
MIREncoder: Multi-modal IR-based Pretrained Embeddings for
Performance Optimizations

Akash Dutta
Iowa State University
Ames, Iowa, USA
adutta@iastate.edu

Ali Jannesari
Iowa State University
Ames, Iowa, USA

jannesar@iastate.edu

Abstract
One of the primary areas of interest in High Performance Com-
puting is the improvement of performance of parallel workloads.
Nowadays, compilable source code-based optimization tasks that
employ deep learning often exploit LLVM Intermediate Represen-
tations (IRs) for extracting features from source code. Most such
works target specific tasks, or are designed with a pre-defined set
of heuristics. So far, pre-trained models are rare in this domain, but
the possibilities have been widely discussed. Especially approaches
mimicking large-language models (LLMs) have been proposed. But
these have prohibitively large training costs. In this paper, we pro-
pose MIREncoder, aMulti-modal IR-based Auto-Encoder that can
be pre-trained to generate a learned embedding space to be used
for downstream tasks by machine learning-based approaches. A
multi-modal approach enables us to better extract features from
compilable programs. It allows us to better model code syntax, se-
mantics and structure. For code-based performance optimizations,
these features are very important while making optimization deci-
sions. A pre-trained model/embedding implicitly enables the usage
of transfer learning, and helps move away from task-specific trained
models. Additionally, a pre-trained model used for downstream per-
formance optimization should itself have reduced overhead, and
be easily usable. These considerations have led us to propose a
modeling approach that i) understands code semantics and struc-
ture, ii) enables use of transfer learning, and iii) is small and simple
enough to be easily re-purposed or reused even with low resource
availability. Our evaluations will show that our proposed approach
can outperform the state of the art while reducing overhead.

CCS Concepts
• Computing methodologies→ Parallel computing method-
ologies; Knowledge representation and reasoning; Super-
vised learning by classification; Neural networks;Modeling
methodologies.

Keywords
Pre-training, GNN, Multi-modal Modeling, Performance Optimiza-
tion, Auto-tuning, LLVM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PACT ’24, October 14–16, 2024, Long Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3676895

ACM Reference Format:
Akash Dutta and Ali Jannesari. 2024. MIREncoder: Multi-modal IR-based
Pretrained Embeddings for Performance Optimizations. In International Con-
ference on Parallel Architectures and Compilation Techniques (PACT ’24), Oc-
tober 14–16, 2024, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3656019.3676895

1 Introduction
The complexity, scale, and heterogeneity of HPC hardware has
increased significantly over the past several years improving per-
formance over traditional multi-core systems. However, this has
also opened up new opportunities of performance optimizations.
Performance engineers and application developers devote consid-
erable time in trying to tune and optimize hardware and software
knobs. However, it is extremely difficult to adapt to a constantly
changing landscape. Automated techniques are thus necessary to
help optimize performance of HPC applications.
Prior Works. A large chunk of performance gains for parallel ap-
plications come from compiler optimizations, such as those seen
in LLVM and GCC. Although such optimizations are painstakingly
designed, it might not work in all cases due to the variety of appli-
cations seen in HPC. In addition to compiler-driven optimizations,
runtime performance tuning by online auto-tuners [7, 42, 50, 58]
also help identify configurations/parameters that might often be
non-intuitive. Although this improves performance, it comes with
significant tuning overhead.

Machine learning (ML) based techniques have also been widely
used for such performance optimizations. Several works have used
ML to model handcrafted features for specific tasks[1, 7, 13, 30, 43].
These handcrafted features are not universal and might not be suit-
able for other optimization tasks. To overcome these shortcomings,
studies based on code representational learning were proposed.
Most of these works proposed a means of representing source
code in a way understandable by machine learning models. Various
works[3–5] designed representations on top of source code for tasks
such as variable misuse and method name prediction. However,
such representations put a lot of emphasis on stylistic choices in
source code, are language dependent, thus are not ideal candidates
for performance optimization tasks of compilable source code. Our
proposed approach can, on the other hand, work with multiple
languages as shown later in Section 4.

These aforementioned representations are also not adept at cap-
turing program dependencies. Thus LLVM IR based approaches
have been proposed. Several works[9, 18, 51, 53] have outlined
IR-based code representations for downstream optimizations. How-
ever, these are dependent on manual design choices and heuristics.
Additionally, these representations usually need complex, resource
intensive modeling techniques for each downstream task and might

https://doi.org/10.1145/3656019.3676895
https://doi.org/10.1145/3656019.3676895

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Akash Dutta and Ali Jannesari

increase the barrier to entry for new researchers. Working with
self-supervised pre-trained models and using transfer learning for
downstream tasks might help alleviate such shortcomings. This is
our aim in this work.

To better represent source code/IRs, we believe modeling both
syntax and semantics are equally important. And modeling each as
separate modalities seems logical. However, representing source
code as each such modality, and re-training from scratch for each
target task adds complexity and increases resource requirements.
Therefore, we propose an IR-based pre-trained encoder for per-
formance optimizations. This allows us to remove dependency on
individual programming languages and target optimizations on
both CPUs and GPUs with the same pre-trained encoder.
Our Contributions. In this paper, we have proposed an IR-based
self-supervised multi-modal pre-training approach (MIREncoder)
with the aim of generating encodings/features for downstream
tasks. Unlike prior code representations, our pipeline is completely
self-supervised and only needs an LLVM IR as input for both pre-
training and target optimization tasks. The IR statements in the
input files are modeled to extract syntactic features during the
pre-training process. This represents the first modality in our pre-
training pipeline. The input IRs are also converted to multi-graphs
that includes data-flow, control-flow, and call-flow information.
This forms the second modality of our approach.

MIREncoder employs three pre-training tasks. The first modality,
or IR statements are pre-trained on the task of Masked Language
Modeling (MLM) with a Transformer based model. MLM is widely
used in pre-training deep learning approaches with code or text
generation capabilities. The second modality, or code graphs, are
pre-trained with an auto-encoding task (Graph Auto-Encoder),
where the aim is for a Graph Neural Network (GNN) based model to
reconstruct the input graph. To the best of our knowledge, this study
is the first to pre-train a multi-modal encoder using Transformers
and GNNs to model individual modalities for parallel code. We
also propose a new pre-training task to link the two modalities. We
design a pre-training task to match the code graphs to the tokenized
IRs (IR-Graph Matching). This allows our pre-trained model to
better understand how the IR text translates to its corresponding
graph, thus implicitly allowing the model to understand and link
the syntactic, semantic, and structural aspects of the input IR.

We will show in later sections that the features/embeddings gen-
erated by our pre-trained model helps us match or outperform the
state-of-the-art task specific approaches. Our MIREncoder-based
embeddings lead to accuracy of upto ≈ 94% for CPU/GPU device
mapping, speedups of upto 1.3×, 1.32×, ≈ 3× on thread coarsen-
ing, loop vectorization, and OpenMP paramter tuning tasks. Our
predictions also reduce error rates by upto ≈ 40% and ≈ 70% over
the state of the art for NUMA/Prefetcher optimizations, and tuning
thread block sizes for CUDA code respectively.

To summarize, the contributions of this works are as follows:

• A multi-modal IR-based pre-training approach for source
code representation.

• A novel pipeline that aims to i) model IRs as streams of lexical
tokens with transformers, and ii) as multi-graphs with GNNs,
to extract and understand syntactic, semantic, and structural
features.

• A novel pre-training task, IR-Graph Matching, to link the
two modalities and help the model relate syntactic, semantic,
and structural features.

• Extensive experimental evaluations on six downstream tasks,
including CPU/GPU devicemapping, thread coarsening, loop
vectorization, OpenMP parameter tuning, NUMA/ Prefetcher
optimization, and tuning CUDA code with thread blocks,
with superior results over state of the art.

• Analysis of the importance of each modality and the over-
heads of our pipeline.

2 Background
In this section, we briefly describe the topics relevant to this work.

2.1 Code Representations and Deep Learning
Recently, representation learning has been widely used for code
modeling tasks. Several prior works have represented programs as
a sequence of lexical tokens. However, this fails to capture program
structure. To overcome this, syntax as well as semantics based
representations have been proposed [2, 3, 9, 11, 21, 33, 41, 46, 51]
that aim to extract and understand code structure as well.

PROGRAML [18] is such an IR-based code representation tool that
can model code flow information along with the code structure as
multi-graphs. Each multi-graph has a vertex for instruction and
control-flow edges between them. Data flow is represented by in-
cluding separate vertices for variables and constants and associated
data-flow edges to instructions. Call flow is represented by edges
between callee functions and caller instruction vertices. We use
PROGRAML to extract data, control, and call flow graphs from IRs.

2.2 Multimodal Deep Learning
Multi-modal learning relates information from multiple sources
towards a common goal [37]. If a task can be represented in multiple
ways, it can be assigned as multi-modal, with each representation
defined as a unique modality. Multi-modal learning has been mostly
applied to audio and video analysis, speech synthesis, and gesture
recognition tasks [48]. For example, in image and video description
tasks, the visual content and associated textual description can be
considered different modalities of the same problem.

We take inspiration from these ideas and apply it to the task of
code representation. A sequential and graphical code representation
has been used to represent different modalities of the same piece
of code. High-level embeddings obtained from each pre-trained
modality are combined and associated to generate the feature space
for downstream tasks.

Multi-modal Pre-trained Models. The remarkable success of pre-
trained models in NLP has driven the development of multi-modal
pre-trained model that learns implicit alignment between inputs
of different modalities. These models are typically learned from
bimodal data, such as pairs of language-image or pairs of language
video, for example, ViLBERT[34]. Similarly, VideoBERT[49] learns
from language-video data and is trained by video and text masked
token prediction. With respect to pre-trained models targeting pro-
gramming languages, CodeBERT[27] was trained on bimodal data
with natural language and programming language pairs. Code com-
ment and source code pairs were used for pre-training. However,

MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Tokenizer Sub-word
Embedding

IR
Embedding

GNN

MLM

IR-Graph
Matching

GAE

Downstream
Tasks

…

LLVM IRs
Flow Graphs

Edge Type

Node Embeddings

Modality 1

Modality 2

Figure 1: MIREncoder: Overview of our Multi-modal pre-training approach with two modalities using Masked Language
Modeling (MLM), Graph Auto-Encoder(GAE), and IR-Graph Matching as pre-training tasks.

our work is different from these prior works, as we aim to only work
with source code, and we consider two ways of representing code as
separate modalities. Also, unlike prior pre-trained works, we only
work with compilable code with a focus on generating features for
performance optimization, rather than code generation.

3 MIREncoder
Most source-code based performance optimization tasks in HPC
usually involve compilable languages such as C, C++, CUDA, and
so on. A large number of these languages can be compiled and
optimized using the LLVM infrastructure. LLVM IRs are a portable,
high-level assembly language that can be optimized with a variety
of transformations over multiple passes. It is fairly simple to extract
IRs from source code such as C, C++. IRs generated from source
code are usually devoid of most stylistic choices and redundant
code. This is why we choose to work with IRs for performance op-
timizations. Figure 1 shows a high-level overview of our approach.
For the first modality, we first tokenize the input IRs into meaning-
ful “tokens" before they are mapped to an embedded dimension.
Our approach then learns the embedding of the IR instructions
after splitting them into sub-words. For the second modality, the
IRs are first converted to dependence graphs that include in them
data flow, control flow, and call flow information that represents
the semantic information in the source code. These two modalities
are then passed into the modeling pipeline either for pre-training
or inference. The following paragraphs outline our pipeline.

3.1 Tokenization
Simply put, tokenization is the process of breaking down a piece
of text into smaller units called tokens, and assigning a numerical
value to each token. A deep learning (DL) model does not under-
stand text or images in its raw form. It needs to be represented
as numbers for the model to make sense from it. This is why tok-
enization is extremely important for such works. In this paper, our
tokenization process follows the same approach taken while design-
ing and training the BERT[23] model. However, the pre-trained BERT
tokenizer readily available online is trained on natural language

(NL). However, source code (IRs in our paper) is more structured
than NL, and quite possibly has fewer “words". Thus, we had to
train our tokenizer from scratch. We initially collect a large set of
IRs by compiling programs in existing datasets into their LLVM
IRs. For training the tokenizer, we have used C, C++, and CUDA
code from CodeNet[39], HPCorpus [31], and LS-CAT[10]. We first
define a set of special tokens to handle unknown inputs, and a
token that will be used during Masked Language Modeling. 10, 000
unique programs are randomly selected and compiled into LLVM
IRs. These are then passed through a WordPiece[59] tokenizer, as
done in BERT, and trained to generate a learned vocabulary. BERT
uses a sequence length of 512. However, for the sake of simplicity
and faster training, we limit the sequence length for each encoded
IR statement to 64. Increasing the sequence length might improve
results, but the aim of our work is to extract features from IRs,
rather than have code generation capabilities. Thus, such an ap-
proach might be sufficient for performance optimization tasks, as
we will show later. Pros

Sample IR:

%"class.std::ios_base" = type { i32 (...)**, i64, i32, i32, i32, i64, i64,
%"struct.std::ios_base::_Iosarray"*, %"struct.std::ios_base::_Fnarray"*, %"class.std::locale"* }
Encoded IR:
[1, 9, 6, 114, 18, 108, 30, 30, 251, 41, 174, 6, 33, 273, 68, 124, 12, 18, 18, 18, 13, 14, 14, 16, 127, 16, 124, 16, 124, 16,
124, 16, 127, 16, 127, 16, 9, 6, 253, 18, 108, 30, 30, 251, 41, 174, 30, 30, 41, 2257, 6, 14, 16, 9, 6, 253, 18, 108, 30,
30, 251, 41, 174, 30, 30, 41, 2258, 6, 14, 16, 9, 6, 114, 18, 108, 30, 30, 237, 6, 14, 70, 2]

Decoded IR:
['[CLS]', '%', '"', 'class', '.', 'std', ':', ':', 'ios', '_', 'base', '"', '=', 'type', '{', 'i32', '(', '.', '.', '.', ')', '*', '*', ',',
'i64', ',', 'i32', ',', 'i32', ',', 'i32', ',', 'i64', ',', 'i64', ',', '%', '"', 'struct', '.', 'std', ':', ':', 'ios', '_', 'base', ':',
':', '_', 'iosarray', '"', '*', ',', '%', '"', 'struct', '.', 'std', ':', ':', 'ios', '_', 'base', ':', ':', '_', 'fnarray', '"', '*', ',',
'%', '"', 'class', '.', 'std', ':', ':', 'locale', '"', '*', '}', '[SEP]']

Figure 2: Example showing encoding and decoding with the
MIREncoder tokenizer.

In Figure 2, we show an example of the tokenization process with
our trained tokenizer. For this example, we select an IR statement
from a file that was not used to train the tokenizer. We feed the
statement to the tokenizer, which outputs a sequence of numbers
(input ids). This is what a DL model will work with. To show that
the encoding is correct, we decode the tokenized input ids to show

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Akash Dutta and Ali Jannesari

that it is exactly the same as the given IR input, with a few minor
but important differences. As shown in Figure 2, the outputs are in
array format, as the tokenizer decodes each input id individually.
The array includes a ‘[CLS]’ and a ‘[SEP]’ token at each end. The
‘[CLS]’ token is used to denote the class of the input, if applicable,
and the ‘[SEP]’ token is used to separate two statements in the
same input. The upper case alphabets in the inputs have also been
converted to lower case to make the sequences case-insensitive.
If we remove the first and last tokens in the array, and join the
elements, we end up with the same output as the input, which
shows the success of our tokenizer training process.

3.2 Graph Generation and Pre-Processing
Several works ([2, 3, 9, 11, 21, 33, 41, 46]) have outlined that simply
looking at source code as a stream of lexical tokens is not sufficient
to represent code. Modeling IRs only as stream of tokens does not
provide enough details about the structural properties of the pro-
gram. Code structure can highlight dependencies in source code. It
can show the flow of execution in source code, or can also show
dependencies between variables. Given that such dependencies are
sparse in nature, a graph seems to be an appropriate data structure
to represent such structure and dependencies. The dependencies
also highlight the meaning of a source code. The sequence of exe-
cution or the control flow, how the variables are dependent on each
other or the data flow and the function call stack in a program are
indicators of the underlying semantics of source code.

m
a
in

[e
xt
e
rn
a
l]

a
llo
ca

i3
2

st
o
re

st
o
re

re
t

i3
2

st
o
re

i3
2

a
llo
ca

a
llo
ca

a
llo
ca

st
o
re

i3
2
*

i3
2
*

i3
2
*

i3
2
*

i3
2
*

i3
2
*

i3
2
*

1

1 1

lo
a
d

1 lo
a
d

i3
2

a
d
d

i3
2

st
o
re

i3
2

1

1

Figure 3: Example of code graphs used in this study. This is a
graph for a simple program adding two numbers.

Prior literature [24, 26, 52] has used such structural and semantic
information to good effect. We build on these ideas and work with
graphs generated from IRs as the second modality. These graphs are
generated with a tool called PROGRAML[18]. The generated multi-
graphs contain data-flow, control-flow, and call-flow dependencies
in them. During pre-training, these graphs allow our model to
extract semantic and structural features from source code (IRs).
This is necessary as code structure and semantics should dictate
the performance of an application/kernel. An example of such a
graph is shown in Figure 3.

The nodes in our generated graphs (example shown in Figure 3)
contain IR statements. These form the node features in our graphs.

Node features are used by Graph Neural Networks (GNNs) in for-
ward and backward propagation during training. However, DL
models cannot use such statements directly. Therefore, we use the
trained tokenizer described in Section 3.1 to convert the IR state-
ments into sequence of numbers. These become the node features
and are used in the pre-training process by the GNN layers.

3.3 Pre-Training MIREncoder
In this section we outline the pre-training process of MIREncoder.
The quality of a pre-trained model usually depends on the pre-
training tasks considered. For this work, we have used three pre-
training tasks; one task that targets each modality, and another one
that is used to explicitly link together the two modalities. Namely,
the pre-training tasks are Masked Language Modeling, Graph Auto-
Encoding, and IR Code-Graph Matching.

3.3.1 Masked Language Modeling. Masked Language Modeling
(MLM) is a widely used pre-training task in natural language based
pre-trained models. It is also commonly used as a pre-training task
in studies working with programming languages such as CodeBERT
[27].

MLM for this paper can be defined as follows. Given an IR state-
ment 𝑐 as input, we select a random set of positions𝑚𝑐 that will be
masked out; i.e. replaced with the ‘[MASK’] token. Following ideas
presented in [23, 27], we mask out 15% of the input. The task in this
pre-training step is for the model to successfully predict the masked
out words from the adjoining context. This is a self-supervised ap-
proach as the model is expected to produce the correct outputs
without any explicit labels. Throughout the training process, the
model is updated based on the difference between the predicted
words and the actual words in the statements.

However, it is worth noting that the ‘[MASK]’ token does not
appear during the downstream tasks. To overcome this, as done in
[23], we perform the following steps:

• Select 15% of the token positions at random.
• Randomly replace 80% of the selected positions with the
‘[MASK]’ token.

• Replace 10% of the selected positions with a random token.
• Keep the token unchanged for the remaining cases.

These steps help the model learn the meaning of a word in the
context of a statement, and not assign a single meaning to a word.
Also, not including the ‘[MASK]’ token in each statement during
pre-training ensures that the model does not always expect that
token. For this pre-training task, we use transformer layers with
attention mechanism for improved training.

3.3.2 Graph Auto-Encoding. Graph Auto-Encoders (GAEs) like tra-
ditional auto-encoders also aim to reconstruct the given inputs. The
aim of this pre-training task is for the model to produce a learned
low-dimensional embedded representation from the IR graphs dur-
ing the downstream tasks. During pre-training, our model setup
follows the widely used encode-code-decode setup. An input graph is
first fed through GNN layers (Graph Convolution Layers or GCN) to
produce node embeddings in a two-dimensional latent space. This
forms the encoder part of the network. In the decoder part of the net-
work, the aim is to reconstruct the graph from the low-dimensional
encoded form. The aim is not to reconstruct the original nodes, but

MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations PACT ’24, October 14–16, 2024, Long Beach, CA, USA

to reconstruct the adjacency matrix identical to the input graph
through an inner product between latent variables in order to un-
derstand the structure of the graphs.

Now the multi-graphs used in this study have three sub-graphs
in them denoting control-flow graphs, data-flow graphs, and call-
flow graphs. However, it is quite difficult to auto-encode graphs
with multiple edge types. Therefore, we tweak the training process
slightly by extracting each sub-graph from the IR multi-graph, and
train the auto-encoder for each of the three sub-graphs. But, we do
not train the model thrice. The modeling and the loss calculation
phases are updated to work with the node features and adjacency
matrices of each sub-graph. The loss is back-propagated as an
aggregation of the difference in graph reconstruction of each sub-
graph. There are twomain benefits to this: i) calculating the loss and
back-propagating over the whole graph instead of each sub-graph
allows the model to improve its learning over the whole graph and
enables it to implicitly learn the relations between the three types
of semantics in the graphs (control-flow, data-flow, call-flow), ii) it
improves overall training time when compared to training three
separate GAEs, one for each sub-graph.

3.3.3 IR-Graph Matching. Here, we propose a novel pre-training
task IR-Graph Matching to link the two modalities together. The
modalities considered in this paper have different data structures,
one being a sequence of tokens, the other being a graph. Intuitively,
it might be difficult for the model to understand how these two
modalities are linked together, and by extension, difficult to link
the syntax and structure.

Therefore, we propose this pre-training task where the aim is
for the model to correctly identify if the code sequence and the
code graphs are from the same IR source. We setup this as a binary
classification task, where the inputs are the code sequences (𝑆) and
the code graphs (𝐺). Positive and negative samples are automatically
generated as data pairs to train themodel. Positive samples are those
where 𝑆 and 𝐺 are from the same IR, while the negative samples
are those where the graphs and sequences are from different IRs.
Negative samples are selected in 50% cases by randomly selecting a
different IR from the dataset. The code graph of the negative sample
is paired with the code sequence to create the negative data pair.

As outlined in Section 3.3.1, the Masked Language Modeling task
is performed on IR statements. However, in this task, we need to
work with whole files to match text in IR files to the corresponding
graphs. Although embedding an IR statement/instruction to a se-
quence of length 64 might work, embedding a complete file with
a large number of statements to a sequence of length 64 will not
provide enough information to the model. Therefore, we embed
each statement in the file, and then aggregate all the vectors. The
aggregated input and the generated code graph with the embedded
node features (Section 3.2) are then trained together as a binary
classification problem. The transformer layers used in Section 3.3.1
and the GCN layers used in Section 3.3.2 are reused to model the
code sequences and the code graphs. Their outputs are concate-
nated and passed through linear layers with binary cross-entropy
used for the loss calculations.

4 Experiments
In this section, we outline the experiments undertaken to show
the strength of our approach. We test our pre-trained model on
six downstream tasks different from each other. For each task, we
work with metrics used in prior works for evaluation. Experimental
setup and evaluation metrics are outlined in more detail in the
corresponding sections.

A few things, however, are common for all experiments. For each
downstream task, the pre-trained model is not fine-tuned. The pre-
trained model is set to inference mode to generate embeddings for
input IRs. A few trainable linear/MLP layers are added to the pre-
trained model to perform task specific training. For downstream
tasks, only these final layers are trained which substantially reduces
the optimization/tuning overhead. In the following sections, we
outline each downstream optimization task performed in this paper,
and compare and contrast our results with the state of the art.

4.1 Heterogeneous Device Mapping
Grewe et al. [28] proposed the device mapping task to map OpenCL
kernels to the CPU or GPU. This task has been widely used[9, 18,
19, 51, 53] to evaluate the performance of code representations. We
also use this task to evaluate the effectiveness of our approach and
compare against the state-of-the-art results.

Dataset. We use the dataset published by Ben-Nun et al. [9] for
this experiment. It has 256 unique OpenCL kernels from seven bench-
mark suites comprising of AMD SDK[6], NPB[8], NVIDIA SDK[17],
Parboil[47], Polybench[38], Rodinia[14, 15] and SHOC[22]. The
data size and workgroup size were varied for each kernel to obtain
a labeled dataset with 670 CPU or GPU-labeled data points for each
of the two devices, AMD Tahiti 7970 and NVIDIA 970.

Baseline.We have compared the results of our approach with
prior works with the same dataset. Prior evaluations were presented
in terms of accuracy and performance improvements (speedups).
We have also adhered to these metrics. For analysing speedups, we
use the same static mapping baseline proposed in [53].

Results.We use our pre-trained model to encode the available
IRs, and perform the classification experiments. The MIREncoder
pipeline is first used to embed each IR statement in a file. The gen-
erated embeddings are then aggregated to encode the first modality.
For the second modality, the IRs are first converted to graphs as out-
lined in Section 3.2, and are fed through the Graph Auto-Encoder
(GAE) layers to encode the graphs. These two sets of embeddings
(sequences of vectors) are passed through three linear/MLP layers
to train and validate the model. As done in prior works, we also
add transfer and workgroup sizes from the dataset to the feature
set before passing the feature set onto the linear layers. Following
techniques used before [18, 51, 53], we have used ten-fold stratified
cross-validation to evaluate our results.

Our experimental setup leads to state-of-the-art results in identi-
fying the correct device. We achieve accuracy of 93.7% and F1-score
of 0.94 in identifying the best device on the NVIDIA GPU. On the
AMD GPU, we achieve accuracy and F1-score of 93.6% and 0.92. We
see that our approach is better or equivalent in all cases compared
to prior works in literature. The accuracies are shown in Table 1,
and the numbers in parenthesis shows the improvement in accuracy
by using MIREncoder over prior works.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Akash Dutta and Ali Jannesari

Table 1: Accuracy: (CPU/GPU) device mapping.

State-of-the-art NVIDIA GPU (%)∗ AMD GPU (%)∗

Grewe et al. [28] 74.56 (25.67) 70.29 (33.16)
DeepTune [19] 80.88 (15.85) 83.24 (12.44)
inst2Vec [9] 82.65 (13.37) 82.35 (13.66)
PROGRAML [18] 80 (17.13) 86.6 (8.08)
IR2Vec [53] 89.68 (4.48) 92.82 (0.84)
Perfograph [51] 90 (4.47) 94 (-0.42)
MIREncoder (ours) 93.7 93.6

∗ Numbers in parenthesis are percentage improvements in accuracy over prior works.

Table 2: Thread Coarsening Factors: Speedups obtained by
prior works. Best speedups are highlighted in bold.

Device DT NCC IV PG ME
AMD Radeon HD 5900 1.1 1.29 1.24 1.19 1.29
AMD Tahiti 7970 1.05 1.07 1.30 1.14 1.30
NVIDIA GTX 480 1.1 0.97 1.25 1.03 1.26
NVIDIA Tesla K20c 0.99 1.01 1.16 1.01 1.16
Average 1.06 1.09 1.23 1.09 1.24

DT=DeepTune, NCC=inst2vec, IV=IR2Vec, PG=Perfograph, ME=MIREncoder (ours)

The model predictions also lead to significant performance im-
provement over static mappings. On the NVIDIA 970 system, our
approach leads to speedups of 1.28× compared to oracle speedups
of 1.34×. The oracle speedups are calculated by analyzing the ex-
ecution time on the best device and comparing it to the static
mapping baseline. On the AMD Tahiti system, our predictions lead
to speedups of 2.24× versus oracle speedups of 2.39×.

4.2 Thread Coarsening
Thread coarsening[54] is used to increase the work done by a single
thread by fusing two or more concurrent threads. Thread coars-
ening factor (TCF) corresponds to the number of threads that can
be fused together. Selection of an optimal TCF can lead to sub-
stantial improvement[36] in performance on GPU devices and a
naive coarsening could lead to slowdown. Due to differences in
architectural characteristics across devices, a TCF that gives the
best speedup on one GPU might show degraded performance on
another GPU[35, 45]. As an example, nbody kernel has a higher
degree of Instruction Level Parallelism and can be better exploited
by VLIW-based AMD Radeon than SIMD-based AMD Tahiti[35].

Dataset. In this experiment, we follow the experimental setup
proposed in [35] and reused in [53] to predict the best thread coars-
ening factor from {1, 2, 4, 8, 16, 32}. We use the dataset provided
in [9], which consists of 68 data points from 17 OpenCL kernels
on 4 different GPUs, namely AMD Radeon 5900, AMD Tahiti 7970,
NVIDIA GTX 480, and NVIDIA Tesla K20c. These include kernels
from AMD SDK[6], NVIDIA SDK[17] and Parboil[47] benchmarks.

Baseline. As done in prior works[51, 53], we evaluate the predic-
tions from ourmodel in terms of performance improvement/speedups
over default coarsening behavior. The results from our approach
has been compared against prior works on this dataset.

Results. For this experiment, we pass the input IRs through
our pre-trained encoder as before to generate the embeddings. The

Table 3: Speedups: Improvements in runtime over LLVM
vectorization. LLVM vectorization speedups are always 1.0×.

LLVM Neurovectorizer MIREncoder (ours)
1.0× 1.22× 1.32×

embeddings are then passed through linear layers to train and
validate the best thread coarsening factors. Similar to prior works
on this task, we also perform leave-one-out cross validation and
report the geometric mean speedups across all folds in Table 2. We
observe that our approach performs better in all cases. In Table 2,
speedups are presented for each device included in the dataset.

4.3 Loop Vectorization
Modern compilers can automatically detect when loops should be
vectorized so that multiple iterations of the loop can be performed
together. When compilers vectorize loops, it must determine the
number of instructions to pack together and the interleaving level
(stride). This task was proposed in [29] as a potential candidate for
DL-based optimization. Modern compilers allow users to select and
define the vectorization factor (VF) and interleave factor (IF) to con-
trol the loop vectorization process. However, manually evaluating
and testing all possible combinations might not be feasible, espe-
cially for a large number of applications. To this end, we propose a
MIREncoder-based static loop vectorizer.

Dataset. We define a search space based on ideas in [29] by
considering pairs of VF and IF and execute them to create a dataset.
Their definitions are given below in Equation 1,

𝑉𝐹 ∈ [20, 21, ... 𝑀𝐴𝑋_𝑉𝐹],
𝐼 𝐹 ∈ [20, 21, ... 𝑀𝐴𝑋_𝐼𝐹],

(1)

where we setMAX_VF andMAX_IF to 64 and 16 for the architecture
under test (Intel Skylake). We reuse the set of kernels collected in
[29] and execute them with each (VF, IF) pair to create a dataset
of kernels, (VF, IF) pairs, and their runtimes. The training and
testing set were defined separately in [29] and we follow the same
setup here as well. Overall, we collect more than 273𝐾 samples for
training. We label the kernels with the best (VF, IR) pair by selecting
the vectorization/interleave factor with the fastest runtime. For the
test set, we perform the same steps to create the test set.

Baseline. For this experiment, we select the default LLVM Loop
Vectorizer as a baseline and evaluate the predicted performance
with respect to this.We compare ourworkwith Neurovectorizer[29].
This paper first proposed this task as suitable for DL-based tuning.
They used inst2vec[9] embeddings with reinforcement learning
for their experiments.

Results.We follow the same steps as before in this experiment as
well. We pass the IRs through the pre-trained model to generate the
embeddings. The embeddings are then passed through the trainable
MLP layers to train and test the model. Both vectorization factor
and interleave factor can be varied during compilation. Therefore,
we depend only on the compiled IR for training and testing. We
train our model on the training data collected on our Intel Skylake
server, and test it on the collected test set. From our experiments we
see that MIREncoder-based vectorization leads to mean speedups
of ≈ 1.32× over LLVM vectorization heuristics. We repeat the same

MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Table 4: Search space for tuning OpenMP parameters.

Parameter Name Parameter Values
Power Limits 75W, 100W, 120W, 150W
Number of threads 1, 4, 8, 16, 32, 64
Scheduling Policy STATIC, DYNAMIC, GUIDED
Chunk Sizes 1, 8, 32, 64, 128, 256, 512

experiments as done in [29] on the same Skylake server and observe
that using Neurovectorizer leads to speedups of ≈ 1.22× across
all kernels in the test set (Table 3).

4.4 Tuning OpenMP Runtime Configurations
OpenMP is one of the most widely used shared memory program-
ming models. It is mostly used to parallelize sequential code by
inserting pragmas. Dutta et al. in [26], proposed a GNN-based tuner
(PnP Tuner) for identifying the best OpenMP parameters for improv-
ing performance. They also used power limits to increase the size of
the search space and evaluate the impact that limiting power has
on OpenMP applications. We build on ideas presented in that paper
to set up our own tuner based on MIREncoder.

Dataset. As in [26], we work with 25 applications from the
Polybench benchmark suite. We define the search space as done
in [26] (Table 4) with 504 configurations. We also modify the data
sizes used to run these applications by changing compile time
options provided by the benchmark suite. We use two input sizes
for the purposes of evaluation. For each application, input size,
and parameter set (power limit, # of threads, schedule, chunk) we
compile and execute the application to collect the runtimes and
generate a dataset of 25200 samples. We also collect the runtimes for
each of these applications when run with default OpenMP settings
(all threads, static scheduling, compiler defined chunk sizes) at
Thermal Design Power (TDP). We collect this data on a 64-core Intel
Skylake system with a TDP of 150𝑊 .

Baseline. The metric of choice for evaluating the performance
of our MIREncoder-based tuner is speedups as done in [26]. We
calculate the speedups with the default OpenMP configurations at
TDP as the baseline and compare the performance of our predicted
configurations with those predicted by the PnP tuner, the current
state-of-the-art for this experiment. In fact, PnP tuner also works
with graphs generated from IRs. Their approach, like ours, also
aims to model control and data flow in a program with the help
of GNNs. PnP tuner uses RGCN (Relational Graph Convolutional
Networks) as the GNNs of choice.

Results. Following the approach in [26], for this set of experi-
ments we consider application speedups instead of performance
improvement of individual OpenMP loops. Also, the OpenMP param-
eters were modified at runtime. Thereby, all OpenMP loops in an
application were run with the same set of parameters. The modeling
process used in this experiment is also similar to the ones used in
previous sections. For validation, we perform leave-one-out valida-
tion as done in [26]. Each application is assigned to the test set, while
all other applications are assigned to the training set. We repeat
this for all applications in the dataset. Based on our experiments,
we find that the tuner designed with MIREncoder embeddings has

0
0.5
1

1.5
2

2.5
3

3.5
4

sy
rk

fd
td
-2
d

ja
co

bi
-2
d

do
itg

en
se

id
el
-2
d

at
ax

co
va

ria
nc

e
tr
is
ol
v

co
nv

ol
ut
io
n-
2d

2m
m

bi
cg

ge
su

m
m
v

ge
m
ve

r
fd
td
-a
pm

l
du

rb
in

sy
m
m ad
i

gr
am

sc
hm

id
t

sy
r2
k

co
rr
el
at
io
n

m
vt

ch
ol
es

ky lu
tr
m
m

ge
m
m

Sp
ee

du
ps

Applications

Pnp MIREncoder Oracle

Figure 4: Auto-tuning power limits and runtime parameters
for OpenMP applications (Higher is better).

better or equivalent performance to PnP tuner. It is able to iden-
tify configurations that lead to faster code execution in most cases,
sometimes improving runtime performance by ≈ 3×. Identifying
such configurations are often non-intuitive, and identifying such
simple runtime parameters can help improve the performance of
parallel applications. Across 25 applications, MIREncoder embed-
dings helps our tuner reach near-optimum performance (> 0.9×
of oracle runtimes) in 16 cases out of 25. In comparison, PnP tuner
only reaches such performance in 11 out of 25 cases. Additionally,
the configurations predicted by our tuner lead to slowdowns in only
one case. In contrast, PnP leads to slowdowns in six cases. Overall,
the MIREncoder-based tuner outperforms the PnP tuner in 22 out
of 25 cases.

4.5 Optimizing NUMA/Prefetcher Parameters
TehraniJamsaz et al. in [52] proposed a novel GNN-based LLVM IR
modeling technique for optimizing NUMA (Non-Uniform Memory
Access) and Prefetcher configurations. In particular, this work built
on top of prior works[43] to explore the impact of various cache
prefetching options along with NUMA-related hardware param-
eters such as number of threads, degree of NUMA node, thread
mapping and page mapping. The authors used graph embeddings
generated from LLVM IRs to statically map each kernel to the best
NUMA/prefetcher configuration.

Dataset. In [52], the authors used data from 57 parallel kernels
from Rodinia[14, 15], NAS Parallel Benchmarks[8, 44], CLOMP[12],
and LULESH[32]. The data was collected on Intel SandyBridge
and Intel Skylake processors on a search space with 288 and 320
configurations respectively. This dataset was pared down to 13
configurations as the authors found that 99% of the performance
gains were obtained using these 13 configurations. To increase the
quality of their code modeling and improve results, TehraniJam-
saz et al. augmented the dataset by re-compiling the kernels in
the dataset with 1000 different compiler sequences. We use this
collected dataset to further test the strength of our approach.

Baseline. In this study, we are using a pre-trained model to
generate the embeddings for each IR. In addition to testing the
quality of optimizations made by our MIREncoder embeddings, we

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Akash Dutta and Ali Jannesari

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

Er
ro
r R

at
e

Fold #

Tehrani et al. Perfograph MIREncoder

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

Er
ro
r R

at
e

Fold #

Tehrani et al. Perfograph MIREncoder

a)SandyBridge b) Skylake

Figure 5: Error rates for predicting NUMA and prefetcher configurations for parallel code regions (lower is better).

also use this experiment to highlight reduced data requirements
when a pre-trained model is used to generate features. Transfer
learning allows us to achieve this as MIREncoder generates learned
embeddings, thus implicitly transferring its knowledge to the tuner.
Therefore, during training we only use ≈ 5% of the complete dataset
for training. During validation and testing, the authors in [51, 52]
used 10-fold validation. We also use the same folds for our tests
and compare the results from MIREncoder with the state of the
art[51, 52] in this dataset. As with prior works on this task, we
also use error rate (relative difference between best and predicted
performance) as the evaluation metric.

Results. To perform 10-fold validation, we first separate the vali-
dation set from the training set by assigning the kernels specified in
each fold to the validation set. During training, we only select ≈ 5%
of the IRs in the dataset at random for the kernels in the training set.
However, we validate on all IRs corresponding to the kernels in the
validation set. Training with such reduced data also produces good
results as we can leverage transfer learning from our pre-trained
model to generate embeddings for the IRs in the training set. For
both SandyBridge and Skylake, we outperform [52] in 8 out of 10
folds (Figure 5). The modeling for this experiment only uses simple
MLP layers in contrast to [51, 52], which trains resource intensive
GNNs for each experiment. Overall, across 10 folds, MIREncoder
embeddings help reduce performance error rates by ≈ 15% (Sandy-
Bridge) and ≈ 29% (Skylake) over [52]. MIREncoder embeddings
outperform Perfograph[51] in 8 out of 10 folds for SandyBridge
improving error rates by ≈ 14%. It outperforms Perfograph in all
cases for Skylake, improving error rates by ≈ 40%.

4.6 Tuning Thread Blocks for CUDA Programs
So far the auto-tuning experiments have targeted programs written
in C and C++. However, state-of-the-art GPUs have contributed
immensely to performance improvement of HPC workloads and
CUDA is often the language of choice for programming such GPUs,
specifically NVIDIA GPUs. With this in mind, we have tried to
optimize the performance of CUDA kernels in this section. As in
the prior sections, we work with a previously published dataset
and use a MIREncoder based tuner to identify the best parameters
to run CUDA kernels.

Dataset. To address the lack of large scale datasets suitable for
machine learning based optimizations of CUDA kernels, Bjertnes

et al. published the LS-CAT[10] dataset with 19, 683 CUDA kernels.
They also open source scripts to modify the input matrix sizes, and

Table 5: Parameters Modified for CUDA kernels.

Param. Name Param. Values
Matrix Size 240, 496, 784, 1016, 1232, 1680, 2024
Block Sizes (8,8), (16,16), (24,24), (32,32), (1,64), (1,128),

(1,192), (1,256), (1,320), (1,384), (1,448), (1,512),
(1,576), (1,640), (1,704), (1,768), (1,832), (1,896),
(1,960), (1,1024)

thread blocks used to execute these kernels. We compile and run
these CUDA kernels with the matrix sizes and thread blocks shown
in Table 5 to collect a dataset with more than 2.7 million samples
on an NVIDIA A100 GPU. From the collected dataset, we identify
the minimum runtime of each kernel and input matrix. The block
size corresponding to the fastest runtime is then selected as the
best configuration. This processed and labelled data is then used
to train a simple MLP model on the MIREncoder embeddings to
predict the best configuration for a CUDA kernel and input matrix
unknown to the model.

Baseline. To the best of our knowledge, this study is one of
the first works to perform optimizations using this dataset for
CUDA code. To evaluate our MIREncoder representation, we use
the embeddings from three prior works (IR2Vec[53], PROGRAML[18],
Perfograph[51]), and adapt the modeling techniques specified in
those papers to the best of our ability for this task. We follow
the same strategy used in [52] and Section 4.5 and use error rates
(relative difference between best and predicted performance) as a
metric to present and compare the results for this section.

Results. The LS-CAT dataset does not have a designated test
set. Therefore, we perform 10-fold validation as done in prior
works[18, 52] and sections. We build four ML-based auto-tuners
to model MIREncoder, Perfograph, PROGRAML, and IR2Vec embed-
dings. The IR2Vec, PROGRAML, and Perfograph embeddings were
modeled with the techniques outlined in the respective studies. The
MIREncoder based tuner uses only simple MLP layers. As shown
in Figure 6, the MIREncoder embeddings outperform the state-of-
the-art even with a very simple network. Our tuner produces better
results than the IR2Vec and Perfograph-based tuners in 8 and 9

MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations PACT ’24, October 14–16, 2024, Long Beach, CA, USA

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9 10

Er
ro
r R

at
e

Fold #

IR2Vec PROGRAML Perfograph MIREncoder

Figure 6: Error rates for predicting thread blocks for CUDA
kernels (lower is better).

Table 6: Ablation Studies (CS1): Heterogeneous device map-
ping. Change in accuracy when one modality is removed.

State-of-the-art NVIDIA(%) AMD(%)
Grewe et al. [28] 74.56 70.29
DeepTune [19] 80.88 83.24
inst2Vec [9] 82.65 82.35
PROGRAML [18] 80 86.6
IR2Vec [53] 89.68 92.82
Perfograph [51] 90 94
MIREncoder (only IR text) 59.1 79.7
MIREncoder (only IR graphs) 86.2 88.5
MIREncoder 93.7 93.6

folds out of 10. It outperforms PROGRAML in all folds. Across all folds,
our predictions reduce error rate over IR2Vec, Perfograph, and
PROGRAML by ≈ 39%, ≈ 63% and ≈ 70% respectively.

4.7 Observation and Analysis
In this section, we outline and analyse the merits of our approach.
We primarily hope to show the importance of each modality to
our pre-training pipeline. We will also show how using our ap-
proach reduces the overheads associated with deep learning based
performance optimization.

Ablation Studies. Ablation studies are commonly used in deep
learning to highlight the importance of individual components of
the modeling process. Here, we hope to highlight the impact of
each modality on the modeling process. We first remove the mod-
ules associated with each modality from the pipeline and pre-train
the uni-modal models from scratch. However, for each uni-modal
model, we only train it on one pre-training task as each pre-training
task was designed with a modality in mind. For example, a Masked
Language Modeling pre-training task would not be appropriate for
the code graph modality. And the IR-Graph Matching task is depen-
dent on both modalities being a part of the pre-training process.
With this setup, we pre-train our uni-modal models and follow the
same experimental setups as before. The uni-modal pre-trained
models are tested on three tasks from the previous sections, namely
heterogeneous device mapping (Section 4.1), thread coarsening
(Section 4.2), and loop vectorization (Section 4.3).

Table 7: Ablation Studies (CS2): Thread Coarsening Factors:
Changes in speedups when one modality is removed.

Device DT NCC IV PG ME(T) ME(G) ME
AMD Radeon
HD 5900

1.1 1.29 1.24 1.19 1.24 1.13 1.29

AMD Tahiti
7970

1.05 1.07 1.30 1.14 1.25 1.15 1.30

NVIDIA GTX
480

1.1 0.97 1.25 1.03 1.19 1.09 1.26

NVIDIA
Tesla K20c

0.99 1.01 1.16 1.01 1.07 1.08 1.16

Average 1.06 1.09 1.23 1.09 1.18 1.11 1.24
DT=DeepTune, NCC=inst2vec, IV=IR2Vec, PG=Perfograph,ME=MIREncoder, T=Text
Only, G=Graph Only

Case Study 1 (CS1): Each experiment shows that our pre-training
is highly dependent on each modality. For device mapping, the
quality of the predictions fall significantly when modality 2 (code
graphs) is not included. When modality 1 (IR text) is removed, the
performance drops, but less drastically. When we only pre-train
with modality 1, performance drops by ≈ 37% and ≈ 14% for the
NVIDIA and the AMD GPUs, whereas performance drops by ≈ 8%
and ≈ 4% when only code graphs are used for pre-training (Table
6). The higher dependence on the code graphs is expected as code
semantics dictate which device is chosen as the best one for some of
the kernels in this dataset. For example, the makea kernel from the
CG application in NPB[8], has a faster runtime on the GPU with a
smaller input size, whereas it is mapped to the CPU when run with
larger inputs. This behavior can be due to the presence of a number
of function calls inside the parallel kernel. Such semantic details
might be difficult for an NLP-style model to understand. However,
a graph that embeds such dependencies as edges between nodes
can help highlight such semantic information to the model.

Case Study 2 (CS2): When predicting the thread coarsening fac-
tors, we see that not including the code graphs has a smaller impact
on thread coarsening factors than device mapping. Moreover, using
only the code graphs leads to a bigger drop in application perfor-
mance than when using both modalities. We see that performance
drops by 5% when the code graphs are not used, whereas perfor-
mance drops by 11.7% when only code graphs are used (Table 7).

Case Study 3 (CS3): We also test how unimodality impacts the
performance of loop vectorization. Loop vectorization is an impor-
tant compiler optimization for modern processors. For this set of
experiments as well, we see that removing a modality impacts the
performance of the predictions (Table 8). Using IRs only in textual
format the performance drops by ≈ 30%, and when we use only the
code graphs as a modality the performance of our vectorizer drops
by ≈ 12%.

Analyzing Overheads. Most advanced DL-based works usually
have significant training and inference overheads. We use the exper-
iment in Section 4.4 as a template to evaluate the overhead of our
approach. We first train and test the MIREncoder-based tuner and
PnP tuner[26] from Section 4.4 and capture the wall times. The PnP
tuner is a GNN based code modeling approach that first proposed
this downstream task. Across all experiments, to reduce overhead,

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Akash Dutta and Ali Jannesari

Table 8: Ablation Studies (CS3): Speedups over LLVM vector-
ization when individual modalities are used.

LLVM Neurovec. ME (T) ME (G) ME
1.0× 1.22× 1.01× 1.18× 1.32×

ME=MIREncoder, Neurovec=Neurovectorizer, T=Text Only, G=Graphs Only

Table 9: Slowdowns over MIREncoder (no FT) wall times.

Process ME (w/o FT) PnP (GNNs) ME (w. FT)
Training 1× 37× 238×
Inference 1× 1.8× 1×

FT=Fine-tuning,ME=MIREncoder, w/o=without, w.=with

we simply generate embeddings from the pre-trained model instead
of fine-tuning it. PnP on the other hand needs to train GNNs for
each experiment. Compared to our MIREncoder-based tuner, which
only trains a few MLP layers, training and tesing a GNN based
model is much more expensive as shown in Table 9.

Most studies working with pre-trained models usually suggest
fine-tuning the pre-trained models for downstream tasks. However,
in this work, we do not fine-tune our pre-trained model for down-
stream tasks. The embeddings generated by MIREncoder are good
enough to be used with simple shallow networks. To show this, we
perform a set of tests with two setups: i) we use our regular set up
where we do set the pre-training model to inference mode and use
only the final MLP layers for training and testing, and ii) we do not
set the pre-training model to inference mode, and use the complete
network to fine-tune for downstream tasks. We observe that for the
experiment in Section 4.4, performance (speedups) improves < 5%
when we fine-tune. However, the training time balloons by 238×.
This is a significant increase in overhead for fairly marginal gains.
We avoid this overhead by not fine-tuning, but simply generating
the embeddings to achieve good results as shown in Section 4. Such
overheads are seen even for our relatively small model with 22
million parameters. Recently, large language models, with billions
of parameters, have been proposed[20] for addressing compiler
optimizations. This would increase the training time exponentially,
especially when computational resources are limited. Thus, new
innovative techniques, like the one proposed in this paper, is nec-
essary to reduce overheads and large-scale resource dependence.
Multi-modality allows us to work with a small model and helps
offset the loss in learning when a small uni-modal model is used.

5 Related Works
This paper proposes a new pre-trained multi-modal code repre-
sentation technique for LLVM IRs. For most source code based
optimization tasks, analyzing code can provide pointers to the per-
tinent optimizations. In fact, most compiler optimizations are code
dependent. Therefore, a suitable code representation technique is
also essential for using deep learning (DL) to make optimization
decisions in HPC. To this end, several code representations have
been proposed [3, 4, 9, 11, 18, 21, 41, 53], which have been used to

good effect for optimization tasks such as CPU/GPU device map-
ping, thread coarsening factor, loop vectorization, etc. to name a
few. Preliminary works in this field such as [3–5], focused more on
lexical tokens which often fails to capture code semantics. The next
generation of representational learning works[9, 18, 24, 25, 51, 53]
leverage LLVM IRs to make semantic features available to DL mod-
els. However, the embeddings generated by these often require
advanced modeling techniques such as GNNs for each individual
task. In contrast, for downstream tasks, our approach can leverage
transfer learning to generate learned embeddings that can be easily
modeled with simple MLP layers to get better results than these.

An alternative to DL-based auto-tuning is to use non-neural net-
work based machine learning approaches. Several works have used
ML for a variety of tasks. [40, 55] propose machine learning based
approaches for auto-tuning OpenMP applications. Artemis[56] is
another work that performs automatic parameter tuning using ma-
chine learning. ytopt[57, 58], BLISS[42] are examples of learning-
based tuners that employ Bayesian optimization for online tuning
tasks. These approaches are often domain or application specific.
Although often faster than search-based alternatives, these do need
multiple code executions to identify good performing parameters.

Studies highlighted so far in this section were all proposed as
means to improve upon traditional search based auto-tuning.Works
such as ActiveHarmony[50], OpenTuner[7] have leveraged several
search space optimization techniques to reduce the auto-tuning
overhead compared to brute-force tuning. These optimization tech-
niques include Hillclimbers, random search, Nelder-Mead, and
many more. However, due to their sampling overhead, works such
as ytopt and BLISS were proposed to reduce tuning overhead.

DL-based approaches, including ours, further help alleviate such
overhead by making predictions without having to execute appli-
cations. This helps with configuring commonly used parameters
across applications, without having to devote significant resources
to the tuning process.

6 Discussion
In this work, we have proposed a pre-trained multi-modal encoder
for IRs with source code based performance optimizations in mind.
Such an approach enables a model to understand syntactic, seman-
tic and structural characteristics of source code. Prior works in this
domain often depend only on NLP-style stylistic choices or com-
piler based code semantics and might require advanced modeling
techniques with significant overheads.

Not only do our embeddings help reduce overhead on down-
stream tasks (Section 4.7), our pre-trained model is itself much
smaller in scale than the latest pre-trained models in literature.
Very large models, such as LLMs, often have billions/trillions of
parameters. This makes training and fine-tuning them quite ex-
pensive, often requiring multiple state-of-the-art GPUs. Our pre-
trained multi-modal model on the other hand, only consists of 22
million parameters, and can be easily trained using a single GPU.
However, most very large models have text or image generation
capabilities; our model does not. This is by design as the aim of this
work is to simplify and speed up the process of deep learning based
performance optimization in HPC.

MIREncoder: Multi-modal IR-based Pretrained Embeddings for Performance Optimizations PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Moreover, for downstream tasks, we do not need to fine-tune
the pre-trained model as is often necessary for larger models. We
simply put the pre-trained model in inference mode, and output
the embeddings of an input LLVM IR. Transfer learning allows us
to do this and still achieve good results across multiple languages
(C, C++, CUDA) and programming models (OpenCL, OpenMP). Because
the pre-trained model has already been trained to understand and
relate code syntax, semantics and structure, during downstream
optimization tasks, the pre-trained model can leverage its prior
knowledge to generate good quality embeddings. This also allows
us to reduce data requirement while training DL models, as shown
in Section 4.5, where we train our model with only 5% of the data
that the state of the art[51, 52] had been trained on.

Additionally, our pipeline is modular by design. This can inspire
future research on how each modality can be represented. For exam-
ple, we could replace the graphs used in this work by other graphi-
cal representations such as ASTs, Perfograph, Graph2Par[16] and
evaluate their impact. We hope to do this in future.

7 Conclusion and Future Works
This paper proposes MIREncoder, a multi-modal pre-training ap-
proach to encode/embed LLVM IRs for easy use by deep learning
based models targeting performance optimizations in HPC. Our pre-
trained encoder will allow researchers to focus more on adapting
deep learning for HPC optimization problems instead of focusing
on how it can be done. Moreover, as seen widely in literature, it
is often possible to re-train existing pre-trained models for multi-
ple domains. With this in mind, our model has been designed to
be smaller in scale compared to existing pre-trained models. This
would allow further research on such topics, and would not make
researchers completely dependent on high-end and large-scale re-
sources as is the case with very large models. Our aim with this
paper was to propose a pre-training pipeline for HPC that would
be small-scale. We helped alleviate the loss in learning from using
a smaller model by introducing multi-modality to help our model
better understand code “meaning". Our experimental results and
further analysis support our claims of better performance with
reduced overheads. Furthermore, our pre-trained model could eas-
ily be used in conjunction with online auto-tuners to help aid the
search process. We hope to investigate this in future.

Acknowledgments
This research was supported by the National Science Foundation
under Grant number 2211982. We would also like to thank the Re-
searchIT team 1 at Iowa State University for their constant support.

References
[1] Jordi Alcaraz, Ali TehraniJamsaz, Akash Dutta, Anna Sikora, Ali Jannesari, Joan

Sorribes, and Eduardo Cesar. 2023. Predicting number of threads using balanced
datasets for openmp regions. Computing 105, 5 (2023), 999–1017.

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning
to represent programs with graphs. arXiv preprint arXiv:1711.00740 (2017).

[4] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-
based representation for predicting program properties. ACM SIGPLAN Notices
53, 4 (2018), 404–419.

1https://researchit.las.iastate.edu

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[6] AMD. [n. d.]. AMD OpenCL accelerated parallel processing SDK.
https://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/.

[7] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. Opentuner:
An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303–316.

[8] E Barszcz, J Barton, L Dagum, P Frederickson, T Lasinski, R Schreiber, V
Venkatakrishnan, S Weeratunga, D Bailey, D Browning, et al. 1991. The nas
parallel benchmarks. In The International Journal of Supercomputer Applications.
Citeseer.

[9] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural code
comprehension: A learnable representation of code semantics. Advances in neural
information processing systems 31 (2018).

[10] Lars Bjertnes, Jacob O Tørring, and Anne C Elster. 2021. LS-CAT: a large-scale
CUDA AutoTuning dataset. In 2021 International Conference on Applied Artificial
Intelligence (ICAPAI). IEEE, 1–6.

[11] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
2020. Compiler-based graph representations for deep learning models of code.
In Proceedings of the 29th International Conference on Compiler Construction.
201–211.

[12] Greg Bronevetsky, John Gyllenhaal, and Bronis R De Supinski. 2008. CLOMP: ac-
curately characterizing OpenMP application overheads. In InternationalWorkshop
on OpenMP. Springer, 13–25.

[13] Márcio Castro, Luis Fabricio Wanderley Goes, Christiane Pousa Ribeiro, Murray
Cole, Marcelo Cintra, and Jean-Francois Mehaut. 2011. A machine learning-based
approach for thread mapping on transactional memory applications. In 2011 18th
International Conference on High Performance Computing. IEEE, 1–10.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[15] Shuai Che, Jeremy W Sheaffer, Michael Boyer, Lukasz G Szafaryn, Liang Wang,
and Kevin Skadron. 2010. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. In IEEE International Symposium
on Workload Characterization (IISWC’10). IEEE, 1–11.

[16] Le Chen, Quazi Ishtiaque Mahmud, Hung Phan, Nesreen Ahmed, and Ali Jan-
nesari. 2023. Learning to parallelize with openMP by augmented heterogeneous
AST representation. Proceedings of Machine Learning and Systems 5 (2023).

[17] NVIDIACorporation. [n. d.]. CUDA. http://developer.nvidia.com/object/cuda.html.

[18] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP
O’Boyle, and Hugh Leather. 2021. Programl: A graph-based program representa-
tion for data flow analysis and compiler optimizations. In International Conference
on Machine Learning. PMLR, 2244–2253.

[19] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
End-to-end deep learning of optimization heuristics. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
219–232.

[20] Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang,
Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Syn-
naeve, et al. 2023. Large language models for compiler optimization. arXiv
preprint arXiv:2309.07062 (2023).

[21] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya
Ghose, Taeksu Kim, and Chul-Joo Kim. 2018. A deep tree-based model for
software defect prediction. arXiv preprint arXiv:1802.00921 (2018).

[22] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S Meredith, Philip C
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S Vetter. 2010. The scalable
heterogeneous computing (SHOC) benchmark suite. In Proceedings of the 3rd
workshop on general-purpose computation on graphics processing units. 63–74.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[24] Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, Eduardo Cesar, Anna Sikora,
and Ali Jannesari. 2023. Performance Optimization using Multimodal Modeling
and Heterogeneous GNN. In Proceedings of the 32nd International Symposium on
High-Performance Parallel and Distributed Computing. 45–57.

[25] Akash Dutta, Jordi Alcaraz, Ali TehraniJamsaz, Anna Sikora, Eduardo Cesar, and
Ali Jannesari. 2022. Pattern-based autotuning of openmp loops using graph neural
networks. In 2022 IEEE/ACM International Workshop on Artificial Intelligence and
Machine Learning for Scientific Applications (AI4S). IEEE, 26–31.

[26] A. Dutta, J. Choi, and A. Jannesari. 2023. Power Constrained Autotuning us-
ing Graph Neural Networks. In 2023 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE Computer Society, Los Alamitos, CA, USA,
535–545. https://doi.org/10.1109/IPDPS54959.2023.00060

https://doi.org/10.1109/IPDPS54959.2023.00060

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Akash Dutta and Ali Jannesari

[27] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[28] Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. 2013. Portable mapping
of data parallel programs to opencl for heterogeneous systems. In Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE, 1–10.

[29] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. 2020. Neurovectorizer: End-to-end vectorization with
deep reinforcement learning. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization. 242–255.

[30] Akihiro Hayashi, Kazuaki Ishizaki, Gita Koblents, and Vivek Sarkar. 2015.
Machine-learning-based performance heuristics for runtime cpu/gpu selection.
In Proceedings of the principles and practices of programming on the Java platform.
27–36.

[31] Tal Kadosh, Niranjan Hasabnis, Timothy Mattson, Yuval Pinter, and Gal Oren.
2023. Quantifying openmp: Statistical insights into usage and adoption. In 2023
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.

[32] Ian Karlin, Jeff Keasler, and J Robert Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

[33] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. 2019.
Graph matching networks for learning the similarity of graph structured objects.
In International conference on machine learning. PMLR, 3835–3845.

[34] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. Vilbert: Pretrain-
ing task-agnostic visiolinguistic representations for vision-and-language tasks.
Advances in neural information processing systems 32 (2019).

[35] Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic
optimization of thread-coarsening for graphics processors. In Proceedings of the
23rd international conference on Parallel architectures and compilation. 455–466.

[36] Alberto Magni, Christophe Dubach, and Michael FP O’Boyle. 2013. A large-
scale cross-architecture evaluation of thread-coarsening. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. 1–11.

[37] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and An-
drew Y Ng. 2011. Multimodal deep learning. In ICML.

[38] Louis-Noël Pouchet et al. 2012. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench 437 (2012), 1–1.

[39] Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladmir Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan
Malaika, and Frederick Reiss. 2021. CodeNet: A Large-Scale AI for Code Dataset
for Learning a Diversity of Coding Tasks.

[40] Piyumi Rameshka, Pasindu Senanayake, Thulana Kannangara, Praveen Senevi-
ratne, Sanath Jayasena, Tharindu Rusira, and Mary Hall. 2019. Rigel: A Frame-
work for OpenMP PerformanceTuning. In 2019 IEEE 21st International Conference
on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 2093–2102.

[41] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from" big code". ACM SIGPLAN Notices 50, 1 (2015), 111–124.

[42] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. 2021. Bliss:
auto-tuning complex applications using a pool of diverse lightweight learning
models. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 1280–1295.

[43] Isaac Sánchez Barrera, David Black-Schaffer, Marc Casas, Miquel Moretó, Anas-
tasiia Stupnikova, and Mihail Popov. 2020. Modeling and optimizing numa
effects and prefetching with machine learning. In Proceedings of the 34th ACM
International Conference on Supercomputing. 1–13.

[44] Sangmin Seo, Gangwon Jo, and Jaejin Lee. 2011. Performance characterization of
the NAS Parallel Benchmarks in OpenCL. In 2011 IEEE international symposium
on workload characterization (IISWC). IEEE, 137–148.

[45] Nicolai Stawinoga and Tony Field. 2018. Predictable thread coarsening. ACM
Transactions on Architecture and Code Optimization (TACO) 15, 2 (2018), 1–26.

[46] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021. Value
learning for throughput optimization of deep learning workloads. Proceedings of
Machine Learning and Systems 3 (2021).

[47] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012), 27.

[48] Jabeen Summaira, Xi Li, Amin Muhammad Shoib, Songyuan Li, and Jabbar Abdul.
2021. Recent Advances and Trends in Multimodal Deep Learning: A Review.
arXiv preprint arXiv:2105.11087 (2021).

[49] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid.
2019. Videobert: A joint model for video and language representation learning.

In Proceedings of the IEEE/CVF international conference on computer vision. 7464–
7473.

[50] Cristian Tapus, I-Hsin Chung, and Jeffrey K Hollingsworth. 2002. Active har-
mony: Towards automated performance tuning. In SC’02: Proceedings of the 2002
ACM/IEEE Conference on Supercomputing. IEEE, 44–44.

[51] Ali TehraniJamsaz, Quazi IshtiaqueMahmud, Le Chen, Nesreen K Ahmed, and Ali
Jannesari. 2024. Perfograph: A numerical aware program graph representation for
performance optimization and program analysis. Advances in Neural Information
Processing Systems 36 (2024).

[52] Ali TehraniJamsaz, Mihail Popov, Akash Dutta, Emmanuelle Saillard, and Ali
Jannesari. 2022. Learning intermediate representations using graph neural net-
works for numa and prefetchers optimization. In 2022 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 1206–1216.

[53] S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar,
Ramakrishna Upadrasta, and YN Srikant. 2020. Ir2vec: Llvm ir based scalable
program embeddings. ACM Transactions on Architecture and Code Optimization
(TACO) 17, 4 (2020), 1–27.

[54] Vasily Volkov and James W Demmel. 2008. Benchmarking GPUs to tune dense
linear algebra. In SC’08: Proceedings of the 2008 ACM/IEEE conference on Super-
computing. IEEE, 1–11.

[55] Zheng Wang, Georgios Tournavitis, Björn Franke, and Michael FP O’boyle. 2014.
Integrating profile-driven parallelism detection and machine-learning-based
mapping. ACM Transactions on Architecture and Code Optimization (TACO) 11, 1
(2014), 1–26.

[56] Chad Wood, Giorgis Georgakoudis, David Beckingsale, David Poliakoff, Alfredo
Gimenez, Kevin Huck, Allen Malony, and Todd Gamblin. 2021. Artemis: Auto-
matic Runtime Tuning of Parallel Execution Parameters Using Machine Learning.
In International Conference on High Performance Computing. Springer, 453–472.

[57] Xingfu Wu, Prasanna Balaprakash, Michael Kruse, Jaehoon Koo, Brice Videau,
Paul Hovland, Valerie Taylor, Brad Geltz, Siddhartha Jana, and Mary Hall. 2023.
ytopt: Autotuning scientific applications for energy efficiency at large scales.
arXiv preprint arXiv:2303.16245 (2023).

[58] Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul Hovland,
Valerie Taylor, and Mary Hall. 2022. Autotuning PolyBench benchmarks with
LLVM Clang/Polly loop optimization pragmas using Bayesian optimization. Con-
currency and Computation: Practice and Experience 34, 20 (2022), e6683.

[59] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

	Abstract
	1 Introduction
	2 Background
	2.1 Code Representations and Deep Learning
	2.2 Multimodal Deep Learning

	3 MIREncoder
	3.1 Tokenization
	3.2 Graph Generation and Pre-Processing
	3.3 Pre-Training MIREncoder

	4 Experiments
	4.1 Heterogeneous Device Mapping
	4.2 Thread Coarsening
	4.3 Loop Vectorization
	4.4 Tuning OpenMP Runtime Configurations
	4.5 Optimizing NUMA/Prefetcher Parameters
	4.6 Tuning Thread Blocks for CUDA Programs
	4.7 Observation and Analysis

	5 Related Works
	6 Discussion
	7 Conclusion and Future Works
	Acknowledgments
	References

