricate meso- or nano-scale structures (/-7). Such ideas
have been proposed to explain the phase diagrams of strongly correlated materials, including the
high transition temperature superconductors (8), colossal magnetoresistance manganates (9, 10),
and excitonic Wigner crystal/superfluid phase in semiconductors (//, 12). Similar physics may be
relevant for other quantum systems with long-range interactions, such as ultracold polar molecules
with dipolar interactions (/3, /4) and magnetic atoms (/5). However, a direct confirmation of
electronic mixed phases is lacking in solid-state systems because crystalline lattice transformations
often coincide with electronic phase transitions (9, 70). Theoretical and experimental
characterization of mixture phases remains challenging due to the multi-scale nature of the

electronic order.

Here we focus on the case of the density-driven crystal-to-liquid transition in a low-density two-
dimensional electron gas (2DEG) hosted in an atomically thin semiconductor. The low electron
densities in these systems ensure that electronic transitions do not trigger lattice instabilities,
making it a model correlated electron system with negligible lattice effects. In the low-density
regime, Quantum Monte Carlo studies predict that electrons spontaneously arrange into a
crystalline solid — the Wigner crystal — when the ratio of the Coulomb interaction to the kinetic
energy, s (= mye?/(4mepeh?vrn)) is around 30 (16, 17). Here, m}, e, €y, €, i and n denote the
effective mass of electrons, elementary charge, vacuum permittivity, dielectric constant, reduced
Planck constant, and electron density. With increasing electron density, this Wigner crystal melts

into a liquid due to increasing quantum fluctuations.

Landau-Ginzburg theory that neglects the long ranged Coulomb interaction suggests that the
crystal-to-liquid transition is of first order and proceeds via macroscopic phase separation (/8).
However, such macroscopic density inhomogeneity is forbidden in an electron system with
unscreened long-range interactions due to the associated large Coulomb energy penalty. Instead,
it is predicted that quantum melting of an electron Wigner crystal proceeds via a sequence of
intermediate microemulsion phases, e.g., bubbles of one phase embedded in another phase or
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alternatively stripe-like liquid crystalline phases (Fig. 1A), with associated continuous phase
transitions (/-3, 7). Other possibilities for intermediate phases, such as metallic density wave
states, have also been proposed (19, 20). The magnetic structure in this intermediate phase can

also be intricate due to the highly frustrated nature of magnetic interaction (21, 22).

Previous studies of the transition from the liquid phase at higher densities to the crystalline phase
at lower densities primarily relied on transport measurements (23-28). Recently, transport
signatures of unconventional magnetic behavior have been reported close to the metal-insulator
transition (28). However, such measurements do not allow the identification of intermediate
microemulsion phases because the signatures of microemulsion phases in transport are extremely
challenging to predict theoretically (29). Moreover, thermodynamic probes that can identify
different electronic phases and transitions between them can be more desirable to disentangle the

electron correlation effect from disorder-induced effect.

Electron Wigner crystal in a MoSe2 monolayer

The recent discovery of Wigner crystal phases in atomically thin transition metal dichalcogenides
offers a new avenue to investigate the fundamental questions regarding new phases of matter near
the quantum crystal-to-liquid transition (30, 37). In these materials, optically generated excitons
are sensitive to both charge and spin order of the surrounding electrons (30-33), thus providing a

new local detection scheme that provides insights into the electronic phase diagram.

In our experiment, we use dilution refrigerator-based scanning confocal microscopy to probe the
melting of an electron Wigner crystal formed in a MoSe2 monolayer encapsulated by hexagonal
boron nitride (hBN) (Fig. 1, A and B). We conduct circular polarization resolved spectroscopy
measurements as a function of electron density (tuned by a gate voltage), perpendicular magnetic
field, and temperature (Methods). In a MoSe> monolayer, the lowest energy optical transitions
occur in the K (K') valleys. In these transitions, 6+ (6—) polarized light selectively couples to up
(down) spin electrons owing to the optical selection rules and spin-valley locking (Fig. 1C) (33).
The exciton-electron interaction depends on whether a K (K') valley exciton interacts with either
a K' (K) valley electron (case 1) or a K (K') valley electron (case 2). In case 1, the interaction is
strong, leading to the emergence of higher energy repulsive polaron (RP) and lower energy

attractive polaron (AP) branches in the spectrum (34). In case 2, the interaction is comparatively
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weaker and is a combination of exchange interaction and Pauli blocking (33, 34). The difference
between intra- and inter-valley exciton-electron interaction enables the detection of electron spin

polarization by circularly polarized light.

Figure 1E and F show representative reflectance contrast spectra Rc (defined in Supplementary
Text) at B =9 T with left (67) and right (c") circularly polarized light as a function of electron
density. A perpendicular magnetic field lifts the degeneracy of the band minima, so the electrons
doping the MoSe> monolayer are spin and valley polarized at low electron doping (in this case,
with spin down in the K’ valley as shown in Fig. 1C). The c'-reflectance contrast spectrum that
probes the K valley (Fig. 1F) shows two polaron branches due to inter-valley exciton-electron
interaction, while the ¢~ spectrum probing the K' valley does not (Fig. 1E). At higher doping
densities (n > 2.35x10'? cm™2), the electron starts to fill both valleys, and two polaron branches
are present in both spectra. The inequivalence between 6™ and 6~ spectra reveals that the system is

still partially spin-polarized.

The density dependence of the exciton reflectance reveals two important features: The optical
response is not a smooth function of the electron density. Instead, it is segmented by anomalies,
the most prominent of which occurs near n, = 0.82x10'2 cm 2 (upward arrows in Fig. 1, H and I).
Because the excitonic properties are sensitive to the charge and spin properties of the surrounding
electrons, these anomalies are indications of a dramatic change in the electronic state. The
detection of this previously unobserved feature is facilitated by the device being mounted inside a
dilution refrigerator with a base lattice temperature of 16 mK (the electron temperature is higher
due to light absorption, as discussed below) and an excitation light power below 0.7 nW (see

Materials and Methods).

At low electron densities, we observe a higher-energy spectral feature (Fig. 1G). At electron
densities below ny¢c = 0.35x10'? cm ™2, this feature blueshifts linearly with electron density (along
the black dashed line in Fig. 1G) as seen previously (30). This higher-energy resonance originates
from the umklapp scattering of excitons by the periodic potential created by the electron Wigner
crystal: the exciton state with momentum k = kyc (kwc denotes the reciprocal lattice vector of
the electron Wigner crystal) is folded back to the zero-momentum light cone and acquires a finite

oscillator strength (Fig. 1D) (30). Notably, at densities greater than nyyc the feature changes slope
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and extends to significantly higher densities than previously observed, albeit with a significant

broadening. At sufficiently high electron densities (Fig. 1, G and H), the feature vanishes.

Taken together, the spectral anomalies and the extended umklapp feature demonstrate an
unexpected evolution of the electronic state between a simple Wigner crystal and liquid phases.
Before investigating the behavior in this intermediate density range, we first establish that the
magnetic properties of the system at sufficiently high and low electron densities are those of a

Fermi liquid and Wigner crystal, respectively.

Fermi liquid and Wigner crystal

The magnetic response of a Fermi liquid can be characterized by the critical density for full spin
polarization at non-zero magnetic fields and the spin susceptibility near zero field. As discussed in
the preceding section, the filling of electrons into the K valley results in the inter-valley polaronic
dressing of K'-valley excitons, and vice versa. We can therefore use the onset of the o= AP
resonance in the reflectance spectra (Fig. 1, E and F) to determine the critical density at which the

fully spin-polarized liquid starts to become partially polarized (see fig. S1 to S3) (33).

Figure 2A shows the critical densities determined by the onset of the 6~ AP resonance at various
magnetic fields. For a given magnetic field, we find the system is fully spin-polarized below a
critical electron density, as expected for a Fermi liquid (35). The critical densities extracted from
our experiments are in good agreement with predictions from a fixed-node diffusion quantum
Monte Carlo (QMC) model (17, 35) for a clean 2DEG (Fig. 2A). We note that the critical density
we observe is an order of magnitude higher than that predicted for non-interacting electrons in

MoSe: (33), demonstrating the strong Coulomb interactions present in our system (fig. S4).

To extract the spin susceptibility of the 2DEG at low magnetic fields we obtain the magneto-optical
signal M = (1% /194, — 197 /1%2,)/I°F /1St +1°7 /195,) , which is the difference in
normalized reflected intensity between o light divided by their sum. Here, I (I,,,4,) denotes the
reflected intensity in the MoSe, monolayer region (at a density of 1.0x10'* cm™2). We compute M
using reflectance spectra in a narrow energy range, 5 meV red-detuned from the main exciton
resonance at zero doping. Optical selection rules imply that M is proportional to the imbalance of
electrons in the lowest conduction bands (Fig. 1C), which, owing to spin-valley locking, can be
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interpreted as the spin (or valley) polarization of the electrons (see fig. S5 and S6 for details) (32,
36). The field dependence of M(H) further allows us to extract the spin susceptibility y of

electrons shown in Fig. 2B, which is normalized to the spin susceptibility of the non-interacting

2
2DEG, yo = (g%) % (37). (See fig. S7 and S8 for other methods to obtain the spin

susceptibility, which yield similar results). As anticipated, y/x, grows with decreasing electron

density because the Coulomb interaction favours spin polarization.

Similar to the critical field for full polarization, this experimentally extracted spin susceptibility
agrees well with predictions from QMC studies (/7, 35) as shown in the dashed line in Fig. 2B,
further confirming that the high density electron system is well-described as a clean, strongly
interacting 2D Fermi liquid. A Fermi liquid should furthermore exhibit a temperature-independent
spin susceptibility (38) for T < Ep, where E is the (renormalized) Fermi energy. As will be
described below, we indeed observe a temperature-independent susceptibility above a certain

density denoted by ng;, (Fig. 3D).

The magnetic response of the low-density (n < nyc) Wigner crystal is drastically different from
that of a Fermi liquid. In the Wigner crystal phase, the electrons are localized in real space so that
the spins are correlated only by the (extremely weak) exchange interaction (27, 39). For
temperatures above the exchange interaction scale but below the melting temperature of the

Wigner crystal, the magnetic behavior should thus be that of independent spins, with magnetization

gugH

) and an associated Curie
2kBTelec

following the Brillouin function M = % gugn tanh(

2
susceptibility y = (gzﬂ) k:—T (2, 7). In sharp contrast to the liquid phase, the susceptibility is

expected to increase with electron density and to depend strongly on temperature.

To probe the magnetism of the low-density regime, where light-indued heating becomes important,
we use a continuous-wave laser at a single energy (1.636 eV, white dashed lines in Fig. 1, E and
F) below the exciton resonance to obtain M as a function of electron density and magnetic field
(Materials and Methods): this approach reduces the light power reaching the sample. By fitting the
measured M(n, H) at different temperatures using the Brillouin function, we determine the

conduction band g-factor and the electron temperature (7eciec). With a 60 fW diffraction-limited



laser spot, we reach an electronic temperature of 80 mK with the device at a base lattice
temperature of 16 mK (fig. S9). When the temperature exceeds 150 mK, the extracted electron

temperatures approach the lattice temperatures (fig. S10).

Figure 2C shows a plot of M normalized by the electron density (M /n) as a function of magnetic
field normalized by the electron temperature (usH/kBTelec) in the Wigner crystal regime (n < nyyc
=0.35x10'2 cm™?). As clearly seen in the figure, the data at different electron densities and electron
temperatures collapse onto a single curve. When we extract the spin susceptibility at various
temperatures from linear fits to M(H) at small fields, we find an inverse relationship between the
spin susceptibility and electron temperature (Fig. 2D). The successful application of the scaling
analysis across different electron densities and temperatures demonstrates that the behavior of the
electrons in the low-density regime (n < nyyc) is well-described by a Wigner crystal with an

independent spin localized at each lattice site.

Microemulsion phase characterized by crystal-liquid coexistence

Following the demonstration of a conventional Fermi liquid at high density and a Wigner crystal
at low density, we proceed to characterize charge and spin properties of the intermediate density
range in our MoSe: system. We begin with a detailed analysis of the exciton umklapp scattering,
which we introduced in the previous section (Fig. 1, D, G and H). To further enhance the relevant
features, we subtract the fitted main exciton spectral profile from the reflectance contrast, take the
derivative with respect to the electron density, and plot it against the energy detuning from main
exciton peak (Fig. 3A). We then determine the energy splitting between the higher energy umklapp
feature and the main exciton peak as well as the umklapp linewidth, as shown in Fig. 3, B and C

(See also fig. S11 and S12).

When nyc < 0.35%10'? cm 2, the umklapp linewidth is close to the main exciton linewidth, while

i . . . . h? .
the energy splitting shows a linear increase with the electron density AE,, = \/5—7:, confirming that
X

all electrons are crystalized into a triangular lattice Wigner crystal (30). However, when n >
nwe, AE, becomes only weakly dependent on density, suggesting that the periodicity of the
underlying electron lattice is approximately independent of n. As the electron density approaches

n,, the density at which the exciton intensity anomaly is observed in Fig. 1, H and I (see also fig.



S13), the width of the umklapp feature increases rapidly (bottom panel of Fig. 3C). The width of
the umklapp scattering arises from the finite spatial extent of crystalline correlations: this length
scale can be estimated as l.o.r/awc ~ AE, /linewidth, where [ .. is the correlation length,
representing the radius of the domain, and ayy is the lattice constant of the Wigner crystal. We
obtain [ o+~ 3awc in the low-density regime (n < ny), indicating the presence of well-defined
crystalline regions as in the previous report (30). Between nyc and n,, [, decreases gradually
and drops below ayc at around n,, illustrating the continuous weakening of the crystalline

correlations or a decrease in the size of the Wigner crystal domains.

In addition to the spectral anomalies and the umklapp feature, which provide insight into the
evolution of the charge degree of freedom, we also extract spin susceptibility from linear fits to
M (H) curves measured using the single energy (1.636 eV) excitation, as described in the preceding
section. In Fig. 3D, we show the evolution of the reduced spin susceptibility (y/xo) as a function

of electron density. We observe two abrupt changes in the slope of the spin susceptibilities near

nwc and n,: below nyyc, the spin susceptibility follows a Curie law y & ;, as expected for

independent spins localized to Wigner crystal lattice sites, while above n, the susceptibility
decreases monotonically with density for all temperatures, consistent with a Fermi-liquid-like
response (Fig. 3E). From this susceptibility data we infer the temperature evolution of the critical
densities, nywc(T) and n,(T). Between nyc(T) and n,(T), the spin susceptibility shows an
essentially linear dependence on density, but with a different slope than the Curie susceptibility

(see fig. S14).

The data in Figs. 2 and 3 suggest two phase boundaries at nyc(T) and n,(T) that separate three
phases: a Wigner crystal phase for n < nyy, a liquid phase for n > n,, and the intermediate phase
occupying the range nyc < n < n,. The behavior in the intermediate phase is consistent with a
state in which only a fraction of the electrons participate in the formation of the crystal, with a
lattice constant associated to the density nyc. The persistence of exciton umklapp scattering
implies the size of the crystalline regions remains appreciable. The spin susceptibility in the
intermediate phase is smaller than that expected for a Wigner crystal but, at low temperatures, is
significantly enhanced relative to the high-density liquid. To first order, the susceptibility is well-

described by a linear interpolation between its values at ny,c and n, (Fig. 3, D and E). Taken
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together with the umklapp evolution, these observations indicate that the intermediate phase is a
microemulsion phase with nano- or meso-scale mixture of liquid and crystal regions, with the areal
fractions of the two phases evolving with density according to the lever rule of two-phase
coexistence (/-3, 7). It is important to note that the intermediate phase is flanked by pronounced
anomalies in a number of spectral observables, suggesting that it is a distinct thermodynamic phase

rather than a broad crossover between the crystal and liquid.

Phase diagram and Pomeranchuk effect

The full temperature and density dependence of the data is summarized in the (n, 7) phase diagram
displayed in Fig. 4 (see fig. S15 for estimating electron temperature associated with nyyc and n,
from the reflectance measurement). The phase diagram includes a conventional Wigner crystal for
n < nywc(T), the new intermediate phase(s) for ny¢(T) < n < n,(T), and a liquid for n > n.(T).
The liquid region may be further divided into two distinct regions: Figure 3D shows that while the
spin susceptibility is essentially temperature-independent at the highest electron densities, it
acquires a strong temperature dependence (Fig. 3D inset) below a characteristic density near
1.5%10'2 cm 2. We define the characteristic density ng (T) as that at which the spin susceptibility
deviates from the highest temperature (1.64 K) value. For densities n,(T) < n < ng(T), the spin
susceptibility still increases with decreasing electron density but is in general larger than that
expected for a conventional Fermi liquid. We note that near ng;, the exciton features evolve

smoothly and there are no pronounced anomalies in the spin susceptibility.

At temperatures below 1 K, both boundaries of the intermediate phase exhibit a rightward slant in
the n-T phase diagram, indicative of the Pomeranchuk effect associated with enhanced stability of
the crystalline phase upon heating due to its large spin entropy (/, 7, 40-43). The overall magnitude
of the effect is consistent with expectations based on QMC calculations (fig. S16) (35). The
widening of the coexistence region upon increasing temperature also agrees qualitatively with

theoretical predictions, although the width of the coexistence region is strongly underestimated.

Discussion and outlook
Our experiments demonstrate that the quantum melting of the Wigner crystal in a MoSe:
monolayer proceeds via an intermediate microemulsion phase characterized by nano- or meso-

scale coexistence of electron crystal and liquid. The unexpectedly large range of densities where
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the intermediate phase is stable suggests that it is as an important ingredient in the physics of
strongly correlated electron systems and may have implications in other puzzles involving 2DEGs

(25, 26).

Previous theoretical studies (/-3, 7) have shown that, because of the long-range Coulomb
interactions, macroscopic phase separation is forbidden in Wigner crystal melting, leading to
intricate mesoscale structures. The lever-rule mixing we observe between nyyc and n, suggests
that the system behavior is well described by mesoscale domains of the liquid and crystal phases,
although the detailed organization of these domains remains to be characterized in future work.
Near nyy¢ and n,, new phases were predicted in which the minority component appears in the form
of “bubbles” of a fixed size (/-3). For sufficiently small bubble sizes, the system properties should
be strongly affected by the associated interfaces, implying deviations from the macroscopic lever
rule. Our data is consistent with this scenario, as the clear deviations from the lever rule are
observed near nyc and n, (Fig. 3, D and E, see also fig. S14). While disorder may play a role in
these observations, the relative sharpness of the phase boundaries indicates that the observed
phases are likely not entirely due to strong disorder or inhomogeneity. It has been demonstrated
that weak disorder enhances the intrinsic tendency toward crystallization (44) and may thus
contribute to the widening of the coexistence region and persistent crystalline correlations we

observe down to 7y ~ 20 (Fig. 4).

Our results also reveal unconventional behaviour of the 2DEG in the liquid phase. In the density
range n,(T) < n < ng,(T), the spin susceptibility (Fig. 3D) has much a stronger temperature and
density dependence than QMC (35) and Fermi-liquid-based (45) predictions. In the same density
range, the reflectance spectra also show some residual umklapp scattering with a linewidth that is
significantly larger than in the proximate Wigner crystal and intermediate phases (Fig. 3, A to C).
Such behavior may be due to local moments associated with residual crystallites or the more
tantalizing possibility of a non-Fermi liquid regime driven by crystalline fluctuations near the onset

of the inhomogeneous intermediate phase (46).

Our study serves as a starting point for investigating many more multi-scale ordered phases of
electronic matter, such as microemulsions of magnetic, superconducting and charge ordered states

(47-49). The properties of such phases have been scarcely studied and may harbor new
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functionalities, especially due to the prominent role of exotic inter-phase interfaces. The variety of
correlated electronic phases observed recently in two-dimensional materials (32, 50-55) provides
a natural platform for further exploration of microemulsion phases by exploiting their facile
tunability via, e.g., multilayer heterostructures (37), or sample-gate distance (56, 57). Furthermore,
local probes such as scanning tunneling microscopy (5/) or a scanning electron transistor (58) will

enable the characterization and control of microemulsion phases at the nanoscale.
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Fig. 1. 2D electron phases and exciton spectroscopy. (A) Schematic phase diagram of a 2D
electron system including a Wigner crystal, a Fermi liquid, and the intermediate phases composed
of meso- or nano- scale regions containing the two competing phases resulting from Coulomb
frustrated phase separation. (B) Schematic of the device structure. A MoSe, monolayer is
encapsulated by hBN and grounded. A bottom gate voltage, Vi is applied to the Pd/Au back gate
to control the electron density in a MoSez monolayer. (C) Schematic showing the relative energy
alignment of the electronic band extrema at the K and K’ valleys under a positive magnetic field.
It also shows the spin-valley locking and the valley optical section rule. (D) Schematic of the
exciton dispersion showing the higher-energy resonance at exciton momentum k = 0, arising from
umklapp scattering by the periodic potential of the electron Wigner crystal. The energy splitting
AE, from the main exciton resonance is determined by reciprocal Wigner crystal lattice vector

kwc. (E and F) Left (67) (E) and right (¢") (F) circularly polarized reflectance contrast spectra at
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9 T and at a base lattice temperature of 16 mK as a function of electron density under light power
of 0.7 nW. Black dashed lines show the density (2.35%10'2 cm2) above which electrons start to
fill the second valley (K valley) of opposite spin. White dashed lines mark the energy (1.636 eV)
for obtaining the magneto-optical signal, M. (G) Color map of the derivative of reflectance contrast
spectra (3 T, o) with respect to electron density. A Lorentz fitted exciton/RP peak was subtracted
to emphasize the higher-energy features from umklapp scattering. The green line represents the
fitted exciton/RP resonance energy and the black dashed line indicates the expected resonance
energy from umklapp scattering of excitons. The difference between the two resonances
correspond to the energy splitting AE,,. (H) Color map of the derivative of reflectance contrast
spectra (3 T, o) with respect to electron density, without subtracting the fitted exciton/RP
Lorentzian. Note the clear anomaly near 0.82x10'2 cm 2 and the higher energy umklapp feature.
(I) Derivative of fitted exciton/RP resonance energy with respect to electron density shows a
discontinuity around 0.82x10'? cm2. Reflectance contrast spectra measurements in panels (G to

I) were performed under light power of 70 pW at a base lattice temperature of 16 mK.
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Fig. 2. Fermi-liquid and Wigner-crystal magnetism. (A) Spin polarization of the 2D electron
system with respect to electron density and magnetic field. The color scale represents the spin
polarization { of a 2D Fermi liquid and the dashed curve is the boundary of the fully polarized
liquid, both obtained from QMC simulations (see also fig. S17). We use the conduction band g
factor of 4.3, the dielectric constant, € = 4.6, and the effective mass of electrons, m; = 0.7m; as
parameters for the QMC simulations, where m, is the bare electron mass. Empty dots are onset
densities of c— AP at each magnetic field. (B) Reduced spin susceptibility as a function of electron
density obtained from QMC (dashed curve) and computed M from the reflectance contrast spectra
(blue dots). We conduct QMC simulations with the same values of the g factor and effective mass
as in panel (A) and use the dielectric constant as a free parameter. A good fit is obtained by using
the dielectric constant, € = 4, which deviates about 10% from the value used in panel (A). Inset:

M as a function of magnetic field for an electron density of 1.3, 1.8, and 2.0 x 10'2 cm™. (C) Scaled
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magnetization curves (M /n as a function of ugH/kgT) in the Wigner crystal regime. The shapes
and colors of markers represent different electron densities and temperatures. The black curve is a
fit by Brillouin function with g = 4.3. (D) Reduced spin susceptibility (y/xo) at n = 0.28x10'2

cm 2 as a function of electron temperature, showing Curie susceptibility.
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Fig. 3. Quantum melting of a Wigner crystal. (A) Color map of the derivative of reflectance
contrast spectra (3 T, o—), plotted against electron density and the energy detuning from the main
exciton/RP resonance. A Lorentzian-fitted exciton/RP peak was subtracted to emphasize the
higher-energy feature from umklapp scattering. (B) Cross-sections through the 2D map indicated
by colored arrows in (A) at a fixed electron density, denoted by numbers in units of 10'> cm™.
Each spectrum is fit with a Gaussian function, represented by colored solid lines. Black dashed
lines in panel (A and B) mark the energy above which we used for fitting to avoid contributions

from the residual exciton peak after subtraction. (C) The top panel presents energy difference
23



between exciton and umklapp features as a function of electron density. Gray dashed line is a linear
fit assuming all the electrons are crystalized into a triangular lattice which provides the umklapp
scattering momentum for excitons. From the slope AE,,/n = h?/+/3my, we extract the exciton
mass, my = (1.15 £ 0.05)my. The bottom panel shows the full width at half maximum of
umklapp scattering as a function of electron density. The black arrows on the top x-axis and black
dashed lines indicate the characteristic densities, nyc and n,. (D) Reduced spin susceptibility as a
function of electron density at different temperatures. Gray dashed lines are Curie susceptibilities
in the Wigner crystal regime. Black dashed lines indicate the density nyyc(T) at which the spin
susceptibility deviates from Curie (left), the density n,(T) at which the slope changes (right), and
the density ng;, above which the spin susceptibility does not exhibit temperature dependence.
Inset, reduced spin susceptibility as a function of electron temperature at selected densities in the
higher density regime. (E) The product of reduced spin susceptibility and temperature as a function
of electron density. The Curie susceptibility is depicted by a gray dashed line. At low densities,
the data points at different temperatures align with the Curie susceptibility. The colored dashed
lines correspond to the linear interpolation of the susceptibility data between the density near
nwc(T) and n,(T), obeying the lever rule. Deviations from the linear interpolation can be found

in the vicinity of ny¢(T) and n,(T) (see also fig. S14).
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Fig. 4. Phase diagram as a function of electron density and temperature. Phase boundaries are
obtained by the following characteristic densities: nyc(T), n.(T) and ng; from the spin
susceptibility measurements (circles), nyc(T) from anomalies in umklapp scattering (diamond),
and n,(T) from anomalies in reflectance spectra (square). The error bars associated with nyyc(T)
and n,(T) from the spin susceptibility measurements represent the density ranges that show
deviations from the lever rule. The density ng; is defined as that at which the spin susceptibility
deviates from the highest temperature (1.64 K) spin susceptibility, and the error bars indicate the
nearest data points from the deviation. See also fig. S18 for the phase diagram that includes the

density-dependent Fermi temperature of the non-interacting 2DEG.
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Materials and Methods

Device fabrication and operation

Monolayer MoSe, and hBN flakes were exfoliated from bulk crystals onto 285 nm SiO»/Si
substrates. MoSe, monolayers were identified by an optical microscope. Thicknesses of hBN
flakes were measured by atomic force microscopy. The flakes were stacked by the dry transfer
method using a polydimethylsiloxane stamp and a thin layer of polycarbonate. The stacked
heterostructure was then transferred onto the pre-patterned bottom gate, which consists of a 1 nm
Cr layer and a 9 nm Pd/Au alloy layer fabricated using electron-beam lithography and thermal
evaporation. Electrical contacts to the MoSe; layer and the bottom gate consisting of 5 nm Cr layer

and 90 nm Au layer were deposited via thermal evaporation.

To dope the monolayer MoSe: at dilution refrigerator temperatures, we grounded the contacts to
MoSe», applied a voltage Vg to the back gate and at the same time illuminated the whole sample
with a broadband light to activate the contacts. After doping was finished, the activation light was
removed, and the sample was thermalized for 0.5 s. The optical measurements were performed
after the thermalization was finished. The doping onset voltage V) is determined as the voltage at
which the reflectance contrast spectra or magneto-optical signal starts to deviate from the neutral

regime. The electron density is calculated from the parallel-plate capacitor model n =
o er(ng — VO) / dpg, Where €, is the vacuum permittivity, &, ~ 3.9 is the dielectric constant of the

hBN, and dy, is the thickness of the bottom hBN dielectric.

Onptical measurements

Reflectance spectroscopy and magneto-optical measurements were performed with a home-built
scanning confocal microscope based on a dilution refrigerator (Bluefors) with which the sample
lattice temperature can reach 16 mK. The sample is mounted in the center of a superconducting
magnet (AMI) capable of applying +9 T perpendicular magnetic field. A piezo-electric stage
(attocube) was used to precisely position the sample. The microscope consists of an apochromatic
cryogenic objective (attocube LT-APO/LWD, NA 0.65), two fused silica plano-convex lenses
(OptoSigma) at around 4 K and 50 K, two achromatic doublet lenses (Thorlabs) and a galvo



scanner (Thorlabs). A compensated full-wave liquid crystal retarder (Thorlabs LCC1413-B) was
placed in the shared light path of incoming and outcoming beams to impose the same +A/4
retardance to both beams without mechanical movement. A polarimeter (Thorlabs PAX1000IR1)
was used to confirm the circular polarization outside of the dilution refrigerator. To ensure a
polarization-independent light path inside the dilution refrigerator, we examined the reflection
isotropy of a bare Si0,/Si substrate mounted inside with a 360° rotation of the linearly polarized

light.

For reflectance spectroscopy, a tungsten-halogen lamp (Thorlabs SLS201L) filtered to 720 ~ 800
nm range was coupled to a single mode fiber, collimated with an objective (Olympus PLN 10x,
NA 0.25) and directed to the sample, creating a diffraction-limited spot. The light power on the
sample was variable but always kept below 0.7 nW. The reflected light was collected by a
spectrometer with a 1200 g/mm grating and a CCD camera (Princeton Instruments BLAZE). For
magneto-optical measurements, we switched to a continuous-wave ultra-narrow linewidth
Ti:Sapphire laser (M Squared SOLSTIS) and limited light power on the sample to 60 fW (unless
otherwise noted). The reflected laser was collected directly by a CCD camera (Princeton

Instruments BLAZE).

Magneto-optical measurements

Magneto-optical measurements using a single energy excitation are conducted at a fixed energy
(1.636 eV) within a small magnetic field range of -1 T to 1 T for electron magnetization and spin
susceptibility measurements in Fig. 2, C and D and Fig. 3, D and E. Since the bare exciton Zeeman
splitting is small within this range of magnetic fields (< 0.1 meV for each o + polarization), its
contribution to the signal is small, which can be subsequently subtracted. We also note that I3}, =
19, (reflection spectrum at a density of 1.0x10'3 cm™2) within -1 T to 1 T, and M =
(It J15, — 177 /18, /1S, + 197 /183,) ~ (17 —1°7)/(I°* + 1°7). We can thus use

the reflected intensity, instead of the normalized one to obtain M. To convert the measured

o+ ag—

magneto-optical signal M = to magnetization M, we introduce a density dependent scaling

19t 410~

factor that is field independent: M = A(n)M. At high fields when the system is fully polarized,

N 1 .
the magnetization is known as Mg = 5 gHBn, SO that the scaling factor can be extracted A(n) =

2



2Mg
gusn’

Therefore, at an arbitrary field, the magnetization and susceptibility are M = gugn and

NE
N

i 2 *
X= Z—Z : Mi : % gugn. The spin susceptibility of the non-interacting 2DEG is y, = (%) :;LZ'
S

Vi 2
Thus, the reduced spin susceptibility can be expressed as y/x, = am. L . 2mhn

— . We use the
dH Ms gugm*

conduction band g factor value of 4.3 (determined by fitting the measured M(n, H) using the

Brillouin function at n < nyy¢) and the effective mass of electrons, m; = 0.7m,,.

Supplementary Text

Determination of repulsive polaron (RP) and attractive polaron (AP) resonances

Due to the layered structure of the sample, the optical susceptibility near the excitonic resonance

in a MoSe> monolayer is represented as phase shifted quantity,
Y(E) = e'x(E),

where y(E) denotes the optical susceptibility of a MoSe> monolayer, @ denotes the phase factor
(we approximate a by a constant «; in the energy range of interest), and E is the photon energy.
In practice, measured reflectance contrast spectra, Rc(E) correspond to the imaginary part of

Y(E). Thus, we can express reflectance contrast as,
Rc(E) = W'(E) = y""(E) cosay + x'(E) sinay,
where y'(E) denotes the real part and y''(E) represents the imaginary part of y(E).

Since the optical susceptibility y(E) is well approximated by the resonance form:

AZ

HE) = = gz

each RP and AP resonance in the reflectance contrast can be described by the following equation.

AZ

Rgp,ap(E) = W[ECOSQ — (E — E,) sin 0(] +C,

where A2, E,, and y denotes the amplitude, energy, and linewidth of the RP or AP resonance and

C is constant background.



I(E)
Io(E)

Reflectance contrast is defined as Ri:(E) = — 1, where I(E) is the reflected light intensity

and I, (E) is the reflected light intensity at an electron density that is high enough to bleach all
excitonic resonances. In practice, electron doping of a MoSe; monolayer can be achieved up to a
density of 1.0x10'3 cm ™ by applying a bottom gate voltage while keeping the gate-sample current
below 1 nA. At this electron density, the reflection spectrum, I,,,4,(E) exhibits negligible RP

resonances, while the AP resonances are still observable. Therefore, Lorentzians give a good fit

I(E)
Imax(E)

for RP resonances in reflectance contrast spectra, Rc(E) = — 1, but the same fitting

approach is not readily applicable for analysing the AP resonances. To address this, we determine

the finite AP resonance in the reflectance contrast spectrum at an electron density of 1.0x10'3 cm ™2

Imax (E)

(5) 1, and subtracting this fitted equation

by Lorentzian fitting the obtained R¢p.4(E) =

from all other reflectance contrast spectra for lower densities.

We note that the reflectance contrast spectra can be expressed as,

_IB L IEB)/Ie(E) . 14Ri(E)
Re(E) = PR Rl vy 1+REmax (B) L,
where R:(E) = % — 1, represents the reflectance contrast spectra obtained in the ideal case.

Since the reflectance contrast from the AP resonance at an electron density of 1.0x10'3 cm™2 is

small (Remax(E) < 1), Rc(E) can be approximated as,

Re(E) = (1 + Re(E))(1 — Remax(E)) — 1 = RE(E) — (1 + RE(E))Remax (E)

(RE(E) — Re(B)).

1
1+RE(E)

Consequently, we can determine R4 (E) =

When a MoSe; monolayer is intrinsic, the fitted Lorentzian function for the main excitonic
resonances, RX(n = 0, E) is close to Rg(n = 0, E) since there is no AP resonance (see Fig. S1A
for the fitted Lorentzian, RX (n = 0, E) with reflectance contrast spectrum Rc(n = 0, E) in the
neutral regime). Next, we fit this background AP resonance in the obtained Rip.<(E) (=
R¥(n =0,E) — Rc(n = 0,E)) as shown in Fig. S1B, and subsequently subtract it out for
reflectance contrast spectra at all other electron densities. In Fig. SIC and S1D, we show the AP

resonances in the reflectance contrast spectra at various electron densities after background

4



subtraction. Additionally, we plot color maps in Fig. S2, showing left (6—) and right (c+) circularly
polarized reflectance contrast spectra at 9 T after and before the background subtraction. From the
background subtracted spectra, we extract the AP amplitude, energy, and linewidth by Lorentzian
fitting at different magnetic fields. The onset density of 6— AP resonance at each field is

determined from a linear fitting to the c— AP amplitude as a function of density (Fig. S3).



Fig. S1. Lorentzian fitting of AP resonances at 9T. (A) The reflectance contrast spectrum R (E), in the neutral
regime at 9T is shown for right (c+, top panel) and left (c—, bottom panel) circular polarization. The corresponding
fitted Lorentzian function, RZ (E), is also shown. (B) The obtained reflectance contrast spectrum for right (c+, top
panel) and left (6—, bottom panel) circular polarization at an electron density of 1.0x10'3 cm™, R},,q.(E), is
shown with the fitted Lorentzian function for the background AP resonance. (C) Right (o+) circularly polarized
reflectance contrast spectrum showing predominantly the AP resonances at various electron densities after the
background AP resonance subtraction and subtraction of R¥ (E). The spectra and the fit are vertically shifted for
clarity. (D) Left (c+) circularly polarized reflectance contrast spectrum showing predominantly the AP resonances
at various electron densities after the background subtraction and subtraction of R¥ (E). At electron densities of
0.81x10'2 cm 2 and 1.89%10'2 cm 2, the AP resonances are negligible, resulting in the Lorentzian fit being not

applicable. The spectra and the fit are vertically shifted for clarity.



Fig. S2. Reflectance contrast spectra at 9T as a function of electron density. Color maps for the left (c—) and
right (o+) circularly polarized reflectance contrast spectra (A) before and (B) after the background AP resonance

subtraction.



Fig. S3. Determination of onset density of the o- AP resonance. We extract - AP amplitude by Lorentzian
fitting and plot it as a function of electron density. Employing a linear fit to the AP amplitude allowed us to

determine the onset electron density of the AP resonance at each magnetic field.

Critical density between fully and partially spin/valley polarized liquid

The critical density between fully and partially spin/valley polarized liquid for a non-interacting
2DEG can be expressed by equating the Fermi energy to the Zeeman energy. This critical density

is given by,

ne = (up/2mh*) gm*H,



where up represents the Bohr magneton, g denotes the g factor, and m™ is the electron effective
mass. We use conduction band g factor of 4.3 that we extract from the fit using the Brillouin
function to the magneto-optical signal, M (see the SI5) and effective mass m* value of 0.7 (58).
The calculated n. and the onset densities of c— AP at different magnetic fields are plotted in Fig.
S4. We note that the observed critical densities from the 6— AP resonance exceed the value for a
non-interacting 2DEG by an order of magnitude, providing evidence of the strong Coulomb

interactions in a MoSe; monolayer.

Fig. S4. Critical density between fully and partially spin/valley polarized liquid. We plot extracted onset
electron density of the o- AP resonance together with calculated critical density for a non-interacting 2DEG as a

function magnetic field.



Spin susceptibility from magneto-optical signal M

To validate the magneto-optical signal M = (I°* /I3t — 197 /195.)/I°Y /1%, + 197 /1%, as
a probe for the electron magnetization, we obtain signal M from the reflectance contrast spectra
and plot a (n, H) phase diagram of the 2D electron with respect to electron density and magnetic
field (Fig. S5). We find that constructed phase diagram exhibits transition from fully polarized to

partially polarized Fermi liquid, which agrees well with the c— AP onset densities.

Fig. S5. Magneto-optical signal M from the reflectance contrast spectra. Phase diagram of the 2D electron
system with respect to electron density and magnetic field constructed by using the magneto-optical signal M.

Empty dots are onset electron densities of 6— AP at each magnetic field.

To account for the bare exciton Zeeman splitting in the intrinsic regime at each magnetic field, we
take normalized reflection (I°%/I%%,) at fixed detuning energies denoted as AE = E(H) —
E7 *(H), where E(H) is the selected energy for the analysis, E i *(H) is the magnetic field
dependent exciton resonance energy at zero doping, and AE is the fixed detuning energy. We take
AE = -5 meV, red detuned from the exciton resonance at zero doping to ensure that the main
contribution is from the real (dispersive) parts of the optical susceptibility. To see this, we analyse
the reflectance contrast spectra to separate the real and imaginary parts of the optical susceptibility
and compare the contribution from each at selected energy, E (H). In the previous section, we note
that the reflectance contrast spectra can be expressed as, Rc(E) = W' (E) = x""(E) cosa, +

x'(E) sin @y, where y' (E) denotes the real part and "' (E) represents the imaginary part of y(E).

10



With the approximation for the optical susceptibility near the excitonic resonance by the

Lorentzian function, we can express the reflectance contrast as,

AZ
(E—Ep)*+v?%/4

Rppap(E) = [gcosa — (E — Ey) sin a] +C

Thus, by fitting the reflectance contrast spectra using this Lorentzian equation, we can extract
x'(E)sinay and " (E)cos ay. The fitted results for the left (c—) and right (o+) circularly
polarized reflectance contrast spectra measured at 1T are shown in Fig. S6. We see that the signal
from y'(E) sin a, dominates over that from y''(E) cos a, at E(1T) = 1.636 eV (AE = -5 meV). If
we take positive detuning energies to compute M, the real and imaginary part of y(E) are mixed,
resulting in sign change for M as a function of electron density. This is due to a spectral blueshift

of the RP resonance.

A simple calculation shows that the magneto-optical signal is proportional to polar Kerr rotation

angle or ellipticity.

T (19 /18 A1 1S (Xby Sinagy+ Yoo sinag_+2)

v U7 /16 =1°" [ Ihax ~ (Xg+ Sina@gy = xg-sinag-) ( )

I(E)
Imax(E)

Here we use —1=Y'(E)=yx"(E)cosay + x'(E) sin ay, and the observation that the

signal from y'(E) sin oy dominates over that from y" (E) cos @, at 1.636 V.

At low magnetic fields, sin @, = sin a,_ for various electron densities, and we have

~ ~ -

Vi (X(r+ - Xér—) ATT ,
M~ o0~ oy s 20 /o ()

Where C = 2/ sin a,, n is refraction index in the absence of magneto-optical effect and ay,, is the

off-diagonal part of the ac conductivity, which is the leading term in any magneto-optic effects.

The equality in (2) can be found in refs. (59, 60).

11



Fig. S6. Decomposition of fitted Lorentzian spectral profile into real and imaginary parts of the optical
susceptibility and their contribution to signal M. The fitted results for the (A) left and (B) right circularly
polarized reflectance contrast spectra measured at 1T are presented. Additionally, the signal M, which represents
the difference in normalized reflected intensity between o+ light divided by their sum is shown in (C). The
decomposed (D, E) real and (G, H) imaginary parts of the optical susceptibility are shown, along with the
difference over the sum in (F) and (I), respectively. Selected detuning energy, AE = -5 meV (1.636 eV at 1T) is
indicated by black dashed lines in (C, F, I). It is shown that the signal from y'(E) sin @, dominates over that from
X" (E) cos ay at AE = -5 meV (1.636 V).

12



Spin susceptibility from various observables

We extract the spin susceptibility from various observables and compare them to that obtained by

the magneto-optical signal M.

(1) We use AP amplitude difference between o+ polarized reflectance spectra (AAmpyp ;) as a
probe for the electron magnetization. Since the AP resonance arises from the inter-valley exciton-
electron interaction, the AP amplitude in o+ (6—) polarized reflectance spectra is proportional to
spin down (up) electrons in the K’ valley (K valley). To convert the AP amplitude difference to
magnetization M, we use the same method as we use for the magneto-optical signal M. We

introduce a density dependent scaling factor AAmp,p 4+ = A(n) - M. At high fields (9 T in our

study) when the system is fully polarized, the magnetization is known as Mg = % gugn, so that the

2:(AAmpyp + at9T)
gusn '

scaling factor can be extracted A(n) = Fig. S7TA shows the AP amplitude

difference as a function of magnetic field at various electron densities, and we can obtain the spin

susceptibility by a linear fit at each density.

(2) We use exciton/RP Zeeman energy splitting (AEgp + = Egp s+ — Egrps—) as a probe for the
electron magnetization. In a phenomenological model based on a mean-field interaction, excitons
sense the magnetic moment of the electron spins, giving rise to Zeeman energy splitting between
right and left circularly polarized reflectance spectra (32). We exclude to the contribution from the
bare exciton Zeeman energy splitting by subtraction. Again, we use the same method to convert
(AERgp + to magnetization M. Fig. S7B shows the exciton/RP Zeeman energy splitting as a function
of magnetic field at various electron densities, from which we extract the spin susceptibility at

each density.
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Fig. S7. (A) AP amplitude difference and (B) exciton/RP Zeeman energy splitting as a function of magnetic

field at various electron densities.

Fig. S8 shows the spin susceptibility extracted from method (1) & (2), M computed from the
reflection spectra (Fig. 2B in main text) and M measured using a single energy excitation (Fig. 3D
in main text). The results from the different methods are in good agreement with QMC simulations
based on material parameters using the conduction band g factor of 4.3, the dielectric constant, &

=4, and the effective mass of electrons, m; = 0.7m, (the same as we use in Fig. 2B in main text).
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Fig. S8. Reduced spin susceptibility extracted from (A) AP amplitude difference (B) exciton/RP Zeeman energy
splitting (C) M computed from the spectra in a narrow spectral range centered at 1.636 eV and (D) M measured

using a single energy excitation (1.636 eV) at 60 fW incident power on the sample.
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Estimation of the electron temperature and the conduction band g-factor

We plot the normalized M (H) curves at the electron density of 0.30 x 10'? cm™2 under varying
light powers at the base lattice temperature of 16 mK (Fig. S9). From a fit using the Brillouin
function, we estimate the electron temperature with conduction band g-factor of 4.3. The

estimation of the conduction band g-factor is discussed futher below.

Fig. S9. Electron temperature estimation at low density under different incident light powers at the base
lattice temperature of 16 mK. (A) 60 fW, (B) 320 fW, (C) 3.3 pW, and (D) 32 pW. The estimated electron
temperatures are: (A) 80mK, (B) 130 mK, (C) 180 mK, and (D) 350 mK.

To see how electron temperatures change at given lattice temperatures under fixed 60 fW light
power, we plot the M (H) /n curves measured under fixed 60 fW light power as a function magnetic
field, H, within the low-density regime, n < 0.35 x 10'2 cm™. Then, we assumed that for the lattice
temperature, Tiqerice = 300 mK, the electron temperature, T, 1s equal to the lattice temperature.

Then, from a global fit using the Brilluoin function to the M(H)/n curves at six different lattice
temperatures (16 mK, 150 mK, 300 mK, 600mK, 1K, 1.64K), we obtain the g-factor of 4.3 for the

conduction band in the absence of the interaction effects as well as the electron temperatures at
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low lattice temperatures, Tjgerice < 300 mK. We note that at Ty, 0f 150 mK, we obtain Ty,
of 150 mK, indicating that the system cooling power is large enough to minimize the laser induced

heating effect. At Tjg¢tice 0f 16 mK (base temperature), we obtain T, of 80 mK (Fig. S10).

Fig. S10. Estimated electron temperatures at the given lattice temperatures using the Brillouin function
fit.

One may worry the difference between the extracted T, of 80 mK and Tjg¢4ice 0f 16 mK could
be due to an erroneous application of the Brillouin fit in a regime where the system has a propensity
toward some form of magnetic order at low temperature, so that T # Tigerice WOuld rather be
an “effective temperature” taking into account effects of strong magnetic interactions (In this
scenario, Teec > Tigrrice WOuld be more likely indicative of antiferromagnetism, but we consider
in the following the more general case of Ty, different from Tj44ic0). We can rule out such a
scenario by considering the expected evolution of M(H) in the two cases of low temperature
ordered ferromagnetic and antiferromagnetic phases and argue the independent spin picture gives

a better description of the data:

1) If there is a tendency toward ferromagnetism at low temperatures, this would manifest as a
deviation in M (H) from the simple hyperbolic tangent function. For instance, in mean-field theory,
we can write, M o tanh[(H + M(H))/T], and we would find deviations in M (H) from the simple
tanh(H /T). Even above but near the ferromagnetic transition temperature, the hyperbolic tangent

function cannot give a good fit to the magnetization curves. Thus, the high-quality tanh(H /T) fit
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shown in Fig. 2C strongly suggests that the system does not have a tendency toward
ferromagnetism at the currently accessible temperatures. Of course, we cannot rule out

ferromagnetic order at much lower temperatures than those we’ve accessed.

2) If there is a low-temperature tendency toward antiferromagnetism, the curves may remain well-
fitted by tanh(H/T) (at least in mean-field theory, this is indeed the case above the Néel
temperature). However, because the strength of the magnetic interactions is density dependent, the
Néel temperature would also be density dependent. Thus, if the electron temperature we have
accessed is indeed near the Néel temperature, we would expect our extracted electron temperature
to depend on density. However, as shown in Fig. 2C, all the magnetization curves overlap for
different densities (with the same extracted temperature), suggesting that the electron temperature
is essentially density independent. Thus, tendency toward antiferromagnetic order is also unlikely
at the currently accessible temperatures. As in the ferromagnetic case, we cannot rule out

antiferromagnetic order at much lower temperatures.

Determination of umklapp peak energy and widths

The umklapp scattering properties of the exciton are obtained from reflection spectra. The isolation
of the umklapp features proceeds in two steps: We first subtract the fitted RP lineshape for each
electron density (see Fig. S1 and S2 for the fitting procedure). Then, as a second step, we
differentiate the subtracted spectrum with respect to electron density to further highlight the
umklapp feature. The associated lineshape of the subtracted and differentiated spectrum is more
complex than that of the undifferentiated one, and we have thus not attempted to fit it to any
particular model spectrum. Instead, we identify the peak position of the high energy umklapp
resonance via a simple Gaussian fit. Since the residual exciton peak after subtraction is of similar
intensity to the umklapp feature, we defined a density dependent fitting range as shown in Fig.
S11. Each spectrum at a given density is shown with a Gaussian fit in Fig. S12. The extracted

fitting parameters are plotted in Fig. 3C, where the error bars are fitting errors.
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Fig. S11. Range for the Gaussian fitting. Derivatives of reflectance contrast with respect to electron density,
with Lorentzian-fitted exciton peak subtracted. Black dashed lines mark the range for umklapp peak Gaussian

fitting.
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Fig. S12. Gaussian fitting to the subtracted and differentiated spectrum. Blue dots are experimental data. Red
curves are gaussian fits. Light gray shades mark the energy range excluded for fitting. The title of each figure is

electron density in the unit of 10'> cm™.

20



Anomalies in the main excitonic properties

Near the density of n, = 0.9x10'? cm™, a noticeable discontinuity of the exciton/RP resonance
energy with respect to electron density, dEy/dn is observed, signifying a change in the slope of
the exciton/RP resonance energy. A pronounced decrease in the oscillator strength is also observed

near n,.

Fig. S13. Anomalies near n.. (A) Derivatives of the exciton/RP resonance energy with respect to electron density
at 3T and 5T for left circularly polarized light. (B) Oscillator strength of the exciton/RP resonance at 3T and 5T
for right circularly polarized light. Reflectance contrast spectra measurements were performed under a light power

of 0.7 nW at a base lattice temperature of 16 mK.
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Spin susceptibility as a function of electron density at different temperatures

Fig. S14. Reduced spin susceptibility, the same data as shown in Fig. 3D of the main text. (A-F) The Curie
susceptibilities in the Wigner crystal regime are indicated by gray dashed lines. The spin susceptibility between
nwc and n, aligns well with the colored dashed lines, representing intermediate density ranges that follow the
lever rule. However, notable deviations from this linear behavior are observed in the vicinity of ny,¢ and n,,
signifying interface effects between the crystal and liquid regions. The boundaries of these density ranges are
delineated by black vertical dashed lines, with these regions further emphasized by black arrows. The density
ranges are quantified by the error bars in Fig. 4 of the main text. At low temperatures (A, B), the deviations from
the lever rule in the intermediate density ranges become less discernible as the width of the coexistence region

diminishes due to the Pomeranchuk effect.
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Estimation of electron temperature for the reflectance measurements

In Fig. 3, A to C of the main text, the reflectance contrast spectra were obtained by illuminating
the sample with a light power of 70 pW at the base lattice temperature. We use exciton/RP Zeeman
energy splitting (AEgp 4+ = Erp s+ — Erps-) to extract the electron magnetization and estimate

the electron temperature from a fit using the Brillouin function.

AEgp+ — AERp 4 (AEQp . is bare exciton Zeeman splitting at zero doping) is obtained from the
reflectance spectra and we plot it as a function magnetic field at the electron density of 0.49 x 10'?
cm (Fig. S15). We fit the data using the Brillouin function with g-factor of 4.3, which is obtained
from the M(H) curves in the low electron density regime (Fig. 2C in the main text). Estimated
electron temperature is 400 mK. We thus mark nyc(7T) and n,(T), determined by reflectance

contrast spectra, at 400 mK in (n, 7) phase diagram in Fig. 4 in the main text.

Fig. S15. Estimation of electron temperature from RP energy splitting. We plot AEpp . — AE| ,?P'J_r as a function
of magnetic field for an electron density of 0.49x10'> cm™. By using Brillouin function fit, we estimate the

electron temperature for the reflectance measurements.
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Temperature evolution of the crystal-liquid coexistence

We calculate the temperature evolution of the crystal-liquid coexistence phase from a Maxwell
construction. Macroscopic phase separation is forbidden in this system — either for a system with
pure Coulomb interactions or with dipolar interactions owing to the presence of a gate electrode.
However, if the distance from 2DEG to the gate electrode is sufficiently large (see Eq. 5 in ref (1)),
the size of the coexisting crystal/liquid regions is big enough such that surface tension between the
regions can be neglected. In this case, a Maxwell construction still determines the extent of the
coexistence phase, although not its meso/nano-scale structure. The assumption of large coexisting
crystal and liquid regions is consistent with the approximate lever-rule behavior of spin

susceptibility reported in the main text.

Consider coexistence between a Wigner crystal with density ny,. and and liquid with density n;.
The densities of individual phases are related to the average density according to n =
(1 — x)nyc + xn;, where 1 — x is the areal fraction of the system that is crystal and x is the
fraction that is liquid. In our system, charge neutrality is maintained by the gate electrode. We
assume a large compressibility of the charges in the gate, implying the associated contribution to
the capacitance can be neglected with respect to geometric capacitance of the system. Thus the
gate is modeled by purely via its geometric capacitance. The free-energy density of the mixture
(ignoring surface tension between regions) is given by

e?n?,c
2C

e?n?
2C

f=0-x) [fwc(nwc) + ] +x [fL(nL) + ] (1)

where fi,c and f; are the respective free-energy densities of the crystal and liquid phases. The
second term in each of the square brackets is the capacitor energy, where the capacitance per unit
area is C = ¢/(4nd), with d the distance to the gate and ¢ the dielectric constant of the
environment. The densities ny, and n; are determined by minimizing the free-energy (1) with

respect to ny, ¢ and n;. This yields

ny _ fiw)—fwe(rwe) @)

nwc
+—=pu +
Hwc C Hu T S

where the chemical potential is 4 = df/0dn.
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To study the evolution of phase coexistence at low temperatures we separate the free energies of
the two phases into a T = 0 part, €/, (n), and a finite temperature correction. For the T = 0
contribution we use the parametrized energies from quantum Monte Carlo simulation result (35).
For temperatures larger than the exchange interaction energy between localized Wigner crystal
electrons, the finite temperature contribution to the free-energy in the crystal phase is due to the
large spin entropy Sy = nln2. We thus approximate the free-energy of the crystal phase by
fwe(m) = €yyc(n) — nT In 2. For a Fermi liquid, on the other hand, the entropy is expected to be
suppressed Sg; « T/Ep, with Ep the (renormalized) Fermi energy. Thus, for T < Ef it is
reasonable to approximate the liquid state free-energy just by the zero-temperature energy,

f.(n) = €,(n). With these approximations we then numerically solve Egs. (2).

The results of the calculation are summarized in Fig. S16. The magnitude of the Pomeranchuk
effect, that is, the slope of the phase boundary with temperature, is comparable to what we observe
in experiment (Fig. S16, left panel). As can be seen from the right panel of Fig. S16, we also find
the width of the coexistence region increases with increasing temperature, consistent with the
experiment. Thus, while the density range over which coexistence occurs is underestimated as
compared to the experiment, our calculations suggest the qualitative behavior of the intermediate

phase observed in experiment is well captured by a mixed-phase description.
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Fig. S16. Left, Densities ny,¢,,(T) delimiting the two-phase coexistence region as obtained from a Maxwell
construction. The rightward slope of the curves is consistent with enhanced spin entropy of the crystal phase
(Pomeranchuk effect, see text). The width of the coexistence region is not visible on the scale of this plot. Right:
Zoom in on the coexistence region. The dashed line shows the analytic approximation to the width of the
coexistence region described in the text. Parameters used in the Fig. S16 are m; = 0.7mg, € =4.6, and d= 15 nm.

The effect of gate electrode is modelled by its geometric capacitance (see text).

To get an analytical handle on the evolution of the coexistence region, it is instructive to make a
quadratic approximation to the free-energy in the vicinity of the density n. (= (ny¢ +n.)/2)

where the zero-temperature energy curves of the two phases cross. We write
1 2
fwe() = fo + pwe(n —ne) + S awc(n - n)? —nTln2 + ;_an 3)

A = fo+ m—no) +1a,(n—n)? + Sn? )

where awc/, = d*eycs,(n)/dn® evaluated at n = n, and fy = fyc(n, T = 0) = f,(n,).
Writing the mixed-phase free energy as in Eq. (1) and minimizing with respect to the ny,. and n;,

yields

ap+e2/C /6u?+2A08a

awcte?/C

S +e2/C \/5u?+2A8
ny = n — ok |Swere/Cyhuaids (©)

ap+e?/C
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where Su = pyec—TIn2 —py; > 0and da = ayc — a; > 0. The former inequality is required
for the liquid phase to be favorable at higher densities, while the latter is obtained from QMC
results (35). We have also defined A = n,.T In 2. From these results we make a low-7 expansion

of the width of the coexistence region:

Sn = n, —nye ~ on(T = 0) + [nc(awc—aL)—(uwc—ur)]1n 2 T 7

Vawc@L(uwe—nL)

Where @y ¢ = ayc + e%/C and @, = a; + e%/C. From the QMC parameterizations we find
ne(awe — ay) — (Uwe — 1) > 0, so that the coexistence regions indeed widens upon increasing
T. We note that the difference of compressibilities between the crystal and liquid phases is crucial
to reproduce the experimentally observed dependence of the coexistence region’s width on

temperature.

Spin polarization of the 2DEG from quantum Monte Carlo

To determine the theoretical evolution of the electronic spin polarization in an applied magnetic
field H (Fig. 2A), we have utilized existing QMC parametrizations of the ground state energy of
the 2DEG as a function of density (n) and polarization ¢. Ignoring orbital effects, which are small

for the densities and magnetic field strengths under consideration, we write the energy per particle
of the 2DEG in a magnetic field as E(n,{,H) = E(n,{,H = 0) — %g,uB(H, and obtain the spin

polarization by minimizing the energy: dE(n, {, H) /d{ = 0, which determines { (H). The function
E(n,{,H = 0) was previously parametrized by fitting to QMC simulations (35).
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Fig. S17. Spin polarization of the 2DEG from quantum Monte Carlo. (A) Energy per particle of the 2DEG in
a magnetic field as a function of spin polarization at various fields and electron density 1.8x10'2 cm™. Square
markers indicate the spin polarization at minimum energy for each field. (B) Spin polarization of the 2DEG,

determined by minimizing energy as in (A), as a function of magnetic field at electron density 1.8x10'? cm™,

28



Fig. S18: Phase diagram as a function of electron density and temperature. The gray dashed line indicates
the density-dependent Fermi temperature of the non-interacting 2DEG, which is divided by a factor of 40 to align

with the temperature scale of the phase diagram.
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