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ABSTRACT. We prove a bilinear form sparse domination theorem that
applies to many multi-scale operators beyond Calderén—Zygmund the-
ory, and also establish necessary conditions. Among the applications,
we cover large classes of Fourier multipliers, maximal functions, square
functions and variation norm operators.
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1. INTRODUCTION

Sparse domination results have received considerable interest in recent
years since the fundamental work of Lerner on Calderén—Zygmund opera-
tors [75, 76], which provided an alternative proof of the Ag-theorem [57].
The original Banach space domination result was refined and streamlined to
a pointwise result [31, 79, 65, 77], but it is the concept of sparse domination
in terms of bilinear (or multilinear) forms [18, 33| that has allowed to ex-
tend the subject to many operators in harmonic analysis beyond the scope
of Calderén—Zygmund theory. Among other examples, one may find the
bilinear Hilbert transform [33], singular integrals with limited regularity as-
sumptions [29, 15, 78], Bochner—Riesz operators [16, 68], spherical maximal
functions [66], singular Radon transforms [28, 89, 54|, pseudo-differential
operators [11], maximally modulated singular integrals [38, 8], non-integral
square functions [6], and variational operators [36, 35, 17], as well as results
in a discrete setting (see for instance [64, 34, 2]).

Many operators in analysis have a multiscale structure, either on the space
or frequency side. We consider sums

T=>T,
JEZL

where the Schwartz kernel of T} is supported in a 27 neighborhood of the di-
agonal and where suitable rescalings of the individual operators T and their
adjoints satisfy uniform LP — L9 bounds. Moreover we assume that all par-
tial sums Z;Vi ~, Tj satisfy uniform LP — LP°° and L%! — L4 bounds. The
goal of this paper is to show bilinear form (p, ¢')-sparse domination results
(with ¢ = q¢/(q — 1) the dual exponent) and investigate to which extent our
assumptions are necessary. We prove such results under a very mild addi-
tional regularity assumption on the rescaled pieces; for a precise statement
see Theorem 1.1 below. To increase applicability, we cover vector-valued
situations, thus consider functions with values in a Banach space B; and
operators that map simple Bj-valued functions to functions with values in
a Banach space Bs. Our results apply to many classes of operators beyond
Calderon—Zygmund theory, and cover general classes of convolution opera-
tors with weak assumptions on the dyadic frequency localizations, together
with associated maximal functions, square functions, variation norm opera-
tors, and more. See Theorem 1.4 for a particularly clean result on translation
invariant maximal functions. We shall formulate the results with respect to
cubes in the standard Euclidean geometry but there are no fundamental
obstructions to extend them to other geometries involving nonisotropic di-
lations (see e.g. [28]). Our approach to sparse domination extends ideas in
the papers by Lacey [66] on spherical maximal functions and by R. Oberlin
[89] on singular Radon transforms to more general situations.

We now describe the framework for our main theorem and first review
basic definitions. For a Banach space B let Sp be the space of all B-valued
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simple functions on R% with compact support, i.e. all functions of the form
f= Zf\; a;lg, where a; € B and FE; are Lebesgue measurable subsets of
R? contained in a compact set. For Banach spaces By, By we consider the
space Opp, p, of linear operators T mapping functions in Sp, to weakly
measurable Bs-valued functions (see e.g. [56] for an exposition of Banach-
space integration theory) with the property that = — (T'f(x), A) is locally
integrable for any bounded linear functional A € B5. If T' € Opp, pg,, then
the integral

(Tfi, f2) = /Rd<Tfl(x)vf2(a7)>(B2,B§)d$

is well-defined for all f; € Sp, and f2 € Sp;. For a Banach space B and p,r €
[1, 00] we define the Lorentz space L%" as the space of strongly measurable
functions f : R? — B so that the function x +— |f(z)|p is in the scalar
Lorentz space LP" (and we endow L7 with the topology inherited from
LP™). In particular, L} = L% coincides with the standard Banach space
valued LP space as defined in [56], up to equivalence of norms. If p € (1, 00)
and 7 € [1,00], then L3" is normable and we write || - [z to denote the
norm induced by the norm on scalar LP'" defined via the maximal function
of the nonincreasing rearrangement [55].

In the definition of sparse forms it is convenient to work with a dyadic
lattice Q = UgezQy of cubes, in the sense of Lerner and Nazarov [79, §2]. A
prototypical example is when the cubes in the k-th generation £ are given
by

A = {27F5+ [-127F 227 R )d 5 € 79} if ks odd,
T2 —ha R lokyd s e 7Y if s even,
but many other choices are possible. Notice in this example the cubes in

Q. have side length 27%. This family satisfies the three axioms of a dyadic
lattice in [79]. We briefly review the definition. £ is a dyadic lattice if

(i) every child of a cube Q € Q is in Q,
(ii) every two cubes @, Q" have a common ancestor in 9, and
(iii) every compact set in R? is contained in a cube in Q.

For each dyadic lattice there is an « € [1,2) such that all cubes @ € Q are
of side length a2~* for some k € Z. Fixing k we then call the cubes of side
length a27% the k-th generation cubes in Q. If Q € Q we can, for every
[ > 0, tile Q into disjoint subcubes Q of side length equal to 2~ times the side
length of ). We denote this family by D;(Q) and let D(Q) = U;>oD;(Q),
the family of all dyadic subcubes of ). Then for every @) € 9 we have
D(Q) C Q. Note that because of condition (iii) the standard dyadic lattice
is not a dyadic lattice in the above sense.

Definition. Let 0 < v < 1. A collection & C £ is y-sparse if for every Q € &
there is a measurable subset Eg C (@ such that |Eg| > v|Q| and such that
the sets on the family {Eq : Q) € &} are pairwise disjoint.
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We next review the concept of sparse domination. Given a cube @, 1 <
p < oo and a B-valued strongly measurable locally integrable function f we
use the notations

wof =101 [ s, gy = (@17 [ @)

for the average of f over ) and the LP norm on () with normalized measure,
thus (f)g, 5 = (avg|f|%)/P. For an operator T € Opp, p, We say that
pointwise sparse domination [31, 79] by LP-averages holds if for every f €
Sp, there are at most 37 sparse families &;(f) such that

ITf(z)|B, < CZ Y (NHopslgla) forae. x (1.1)
i=1 Qe6;(f)

and we denote by \|T||Sp7(p731732) the infimum over all C' such that (1.1)
holds for some collection of 3¢ y-sparse families depending on f.

For many operators it is not possible to obtain pointwise sparse domina-
tion and the concept of sparse domination of bilinear forms, which goes back
to [18] and [33], is an appropriate substitute. Given a y-sparse collection of
cubes G and 1 < pp,p2 < 0o, one defines an associated sparse (p1, p2)-form
acting on pairs (f1, f) where f; is a simple Bj-valued function and fs is a
simple B3-valued function. It is given by

A;z(?lﬁl,pg,Bz fi, f2) = Z 1QI(f1)Q.p1,B1 (f2)Qp2.B3> (1.2)

Qe6

and will be abbreviated by Ap1 s (f1, f2) if the choice of By, Bj is clear from
context. The form (1.2) acts a bi-sublinear form on (|fi|p,,|f2|n;). All
sparse forms are dominated by a maximal form

A;;l?BlJ)Q’Bg(flﬂfz) = Sup 1\1217B17p27 (f17f2)) (1‘3)

&:y-sparse

again also abbreviated by A . (f1, f2) if the choice of By, B3 is clear from
the context. The maximal form may not be a sparse form itself but, ob-
viously, for every fi, fo there exists a sparse family &(f1, fo) such that

IS . .
Ap1(,1131{12)2, (f1, f2) > ;AplyBl,P2,B*(fl’f2) (¢f. [67], [32] for more explicit

constructlons) Note from (1.2) that for each pair of simple functions ( f1, f2),
Ay, By o8 (J1, f2) < Y| f1llooll f2lloo meas(supp f1 U supp f2) < oc.

We say that T' € Opp, p, satisfies a sparse (p1,p2) bound if there is a
constant C' so that for all f; € Sp, and fa € SB; the inequality

(Tf1, f2)| < CA; Bups,B; (f15 12) (1.4)
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is satisfied. The best constant in (1.4) defines a norm || - [l (51,51 ps,55) O
a subspace of Opp, p,. Thus HTHSP,Y(Z)LBUPLB;) is given by

Sup{ ! (T f1, f2)]

p1,B1,p2,B5 (fla f2)

:flesBprGSB;, fl?é077f:1)2}7 (15)

where f; # 0 means that fj(z) # 0 on a set of positive measure. It is
then immediate that HTHSP—Y(pl,Bl»PZ,B;) < HTHSP»Y(Pl,BlyBZ) for po > 1. It can

be shown that the space of operators in Opp, p, for which (1.4) holds for
all f1, fo with a finite C' does not depend on . We denote this space by
Sp(p1, B1, p2, B3) or simply Sp(p1, p2) if the choices of By, Bj are clear from
context. The norms || - Hspw(pl,Bl,p%B;)’ 0 < v < 1, are equivalent norms
on Sp(p1, B1,p2, B3). Moreover, if By, By are separable Banach spaces and
p1 < p < ph, then all operators in Sp(p1, B1,p2, B3) extend to bounded
operators from L}, to Lf .

1.1. The main result. For a function f define Dil;f(x) = f(tz). For an
operator T define the dilated operator Dil;T" by

Dil,T = Dil; o T o Dil, 1.

Note that if T is given by a Schwartz kernel (x,y) — K(z,y), then the
Schwartz kernel of Dil;T is given by (z,y) — t*K (tz, ty).

Basic assumptions. Let {T}} ez be a family of operators in Opg, p,. We
shall make the following assumptions.

Support condition. For all f € Sp,,
supp (Dily, Tj) f C {z € R?: dist(z,supp f) < 1}. (1.6)
This means that if 7} is given by integration against a Schwartz kernel K,
then K lives on a 27-neighborhood of the diagonal.

Weak type (p,p) condition. For all integers N; < Ny, the sums Z;Vle T;
are of weak type (p,p), with uniform bounds,

No

> 1
Jj=N1

Restricted strong type (q,q) condition. For all integers N3 < Na, the sums
Z;Vj ~, I are of restricted strong type (g, ¢), with uniform bounds,

N2
> 1)

Jj=N1

sup
N1<N2

< A(p). (1.7a)

P p,00 T
LB1 —>LB2

sup < A(q). (1.7b)

N1<N,

1
LY 11
By By

Single scale (p,q) condition. The operators T} satisfy the uniform im-
proving bounds

sup || Dily; Tjll gz e < Ao(p, q)- (1.8)
jEZ 1 2
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Single scale e-regularity conditions. For some € > 0 the operators T; and
the adjoints T satisfy

sup [h[=%sup [[(Dily/T3) o Al ps, < B. (1.9)
|h|<1 JEZ
sup |h|~®sup [[(Dily; T;) o A / r < B, 1.9b
st [ Sup | (DA T5) 0 Bl e < (1.9b)
where
Apf(x):= f(x+h) — f(x). (1.10)

The above hypotheses assume certain boundedness assumptions in Lebes-
gue or Lorentz spaces of vector-valued functions; it is then implied that all
operators Tj map simple Bi-valued functions to Bs-valued functions which
are strongly measurable with respect to Lebesgue measure. We formulate
our main result for 1 < p < g < oo and refer to Appendix B for variants
with p=1or g=

Theorem 1.1. Let 1 < p < g < oo. Let {T}}jez be a family of operators in
Opg, B, such that

o the support condition (1.6) holds,

o the weak type (p,p) condition (1.7a) holds,
o the restricted strong type (q,q) condition (1.7b) holds,
o the single scale (p,q) condition (1.8) holds,
o the single scale e-regularity conditions (1.9a), (1.9b) hold.
Define
C = A(p) + Aq) + Ao(p,q) log (2 + 1(ry)- (1.11)
Then, for all integers Nl, No with N1 < No,
< el 1.12
H Z HSp,Y (p,B1,4',B3) P, d ( )

The estimate (1.12) implies, via a linearization technique (c¢f. Lemma 4.4)
the following variant which leads to a sparse domination result for maximal
functions, square functions and variational operators, see Ch.5. Instead of
T; € Opp, p, we use the more restrictive assumption that the 7 map
functions in Sp, to locally integrable By-valued functions. We let L} Bs.loc be
the space of all strongly measurable Bs-valued functions which are Bochner
integrable over compact sets.

Corollary 1.2. Let 1 < p < q < oco. Let {T}};cz be a family of operators,
with T; : Sp, — L}BQ?IOC, and satisfying the assumptions of Theorem 1.1. Let

C be asin (1.11). Then for all f € Sp,, all R-valued nonnegative measurable
functions w, and all integers N1, No with N1 < Na,

[13

(@)], @(@)de Spgena CAppga(Fe) (113)
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Remarks. (1) We emphasize that the implicit constants in (1.12) and (1.13)
are dependent on the input constants in (1.7a), (1.7b), (1.8), (1.9a), (1.9b)
but otherwise not dependent on the specific choices of the Banach spaces By,
Bs. In some applications this enables us to perform certain approximation
arguments, where for example the Banach spaces are replaced by finite-
dimensional subspaces of large dimension.

(ii) We note that for operators 7; which commute with translations Con-
dition (1.9b) is implied by Condition (1.9a).

(iii) The Holder-type regularity assumption (1.9) for the operator norm
can be further weakened. In applications this will often be used for the situ-
ation that an operator T is split into a sum >, T where each T¢ = 3 j Tf

satisfies the assumptions with A(p), A(q), Ao(p, q) = O(27%") for some ¢ > 0
and B = 2™ for a possibly very large M. The conclusion will then say
that HTéHSpﬁl(p,q/) = O(¢27*"), which can be summed in ¢, leading to a sparse
bound for 7'

(iv) In this paper we are mainly interested in applications beyond the
Calderéon—Zygmund theory and focus on the case p > 1 and ¢ < co. There
are some elements in our proof such as the property of LP*° being the dual
space of L1 for which there is no analog for p = 1 and similarly the failure
of a suitable notion of restricted strong type for ¢ = oo; hence Theorem
1.1 does not immediately apply to the situations where p = 1 or ¢ = oo.
Nevertheless one can formulate variants of the theorem which cover these
missing cases. We treat them in Appendix B; indeed they are close to results
already covered in other works, in particular [29].

(v) The role of the simple functions is not essential in Theorem 1.1, and the
sparse bound can be extended to other classes of functions under appropriate
hypotheses; see Lemma A.1.

(vi) We use the Banach space valued formulation only to increase appli-
cability. We emphasize that we make no specific assumptions on the Banach
spaces in our formulation of Theorem 1.1 (such as UMD in the theory of
Banach space valued singular integrals). In applications to Banach space val-
ued singular integrals, such assumptions are made only because they may
be needed to verify LP-boundedness hypotheses but they are not needed to
establish the implication in Theorem 1.1.

1.2. Necessary conditions. Under the additional assumption that T} :
Sp, — L}S%loc, together with p < ¢, one has that the weak type (p,p)
condition (1.7a) and the restricted strong type condition (1.7b) are necessary
for the conclusion of Theorem 1.1 to hold. Moreover, if we strengthen the
support condition (1.6) assuming that the Schwartz kernels of T} are not
only supported in {|z —y| < 27} but actually in {|z —y| ~ 27}, then we can
also show that the single scale (p,q) condition (1.8) is necessary.
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We also have an analogous statement for Corollary 1.2. Indeed, as the
corollary is proved via the implication

(1.12) = (1.13),
see Lemma 4.4 below, we will simply formulate the necessary conditions for
the conclusion in Corollary 1.2, which will also imply those in Theorem 1.1.

To be precise in the general setting, let us formulate the following as-
sumption on a family of operators {T}};ez.

Strengthened support condition. There are d; > o > 0 such that for all
j€Zandall feSp,
supp(Dily; T f) C {x : 01 < dist(x,suppf) < 1},
whenever diam(suppf) < d2. (1.14)

If the T} are given by a Schwartz kernel K, then the condition is satisfied
provided that

supp(K;) C {(z,y) : (61 — 62)27 < |o —y| < 27}
Theorem 1.3. Suppose that 1 < p < q < oco. Let {T}};cz be a family
of operators, with T : S, — L%?g,lom and satisfying the support condition
(1.6). Assume the conclusion of Corollary 1.2, that is, there exists € > 0

such that for all N1, No with Ny < Na, all fi € Sp,, and all nonnegative
simple functions w

L
Then

(i) Conditions (1.7a) and (1.7b) hold, i.e., there is a constant ¢ > 0
only depending on d,p,q,~y such that for all N1, Ny with N1 < N,

No N2
LP LB
j=N; B1 Ba j=N;

(it) If, in addition, the T; satisfy the strengthened support condition
(1.14) then condition (1.8) holds, i.e., there is a constant ¢ > 0
only depending on d,p,q,~y such that

No
> Tf@)|w(@)de < €A} b, 5 (f.).
Jj=MN1

<cC.

1
LY 14
By By

Dily; T; < cC.
?‘ég” i JHL%laL‘f% =c

Remarks. (i) Note that in Theorem 1.3 there are no additional assumptions
on the Banach spaces. The a priori assumption 7} : Sp, — LlBQ,lOC enters in
the proof of necessary conditions for both Theorem 1.1 and Corollary 1.2.

(ii) There is an alternative version for necessary conditions for Theorem
1.1 where one a priori assumes merely that the 7} belong to Opg, g, (i-e.
T;f is only a priori weakly integrable for f € Sp,), but where one imposes
the assumption that Bs is reflexive. See Theorem 2.5 below.
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(iii) We have no necessity statement regarding the regularity conditions
(1.9) in Theorem 1.1, or Corollary 1.2. However, these conditions enter in
the conclusion of both Theorem 1.1 and Corollary 1.2 only in a logarithmic
way (see (1.11)), hence the gap between necessity and sufficiency appears
to be small. Note that the necessary and sufficient conditions are formu-
lated for a uniform statement on a family of operators {Z;Vj ~, Ti Ny s
but, with the generality of our current formulation, we are unable to prove
a necessary condition for sparse domination for a specific operator in this
family. Nevertheless, the formulation allows us to show necessary conditions
for several specific maximal operators, variation norm operators and other
vector-valued variants, in particular those considered in §5.1, §5.2, §5.3 and
§7.1.

(iv) The constant ¢ in the conclusion of Theorem 1.3 is independent of
the particular pair of Banach spaces By, Bo. This is significant for apply-
ing the theorem to families of maximal and variational operators where for
the necessity conditions one can replace the spaces £, L>°, V" by finite-
dimensional subspaces of large dimension.

(v) Since |’T"Sp7(p1,Bl,p2,B;) < HT”sp,Y(pl,Bl,Bz) for po > 1, the necessary
conditions in Theorem 1.3 can also be used to prove the impossibility of
pointwise sparse domination for many of the operators considered in this
paper.

1.3. An application to maximal functions. We illustrate Remark (iii)
above with a brief discussion about maximal operators associated to a distri-
bution ¢ compactly supported in R?\{0} (for example a measure), for which
we have necessary conditions for sparse bounds. Denote by oy = t~4o(t1.)
the t-dilate in the sense of distributions. For a dilation set £ C (0,00) we
consider the maximal operator
ME f(x) = sup|f * ov(x)]. (1.15)
teE

The maximal function is a priori well defined as measurable function if f
is in the Schwartz class; alternatively we may just restrict to countable F
(see §7.1.1 for comments why this is not a significant restriction).

For the formulation of our theorem we also need the rescaled local oper-
ators ng with

E;=(27E)n[1,2]. (1.16)
A model case is given when E consists of all dyadic dilates of a set in [1.2],
i.e.
E=|J2E° with E°C[1,2].
JEZL
In this case
Mg, = Mg,jEm[l’Q} = Mg, forall jeZ.
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Definition. The Lebesgue exponent set of the pair (o, E'), denoted by £(o, E),
consists of all (1/p,1/q) for which

IMEllr—pooe + [ MEllpor 5 ro + 8P | ME, [ Lo e < oo (1.17)
Jj€

The sparse exponent set of Mg, denoted by Sp[M7] consists of all pairs
(1/p1,1/p2) with 1/pa > 1/p; for which there is 0 < v < 1 and a constant
C such that

[ MEf@hla)de < N (f.0)

for all simple f and simple nonnegative w.

Let € > 0. We let Eunn(A) be the space of tempered distributions whose
Fourier transform is supported in {£ : A\/2 < [¢] < 2A}. We say that the
pair (o, E) satisfies an e-regularity condition if there exists C' > 0, and an
exponent pg > 1 such that for all A > 2, j € Z, we have

IME; fllpg < CAF[|fllpo  for all e SN Eann(A). (1.18)

Remark. The usual lacunary maximal operator correspond to the case where
E = Z. Under this assumption, M7, satisfies an e-regularity condition for
some ¢ > 0 if and only if there is an & > 0 such that

a(&) =0o(g™)-
Moreover the condition sup,cy, ”ng |Lr—ra < 00 is, in this case, equivalent
with the LP improving inequality

o fllg S [1f1lp
for all f € LP.

Denote by Int(£2) the interior of a planar set 2. Define ® : R> — R? by
q)(xvy) = (‘Tv 1- y)

We will show that, under the assumption of an e-regularity condition for
some € > 0, the interiors of £(o, E) and Sp[Mf] are in unique correspon-
dence under @ (see Figure 1). That is,

Int(Sp[Mg]) = (Int(£ (o, E))); (1.19)

this can be deduced as a consequence of Corollary 1.2 and Theorem 1.3.
The next theorem contains a slightly more precise statement.

Theorem 1.4. Suppose that o is a compactly supported distribution sup-
ported in R\ {0}, and suppose that (o, E) satisfies the e-regularity condition
(1.18) for some e > 0. Let 1 < p < q < co. Then the following implications
hold:

(3,5) € nt(L(o, E)) = (3, &) € Sp[MZ], (1.20)
(5,3) € L(0, E) <= (3, ) € Sp[MZ]. (1.21)
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Q=
»-Q\‘,_.

\\\\\\\\

S
=

FiGURE 1. Example for £(o, E) (left) and Sp[MJ;] (right).
It may occur that the closure of £(o, E) is not a polygonal
region, see for example [93].

Remarks. (i) The correspondence (1.19) is an immediate consequence of
Theorem 1.4.

(ii) If o is as in Theorem 1.4 then similar statements characterizing the
sparse exponent set hold for variation norm operators. See the statement of
Propositions 7.2.

(iii) In the case of o being the surface measure on the unit sphere one
recovers as a special case the results by Lacey [66] on the lacunary and full
spherical maximal functions.

1.4. Fourier multipliers. Given a bounded function m we consider the
convolution operator 7~ given on Schwartz functions f : R4 — C by

THE) =m(©)f(€), ¢eRY, (1.22)

i.e. Tf = F Y[m]*f where F~1[m] is the Fourier inverse of m in the sense of
tempered distributions. If 1 < p < oo, we say that m € MP if T extends to
a bounded operator on LP and we define ||m/||p» to be the LP — LP operator
norm of 7. A similar definition applies to p = co; however one replaces L
by the space Cy of continuous functions that vanish at oo (i.e. the closure
of the Schwartz functions in the L® norm). By duality we have M? = M v
for 1/p' =1 — 1/p. Moreover, M? = L>®, MP C L*> and M is the space of
Fourier transforms of finite Borel measures. Similarly, if 1 < p,q < oo, we
say that m € MP? if T is bounded from L? to LY and we define by ||m/||arp.a
to be the LP — LY operator norm of 7. For these and other simple facts on
Fourier multipliers see [53] or [106].

Let ¢ be a nontrivial radial C2° function compactly supported in f&d\ {0}.
A natural single scale assumption would be to assume a uniform MP° bound
for the pieces ¢(t~!'-)m which is equivalent by dilation-invariance to the
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condition
sup [¢m(t-)|[aro < 00 (1.23)
>0

Inequality (1.23) is a necessary and sufficient condition for 7 to be bounded
on the homogeneous Besov spaces B;;U,q, for any s € R,0 < ¢ < oo; see [107],
[110, §2.6]. However, it does not imply boundedness on the Lebesgue spaces,
except on L2, Indeed, Littman, McCarthy and Riviere [84] and Stein and
Zygmund [107] give examples of m satisfying (1.23) for a pg # 2 for which
m ¢ MP for all p # 2.

The papers by Carbery [24] and by one of the authors [98] provide positive
results under an additional dilation invariant regularity condition,

sup |[¢m(t-)||ce < oo, (1.24)
>0

where C¢ is the standard Holder space. Indeed, it is shown in [24, 98] that
forl<py<2,0<e<l,

[m|[ar < C(p,e) sup ([lgm(t-) || a0 + l¢m(t)]lc<),  po < p < ph.

If the standard Hélder condition ||¢m(t-)||c= = O(1) is replaced by its MPo
variant, sup;sg ||Ax[¢m(t-)]||are = O(|R|%), one obtains a conclusion for
p = po. We will show that for fixed p € (po,p[), the LP-boundedness self-
improves to a sparse domination inequality.

Theorem 1.5. Let 1 < py < 2, 0 < ¢ < 1, and assume that (1.23) and
(1.24) hold. Then for every p € (po,2| there is a § = 0(p) > 0 such that
T €Sp(p—4,p" —9).

We note that, in view of the compact support, for p < ¢ the quantity
|l¢m(t-)||appa can be bounded by C||¢m(t-)|[arr via Young’s inequality. In
Theorem 1.5 the self-improvement to a sparse bound is due to a tiny bit
of regularity as hypothesized in (1.24). This together with (1.23) implies
a mild regularity condition for ¢m(t-) measured in the MP? norm. If one
seeks better results on the sparse bound in terms of ¢ a further specification
of this regularity is needed. For this we use the iterated difference operators

AN = A AV for M > 2,
where Ay, is as in (1.10). With ¢ as above we get the following.

Theorem 1.6. Let m € L¥(RY) and T as in (1.22). Let 1 < p < ¢ < oc.
Assume that there exists s > d(1/p —1/q) and an M € N such that

sup sup |h|_SHAhM[¢m(t-)]HMp,q < 0. (1.25)
>0 |h|<1

Then T € Sp(p,q').

One should always take M > s. Indeed, note that if M < s, then (1.25)
implies m = 0. We note that the LP — L conditions (1.8), (1.9) in Theorem
1.1 correspond in the instance of convolution operators to an MP4 condition
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of derivatives of order s > d(1/p — 1/q) on the localizations of the Fourier
multiplier. Also, for fixed s > d(1/p—1/q), if (1.25) holds with some M > s,
then it holds for all integers M > s. For an illustration of this and the broad
scope of Theorem 1.6, see the discussion on singular Radon transforms in
§7.3.1 and on various classes of Fourier multipliers related to oscillatory
multipliers in §7.2 and to radial multipliers in §7.5.

Theorems 1.5 and 1.6 will be deduced in §6.1 from the more precise, but
also more technical Theorem 6.1 which expresses the regularity via dyadic
decompositions of F~[¢m(t-)]. Moreover, there we will cover a version in-
volving Hilbert space valued functions which is useful for sparse domination
results for objects such as Stein’s square function associated with Bochner—
Riesz means.

1.5. Application to weighted norm inequalities. It is well known that
sparse domination implies a number of weighted inequalities in the context
of Muckenhoupt and reverse Holder classes of weights, and indeed this serves
as a first motivation for the subject; see the lecture notes by Pereyra [91] for
more information. Here we just cite a general result about this connection
which can be directly applied to all of our results on sparse domination and
is due to Bernicot, Frey and Petermichl [18]. Recall the definition of the
Muckenhoupt class A; consisting of weights for which

[w]a, = Sgp <w>Q,1<w71>Q,t’—1 < o0,

and the definition of the reverse Holder class RH; consisting of weights for
which

w
s, = sup L2022 < o

Q <w>Q,1

In both cases the supremum is taken over all cubes @ in R%.

Proposition 1.7 ([18]). If T € Sp(L%l,L%l;), then one has the weighted
norm inequality

1
([, Irs@l @) de)” < ITlsp, o0 m.5)
1

(1wl o ([ 1@, w(e) dz)’

y and p <r < q, where a 1= max(ﬁ, %)

for allw € A, NRH(

T/p q/r

=)

We refer to [18, §6] for more information and a detailed exposition. See
also [44] for other weighted norm inequalities.

1.6. Structure of the paper and notation. We begin addressing nec-
essary conditions, and prove Theorem 1.3 in §2. In §3 we review useful
preliminary facts needed in the proof of Theorem 1.1 regarding the single
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scale regularity conditions; in particular, an alternative form for the regu-
larity conditions in (1.9). The proof of Theorem 1.1 is presented in §4. The
main part of the argument consists of an induction step, which is contained
in §4.4. The implication that yields Corollary 1.2 from Theorem 1.1 is given
in §4.3. In §5 we apply Corollary 1.2 to deduce sparse domination results
for maximal functions, square functions and variation norm operators, as
well as Cotlar-type operators associated to truncations of operators. In the
case of maximal functions, the assumptions of Theorem 1.1 can be slightly
weakened, and we present this in §5.4. Theorems 1.5 and 1.6 are proved in
§6. Finally, in §7 we apply our main theorems to several specific examples,
including the proof of Theorem 1.4 in §7.1.1. Moreover, we give several
applications of Theorem 1.6 to specific classes of multipliers. For complete-
ness, we include several appendices. Appendix A covers some basic facts on
sparse domination. Appendix B covers versions of the main Theorem 1.1
for p =1 and/or ¢ = co. Some basic facts on Fourier multipliers needed in
§6 are covered in Appendix C.

Notation. The notation A < B will be used to denote that A < C- B, where
the constant C' may change from line to line. Dependence of C' on various
parameters may be denoted by a subscript or will be clear from the context.
We use A ~ B to denote that A < B and B < A.

We shall use the definition f(¢) = Ff(€) = [pae “¥E) f(y)dy for the
Fourier transform on R%. We let v ~! be the inverse Fourier transform and
use the notation m(D)f = F~![mf]. We denote by S = S(R?) the space of
Schwartz functions on R%, by S’ the space of tempered distributions on Bd,
and by Eann(A) the space of all f € 8" such that the Fourier transform f is
supported in the open annulus {€ € R? : /2 < [¢] < 2A}.

For a d-dimensional rectangle R = [a1,b1] X -+ X [aq, bg] we denote by
xp the center of R, i.e. the points with coordinates zr; = (a; + b;)/2,
i=1,...,d. If 7 >0, we denote by 7R to be the r-dilate of R with respect
to its center, i.e.

T — TR

TR:{xERd:xR+ eR}.

We shall use many spatial or frequency decomposition throughout the paper:

o { Ak }r>o0, {Xk}kzo are specific families of Littlewood—Paley type op-
erators that can be used for a reproducing formula (3.1); they are
compactly supported and have vanishing moments (cf. §3.2);

o {¥}/>0 is an inhomogeneous dyadic decomposition in z-space, com-
pactly supported where |z| ~ 2¢if £ > 0 (cf §6.1);

o {ne}e>0 is an inhomogeneous dyadic frequency decomposition so that
n¢ is supported where |¢| &~ 2° if £ > 0 (cf. §3.3, §7.4).

Similarly, we shall use the following bump functions:
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o ¢isaradial C*® (f@d) function supported in [£| ~ 1 and not identically
zero (cf. §6.1);

o 0 is a radial C°>°(RY) function supported in |z| < 1 with vanishing
moments and such that #(¢) > 0 in || ~ 1 (cf. §6.1);

o [ is any nontrivial C'¢° (]IA%) function with compact support in (0, co)

(cf. §7.5).
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shared their preprint [30], in which they develop a metric theory of sparse
domination on spaces of homogeneous type. There is a small overlap with
our work, as [30] covers classes of singular Radon transforms, in particular
non-isotropic versions of results in §7.3.

2. NECESSARY CONDITIONS

In this section we prove Theorem 1.3 and another partial converse for
Theorem 1.1, namely Theorem 2.5 below.

We begin with an immediate and well known, but significant estimate for
the maximal sparse forms which will lead to simple necessary conditions. In
what follows, let M denote the Hardy—Littlewood maximal operator.

Lemma 2.1. The following hold for the maximal forms defined in (1.3).
(i) For f1 € Sp,, f2 € Sp;,

Apy Bypnpy (f1s fo) <477 /Rd(M[!f1|%1]($))l/pl(M[|f2|‘?;]($))1/p2d$-
(2.1)
(i) If 1 <p1 <p, and f1 € L%’ll, fo € L%,;, then

Ay By B (1, f2) Spip 7_1||f1||yg11 HfQHLz];/*v (2.2)
2

(iii) If 1 < p <phy, and fr € I, fo € L%'é}’ then

A B1pa, 83 (110 f2) Spn v 1l 1F2ll o (2.3)

2
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Proof. For a ~-sparse family of cubes we have

pl,Bl,pQ, fl f2 Z /E ’f |P1 ))1/101 (MHfQ‘%Q;](Z'))l/pzdl’

QEG
and (2.1) follows by the disjointness of the sets Eg and taking supremum
over all sparse families.
Now let fi € Sp,, f2 € Sp;. For (2.2) we use (2.1), with p» = p/, together

with the fact that for p; < p the operator g — (M\g\%l)l/pl maps L’gll to
itself; this follows by real interpolation from the fact that it maps LP to
itself, for all p > p;. We can now estimate

Ay 5y g (F1s f2) ST HICMI AL DY P Lo | f2

< —1
S 1 il 12 -

/ /
%5])1/17 HLp’,oo

Since simple Bjp-valued functions are dense in ngll and simple B3-valued
functions are dense in L’]’B/; we get (2.7) for all f; € L%i and fy € L’;;, by a
straightforward limiting argument.

For (2.3) we argue similarly. We use (2.1) with p; = p, together with the
fact that for po < p’ the operator g — (M’g’%};)l/m maps L%;*l to itself, and
hence

b ms (11 £2) 7 MUl DY oo | MU D 7
Somn 7 il Il 0

2

The estimates in Lemma 2.1 immediate yield estimates for the forms
(T f1, f2), since by the definition (1.5)

(T fr, F2) < T Wsp, o1, B13p2.B3) Mgy o, 35 (15 f2)-

We shall now prove Theorem 1.3 in §2.1, and a variant under reflexivity
of By in §2.2.

2.1. The local integrability hypothesis. If T'f; € Lle loes Lemma 2.1

further yields bounds for the L%Z or L%;O norms of T'f; via a duality result
for scalar functions.

Lemma 2.2. Suppose T : Sp, — LlB2 loc- Then the following hold.

(i) If 1 <p; < p < oo and if for all f € Sp, and all R-valued nonnega-
tive simple functions w

5@, w@)de < A5, (),

then T extends to a bounded operator from L’gl to L% so that
1 2

HTHLI‘}’B,’ll—>LT}’3,2 Splvp 771‘41‘ (2'4)
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(i) If 1 < p < py and if for all f € Sp, and all R-valued nonnegative
simple functions w

LTI @lg, (@) < 425 b, (1),
then T extends to a bounded operator from LY, to L% so that
1 2
1Tl —ornee Spop v Ao (2.5)
1 2
Proof. We rely on Lemma 2.1. For part (i) we use (2.2) to estimate, for
J2 €SBy,
-1
/Rd T (@) lg,w(@)de S v~ A fll gl -

By LP duality this implies an LP bound for the locally integrable scalar
function = + |T'f(x)|p, and consequently T'f € L} with

< A1
A ly, <™ Arllf g
and (2.4) follows.
For part (ii) we argue similarly. We use (2.3) to estimate

L 5@,y £ 97 Al g, el o

By the duality (L¥')* = LP>° for scalar functions for 1 < p < oo [55] we
get

ITfllzzee S v~ A2l filleg,
and (2.5) follows. O

Corollary 2.3. Assume that T : Sp, — L}%‘Q,loc and let 1 <p; <p < ph. If
for all f € Sp, and all R-valued nonnegative simple functions w

L 5@, w@)de < AN, 5,550,

then T extends to a bounded operator from LY to LY so that
1 2

ITlg, o1, Spron 7 A (2.6)

Proof. Lemma 2.2 implies T' maps boundedly L%l — L%Q’oo and L%l’l — L%Q
for any p1 < p1 < p and p < phy, < ph; the desired L%l — L%Q boundedness
for p1 < p < pl then follows by interpolation.

Alternatively, one could deduce this result directly from (2.1). Arguing as
in the proofs of (ii) or (iii) in Lemma 2.1, by the Hardy—Littlewood theorem
and (2.1) one has

A Bupa,B; (1o F2) Sppvpe 7 il 1Fall (2.7)
2
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for 1 < p; < p < p,. Then one can argue as in the proof of Lemma 2.2, to
deduce (2.6) from (2.7). O

We next turn to the necessity of the condition (1.8) in Corollary 1.2 and
Theorem 1.1. In this generality, this type of implication appears to be new in
the sparse domination literature. It is inspired by the philosophy of adapting
the counterexamples for LP — L9 estimates to sparse bounds (see i.e. the
examples for spherical maximal operators in [66]).

Lemma 2.4. Let {T}};cz be a family of operators, with T : Sp, — L}Bg’loc,
and satisfying the strengthened support condition (1.14). Let 1 < p < q <
oo and suppose that for all f € Sp, and all R-valued nonnegative simple
function w, the estimate

L T @)lg, (@) < €8 b, g 270
holds uniformly in j € Z. Then

sup ||D112JT ||Lp —>Lq S'Y,d 01,62,p,9 C.
JEZ

Proof. Fix j € Z and let S = Dily;T;. We first apply a scaling argment.
Note that by assumption

[ 185@)pwt@de =27 [ B3(@ ) @)], w(za)do

Ba
<N gy R(F277),0(27)
If AS Bi.gR 18 @ sparse form with a ~-sparse collection of cubes we form the
collection &; of dilated cubes {277y : y € Q} where Q € &. Then

jdApBl q/R(f(2_J) w(27) = p31 s rUfrw)

and therefore we get the estimate

[ 187@)lp,w(@)do < €85 5, g a(f.c). (2.8)

Suppose that b is the smallest positive integer such that
270 < a2 min{0,/2, 65}
For 3 € Z9 let
Q;={r:27% <a;<27%Gi+1),i=1,...,d}

and let f; = flg,. Let R; the cube of side length 3 centered at 27b5. Then
S f; is supported in R;. We decompose R; into 39204 cubes R, , of side length

b here v € I, with #I, = 3d2bd,

Fix 3,v and a simple nonnegative function w with |w||,,+ < 1. We first
prove that for v € Z;

[ 185,@)p,0@1r,, (2)dz S €14, ol (29)
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In this argument we shall not use strong measurability of Sf;. By (2.8) we
have

[ 181@p,e(@)1r,, (0)ds < €N} 5, (s,

and therefore we find a sparse family &, , such that

[188@)l0@1n, @i <2 3 QAo w1n g, (210

QEG;,v

By the strengthened support condition, (1.14),
Sfilg,, #0 = dist(Q;, Ry,) > 01 — 27 °Vd. (2.11)

Assuming that the left-hand side is not 0 in (2.10), and in view of (2.11),
we see that for a cube @ € &;, we have, recalling that d; > Vd 2ttt

QNQ#0

} — diam(Q) > 6, — 27°Vd > 27%V/4d.
R,,NQ#0

Hence all cubes that contribute to the sum in (2.10) have side length > 27,
Denote the cubes in &;, with side length in [2¢,2/"!) by &;,(¢) and note
that for every ¢ > —b there are at most C'(d) many cubes that contribute.
Hence we may estimate

Z Q| <f3>Q7p<W]1R5,y>Q7q/
QEG;,,

1
a

<Y X Il / )5, d)" ( /Q w(@)Lg,, (2)| dz)"

>—b Qe@ o (8)

Sa 30 2 fllug, Il Shama 155l

£>—b

where we used the assumption ¢ > p to sum in ¢. This establishes (2.9).
By duality combined with (2.9) we have

IS5y, 5,0 S sup [185,@), @, @)z < €15z,
weSR
wll, g <1
(2.12)
Considering this for various v € Z; we get

153lleg, < > 1S illzg, (ro) S > Clifilley, Sasus Cllfillz, -

veT; veT;
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Then

1715, = | stf"’ i,

1/q
SO EIA T (2.13)
d 2

3EZL

Sasa €( 1515, ) S e (S UAI, ) S €Nl O

€24 3€zd

Theorem 1.3 now follows from Lemmata 2.2 and 2.4.

2.2. The reflexivity hypothesis. In this section we prove a version of
Theorem 1.3 where we drop the a priori assumption on 7} sending Sp, to
Lle,loc and thus we can no longer assume the strong B measurability of
Tf. We still get a partial converse to Theorem 1.1 if we assume that the
Banach space Bs is reflexive.

Theorem 2.5. Let By be reflexive and let 1 < p < q < oco. Let {T}}jez
be a family of operators in Opp, p, satisfying the support condition (1.6).
Assume the conclusion of Theorem 1.1, that is, there exists € > 0 such that
for all Ny, Ny with Ny < Ny and every fi1 € Sp,, f2 € 835,

N»
‘< Z ijlvf2>‘ < CA, g, (f15 f2)-

Jj=N1
Then

(i) Conditions (1.7a) and (1.7b) hold, i.e., there is a constant ¢ > 0
only depending on d,p,q,~y such that for all N1, No with N1 < N,

HZ Mg, e < HZ )
Jj=N1 Ba J=N1

(i) If, in addition, the T; satisfy the strengthened support condition
(1.14) then condition (1.8) holds, i.e., there is a constant ¢ > 0
only depending on d,p,q,~y such that

<c@C.

1 q
LY L
B1 Ba

sup ||Dily; T} 2, oLy, < cC.
JEL

In the vector valued setting of Theorem 2.5 we need to use a more abstract
duality argument which requires some care because of a potential lack of
strong local integrability. We briefly discuss the issue of duality.

Let B be a Banach space. Recall that for 1 <p < oo, 1/p+1/p' =1, the
space L%l* is embedded in (L%)* via the canonical isometric homomorphism.
In the scalar case this isometry is also surjective when 1 < p < oo, and the
proof of this fact relies on the Radon—Nikodym theorem. In the vector-
valued case the surjectivity is equivalent with the dual space B* having the
Radon—Nikodym property (RNP) with respect to Lebesgue measure (see [56,
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Chapter 1.3.b] for the formal definition). Thus under this assumption we
have an identification of the dual of LY, with L. To summarize,

B*€RNP <« (LB)*=1IF. 1<p<oco. (2.14)
Similarly, the Radon—Nikodym property for B* also implies
(L%T)*:L’;f/, l<p<oo, 1<7r<oo;

this is not stated in [56] but follows by a similar argument as in the scalar case
[55, (2.7)], essentially with the exception of the application of the Radon—
Nikodym property in place of the scalar Radon—Nikodym theorem. For a
detailed discussion of the Radon—Nikodym properties and its applications
we refer to [56, Chapter 1.3.c]. The class of spaces which have the Radon—
Nikodym property with respect to all o-finite measure spaces includes all
reflexive spaces and also all spaces that have a separable dual (cf. [56, The-
orem 1.3.21]). If B is reflexive, so is B*, and therefore (2.14) holds for
reflexive spaces B.

Under the assumption that the double dual B3* satisfies the Radon—
Nikodym property, we can show that the sparse bound implies that T'f
can be identified with a B3* strongly measurable function. This leads to a
satisfactory conclusion under the stronger assumption that Bs is reflexive.

Lemma 2.6. Assume that T' € Opp, p, and that B3* satisfies the Radon—
Nikodym property. Then the following hold.
(i) If 1 <p1 <p < oo and T € Sp.(p1, B1,p, B) then T extends to a
bounded operator from L’gi to L%;* so that

1700z S 7 (Tl 1,310 B3)- (2.15)
1 B3

(i) If 1 < p < py andT' € Sp.(p, B1,p2, B3) then T extends to a bounded
operator from L to ngf so that

1
HT”Lgl—wg;’i Spe ¥ T lIsp, (p, 81 ,p, B) - (2.16)
2

Proof. We rely, as in the proof of Lemma 2.2, on Lemma 2.1.
For part (i), we use (2.2) to obtain
-1

(TS 2l S 1T s, (0,810, 3) | il o [ 2l o -

v By B}

This inequality establishes the form fo — (T'f1, f2) as a linear functional on

L%g' Since B3* has the Radon—Nikodym property and thus (L%;)* = L%g*,
we can identify T'f; as a member of L%;*. Since

Tl _yp = sup sup  [(T'f1, f2)]
e P N T VS S
By LBS

we have established (2.15).
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Similarly, for part (ii) we use (2.3) to obtain
(T f1, f2)| S ’y*lHTHSM(p,Bl;m,B;)||f||L§§1 ||9||L;;3'£.

Since L%gf can be identified with (ng)* we then get

1Tl srge = swp - swp (T, o)l
HleLp <1 ||f2|| 1<l
B*

and obtain (2.16). O
Lemma 2.7. Assume that B3* satisfies the Radon—Nikodym property. Let
{T;}jez be a family of operators in Opp, p,, satisfying the strengthened
support condition (1.14). Suppose that 1 < p < g < oo and

sup HTJ’”Spw(p,BLqCB;) <€

JEZ
Then

sup HDIIQJT ||Lp —>Lq B S%d 01,62,p,9 c.
JEZ

Proof. We let S = Dily;Tj, R;, R;,, v € I; as in the proof of Lemma 2.4.
The proof of (2.9) can be modified just with appropriate notational changes,
such as replacing expressions as one the left -hand side of (2.9) with

)\fvavu(g) = <Sf2|7 g]lRa,V > .
This leads to the inequality

(555 91R,)| S Cllfsllze, Nlgllze (2.17)
1 2

in the place of (2.9). Inequality (2.17) shows that A, , is a continuous linear

functional on the space L%g (R, ); recall that by assumption 1 < ¢’ < co. By

the Radon-Nikodym property of B3*, the linear functional Ay ; ,, is identified

with a function Sf; restricted to R, ,, in the space L%..(R;,). Hence we
2

now get a variant of inequality (2.12), namely

1S fillzs,. <> 19 5illzs,.. (ro)

veL;

<D swp [(Sfi,91R,,) Sass €l -

VET, ||9||Lq/ <1
B3

We finish as in (2.13) to bound ||Sf|| « e S GHpr . O

Conclusion of the proof of Theorem 2.5. Since we are assuming that Bs is
reflexive we have that By = B3* satisfies the Radon-Nikodym property.
Hence now the necessity of the L%i — L%Z and L%l — L%;O conditions
follow from Lemma 2.6, and the necessity of the single scale LP — L? condi-

tions follows from using the assumption with N; = Ns and applying Lemma,
2.7. O
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3. SINGLE SCALE SPARSE DOMINATION

We collect some preliminary results which are needed in the proof of
Theorem 1.1.

3.1. A single scale estimate. We state an elementary lemma which is
used to establish the base case in the induction proof of Theorem 1.1. Recall
that for a cube @, we let 3() denote the cube centered at the center of @)
with three times the side length of ), which is also the union of ) and its
neighbors of the same side length.

Lemma 3.1. Let T € Opp, g, satisfy (1.6) and (1.8) for some exponents
p,q € [1,00]. Let Q be a cube of side length 27. Then for fi € Sp,, f2 € SBs,

(T3[f11q) 2] < 37 Ao(p, )| QI fi) g Fo)sg-

Proof. By the support property (1.6), T;[filg] is supported in 3Q. By
re-scaling we get from (1.8) that

|75 o s Lo < 2794Q/P=1D A (p, q)
and thus
[(T5[f11q], f2)| = [(T;[f11q], f213q)]
o(p, )27 1P| fi gl f2 150l
o (0, 03" | Q1) g p (2)30.47

as claimed. O

IN

A
A

This implies a sparse bound for the single scale operators 7}; indeed the
sparse collection is a disjoint collection of cubes.

Corollary 3.2. For0 <y <1 and1 <p,q < o0,
||T]'||Sp7(p,q’) < 3d(1/p+1/q’)AO(p’ Q)-

Proof. We tile R¢ by a family 0 of dyadic cubes of side length 2/ and
estimate

(Tifr, )1 < D WTi1ALQL f2)] < Aol )3T D 1QI) o0 (F2) 30,0

QeN; QeQ;

< Ao (p, q)3%H/ 7P Z 3QI(f1)30,p(f2)30,q"
QeQ;

The family {3Q : @ € Q;} can be split into 3¢ subfamilies consisting each
of disjoint cubes of side length 3 - 27. This implies the assertion (for every
0 < v < 1) since for every 3@ involved in each subfamily we can choose

Fsg = 3Q. 0
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3.2. A resolution of the identity. It will be quite convenient to work with
a resolution of the identity using Littlewood—Paley decompositions which are
localized in space. We have

1= Arhy (3.1)
k=0

which converges in the strong operator topology on L%1 (R, 1 < p < oo.
Here A, 1~\k are convolution operators with convolution kernels A, Xk such
that A\g € C2° has support in {z : |z| < 1/2}, [Ao = 1, A1 = 2X0(2") —
Mo and g, A1 € S with f5\0 = 1, and le = 0. Moreover, for k > 1,
A = 2(=Dd ) (9k=1y X, = 2(k=DdX, (2k=1.) " For later applicability we
may choose Ap, so that

d d

/)\1(50) wa" dx =0, for Zai <100d

i=1 i=1
and the same for Xl.

A proof of (3.1) with these specifications can be found in [100, Lemma
2.1] (the calculation there shows that Xo, A1 can be chosen with compact
support as well). For later use we let Py be the operator given by convolution
with 28d)\g(2%.) for k > 0, and also set P_; = 0, and observe that by our
construction

Ak:Pk:_Pk:—b for kz 1. (32)

3.3. Single scale regularity. In our proof of Theorem 1.1 it will be useful
to work with other versions of the regularity conditions (1.9) which are
adapted to the dyadic setting. To formulate these, we fix a dyadic lattice of
cubes Q. Let {E, },ez be the conditional expectation operators associated
to the o-algebra generated by the subfamily £,, of cubes in Q of side length
in [277, 2171 that is, E, f(z) = avg f for every x € Q with Q € Q,,. Define
the martingale difference operator D,, by

D,=E,—E,1 forn>1.
We also use the operators Ay, Ay in the decomposition (3.1).

Lemma 3.3. Let T' € Opp, p,-
(i) Let 1 <p<g<oo,0<¥<1/p. Then

v kv
ITEoll 3, —19, +sup 2" TDnllzy, —1g, S0 2182 ITAkllLy, —rg, - (3:3)

(ii) Let 1 <p<qg<oo,0<¥<1. Then

up 28| TA g || T + sup |p|7YTA .
izo | kHLglanBz o | HLgl LY, 0<S‘h‘P<1\ =l hHijBl Ly,
(3.4)
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(iii) Let 1 <p<q<o0,0<v¥<1—1/p. Then

o 9
igIO)Q ITAkllLy, ~rg, So ITEollLy, —rg, +ililg2n ITDally, g, - (3:5)

An immediate consequence is the following.

Corollary 3.4. For 1 <p<qg< oo and 0 <9 <min{l/p,1 —1/p},
0
7Bl a5, + w21 7Dl s, o

T W= TA :
| ||L%1—>L‘}32+0<S‘1}11‘p<1’ =l h||L1;31—>L‘}5,2

Proof of Lemma 3.3. We rely on arguments used before in considerations
of variational estimates [58], [59], of basis properties of the Haar system in
spaces measuring smoothness [47] and elsewhere. We use

186l g, 1y, = O), IRelliy oy = O, [Ealliy, ay = O()
throughout the proof. Since ¥ > 0 we get from (3.1)
14
HTEO‘|L%1~>L%2 S Z ”TAkHLglanBz S0 2&18 2 HTAkHL%IHL‘fBZ'
k>0 =
To estimate TD,, we will need

1AkDn Ly, —pp, S mingl, plkmi/py, (3.6)

and only the case k < n needs a proof. A standard calculation using can-
cellation of I, yields (3.6) for p = 1 and the rest follows by interpolation.
Consequently we can estimate

9 9 g
2" HT]D)H”L%IHL‘}BQ <2 E HTAkAk]D)nHL%lﬁLqBQ
k>0

nd N
<2 ];0HTAklngﬁL‘}%||AanHLgﬁLgl

ko —(n—k)(5—9) kv —(k—n)¥
S )2 1T Akllzy, 13, 2 Y2 ITAkllzy, —rg, 2
0<k<n k>n

S sup 29| T Akl p yps
kZO 1 2

where we used ¥ < 1/p for the first sum. This proves (3.3).

We now turn to (3.4) and estimate the left-hand side. By (3.2) we can
write

ITAklzy, ~zg, < NTA=Po)llzy, srg, +ITA = Pe-i)llry, —rg, -

Note that, as [ Ao =1,

(- Pon)f(@) = [ 200002 WA f(a)a,
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SO

1T Pt) Sl oy, = [ 250 DIITA g, g,
1 2 1 2

< sup || TAnllpy —pg,

~

|h|<27k

and the same bound for ||T'(I — Py)f|| 2, g, - This establishes that the
1 2
left-hand side is smaller than the right-hand side in (3.4).
We argue similarly for the converse inequality. We estimate

kv
1Ty, —rg, < ;0 ITAwl Ly, ~rg, < ?;ISQ ITAklly, —rg, -
For the main terms
ITARl 2y, —rg, < > ITAkl Ly, —rg, 1ARBnllze, rr, -
k>0
Now
[ARAnllLy, —rp S 1A +R) = A0l S min{1, 2%|h[} (3.7)
and therefore
—9 kY ok -9 __ . k
BT A, Srg, < ST 1T ARl Sorg, 247 (2F1R1)~ min{1,2¥h]}
k>0

< sup 2 [Tl e
k>0 1 2

since Zkzo(Qk’hDiﬁ min{1,2%|h|} <y 1if 0 < ¥ < 1. This completes the
proof of (3.4).

It remains to prove (3.5). Setting Dy := Eo we observe that =" -, D,
and D,, = D,D,,, and thus B

ITAwl Ly, ~rg, < ;;0 ITDnllgy, —rg, [Dndellze, —rr -

We use H]D)nAkHL% Srp, S 1forn >k and
1 1

(n—k)(1

1
IDnAelzy, g S2 ) for n < k. (3.8)

This is clear for p = 1 and by interpolation it suffices to show it for p = cc.
Let Q be a dyadic cube of side length 27"*1, Let Ch(Q) be the set of 2¢
dyadic children of @ (i.e. the dyadic sub-cubes of side length 27"). Let

For = {z : dist(z,0Q) < 27% for some Q € Ch(Q)}.

Then |Fgr—1] < 2~ d=1)9=k Tt 9ok = flg\r,, and observe that by
Fubini’s theorem and the cancellation and support properties of Ag

EnAng’k(SU) =0 and En—lAk;gQ,k(x) =0 forzxe€eqQ.
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Hence for x € Q,
DnAgf(2)] = DpAr(fLEg ) ()]
s2¢ [ [ netw = pllf)ldwtrg , (v)dy

< 2| Fg -1l fllso < 277 F[1f lloo-

This implies (3.8) for p = co.
To finish we write

QWHTAkHLgl—w%Q <> 17Dy, 13, 2¥ min{1, 2(n=R0-1/P)}
n>0

< sup 2™ | TDnl|rp 10
n>0 1 2

where we used ), - 2(k=m)? min{1, 2=k {1A-1/P)} < 1 provided that 0 <
¥ < 1—1/p. This proves (3.5). O

In the proof of Theorem 1.1 we use the following Corollary.

Corollary 3.5. Let 1 <p<g<oo and 0 <9 <1/p. Then
(i) For any n >0,

—nd —v
HT(I—En)HLg —LY So 27" sup |h] HTAhHL{;3 —L% -
1 2 0<|h|<1 1 2

(it) If T; is such that (1.9a) holds then

175 (1= Brnj)ll e, e, So B2 094Gy,
1 2
Proof. We write I = E, +> 72, D, 4, and thus

oo
1T =)y, —pg, < kz—l ITDpkll s, — 13,

oo
So Y 27U sup (BT T AR e
1 0<|h|<1 B "B

by combining part (3.3), (3.4) in the statement of Lemma 3.3. We sum and
get the assertion. Part (ii) follows by rescaling and the hypotheses. ([

We finally discuss a formulation of the regularity condition which involves
the Fourier support of the function and is therefore limited to the case where
B is a separable Hilbert space, here denoted by H. It is convenient to use
a frequency decomposition

F=> mxf, (3.9)

>0
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with 7)o is supported in {€ : |¢| < 1} such that 7jo(¢) = 1 for || < 3, and
with 7, defined by 7,(&) = 70 (27%) — (21 7€) for £ > 1, i.e. we have

supp(7ir) € {€: 277 <[] <2, £>1. (3.10)

Recall that E,nn(A\) denotes the space of tempered distributions whose Fourier
transform is supported in {£ : /2 < [§| < 2A}.

Lemma 3.6. Let 3 be a separable Hilbert space and T' € Opg p,. Suppose
that T : Lg( — L?% satisfies

1Tl r s, <A, (3.11)
2
and for all X > 2 and all H-valued Schwartz functions f € Eann(N),
ITflls, < AN £llzs - (3.12)
2

Then

sup Rl T AR r s, So A
0<|h|<1 2

Proof. By the assumptions (3.11) (£ = 0) and (3.12) (£ > 1) we have
1T+ Anflllzg, < A2007 iy 5 A £l 1.
Arguing as in (3.7) we get
e+ Anfllg, = 1 8ume * Fllg, S ming1, 28l s

Thus using (3.9) we obtain

ITA g, < 0 WT00 o Anflllg, S A 27 min{1, 2|l £l
=0 =0

and after summing in ¢ we arrive at |[TAp fllLe  So \h\ﬁHfHLg{. O
2

4. PROOF OF THE MAIN RESULT

4.1. A modified version of sparse forms. We fix a dyadic lattice 1 in
the sense of Lerner and Nazarov, where we assume that the side length of
each cube in 0 is dyadic, i.e. of the form 2% with k € Z. Also fix vy € (0, 1)
and 1 < p < ¢ < oo. It will be convenient to use variants &g, = &¢, ~ of
the maximal form A;j ¢ defined in (1.3). The presence of the triple cubes in

the new form allows one to exploit more effectively the support condition
(1.6).

Definition 4.1. Given a cube Qg € Q let
QjQO (f17 f2) = Sup Z |Q‘ <f1>Q,p,B1 <f2>3Q,q’,B;

Qe6

where the supremum is taken over all ~y-sparse collections & consisting of

cubes in D(Qo).
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Notational convention. From now on in this proof, the dependence on the
Banach spaces By, B3 will not be explicitly indicated, i.e. {(f1) O.p should be
understood as (f1)g,, 5, and (f2)g , should be understood as <f2)Q7q/7B;.

The key step towards proving Theorem 1.1 is to establish a variant in
which A; ¢ is replaced by &, that is,

Na
I Z Tif1. f2)| Spacdn COqo(f1, f2) (4.1)

Jj=N1

for fi € Sp,, f2 € Sp; and a sufficiently large cube Qo € Q. The reader
will notice that &g, does not define a sparse form, and we will show in §4.2
how to finish the proof of Theorem 1.1 given (4.1). The proof of (4.1) will
be done by induction, which leads us to the following definition.

Definition 4.2. Forn =0,1,2,... let U(n) be the smallest constant U so
that for all families of operators {T;} satisfying the assumptions of Theorem
1.1, for all pairs (N1, N2) with 0 < Ny — Ny < n and for all dyadic cubes
Qo € 9 of side length 2V* we have

No
(" Tifi, f2)| < UGGy (f1, fo)

j=N1
whenever f1 € Sp, with supp(f1) C Qo and f2 € Sp;.
Thus, in order to show (4.1), it suffices to show that

U(n) Spaedn €

uniformly in n € Ng. This will be proven by induction on n. By Lemma 3.1
we have the base case

U(0) < 3%7 A,(p, q) (4.2)

and, more generally, U(n) < (n+1)3%% A,(p, q), which shows the finiteness
of the U(n). The proof then reduces to the verification of the following
inductive claim.

Claim 4.3. There is a constant ¢ = ¢p 4¢ .4~ such that for all n >0,
U(n) <max{U(n —1), cC},
with C defined as in (1.11).

Our proof of the claim is an extension of the proof for sparse bounds of
the prototypical singular Radon transforms in [89], which itself builds on
ideas in [66]. It is contained in §4.4.
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4.2. Proof of Theorem 1.1 given Claim 4.3. Fix Ny < Na, fi € Sp,,
fo €8 B;- We choose any dyadic lattice with cubes of dyadic side length
as in the previous subsection. By (1.6) we may choose a cube @y € Q of
side length 24(Q0) with L(Qg) > Ns such that f; is supported in Qq. Then
Z;Vle T f1 is supported in 3Q). Define the operators S; = T; when Ny <
J < N3 and Sj = 0 otherwise. Then the assumptions of Theorem 1.1 apply
to the family {S;}. By (4.2) and Claim 4.3 applied to S = Z]LL?VOI) S; =
Z;V:Q ~, I we obtain

[{Sf1, f2)l < Cpaean CEQy(f1, f2)-

In order to complete the proof of Theorem 1.1 it remains to replace &g,
by the maximal sparse form A} . This argument relies on facts in dyadic
analysis which we quote from the book by Lerner and Nazarov [79].

We first note that for € > 0 there is a 7-sparse collection S, C D(Qo)
such that

‘<Sf17f2>‘ < (CpgedryC +€) Z ’Q‘<f1>Q,p<f2>3Q,q'

Qe6.

< 3d/pid(cp,q,€,d,7 C+e) Z ’3Q|<f1>3Q,p<f2>3Q,q" (4.3)
QeG.

By the Three Lattice Theorem [79, Theorem 3.1] there are dyadic lattices
DWWy =1,...,3% such that every cube in the collection 36, := {3Q:Q €
S.} belongs to one of the dyadic lattices DW). Moreover, each collection

6" =36.nDW

is a 3~ 9v-sparse collection of cubes in D*). Each GEV) is a 3%y~ 1-Carleson
family in the sense of [79, Definition 6.2]. By [79, Lemma 6.6] we can write,
for each integer M > 2, the family GEV) as a union of M sub-families 62?,
each of which is a M-Carleson family, with M = 1+ M~1(3%y~1 —1). By
[79, Lemma 6.3] the collections (‘52’2 are y-sparse families where 7 = M=
(1 4+ M~1(3%~t —1))~L. By choosing M large enough we can have 7 > v
and then, from (4.3), one has

(S 11, f2)| <377 U epgeanCte) D BQUF)s0,f2)50.0
QEeG.
< Mgd/p(cp,q,s,d,'y C+ 6) sup Z ‘R|<f1>R,p<f2>R,q’

i=1,..,.M )
I/=1,...3d ReGe,i

< M3UP(cp g eanC+€) Ao (f1, f2)

which gives the desired y-sparse bound with ”SHSPW(P»‘I') < M3%vc, , . 4. C.
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4.3. Proof of Corollary 1.2. Corollary 1.2 is a consequence of Theorem
1.1 and the following lemma, applied to T = Z;Vj N L

Lemma 4.4. LetT : S, — Lle loc @nd assume that
HT”Spw(p,Buq’,Bé) <C
Then we have for all f € Sp, and all nonnegative simple w

[ s @lnw(e)ds < €A g alFi) (14)

Proof. By the monotone convergence theorem we may assume that w is a
compactly supported simple function. Moreover, since 7" : Sp, — L%% loc We

can approximate, in the L}BQ (K) norm for every compact set K, the function

Tf (for f € Sp,) by simple By-valued functions. Thus given € > 0 there is
h € Sp, such that

/ Tf(2) — b, w(o)ds < e
Rd

Moreover, there is a compactly supported A € Spy with max,cga [\ (7)[B; <
1 (depending on h, w) such that

/Rd |h(x) |Bzw(x)dx <e +/ (h(x), \(z)) w(x)dz,

R4

and we also have
| [ ) = Tr@) M@ wtada] < [ Ihie) = 7@, wlo)de < e

Consequently

/Rd T f ()| pyw(x)dz < 3€+/

R

, (Tf(z), \z)) w(z)de.

Thus in order to show (4.4) it suffices to show

/Rd <Tf(x),)\(x)>w(x)dac < CA;’Bl,p%R(f,w) (4.5)

for any choice of compactly supported A € Spy such that || re, < 1. Let
2

f2(z) = w(x)A(z). Then fy € Spy with |fa(r)|p; < w(z) for all z € RY. By
the hypothesis, applied to f and fo = wA,

/R (T ), 0@ @) < €A, gy s (F0N).

Since (WA)Qpa.B; < (W)Qpo,R, We have established (4.5), and the proof is
finished by letting € — 0. (|
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4.4. The inductive step. In this section we prove Claim 4.3, the key in-
gredient in the proof of Theorem 1.1. Let )y be a dyadic cube of side length
22 Recall that f; is supported in Qg and thus

N2 N2
(D" Tifi, 2y = Tifr, f2lsqo)-
J=N1 J=N1
Hence without loss of generality we may assume that f> is supported in 3Q)p.

Let M denote the Hardy-Littlewood maximal operator and let M, f =
(M| fIP)V/P. By the well known weak (1,1) inequality for M,

meas({x € R : M,f > \}) < 5d)\7p‘|f||£-
Define Q = Q7 U Q9 where
2 = {z € 3Qos Myfi(@) > (1) (1) g, )
Q = {z €3Q0 : My fo(x) > (X2 (fa)s0, 0}
We then have |Q] < Q1] + Q2] < (1 —7)|Qo| and if we set
Eqg, = Qo \ &,

(4.6)

then [Eq,| > 71Qol.
We perform a Whitney decomposition of . It is shown in [103, VI.1.2]

that given any 3 > v/d, one can write  as a union of disjoint dyadic Whitney
cubes W € WP © 9, with side length 2XW) and L(W) € Z, so that

(8 — Vd)2"W) < dist(W, QF) < gat(W)+1

for W € WP, In [103, VI.1.1] the choice of 8 = 2v/d is made; here we need
to choose § sufficiently large and 8 = 6v/d will work for us. We fix this
choice and label as W the corresponding family of Whitney cubes. We then
have

5diam (W) < dist(W, Q%) < 12diam(W) for all W € W. (4.7)
We set for i =1, 2,
fiw = filw,

biw = (fi —avy, fi)lw = (L= E_rw)) fiw,
and

bi= > biw,

Wew
g9i = filgo + Y avyfi lw.
Wew

Then we have the Calderén-Zygmund decompositions f; = g; + b; (using
the same above family of Whitney cubes for f; and f3). For ¢ = 1 we add
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an observation, namely that

b= Y biw.

Wwew
WCQo

Since fi is supported in @, this follows from the fact that
WnNQo#0 = W CQo. (4.8)

Indeed, if (4.8) fails, we must have Qo C W as W and Qg are dyadic. But
then |Qo| < |W| < Q] < (1 —7)|Qol, which is a contradiction.

We note from (4.7) and the definition of €2 that

(Fdwp Say (Mgep 2wy Sdr (f2)300.0 (4.92)
for every W € W, as a fixed dilate of W intersects QF. Indeed,
<f1>Q,p Sd,'y <f1>Q0,p7 <f2>Q,q’ §d,7 <f2>3Q0,q' (4.9b)

for every cube @) which contains a W € W. Moreover, by the definition of
g; and £,

lorlleg, Sao (fiqep  llg2lls, Saq (f2)spq- (4.10)

Since supp(fi1) C Qo and supp(f2) C 3Qo we also get supp(g1) C Qo and
supp(g2) C 3Qo; here we use (4.8). Since ||1g||pr1 < QYT for r < oo, we
obtain from (4.10) that for r1, 79 < o0,

lgallra2 s Q0™ (f1) gy lg2ll ra Sdray QoI {f2) 3044
1 2
(4.11)
For every dyadic cube @ € Q we have by disjointness of the W

H > bl,W’ o S ( > Hfl,WHErBl)l/r
wcQ B1 wcQ

and thus

|5 b
wcaQ

Likewise we get for fo,

. 1/r
| 32 vl % ([ 1sopsan)

We now begin the proof of the induction step in Claim 4.3. Let

o 5 ([ 1n@i) " (112)

No
S = SN17N2 = Z 71]
Jj=N1

By the Calderén—Zygmund decomposition for f; we have
[(Sf1, fa)l < [{Sg1, f2)| + [{Sb1, fa)l. (4.13)



MULTI-SCALE SPARSE DOMINATION 35

Using the L%i — LqB2 boundedness of S (from the restricted strong type
(¢, q) condition (1.7b)) and (4.11) with r; = ¢ < oo we get

(g1 f)l < 15911, 1 F20s00l o7 (4.14)
2
< A(Q)HQlHLgll‘|f213Q0||Lg§
S dan'YA(Q)|Q0’<f1>QO7p<f2>3Q07q"
Define, for each W € W (recalling that the side length of W is 2L(W)),

Swf=Sn,comlflw] = Z Ti[flw].
N1 <Gj<L(W)

We decompose the second term in (4.13) as in [89] and write

(Sby, fo) = I+ IT + 111,

where
I=()_ Swh,fa), (4.15a)
wew
IT=—( Z Sw(avw [f1]1w), fa) , (4.15b)
wew
T =Y (5= Sw)biw, f2). (4.15¢)
wew

The first term (4.15a) is handled by the induction hypothesis. In view of
(4.8), each W that contributes a non-zero summand in (4.15a) is a proper
subcube of Qy. Therefore we have L(W) — N3 < n — 1 and thus by the
induction hypothesis,

[(Sw f1, f2)] S U(n —1)Sw(filw, f2).

That is, given any € > 0 there is a y-sparse collection Gy of subcubes of
W such that

[(Swhi ) < Un=1)+€) > 1QUf1)g,(f2)sgy (4.16)

QGGW,G

Because of the y-sparsity there are measurable subsets Eq of Q with |Eg| >
v|Q| so that the Eg with Q € Gy are disjoint. We combine the various
collections Gy and form the collection &, of cubes

Gc:={Q}U |J Swe.

wew
WcCQo

Observe that the collection &, is indeed ~y-sparse: as defined above, Eg, =
Qo \ Q, and therefore |Eg,| > v|Qo|. By disjointness of the W C Qg the sets
Eq, for Q € &, are disjoint; moreover they satisfy |[Eg| > v|Q].
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We consider the term I7 in (4.15b). Here we will use that the restricted
strong type (g, q) condition (1.7b) implies ||Sy|| ;.1 < A(q), and
By

%LqBQ
HaVW[fl]ﬂWHLE S lavi [l WY Sg (Fdw, WM

for ¢ < oco. Together with the disjointness of the cubes W and (4.9a), we
get,

1111 < > |1Sw(avw [A]1w)| g, HlestLq (4.17)
Wew

So D (O w AWM IBAW DY (fy) gy
wew

Saar A D WD) 00 23000

wew

,Sd,q,’y A(q) ‘QO ’ <f1>Q0,p<f2>3Q0,q' '

Regarding the third term in (4.15¢) we claim that

(I11] Spgedn (AD) + Ao(p,@)10g(2 + 50)1Q0l(f1) gy »(f2) 3004 -
(4.18)

Taking (4.18) for granted we obtain from (4.14), (4.17), (4.18) and (4.16)
that there exist constants C1(d,q,v) and Ca(p, q,¢€,d,y) such that

‘(SflanH < Cl(dvQ7W)A(q)’Q0’<f1>Q0,p<f2>3Qo q
+Ca(p g, €, d, ) (A(p) + Ao(p, 0) 108(2 + 55)IQ0l(f1) gy p (2300
+ ) Y Unm-1)+elQIf) ,p(f2>3Q,q/-

wew QG@'W6
WCQo

This implies

(Sfr f2)] < max{U(n — 1) + €, ¢geanC) . QU)o f2)30.0

Qe6.
<max{U(n —1) +e, Cp,q,a,d,’yc} Gq, (f1, f2)

for all € > 0. Letting ¢ — 0 implies Claim 4.3. We are now coming to the
most technical part of the proof, the estimation of the error term II[ in
(4.15¢) for which we have to establish the claim (4.18).
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Proof of (4.18). We now use the Calderén—Zygmund decomposition for fo =
g2 + D wew ba,w as described above. We split 111 = 23:1 I111; where

I = ) Sbiw,g2), (4.19a)
wew

111 = — Z (Swbiw, g2), (4.19b)
wew

II1I; = Z Z Z (Tib1,w, ba,wr), (4.19c)

MJEN: Wew: wiew:
LW)<j L(W')>j

= > Y Z (Tibyw, ba ). (4.194d)

N1<j<Ny WeWw: W'e
L(W)<j L(W’)<]

We use the weak type (p,p) condition (1.7a) that S maps L to L3,
which is isometrically embedded in L%:gf. As p > 1, we obtain using (4.11)

for ro = p/ < 0

[I11L] < HS > bhiwl ‘
Wew

gy

D b
wew

Sdpoy ”S||L‘l’5,1_>[/§;>°‘

> |Qol"/” (f2)300,4'-
1

By (4.12) for r = p we obtain
T Sapy AP)Q0I(f1) 0y p(f2)300.4'-

Likewise, the weak type (p,p) condition (1.7a) implies L — L3~
boundedness of Sy. Using this and supp(Swbi,w) C 3W, (4.9a), (4.10),
and p > 1 we estimate,

I < > 1Sw 1wl pres [lgaLaw |l .1
Wew 2 B3

< A@p) Y lbwwle, H92HLB*||113W||LP
wew

Sdpe AD) Y \Wl1/1’<.)“1>W,p||92||L<>B<>5
wew

gd,’y A(p) Z ’W’<f1>Q0,p<f2>3Qo,q’

wew

1/p'

and hence, by the disjointness of the cubes W,

|I115 §d7p,'y A(p) |QO‘<f1>Q0,p<f2>3Qo,!I"
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Next we estimate 113 and first show that

(Tijb1,w,bawr) #0

L(W)<j§L(W’)} = J<LW) <SLW)+2<j+2 (4.20)

To see (4.20) first observe that T;b; 1 is supported on a cube Ry centered
at zy with side length 2711 + 22W)  Hence, if (Tjb1,w,bow) # 0, then we
get from (4.7) and the triangle inequality
5diam(W’) < dist(W’,Q0) < diam(W’) + diam(Ry) + dist(W, QF)
< diam(W’) + (2741 4 2EW)Y /g 12¢/a2t W),

Hence since L(W) < j < L(W') we get 2FW)+1 < 13. 2LW) which gives
(4.20). Also, with these specifications W C 3W' if (Tjby w,baw+) # 0. By
the single scale (p, q) condition (1.8),

Tl o pa < 27990/P=YD A (p, q). (4.21)

Hence using Hoélder’s inequality, (4.21) and (4.9a) we get

I3 < ) > > [(T501,w, bo,w) |
W’'ew:

N1<j<N2

: Wwew:
JSLW')<j+2 LW )—2<L(W)<j
wc3w!

—id _
<Aopg) Y 2D ST by bl
N1<j<Ns W,W'eW: WC3w’ B3
JSL(W')<j+2
L(W')—2<L(W)<j
Sy Ao(p: ) (1) o p (23000
« Z Z Q—J'd(l/p—l/q)|W|1/p|W/|1—1/q
N1<j<N2 W,W:Wc3w’

JXL(W')<j+2
L(W")—2<L(W)<j

de,’Y Ao(p7Q)<f1>Q0,p<f2>3Q07q/ Z |W/|
w'ew

and thus, by disjointness of the W',
(113 Sapy Ao(p: 0)(f1) Qo p(f2) 300,41 Qol-

Finally, consider the term

111, = Z Z (Tjb1,w, bawr). (4.22)
N1<j<N2 (WW"eWxW
L(W)<j
L(Wh<j

Let ¢/ > 0 such that
¢ <min{1/p,1/¢ e} (4.23)
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and let ¢ be a positive integer so that

100
¢ < —-log (2 +
€

) <e+1. (4.24)

We split
V= (—oo,j)2 NZ? = Vi1UV2UV;3
into three regions putting

Vii={(L1,La) €V;:j—l <Ly <j, j—€< Ly <j},

Vie={(L1,L2) €V;\Vj1: L1 < Ly},
Vis={(L1,L2) €V;\Vj1: L1 > Ly}.

Then I114 = Zf’zl IV; where for i = 1,2, 3,

1V, = Z Z <ij1,W,b2,W’>- (4.25)
N1<j<N2 W,W'ew
(L(W),L(W')eV;,;

Let R, be the collection of dyadic subcubes of Q) of side length 27, To
estimate I'V; we tile (g into such cubes and write

vi= > > ( > Tbhw, >  bawilsr). (426)

N1<j<N> RER; WCR J—U<L(W')<j
J—L<L(W)<j

By Holder’s inequality and the single scale (p, ¢) condition (1.8) (in the form
of (4.21)) we get

Vil < Aslp,q) S 274010

N1<j<N3

S ey | X et

RER; WCR B1 U j<L(W)<j B3
J—E<SL(W)<j

<Aspg) >, Y RITUAT9

N1<j<Na RER;

(X el ) e, )

. WCR W'C3R B3
J—E<L(W)<j G LW <j
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and using (4.9a) this expression is bounded by Cy Ao (p, ¢) times

Z <f1>Q0?p<f2>3Q07q, Z ’R|*(1/p71/q)

N1<j<N3 RGERJ'

" ( Z |W|>1/p( Z |W,‘)1/q’

WCR W'C3R
J—LSL(W)<j J—e<L(W")<j

Sy Z (1) gontf2)300.0

N1<j<N2

nyRr(l/p—l/q)( > \W\)I/”H_I/q.

ReR, WC3R
JSL(W)<y

Using p < ¢ and the disjointness of the W we see that the last expression is
dominated by a constant Cg 5 4 times

<f1>Q07p f2) 3Qo.q Z Z Z W

N1<j<N2 ReR; WC3R
J—l<L(W)<j

< 3 <f1>Q0P f2 3Qo,q’ Z Z Z ‘W‘

N1<j<N2 ReR; WCR

J—E<L(W)<y

Sd <f1>Q0,p<f2>3Q0,q/ Z W] Z 1
wew J:N1<j<Na3

L(W)<j<L(W)+¢

Sa Qol{f1) gy p(f2)300.4'-

Thus, using the definition of ¢ in (4.24) we get

B
na Sdy.epa Ao(p; q) log (2 + m) ’Q0|<f1>Qo7p<f2>3Qg,q" (4.27)

We now turn to the terms IV5, I'V3 and claim that
[IVal + [1V3] Sarypiae Ao (0 DIQol{f1) gy p(f2)300,4'- (4.28)

We first note that by the single scale e-regularity conditions (1.9a), (1.9b),
and Corollary 3.5,

—ad 1_1 _
1750 = By )l g, Se B2 0700275, (4.20a)

sk _'d 1_1 v
175~ Ba)ll e Se B2 Gma)g=c's2, (4.29b)
2 1

where &’ is as in (4.23).
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Write, with 9, as in (4.26),

m= Y Y Y

N1<j<N2 RER; s2=1 s;=max{s2,l+1}

( Z Tib1,w, Z bow13g). (4.30)

WCR W'C3R
L(W)=j—s1 L(W')=j—s2

Note that for L(W) = j—s1, byw = (I —Es,—;) fi,w. By Holder’s inequality
and (4.29a) we have for R € i,

’( Z T;b1,w, Z bQ,W’13R>‘

WCR W'C3R
LW)=j—s1 LOW)=5 2
S HE(I - ]Esl_j) Z Lq ) Z bQ’WI Lq/
CR 2 / B3
L(W)=j—s1 LW )=j—s2
Lels 11 p /P 1/q
< B2 RGO (S il )T e, )
WCR ! W/C3R Bé‘
L(W)=j—s1 L(W")=j—s2

In the above formula for V5 we interchange the j-sum and the (s1, s2)-sums,

write j = syn+4 with ¢ = 1,...,s; and estimate (invoking (4.9a) again)
o o0 1 1
Malse >, >, BY ”12 PORED DL
s2=1 s;=max{s2,0+1} nez RERs i

81n+Z€[N1,N2]

X i ) (X el?, )

WCR W’'C3R B3
L(W)=s1n+i—s1 L(W")=s1n+i—s2

0o 00
Sd,w Z Z B2—s/sl

s2=1 s;=max{s2,(+1}

XZ > ST () anplf2)a0, o TR 0,0),

ne”L R€m§1n+z
sln+z€[N1,N2]

U=

where

Men) RGP Y W) (Y W)

WCR W'C3R
L(W)=s1n+i—s1 L(W')=s1n+i—s2

=
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We crudely estimate, using p < q,

sin+i—s2

F(R,n,z‘)g\Rr(l/pfl/q)( Z Z ‘W‘)l/p-i-l—l/q

v=sin+i—s1 WC3R
L(W)=v

sin+i—s2

< 3d(1/p=1/q) Z Z W

v=sin+i—s1 WC3R
L(W)=v

For fixed W € W consider the set of all triples (R, n, ) such that s;n+i—s; <
L(W) < syn+1i — s2, R € Rgnti and W C 3R, and observe that the
cardinality of this set is bounded above by 3%(s; — so + 1). Combining this
with the above estimates and summing over W € WV we obtain the bound

1IVal Samve (F)oup(f)s0eqgl@l D Y. B2 (s1—sp+1)

s2=1 s;=max{s2,(+1}

and the double sum is bounded by

/+1 [e'S)
Copa( Y B2+ 1)+ Y B2
so=1 so=0+1

Ss,p,q 32_5/6(6 + 1)2 Sa,p,q B2_€/Z/2 Ss,p,q Ao(pa C])

by the definition of ¢ in (4.24). This establishes (4.28) for the term |IV5|.
The estimation of IV3 is very similar. We may write

- Y Y%

N1<j<N2 ReER; s1=1 sg=max{s1+1,0+1}

(> bwlr >, Tjlbowlsg]) (4.31)

Wew: W'ew:
WCR L(W")=j—s2
L(W)=j—s1

By Holder’s inequality and (4.29b) we get for R € R;

‘< Z biw, Z Ty [bQ,W/113R]>‘

WCR N=j—
L(W)gj—sl L(W'")=j—s2
o (11 1/p P\
<e B2 R q)( > o1 117 ) ( . 2117 )
WCR ! W'C3R B3

L(W)=j—s1 L(W")=j—s2
and from here on the argument is analogous to the treatment of the term
1V;. O

Remark. It is instructive to observe that the term I114 can be treated more
crudely if one does not aim to obtain the constant A, (p, q)log(2 + ﬁ)
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in (1.11). More precisely, one simply splits (—oo,7)? N Z? into two regions

V2 and V; 3, where
Vio={(L1,L2) : Ly < Ly < j} and Vj3={(L1,La):j > L1 > La}.

Then split I114 = Z?:Q IV;, where IV; are as in (4.25) but with V;; replaced
by f)]z One then considers the sum in s; in (4.30) to start directly from so,
and the sum in s in (4.31) to start directly from s; + 1. Using the same
arguments, one obtains

instead of (4.28). Note that, as the term IV; does not appear in this case
(see the bound (4.27)), this yields sparse domination with the constant C in
(1.11) replaced by A(p) + A(q) + As(p, q) + B.

5. MAXIMAL OPERATORS, SQUARE FUNCTIONS AND LONG VARIATIONS

In this section we show that Corollary 1.2 yields sparse domination results
for maximal functions, ¢"-valued variants, r-variation norm operators and
maximal and variational truncations of sums of operators. An application
of Theorem 1.3 also yields necessary conditions for our sparse domination
inequalities. We will formally state necessary conditions only for maximal
functions and ¢"-valued functions (Theorem 5.1) and leave to the reader
the analogous formulations of those conditions for r-variation norm oper-
ators (Theorem 5.2), maximal truncations (Theorem 5.3) and variational
truncations (Theorem 5.4).

5.1. Maximal functions and /"-variants. Given a family of operators
{T}}jez in Opp, p,, consider the operators

518 = (X e)s,) (1)
JEZ

when 1 < r < oo and also the maximal operator

SeoT f(x) = sup |T} f ()| ,- (5.2)
JEZ

Theorem 5.1. Let 1 <p < g<ooandl <r <oo. Let {Tj}jez be a family
of operators in Opp, p, satisfying (1.6).

(i) Suppose that the inequalities
1S Tf| e < ADIfllg,  and  [|S TS, < ADNfllgr (5:3)

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily;T;
satisfy the single scale (p,q) condition (1.8) and single scale e-regularity
conditions (1.9a) and (1.9b). Let C be as in (1.11). Then for all f € Sp,
and all R-valued nonnegative measurable functions w,

<S7“Tf7 w> 5 CA;,q’(fv W). (54)
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(i) In addition, assume 1 < p < q < oo. If the family of operators
{T}}jez satisfies Tj : Sp, — L}Bz and the strengthened support condition
(1.14), then the condition

1S\ T gy s ppoo + 11Sr Tl g

Joc

—La + ilelIZ) HDﬂ2jTjHL%lﬁLqB,2 < o0

is necessary for the conclusion (5.4) to hold.

Proof of Theorem 5.1. We begin with the proof for 1 < r < co.
Let 0pr, = 1 and d;, = 0 if j # k. Let N1 < N be integers, and for each

integer j € [Ni, Na], we define the operator H; sending L%l functions to

{'p,-valued functions by

0T f(x) if Ny <k < Na,

0 if k ¢ [Ny, Na). (5:5)

Hjf(z, k) = {

We note that

(3wl = (3|5 mien],)". 6o

Jj=N1 k=—0c0 j=N;
By (5.3) we have

N2
H, < A(), H i

where we write LP*°({%; ) to denote L’g;oo. The adjoint of Hj, acting on
2 By

< A(q),

LY —La(ty,)

Egg—valued functions g, is given by

N2
v) = > 6T g(x)

k=N

The assumptions on Dily; T} can be rewritten as

sup || Dily; Hj | 1z, L )<A (p,q)
JEZ

and

sup [h| ™% sup [|(Dilys Hy) 0 Anllzg, —reey,) < B

|h|<1 JEZ
sup |h|~" sup ||(Dily H) o Ap|l,, Yy < B.
|h|<1 JEZ B3 B{

By Corollary 1.2 applied to the sequence {H,};cz in Oppg, e, > We get the
B2

conclusion

L2

1/r
)[) e s en; g (fw),
2

k_OO]Nl
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which by (5.6) implies

/Rd ( Z ‘Ef($)|rB2>l/rw(x)dx N CA;,q’(f7W)~

Jj=N1

We apply the monotone convergence theorem to let Ny — —oo and Ny — oo
and obtain the desired conclusion. This is possible since the implicit constant
in the conclusion of Corollary 1.2 does not depend on By, Bs.

The proof for r = oo is essentially the same, with notional changes. Since
H;f(-,k) = 0 when k & [N1, Na], we can work with (3 over the finite set
Z N[N, N3]. Then there are no complications with the dual space, which is
EIBg over Z N [Nl,NQ].

For part (ii) one uses Theorem 1.3 in conjunction with (5.6) and im-
mediately arrives at the desired conclusion, via the monotone convergence
theorem. (]

5.2. Variation norms. We now turn to the variation norms Vg = V3 (Z)
defined on By-valued functions of the integers n — a(n). Let ’a\vgg = |a L3,
and, for 1 <r < oo,

M—1 1
lalvg, = sup Ja(m)ls, + (Y la(nysr) — a(m)[f, ) (5.7)
ny<---<nps =1
where the supremum is taken over all positive integers M and all finite
increasing sequences of integers m; < ... < np. Similarly, if Iy, N, =
[N1, No] N Z we define the V3, (In,,N,) norm on functions on Iy, n, in the
same way, restricting n1,...,ny to In; n,.

Given a sequence T' = {T}} ez in Opp, p, we define V'T'f(z) to be the
Vi, norm of the sequence j +— T} f(x). The LP norm of V'T'f is just the
LP(Vg,) norm of the sequence {7)jf}jcz. We define Vi, y T'f(z) to be the
Vi, norm of the sequence j — 1y, . (J)T; f(x).

The proof of the following theorem is almost identical to that of Theorem
5.1.

Theorem 5.2. Let 1 <p<g<ooandl <r <oo. Let {Tj}jez be a family
of operators in Opp, p, satisfying (1.6). Suppose that the inequalities

V' Tf|| e < ADIfllzy, — and  [PTS, < AN llgr (5.8)

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily;T;
satisfy the single scale (p,q) condition (1.8) and single scale e-regularity
conditions (1.9a) and (1.9b). Let C be as in (1.11). Then for all f € Sp,

and all R-valued nonnegative measurable functions w,

(V'Tf,w) SCAp o (fw). (5.9)
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Proof. In view of Theorem 5.1, it suffices to consider the case r < co. Given
N1 < Ny we define Hjf(x,k) as in (5.5), for Ny < k < N,. Note that for
fixed z, Ny <ny < -+ <ny < No,

/r
T @), + (ZITMJ T, f@)l5)

1/r
2> '

||Mz

| 3 ], + (X \ZW,M fem)
j=N1 v=1l j=1
(5.10)
By (5.8) we have
S |Sm < 4@)
H Z ‘L%IHLP@‘)(VB%) < Alp) Z Ly —Li(VE,) — @
J=N1 J=N1

where V3, is interpreted to be the space V3, (I, n,) and all the constants
in what follows will be independent of Ny and Ns. The pairing between
Vg, (N, N,) and its dual is the standard one,

No
(a,b) = Y {a(n),b(n)) 5,53
n=N,
and we have,
N2
bl tny vy = SUP ( > (a(n),b(n)(s,,5y)|-

|a|V"" oy INp N = <1',= Ny
For §U) = = (8j,Nys .-+, 0jN,) we have, for j = Ny,..., No,
. L 4 Lt
|60) Vi, (Unyvy) = 2 /" and |5(j)|(V§2(1N1,N2))* = 2!/

The adjoint of Hj, acting on (V3, (In, n,))*-valued functions g = {gk}kNiva
is given by

N2
r) = > 5T g(x)

k=N1

These observations imply
[IDily; Hj | 1z, LV ) = 21/r||Dﬂij'||L1” —LY
(| (Dily; H. )OAhHLP LaVE) T 21/T\|(D112J )OAhHLP —LEy

I H5) 0 Al g, = 277 NPT 0 Bl e
1 1
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The hypothesis of Theorem 1.1 are then satisfied for the sequence {H;};cz
in Opp, vy - Thus, by Corollary 1.2 we obtain
7" By

J.

which by (5.10) implies

/Rd Vi v Tf(@)w(z)de S CA (f,w).

As the implicit constant in Corollary 1.2 does not depend on the Banach
spaces By, By we may apply the monotone convergence theorem and let
N; — —o0 and Ny — oo to obtain the desired conclusion (5.9). O

w(z)dr S CA, ,(f,w),

5.3. Truncations of sums. We will give a variant of Corollary 1.2 in the
spirit of Cotlar’s inequality on maximal operators for truncations of singular
integrals.

Theorem 5.3. Let 1 < p < g < oo. Let {T}}jez be a family of operators in
Oppg, g, satisfying (1.6), (1.8), (1.9a), and (1.9b). Moreover, assume that
the estimates

| s > Tifls, | .. < AN, - (5.11a)
(n1,n2): j=n1

N1<ni1<no<N2

| sw b Tf|g, ), <A@l g (5.11D)
(n1,m2): j=n1

N1<ni1<no<N2

hold uniformly for all (N1, N2) with Ny < Ny. Let C be as in (1.11). Then
for all f € Sp,, all R-valued nonnegative measurable functions w, and all
integers N1, No with N1 < Na,

/]Rd sup | Z ij(a/:){B2 w(z)dr S CAL 4 (f,w).

(n1,n2): i—n
Ni<ni<ng<N, 77"

Proof. Define U(Ny, Na) = {(n1,n2) : N1 < ny < ng < Na} and (%, as the
space of all bounded Bs-valued functions on U(Nj, N2). Define operators
H] in OpBl,EOBO2 by

Tif(x) if Ny <n3 <j<ng < Ny,
0 otherwise.

ij(xvnhn?) = {

Then apply Corollary 1.2 to the operators Z;-V:QNI H; as in the proof of
Theorems 5.1. (|

We also have a variational analogue.
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Theorem 5.4. Let 1 < p < g < oo. Let {T}}jez be a family of operators in
Opg, B, satisfying (1.6), (1.7a), (1.7b), (1.8), (1.9a), and (1.9b). Moreover,
assume that the estimates

M—1 Ny+1

s s (XY wl) L < A®II,

MeN N1<ni<---<np <Ny v=1 j=ny+1
(5.12a)
M—-1 Ny41

[sw s (XY mal)

MEN Nismi<o-<ny <Ny N o5 4

< APy
(5.12b)

hold uniformly for all (N1, No) with Ny < Ny. Let C be as in (1.11). Then
for all f € Sp,, all R-valued nonnegative measurable functions w, and all
integers N1, No with N1 < No,

/R sup sup (Z’ "i*f Tif(z ’32) w(x)dz

d MeN N1<ni<---<np<Na =1 j=n,+1

La

SCA L (fw). (5.13)

Proof. Let Vi, = Vg (IN, N,) denote the r-variation space of Bz-valued
functions over the integers in [Ny, No] and for N3 < j < No, N3 < n < Ny,
define the operators H; € Opp, vy by

7T Bg

Tif(z) if Ny <j<n< Ny,

Hjf(w.n) = {o if > n.

Note that, by definition of Hj, | Z;yle H;f(z, ‘)|V§ equals to

-1 Ny41
1?41111)\1 ‘ZTf ’Bg (Z‘ZT]’" ZTf ‘Bg)
N1§ﬂ1<"-e<n]u§]\72 J=N1 v=1l j=N j=N1

(5.14)
and |H; f(z, ')|V§2 = |T; f(x)|B,. Arguing as in Theorem 5.2, one may apply

Corollary 1.2 to the operators Z;V:QNI Hj; in Opp, vy - Note, in particular,
7 B2

that in view of (5.14) the conditions (1.7a) and (1.7b) for Z;Vle H; follow
from (5.12a) and (5.12b) together with the fact that {T}};ez in Opp, p,
satisfy (1.7a) and (1.7b). This automatically yields (5.13). O

5.4. Some simplifications for maximal operators. The goal of this
section is to remark that the proof of Theorem 5.1 can be simplified in the
case ¢ < r < oo. Rather than deducing it from Corollary 1.2, we shall
apply the proof method of Theorem 1.1 to the operators S, and observe
that a Calderon—Zygmund decomposition on fs is not required for the proof
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to work. In particular, this allows us to remove the regularity hypothesis
(1.9b) on the adjoints T}. The precise statement reads as follows.

Theorem 5.5. Let 1 <p < qg<ooandq<r <oo. Let {Tj}jez be a family
of operators in Opp, p, satisfying (1.6). Suppose that the inequalities

1S T e < AP Sllzg, — and || TS, < ADN N pgr (5:15)

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily;Tj
satisfy the single scale (p,q) condition (1.8) and single scale e-reqularity

condition (1.9a). Let C be as in (1.11). Then for all f € Sp, and all
R-valued nonnegative measurable functions w,

(S Tf,w) S CAp g (f,w)-

Proof. We sketch the main changes with respect to the proof of Theorem
1.1. As in Theorem 1.1, it suffices to show

/Rd SNy N f1(2) fo(x)dr S CA (1, fo)

uniformly in Ny < Ny for all f; € Sp, and fy € Sk, where

No 1/r
St @) = (Y T (@)[5,)
Jj=MN1
for ¢ < r < oo and
Soo,ni N, f(2) == sup [T} f(z)|B,-
N1<j<N2

This will in turn follow from verifying the inductive step in Claim 4.3 for
the operators Sy n, n,-

If r = oo, let \j(x) € B3 with [\;(z)|p; < 1 such that |T}fi(z)|p, =
(T f1,2j)(B,,Bs) and let z — j(x) be a measurable function such that
Soo,N1.N2 f1(2) < 2[Tj(0) f1(2) | B
Setting X := {z : j(x) = j}, note that
Na
Sh(x) = |Tjw fi@)s, = Y (Tif1(x), A (@) 1x; (%)) (5y,83)

Jj=MN
and that the X; are disjoint measurable sets such that Zj Lx; < 13- If

q < r < 00, we linearise the ¢"(Bz)-norm for each x. That is, there exists
{aj(x)}jez € €7 (B3), with Haj(x)”zr’(B;) < 1, such that

N2

Shi(x) = Spnmhi@) = > (Tifi(x), a;(2)) (8,,5;):

Jj=MN

Note that we can treat the cases r = co and ¢ < r < co together by setting
aj(z) = \j(z)lx,(v) for all z € 3Qp and all Ny < j < N, and a;(z) = 0
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otherwise; then {a;(z)}jez € ¢*(Bj). Clearly, the operator S satisfies the
bounds (1.7a), (1.7b) in view of (5.15).

We then perform a Calderén-Zygmund decomposition of f; as in (4.13).
The first term in (4.13), corresponding to g, can be treated analogously.
The second term in (4.13), corresponding to > ¢y b1w can be further
split as in (4.15), and I and I can be treated analogously. One is then left
with proving (4.18) for IT1. Rather than performing a Calderén-Zygmund
decomposition on f5, we estimate the term directly.

Indeed, the analysis for 171 amounts to a simplified version of the analysis
of the term I114 in (4.22). One can define ¢ as in (4.24) and split

(=00, J)NZ =V;1 UV;a,

where V1 :={L:j—4 <L < j}and V;o ={L:L < j—{}. Note that
here there is no further need to split V; 2, since we do not make use of a
Calderén—Zygmund decomposition of fo. Write 111 =1 Vll’ +1 Vzb, where for

i=1,2,
v} = Z Z Tibrw, fa)-

N1<G<N2 Wew,
L(W)EVJ"»L'

We first focus on [ Vlb. By Holder’s inequality with respect to x and j
IVY < IVP IV, (5.16)

where
N2
Ivﬂl — ( Z /‘ Z Tiby w ()
Jj=N1 J—e<L(W)<j
. No , , 1/q
Vo= (Y [la@h )"

Jj=N1

(;2 da:) 1/q,

Using that ||aj($)\|eq/(B§) < ||aj(33)H£T“(Bg) =1if1 <7 <¢, we get

/ 1/ql _
W s ([ 1) Sl g, (GA7
0

For the term IVf’l, introduce as in (4.26) the family 9R; of subcubes of Q)
of side length 27 and use the bounded overlap of 3R to write

N2
b q 1/q
mhs(X X X e, )"
S
Jj—< J

The right-hand side above can then be handled essentially as IV} in (4.26)
after using the single scale (p,q) condition (1.8) for each T; (in the form
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(4.21)); the only difference is the presence of an ¢?-sum. More precisely,

IV} 5 A (Z SRS iy, )")

j=N1 RER; WCR
J—E<L(W)<j
N2 _(1_1y a/p\1/q
Sa Aap ) (F)gup (Do D 1RG0 w))
j=N1 RER; WCR

J—LLL(W)<j

No 1/q
A Paps (S X S W)

j=Ni Re®;, WCR
JSL(W)<j
1 1
SO 6, p.3, | QoI

and combining this with (5.17), the bound for IV} immediately follows.

Regarding IVy, write IVy = S°°° o1 IV (s), where IV} (s) has the sum
in L(W) < j — ¢ further restricted to L(W) = j — s. For each fixed s, one
can apply Hoélder’s inequality with respect to z and j as in (5.16),

IV2b(3) < IVzb,l(S)I‘/éb,za

where the term [/ V2b72 (which is independent of s) can be treated as I Vlb’2 in
(5.17). For each IVQb’l(s) we write again

o= (3 3| >,

j=N1 RER; WCR
L(W)=j

)

This term can now be treated as the term V5 in (4.30) using the e-regularity
condition (1.9a) to get a decay of 275" (as in (4.29a)). The only difference
with respect to (4.30) is the presence of the ¢?-sum, which introduces no
difficulty, as shown above for I V1b,1- This completes the proof. O

6. FOURIER MULTIPLIERS

In this section we deduce Theorems 1.5 and 1.6 from a more general result
which will lead to more precise sparse domination results and also cover
Hilbert space valued versions. We are given two separable Hilbert spaces
Hi, Hy and denote by L(Hi,Hs) the space of bounded linear operators
from H; to Ha (in our applications one of the Hilbert spaces will be usually
C). Consider the translation invariant operator 7 = 7Ty, mapping H;-valued
functions to Ha-valued functions given via a multiplier

~

TF(E) = m(©)F(&),
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where m(§) € L(H;y,Hs) for almost every £. For 1 < p < ¢ < oo we write
m € Mgl if the inequality

1T fllzaaes) < CllfllLroen)

holds for all H;-valued Schwartz functions, and the best constant defines
the norm in Mg ?, . We may occasionally drop the Hilbert spaces if it
is understood from the context and also write M? for,Mp’p. Note that
m € Mi’f’% implies by a duality argument that m € M7 ;p 5 The MQQ{’i}C2
norm is bounded by ||m/| L2, s, where we write Ljg g, for L7050 qc,). Also

note that by the Marcinkiewicz—Zygmund theorem [56, §2.1b] any scalar
multiplier in MP 4 extends naturally, for any separable Hilbert space H, to
a multiplier

R — L(F, H),

m® Iy € ML with m ® Iy :
o § = (v m(§)v)

and we have ||m ® I}CHM%"% < C||m||pp.a where C does not depend on the
Hilbert space. 7

6.1. The main multiplier theorem. In what follows let ¢ be a radial C*°
function supported in {¢ € R? : 1/2 < |¢| < 2} (not identically zero). Let
Ty € C*(R%) be supported in {z € R?: |z| < 1/2} such that ¥y(x) = 1 for
|z| < 1/4. For £ > 0 define

Uy(z) = W (27 z) — U2~ a) (6.1)

which is supported in {z : 273 < |z| < 271}, Define

Blm] := ) sup||[¢m(t-)] = @ZHM%,Q . ld(1/p=1/a)(1 4 p), (6.2a)
>0 t>0 12

Bolm] := > sup||[gm(t-)] * @ZH% oy (6.2b)
>0 t>0 ’

Theorem 6.1. Let 1 < p < q<oo, 1/¢ =1—1/q, and assume that m €
L3¢, 4, is such that Bs[m] and Blm] are finite. Then T € Sp(p, H1,q', H3)
with

”TmHSpy(pﬂfl,q’,%;) Sdyp,q Blm] + Bo[m].

The implicit constant does not depend on m, Hy, Hs.

We note that the finiteness of B,[m] is implied by the finiteness of B[m)]
in the case H; = Hy = C.

Remark 6.2. The function space of all m with Bs[m] 4+ Blm| < oo exhibits
familiar properties of similarly defined function spaces in multiplier theory.
For example:



MULTI-SCALE SPARSE DOMINATION 53

(1) The space is invariant under multiplication by a standard smooth
symbol of order 0. This fact will be used in the proof of Theorem
6.1 and for the convenience of the reader, the precise statement and
proof are contained in §C.1 below.

(2) The finiteness of B[m] and B,[m] is independent of the choice of the
specific functions ¢ and W. This observation will be convenient in
the proof of Theorem 6.1. It can be verified by standard arguments
but, for completeness, the proof is provided in C.2 below.

We begin by showing how Theorem 6.1 implies Theorems 1.5 and 1.6.
Then we review some known facts and estimates for Fourier multipliers and
deduce the proof of Theorem 6.1 from our main Theorem 1.1.

Proof of Theorem 1.5 using Theorem 6.1. We have to check the assumptions
of Theorem 6.1. Assumption (1.24) is equivalent with

l[gm(e)] = Tellpp> < 27
Thus interpolating (1.24) and (1.23) we get for p € (po, 2),

gm(t)] * Wellare < 27P) where e(p) = (£ — ) /(£ - 3).

Let x € C°(R%\ {0}) so that x(£) = 1 in a neighborhood of supp(¢). Then
by Young’s convolution inequality for all p € (po,2), ¢ € [p, 0], t > 0,
Ix([gm(e)] « Uo) [ ama S [[[om(t)] « Wollare S 270,
On the other hand we claim that
(1= ) ([$m(t)] * B [[agva Sn omi(t)[127. (6.3)
Indeed, integration by parts in £ in the integral

[ [ =< 0©@pmeez e - opeic
implies the pointwise estimate

FH1 =) (gm(t)] + Te)) ()] Sx 27N (L + [2])~VIgm(t) 1,
whence (6.3) follows from Young’s convolution inequality.

Fix p € (po,2). Combining the two estimates we see that condition (6.2a)
holds for a pair of exponents (p1,q1) if p1 € (po,p), ¢1 > p1 and

d(1/pr —1/q1) < e(p1).

Then Theorem 6.1 gives T € Sp(p1,¢}). One can then choose § = §(p) > 0
small enough so that p; = p—0 and ¢} = p’ — § satisfy the above conditions.
This concludes the proof. O

Proof of Theorem 1.6 using Theorem 6.1. We need to check that B[m] < oo,
which will follow from showing that

sup [[¢m(t-)] * Tollagma <27 (6.4)
t>0
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for some s > d(1/p — 1/q). Here we are in the case H; = Hy = C, so this
also implies B,[m] < co.

We decompose ¥y into slighly smaller pieces. Recall that ¥ is supported
in {z:1/4 < |z| <1} and Vy(x) = ¥ (2'*x). We form a partition of unity
{& : v € I} such that ) ;¢ (x) = 1 for [z € [1/8,2], and ¢ is a C*°
function supported in a ball B(x,,r,) centered at x,, with |z,| € [1/4,1]
and radius r, < 1072. Let
T T,

2 |y |?

so that |u,| € [1,8] and (z,,u,) = 7/2. This implies that | Im (e(*%) —1)| >
1/2 for x € supp(gl,) Define, for M as in (1.25),

Uy =

Uale) = e W) = )

and note that Wy, is smooth and W¥y(z) = 3, \Ilg7y(x)(ei<x’21_lu"> - M
Hence

*\Ilg ZA 21—ty qﬁm )] *\/I}g,l,
and by assumption we have for some s > d(1/p —1/q),

lgm(t-) « Wellama S ZHA_QI o [ a0 S 275,

This implies (6.4) and now Theorem 1.6 follows from Theorem 6.1. |

6.2. A result involving localizations of Fourier multipliers. We recall
a theorem from [98] (see also [24] for a similar result) which we will formulate
in the vector-valued version (see also [51]).

Let ¢ be as before, and fix 1 < p < co. Assume

sup [lom(t) g, < (6:52)
t>0 2
su m o < a,, 6.5b
t>gll¢ E)llzge 4, < (6.5b)
and
Z sup sup \ag (qu( ))(5)’[4(9{173{2) < b? (65C)
laj<d+1 PV ¢eRe
where o € Ng. Then
Imlyr < ao+alog(2+ b/a)» 32, (6.6)
Fq,32

Of course, in the special case H; = Hy = C the L?*-boundedness condition
(6.5b) with a, < a is implied by (6.5a) (cf. an analogous remark following
Theorem 6.1).
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6.3. Proof of Theorem 6.1. First assume that m is compactly supported
in R? \ {0} without making any quantitative assumption on the support.

Note that by Remark 6.2 we have some freedom to make a convenient
choice of the localizing function ¢, and we will denote this choice by .
In what follows, let § € C®(R?) be radial such that 6 is supported in
{z € R?: |z| < 1/2}, such that [6(x)7m(x)dx = 0 for all polynomials 7 of

degree at most 10d, and such that 9(5) > 0 for 1/4 < [¢] < 4. We then
choose ¢ to be a radial C* function supported in {¢£ € R?: 1/2 < [¢] < 2}

such that
> (2 277¢) =1
keZ

for all £ # 0.
We then decompose T by writing

Z 0(2 *m(¢)

k=n1
where ni,ng € Z. We then decompose
FHem(28)] Z]—" [em(28))(z) Ty ()
>0
which yields
na
=Y T'f@)=)_ > T"f()
>0 £>0 k=n4
where
TERF(E) = 0(277€) [pm(2")]xW(277¢).
We can write T6F f = K,f, x f with

= [ F e mle - ) U2 (o - )2 0(2") dy

Observe that K (z) is supported in {z € R? : |z| < 271K} We wish to
apply Theorem 1.1 to the operators 7¢ defined by

ng l+1—ny
=Y Kixf= > Tjf withT{f=K, ;*f.
k=n1 Jj=l+1—no

The operators Tje satisfy the support condition (1.6). To check the conditions
(1.7a), (1.7b) we apply the above mentioned theorem from [98] (see (6.6)).
We first claim that

._ . T Ld(1/p—1/q)
o 3 Kl oy S0 = sup [lgm(E)] « Felge, 2 (6.7)

k=n1
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and

o 3 Kis ity ey S Gei= 50 lom(e)] = Tellze o (68)

k=n1

uniformly in nq,ne. We only give the proof of (6.7) as the the proof of (6.8)
is similar but more straightforward. To see this we estimate, using dilation
invariance,

e Z KL s)amz, o, Z l08(27 ) | aaw | (%) Wel g,

k=n1 k=n1

1.3y

Since # € S(R%) and since all moments of 1 up to order 10d vanish we get
o8 (2 s )[[are S minf(27*s)1%, (2775) 107, (6.9)
Moreover,

lom@) el < 2P (om(2) ]« Fellype  (6.10)
1,72

1.9 ™

and (6.7) follows combining the above. To verify (6.10) we decompose
f= Z fv
v
where f, = flg,, and the Ry, form a grid of cubes of side length 2¢. Note

that the convolution kernel KCp := F~![pm(2¥ -)*{I\/g] is supported in the ball
of radius 2¢ centered at the origin. Hence, by Holder’s inequality

1/p
S (; Ko x £l )
S 2£d(1/P—1/Q)<Z HICE * fy”iq )1/17
Ho

SR T O )

and since (32, (/175 )P = £z, we get (6.10).
1

1Ko fllz, = H zy:lcz “fol|

Straightforward calculation using (6.9) yields

n2

Z Z sup sup |0¢ (@K () e @, 36) < bei=[lm HL;COL_%2 2!(d+)
la| <d+1 k=n1 t>0 fGRd

uniformly in nj,ne. We combine the two estimates (6.7), (6.8) and (6.11
and using (6.6) we get

1_1
17N g, ez, S 1+ 072l + a0,
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The LY estimates are similar. For m(§) € L£(H;y,Hs) denote by m*(&) €
L(H5, H7) the adjoint. Note that

leom™ ()] * el ge

2 g = Mlem(E)] = Uellnge o < dog.
Since ¢’ < p’ the previous calculation gives
4 _ £\ * , ,
713, a5, = Ty g
11 ’ / =~
S (14 0)l7 =211 sup ||[om* (¢)]+ Well vy + G0
t>0 K FCE

2771

1 o~
< (14 0)la 219000109 up || [om(8)]# Uyl s+ do
>0 HyHa

=(1+ f)'i_%‘ag + do p.

To summarize,
D2 —. 3k
- LP—LP -
J J

<aort+a((L+ 052 @+l (6.12)

Li—L4a

To verify the single scale (p, ¢) condition (1.8) we next examine the Lf, —
Lg{Q—norms of the convolution operators DiIQij with convolution kernels

2def+17j(2j-). We have
. 0 0 e
1Dy T g, —on, = K@),
and .

Kf o (2776) =627 [om(2 )]« (27 0),
and we get

1Ky @ g, < 10012 o (B ) By

Hence
< ay (6.13)

~

sup || Dily; T || o o
J

Next we turn to the e-regularity conditions (1.9a) and (1.9b). By trans-
lation invariance of the operators Tf it suffices to verify (1.9a). Using the

above formulas for the Fourier transform of 274K} 1 j(2j -) we get
. 14
I(Dilyi T5) o Anllgr —pg,

= 6271 [(em (21 79)) « T (27 1) (€0 — 1)[ypia

Hy,Ho
4+1)d(1/p—1 71128 h I4+1—j -
< 2D I ]| (2 Bl
Observe that for 0 < e < 1,

mrs“é\[ei@ﬂm _ l]HMP 5 285
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and hence we get
sup |h| "¢ sup H(DileTf) o AhHLg’{ o S 2%q (6.14)
|h|<1 j 1o

In view of (6.12), (6.13) and (6.14) we can now apply Theorem 1.1 and
obtain

, ~
1T Isp(p.g) < sup [[om(t-)] % Wyllee .+

Hy,Ho
=3l ¢3! td(5—3) N
((1+€) +(149) +(1 ~|—€))2 sup ||[pm(t-)] * Uyl ypa -
>0 361,902

The desired conclusionthen follows from summing in ¢ > 0.

Finally, to remove the assumption of m being compactly supported we
observe that by Lemma A.1 it suffices to prove the sparse bound

. F o mA)(@) fo()da < C(Bo[m] + Bm)) Ay, (f1, f2)  (6.15)
for f; in the dense class So(R?, 3;) of functions whose Fourier transform is
compactly supported in R%\{0}. But for those functions we have F~![mfi] =
FYmupy ny f1], where

n2
Mnping = Z 9(27]65)90(27’{&)7”(5)
k=n1
with suitable ny,n9 € Z (depending on f;). By invariance under multipli-
cation by smooth symbols (see Lemma C.3) we have

< Blm)|

~

sup Blmn, n,]
n1,n2

and an analogous inequality involving B,[m]. We then get (6.15) for f; €
So(R%, 3;), i = 1,2. A second application of Lemma A.1 yields (6.15) for

all f e Lé’ﬁ and all fy € Lgfg‘ O

7. SAMPLE APPLICATIONS

In this section we give a number of specific examples of operators to which
Theorem 1.1 and its consequences can be applied. Some of the resulting
sparse bounds are well-known and others appear to be new.

7.1. Operators generated by compactly supported distributions. In
what follows let ¢ be a distribution which is compactly supported and let
oy = Dil; 40 denote the t-dilate t~g(t~1.) given by

(o, f) = (o, f(£)).
Without loss of generality we may assume that the support of o is contained
in {z: |z| <1}, otherwise argue with a rescaling.

Let
Apf(x) = fxo(x) (7.1)
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which is well defined on Schwartz functions as a continous function of (z,t).
Many interesting operators in harmonic analysis are generated by dilations
of such a single compactly supported distribution (often a measure) and we
shall be interested in the corresponding maximal and variational operators.
The domain of the dilation parameter ¢ will be either (0,00) or [1,2] or a
more general subset E of (0, 00).

7.1.1. Mazimal functions. We are interested in sparse domination results
for the maximal functions, as defined in (1.15),

Mg f(x) = sup [A f ()]
teE

where E C (0, 00).

If we assume that f is a Schwartz function then Mg is well defined as a
measurable function, but for general LP functions the measurability of Mg,
is a priori not clear unless we assume that F is countable. In our statements
we will restrict ourselves to a priori estimates, but note that in many appli-
cations the proof of LP bounds shows also a priori estimates for the function
t = o, * f(x) in suitable subspaces of C(R), for almost all x € R This
observation then ensures the measurability of the maximal functions for f in
the relevant L classes. In the general case, let Iy, , = [k27", (k+1)27") and
pick, for each (k,n) such that E NIy, # 0, a representative ty,, € EN Iy
and let F consist of these picked tj,. Then E is countable and we have
Mg f(x) = M%f(x) for all € R? and all Schwartz functions f. Thus one
can assume that F is countable without loss of generality.

We shall now discuss sparse domination inequalities for the operator MfF,.
Recall the local variants Mg , with the rescaled sets Ej; C [1,2] as in (1.16).
In what follows recall that

AP/ (fow) =) 1R ap(w)og

Qe6

with A;q,( f,w) the supremum of all Ag q,( f,w) over all y-sparse families &.

Proposition 7.1. (i) Let 1 < p < q < oo. Let o be a compactly supported
distribution such that

M| e rroe + [ME| L0 La < o0, (7.2)
51€1p |ME, || Lr—re < 00, (7.3)

and assume that there is aiz € > 0 so that for all A > 2,
IME, fllg < CAE ([ Fllp,  f € Eann(A). (7.4)

Then for all f € LP and all simple non-negative functions w, we have the
sparse domination inequality

(MEf,w) S Ay g (f,w). (7.5)
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(i) Conversely, if o has compact support in R\ {0} then the sparse bound
(7.5) for p < q implies that conditions (7.2) and (7.3) hold.

Proof. We will apply Theorem 5.1 with r = oo, By = {*°(E’), where E’ is a
finite subset of E, and

oy x f(x) ifte B'n[27,2Fh)
T; t) = 7.6
i (1) {0 otherwise. (7.6)
Note that
SocTf(z) = sug T f(x)|B, = M7 f(z), (7.7a)
je

and, with B} =277 E'n[1,2],

Dily T3 () 3, = M f(2), €. (7.7h)

As o is supported in {z : |z| < 1}, the operators T} satisfy the support
condition (1.6). Moreover, (7.2) and (7.7a) guarantee (5.3) with r = oo, and
similarly (7.3) and (7.7b) guarantee the single scale (p, ¢) condition (1.8).
It remains to verify the single scale e—regularity conditions (1.9) for the
operators Tj. But this follows from (7.4) and (7.3) via Lemma 3.6 and the
fact that for translation-invariant operators Tj, the conditions (1.9a) and
(1.9b) are equivalent (alternatively, one can apply Theorem 5.5 for maximal
functions). All hypotheses in the first part of Theorem 5.1 are then satisfied
and we thus obtain a sparse bound for the maximal operator M¢,. An
application of the monotone convergence theorem then yields the desired
sparse bound for M7 and concludes the proof of part (i).

For part (ii) note that the assumption that o is supported away from the
origin corresponds to the strengthened support condition (1.14). Thus we
can deduce part (ii) directly from part (ii) of Theorem 5.1. O

Proof of Theorem 1.4. Because of the LP — L9 condition on the operators
ng in (1.17) and the e-regularity assumption (1.18), it follows by interpo-
lation that the condition (7.4) is satisfied for all (1/p,1/q) in the interior
of L(o,FE). Thus Proposition 7.1 establishes the sufficiency of the condi-
tions, that is, (1.20). The converse follows immediately from part (ii) of
Proposition 7.1. O

Prototypical examples for Proposition 7.1 are the spherical maximal func-
tions where o is the surface measure on the sphere (for LP bounds see the
classical results by Stein [105] and Bourgain [19], and for LP — L9 bounds
see [95, 96]). The proposition covers the results by Lacey [66] for the lacu-
nary and full spherical maximal functions and also the extension to spherical
maximal operators with suitable assumptions about various fractal dimen-
sions of E, see [101, 3, 93]. In this context we note that in [5, 45], Lacey’s
approach was used to establish sparse domination results for two versions
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of lacunary spherical maximal functions on the Heisenberg group, defined
via the automorphic dilations, and essentially optimal results for the prob-
lem considered in [5] can be obtained by combining the sparse technique
developed in that paper with recent LP — L9 bounds in [94].

One can also cover more singular measures with Fourier conditions (as in
[39], [40]) and this leads to questions about the precise range of LP improving
estimates for the local variants of the maximal functions. As an example
consider a curve s + v(s) in R? with nonvanishing curvature and torsion,
and the measures p; given by

vwa:/ﬂw@m@m

with compactly supported x. A result in [92], applied in combination with
decoupling results in [111, 20] yields that the maximal operators Mg are
bounded on LP(R?) for p > 4. The optimal result for p > 3 was recently
obtained in [12] and in [62]. Moreover, the analysis in these papers yield,
for the local analogues of these maximal functions (i.e. E = [1,2]), certain
LP — L9 bounds for some ¢ > p. It would be very interesting to find precise
ranges of LP — L9 boundedness of Mg depending on E, and corresponding
sparse bounds for related global maximal functions. Similar questions can
be considered in higher dimensions but the optimal bounds are currently
unknown (for partial results see [13], [63]).

7.1.2. Variational operators. Given 1 < r < oo and a set £ C (0,00) we
define the r-variation seminorm | - [,r(g) and the r-variation norm | - [y ()
of a function a : £ — C by

M-1 1r
alorisy = sup sup (Y Jaltisn) — alt)")

MeNt1<--<tp

Ll =1
M-1 U
lalvey = sup sup  {Ja(t)]+ (D lattisn) —at)") "}
MeN t1<t:éEtM i=1

Define the r-variation operators v A, Vi, A for the family of operators of
convolution with o, by taking the r-variation norm in ¢,

vpAf(x) = {or * f(2)}vr (), pAf(x) = o f(@)}Hyr(p). (7.8)

This that the above definition of variation is analogous to the definition
in (5.7) where we considered the r-variation for functions integers. The
results in §5 mostly apply to the situation where the current E is a subset
of {27 : j € Z}. For general sets E C (0, 00), we will deduce results directly
from Corollary 1.2 and Theorem 1.3.

As before we may assume that E is countable (as this does not affect
priori estimates). Let £ C [1,2] be the rescaled sets as in (1.16).
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Proposition 7.2. (i) Let 1 < p < q < oo. Let o be a compactly supported
distribution such that

IVEAl Ly Lroe + [[VEA pa1pa < oo, (7.9)
sup HVE' AHLP*)LQ < 00 (710)
JEZL
and assume that there is an € > 0 so that for all X > 2,
Ve, fllg < CAF (| fllps f € Eann(N)- (7.11)

Then for all f € LP and all simple nonnegative functions w, we have the
sparse domination inequality

(Vifiw) S A, o (fw). (7.12)

(i) Conversely, if o has compact support in R\ {0} then the sparse bound
(7.12) for p < q implies that conditions (7.9) and (7.10) hold.

Proof. We are aiming to apply Corollary 1.2 with By = V" (E’) for any finite
E' C E. With Tjf(z,t) as in (7.6) and E'(Ny, No) = E' N [2N1,2M2F1] e
get

| Z Tf @), = Vi A7 () (7.13a)
Jj=N1

and
|Dily; T f () vy, = Voiprnp,g AS (). (7.13b)

We need to check the assumptions of Corollary 1.2 (i.e. the assumptions of
Theorem 1.1). Conditions (1.7a), (1.7b) hold by (7.9) and (7.13a), condition
(1.8) holds by (7.10) and (7.13b) and condition (1.9a) follows from (7.10),
(7.11), and Lemma 3.6. Condition (1.9a) is equivalent with (1.9b) in the
current translation invariant setting.

For the necessity, observe that the assumption that o is supported away
from the origin which corresponds to the strengthened support condition in
Theorem 1.3. A sparse bound for V;A implies via (7.13a) a sparse bound
for Zjvj n, Tj for any pair of integers N1 < Nj. We apply Theorem 1.3 and
obtain via (7.13a) and (7.13b) that

V5 vy vy All s + Vi iy All o1 510 < C,

sup ||Vg—jE/m[172]AHLP—)Lq S Cy
N1<j<N>
with the constant C' independent of N1, Ny and the particular finite subset
E’ of E. Applications of the monotone convergence theorem then yield the
asserted necessary conditions for Vi, A, that is, (7.9) and (7.10). O

Proposition 7.2 can be applied to obtain a sparse domination inequality
for the r-variation operator associated with the spherical means in R?. For
the necessary global LP — LP bounds see [59] and for LP — L% bounds for
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the local variation operators we refer to the recent paper [14]. This addresses
a question posed in [66] and [1].

Remark 7.3. In verifying LP — LP* and L9' — L7 assumptions for the

variation operators it is (as shown in [58, 59]) often advantageous to write
ViEAf(x) < Vi Af(z) + Vi g, Af (z) where

V({yadAf(x) = VS(Z)Af(x)

is the standard variation norm over 2% := {27 : j € Z}, labeled the dyadic
or long variation operator and where

1/r
Ve anAf (@) = <Z ‘VTEH[QJ"Qj-Fl}Af(x)‘r) )
JEZ
is the so-called short variation operator which uses only variation seminorms
over E within dyadic intervals. The LP-boundedness of the long variation
operators is usually reduced to Lepingle’s theorem [73] (which requires r >
2) while the short variation operator is often estimated using a Sobolev
embedding inequality (see [58], [59]). We note that it is possible to prove
results analogous to Proposition 7.2 for the long variation operator and the
short variation operators individually as direct consequences of Theorems
5.2 and 5.1 respectively; the details are left to the reader.

7.1.3. Lacunary maximal functions for convolutions associated with the wave
equation. In this section we consider a maximal function generated by con-
volutions with dilates of a tempered distribution, which is not compactly
supported (but still concentrated on a compact set). This class is associated
with LP regularity results for solutions of the wave equation. For both sim-
plicity and definiteness of results we shall only consider a lacunary version,
but the argument to deduce the sparse bound extends to other sets of dila-
tions and also to variational variants (for which Lemma A.3 would be useful
to treat nonlocal error terms).

For 8 > 0 define
cos J¢

mg(§) = W

and let
My f(z) = sup mg (28 D) f ().
€
It was shown by Peral in [90] and Miyachi in [87] that mg(D) is bounded on
LP for > (d—1)|1/p—1/2|,1 <p < oo. LP — L results for mg go back
to [108, 83, 21]; it is known that mg(D) : LP — L? is bounded if either

(W) 1<p<2,p<q<p,B>(d-1)(; %)+ or

(W) 1<p < oo, max{p,p'} <g<o0, > (d=1)(3 - )+, — ¢
Note that (W’) follows from (W) by duality. Moreover it can be shown

that Mlic is bounded on LP for f > (d — 1)|1/p — 1/2| via a single scale
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analysis, and either Littlewood—Paley theory for p > 2 or the result stated
in §6.2 for 1 <p < 2.

We have the following sparse bound for Mﬁc in the non-endpoint case.

Proposition 7.4. Suppose 1 < p < q < oo and that one of the following
two conditions holds.

(W) 1<p<2,p<qg<p,B>d-1)(;—3)+5
(WL) 1 <p < oo, max{p,p/} <g<oo, B> (d-1)(5—-1)+1— 1L

Then Mﬁc € Sp(p,q').

Proof. Let K = F~1[mg(2-)] so that the singular support of K is {z : |z| =
1/2}. Let Ky = K *ng = F~[mgny], with n; defined as in (3.9), and split
Kyox f = Aif +Ref where the convolution kernel R, of Ry is supported in
{x :|z| > 1}. The maximal function associated to R, is dominated by 2~V
times the Hardy—Littlewood maximal function of f, similarly the maximal
functions associated to A, are controlled by the Hardy-Littlewood maximal
function for small ¢ and therefore satisfy a (p, ¢') sparse bound by §A.2. We
use the notation Ao, Ry for the convolution kernels of A, and R,. Set
Ky = 2’deg70(2’k-), and similarly define the kernels Ay and Ry .

By the LP — LP result for mg(D) together with the multiplier result
mentioned in §6.2 one can easily derive for £ > 0 and any € > 0

1/2 EETYD S Y
[ (s £12) 7 s 20
kEZ

for all 1 < p < oo which of course implies

((d=1) | —L|4e—
[sup [Ko ]|, S 20l 22D) £,
keZ

We also have the single scale results

28| Ky % fllg S 2@ VG52 4, (7.14)

~

if1<p<2,p<qg<p,and
28| Ky % fllg < 29@ VG50 ¢, (7.15)

ifl<p<2,p<qg<ocor2<p<oop<q< .

By the above mentioned bounds for the operator R, and the lacunary
maximal operator generated by it we can replace Ky and Ky by A and
Ay 0, respectively,

Note that the exponents for LP-boundedness and for L? boundedness, i.e.
(d—1)|1/p—1/2|, (d —1)|1/q — 1/2| are not larger than the exponents in
the displayed inequalities (7.14) and (7.15) in their respective ranges. An
application of Proposition 7.1 gives the desired sparse results for the maxi-
mal function generated by the Ay and then also for the maximal function
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generated by convolution with Ky ;. Summing in ¢ we can complete the
proof of the proposition. O
Remark. The multiplier mg can be replaced by other variants such as

_ sin[¢] 1 _ Jga(€D)
o) =T g oe O " g

7.2. General classes of multipliers. It is well known that the classical
Mikhlin-Hérmander multiplier theorem [53, 103] can be interpolated with
the L2-estimate for multiplier transformations m(D) with bounded multi-
pliers [81, 82]. In particular one gets for 1 < p <2,

|l are S iug lem(t)re, 1/r=1/p—1/2, «a>d/r, (7.16)
>

where ||g[|r: = [|(1 + |D[?)*/2g||, and ¢ is a nontrivial radial function sup-
ported with compact support away from the origin.

We give a sparse bound for this class of multipliers.
Proposition 7.5. Let 1 <p <2, 1/r=1/p—1/2 and let m satisfy
sup [om(t)]; < A. (7.17)
>0

Suppose one of the following holds:
(i) 1<p<q¢g<2 anda>d1/p—1/2).
(i) 2<g< o0 and a > d(1/p—1/q).
Then
[m(D)Isp., p.a) Spira.an A-

Proof. We deduce this result from Theorem 1.6. Observe the inequality

gllare2 < llgller,  1/r=1/p—1/2,
valid for 1 < p < 2 which follows by interpolation from the standard cases
p=1and p = 2. In view of the embedding BY, < L" (see [110] for the
definition and properties of Besov spaces) we get, for 1 < p <2,

lgllamz S llgllgo,,  1/r=1/p—1/2. (7.18)

Interpolating Bernstein’s theorem Bi/f Ny (which follows from the Cauchy—
Schwarz inequality and Plancherel’s theorem) with the embedding BgQ,1 — L™,
we also have for 1 < p < 2,

lgllaeer S Ngllgars 1/r=1/p=1/2. (7.19)
A further interpolation of (7.18) and (7.19) yields for 1 <p < ¢ <2
lgllarra SNgll a3y, L/r=1/p—1/2.

r,1

Finally, we have for M > s, the well-known inequality

1AM gl 55 < [ llgl] geto
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which we shall use for 5 = d(1/q — 1/2) and which can be deduced from
standard L'-convolution inequalities.
Now let r = 2p/(2 — p), i.e. 1/r = 1/p — 1/2. Applying the above
inequalities to g = ¢m(t-) we get for M > s,
sup [h|~*[| AR [pm(t)]mea S Ndm(E)] a1
|h|<1 B, !
Now since o > d(1/p — 1/2) we can find s > d(1/p — 1/q) such that
a>dl/q—1/2)+s>d(1/p—1/2).
. . . . r d(1/q—1/2)+s . .
Thus if « is as in the display, then Ly, — B} and an application
of Theorem 1.6 yields the sparse bound stated in part (i).

,%)+5

For part (ii) let 2 < g< oo and observe that
llgllarra Sk llgllame  if supp(g) € K, K compact. (7.20)

To see this take a Schwartz function v whose Fourier transform equals 1 on
K and observe that by Young’s inequality convolution with v maps L? into
L9. We see from (7.20) and (7.18) that for such compactly supported g and
M > s,
—s AM N
R 11A gllarra S IR AR gllge, < gl -

This we use for g = ¢m(t-) and o >s > d(1/p—1/q). Then part (ii) follows
by the embedding Ly, < B;; and an application of Theorem 1.6. g

Remark 7.6. The assumption p < 2 is not a significant restriction. In-
deed observe that by definition of the sparse operator classes we have T €
Sp(p1,p2) if and only if T* € Sp(pa, p1). For multiplier transformations we
have m(D)* = m(—D) and m(—D) f(—z) = m(D)[f(—-)](z) which implies
that m(D) € Sp(p1,p2) if and only if m(D) € Sp(p2, p1).

We can draw two conclusions from this duality argument. First, the range
1 <p<2 ¢g>p in Proposition 7.5 could be deduced from the result in
the range 1 < p < 2, 2 < q < p/. Second, the result in Proposition 7.5
also implies a result in the range 2 < p < ¢ < co. Namely, in this case, if
1/r=1/2—1/q and @ > d(1/2—1/q) then one gets m(D) € Sp(p, ¢’) under
the assumption (7.17).

7.2.1. Miyachi classes and subdyadic Hormander conditions. We now dis-
cuss some consequences for multiplier classes considered by Miyachi [88]
and their corresponding versions under a subdyadic Hérmander-type formu-
lation [10]. Given a > 0,b € R, let Miy(a,b) denote the class of smooth
functions m : R? — C supported on {¢ : |¢| > 1} and satisfying the differ-
ential inequalities

0*m(&)] <, ¢ (7.21)

for all |¢] > 1 and all multiindices ¢ € N¢ satisfying |¢| < |d/2] + 1. The
oscillatory multipliers m, defined below in (7.26) are considered model
cases, at least in regards to the LP — LP boundedness properties. It is
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known that multipliers in Miy(a, b) belong to MP? whenever b > ad|1/p—1/2|
and 1 < p < 0o, see [43, 88]. It has also been observed that these endpoint
results are special cases of Hormander-type multiplier theorems involving
certain endpoint Besov spaces, see [4, 99]. Sparse bounds for multipliers
in Miy(a,b) in the non-endpoint range b > ad|1/p — 1/2| were obtained by
Cladek and the first author in [11] via a single scale analysis, under the
additional assumption that (7.21) hold for all multiindices ¢ € NZ. We note
that in the range 0 < a < 1 they also extended these results to larger closely
related classes of pseudo-differential operators, cf. [41, 11].

The subdyadic Hérmander-type classes, also extending the class Miy(a, b)
are obtained by replacing the pointwise condition (7.21) by

1/2
sup dist(B, 0)+ (- (- / [Dm(e)[de ”? ¢ (7.22)
B |B| JB

for all © € NZ with |¢] < [d/2] + 1. Here the supremum is taken over all
euclidean balls B in R? with dist(B,0) > 1 such that r(B) ~ dist(B,0)'~,
where 7(B) denotes the radius of B. This class was considered in [10] which
contains sharp weighted inequalities of Fefferman—Stein type that can be
used to recover the sharp LP estimates. In [11, §3] the question was raised
whether the results on sparse bounds for multiplier transformations in the
Miyachi class can be extended to multipliers satisfying a subdyadic condition
above, in the sense that it is sufficient to assume that (7.21) or (7.22) hold
for all [¢| < [d/2] + 1 rather than for all « € N¢. We shall see that this is
the case, and that such and more general multi-scale results can be obtained
from Proposition 7.5. The following simple observation will be helpful; note
that condition (7.22) (and therefore (7.21)) implies (7.23).

Lemma 7.7. Let a > 0, 2 <r < oo, b > ad/r. Suppose my, are supported
in {£:|€] > 1} and suppose that there is a constant C such that

—alt — 1| r 1/r
sup ‘(t d/ (1] 0t my (€)]] d§> <C (7.23)
t>1 t/2<|¢|<2t

for all multiindices v with 2] < |d/r|+1 and for all k € Z. Then the family

{my} satisfies condition

supsuptb_aaH(;Smk(t-)HLg < 00. (7.24)
keZ t>0

Proof. A change of variable shows that the condition (7.23) is equivalent to

0" [ (s)]]], < s
for all multiindices ¢ with |¢| < |d/r| 4+ 1. Pick o € (d/r,|d/r| + 1) such
that ca < b. Then the condition implies

b—aa

sup [|gmy(s-) || g, 8" < oo,
S

which implies (7.24) in view of the assumption on the supports since o >
d/r. O
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We shall now formulate a result for families of multipliers satisfying con-
dition (7.24). For simplicity of our statements, we consider only the case
p < 2 and argue by duality for p > 2 (see Remark 7.6).

Proposition 7.8. Let 1 <p <2, r = ;Tpp (i.e. % = % — %), and let, for
k € Z, my, be supported in {£ : |§| > 1}. Let a,b > 0 such that b > ad(ll7 -3)
and suppose that either

(i) 1<p§q§2andb>ad(%—%), or
(i) 2 <g< 0 andb>ad(%—%).

1

Let a > d(% — 3) and assume Supyez SUPysq || dmy(t-)| r < oc.

Then m =Y .c; mi(28-) € M, and m(D) € Sp(p, )

Proof. We split, by a dyadic decomposition my(§) = > o2 | my,(§) where
My, is supported in an annulus {£ : || = 2"}, for all k£ € Z; in fact we can
set my (&) = mi(§)Nn(€) with 7, as in (3.10). Observe that my7y = 0 by
the support properties of mj, and 79. Now form m™(§) = >, ., My (28€).
We wish to apply Proposition 7.5 to m", for every n > 0.

Fix any ¢ > 0 and use the assumption to compute

lpm™ ()| 2r S ) e n (20| < 27700,
keZ:
c12n<2ki<Cy2n

By (7.16) we obtain ||m™|ae < 2779 and similarly, by Proposition
7.5 we obtain ||m”(D)HSp7(p7q/) < 27n(b=a) - The desired bounds follow by

summing in n as « < b/a. O

As a consequence we can obtain a sparse bound for the lacunary maximal
function supy |m(2¥D)f| and indeed a square function that dominates it.

Corollary 7.9. Let p,r,q,a,b as in Proposition 7.8. Let m be supported
in {& ¢ |€] > 1} satisfying sup,o t°=||¢m(t-)||zr < oo. Then we have the
(p,q')-sparse bound

L (S mGDys@)P) oo $ 43,01,

keZ
Proof. Consider the multiplier m,(£) = 3, i(v)m(27¢) where (ry)ken

denotes the sequence of Rademacher functions defined on the unit interval.
Then by Proposition 7.8 applied to my(§) = ri(v)m(§) we obtain

| [ D) (o) ole)da] £ 85,51 o). (7.25)



MULTI-SCALE SPARSE DOMINATION 69

with the implicit constant independent of v. Let u,(z) = % so that

U, is unimodular, and we also get by (7.25) with fo = wu,

/ Mo (D) flw(a)dr = / my (D) f(z) w(z)u, (x)dz
Ra R4
,S A;,q’(fa uvw) = A;,q’(f7 w)‘

Integrating in v and using Fubini’s theorem and Khinchine’s inequality, one
obtains

[ (S m@is?) “swar s [ [ imo)s) vt ao

keZ
1
— [ [ ImD)f@)w(e) dado £ 83 (£,0)
0 R4

and the proof is complete. ([

Remark. Similar results can be obtained for versions of the previous mul-
tiplier classes if a < 0 and m is supported in {£ : [{| < 1}. We omit the
statements.

7.2.2. Multiscale variants of oscillatory multipliers. Given a > 0, a # 1,
b € R, consider the oscillatory Fourier multipliers

Mab(§) = Xoo(&)[€] e, (7.26)

where Yoo € C®(R?) is such that x(£) = 0 for |¢] < 1 and yoo(§) = 1
for |§] > 2. As already mentioned the operators mg(D) are sometimes
considered model cases of the class Miy(a, b), known to be bounded on L? if
and only if b > ad|1/p—1/2] and 1 < p < oo; see [104], [43], [88]. This result
is sharp when a # 1; the case a = 1 forms an exceptional case corresponding
to the wave multipliers considered in §7.1.3; we exclude it in this section.

Given a sequence (cg)kez with |c;x| < 1 we form the multiscale variant

m(§) = chma,b(2k§) (7.27)

keZ
which is bounded on LP for b > ad|1/p — 1/2|. Proposition 7.8 shows that
for 1 < p < 2 we have m(D) € Sp(p,2) for ¢ < 2, but in order to get a
Sp(p, ¢') bound for ¢ > 2 we had to impose the more restrictive condition b >
ad(1/p —1/q). We show that this estimate can be improved, in particular
an additional restriction is not necessary for ¢ < p’ and in this range we

can upgrade the Sp(p,2) bound to an Sp(p,p) bound for the multipliers in
(7.27) (see Figure 2).

This improvement relies on special features of the multipliers m,; which
are not shared by a general multiplier in the class Miy(a,b). Unlike in the
proof of Proposition 7.8 we can no longer rely on analyzing the problem
on the multiplier side. Instead we have to analyze Schwartz kernels and
employ stationary phase estimates, taking advantage of the fact that the
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FIGURE 2. Sparse bounds for a general multiplier in
Miy (a, b) (left) and for the oscillatory multipliers m (right)
for given a,b > 0. The condition (ii) in Proposition 7.8 can
be relaxed for the specific m,; (Proposition 7.10).

Hessian of the phase function £ — |£|* is nondegenerate when a # 1, a > 0.
Incidentally, this also reveals that the m, satisfy better LP — L mapping
properties than a general multiplier in Miy(a,b) when 1 < p < 2,2 < ¢ <7p'.
It is therefore more natural to base the proof directly on Theorem 6.1 rather
than on the formulation in Theorem 1.6.

Proposition 7.10. Let 1 < p < 2, a € (0,00) \ {1}, and m as in (7.27),
with supy, |cx] < 1. Let b > ad(1/p — 1/2). Then m(D) € Sp(p,p).

Proof. We decompose as in the proof of Proposition 7.8. Recall that 7y is
supported in {|¢] < 1} and m,y in {|¢| > 1}, hence nym,p = 0, and we can

write m = Y2, m" where

m™M(&) = cxmap(2°) (27¢).
keZ
We shall show that

b, () S 27 ne(p) (7.28)

lm" (D)
with (p) > 0 and then sum in n.

To verify the claim (7.28) we use Theorem 6.1. For this we have to
analyze, for radial ¢ € C2° supported in {£ : 1/2 < |£] < 2}, the expression

1[om™ ()] # Well o < > 16 (2580 (256)] % Do gt

keZ
2n73§2kt§2n+1

and show that for some € > 0

S sup [[[$m" ()] # el| g 20A0/P=1/P049) < gonele), (7.29)
>0 t>0
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To this end, fix k,t with 2773 < 2F¢t < 27+l and analyze the Fourier
inverse of ¢m (28t )7, (25¢:), i.e.

Kn(z) = (2m) 71 / B(E) I (251€) xoo (251€) (2] |) ~Pei (2O HIZPDIE g

The phase function (x, &) 4 (2¥¢)?|¢|* becomes stationary on the support of
¢ only when |z| ~ (2¥¢)® ~ 2"® and the Hessian of |£|% is nondegenerate
there. Thus by integration by parts we see that there are constants ¢; < 1,
C1 > 1 such that

[ K ()] < {

On27MOEN)  for |z < ¢27¢
CN27™|z|™N  for |z| > 12

and by the method of stationary phase
|Kp(z)] < 2770Had2) - for 27 < |z| < 12

This implies for 23 < 2F¢ < 271 and suitable C, independently of k, ¢,

I[@m™ (2°¢)] * Wil|agr.o0

9—n(b+ad/2) for |£ — <C
<J° . s o [ = nal < (7.30)
min{Cn2 "O+N) Cn2 02~ for |0 — na| > C.
We also have the M?2 bound
I[gm™(25¢)] % Tyl oo
2-nb for |0 — <C
N M S
min{Cn2 "O+tN=d) Oy 2=nba=lN=d)}  for |¢ — na| > C.
Interpolating (7.30) and (7.31) we get
9~ n(btad(1/p=1/2)) for [ —na| < C

l[om™ (256)] * Well g S {

27"y min{2~"N 27N for |¢ — na| > C.

Only the five terms with on—3 < 9kt < 97+l make a contribution. We sum
those terms, then take a supremum in ¢ (observing that the displayed bound
above is independent of ¢) and then sum in ¢ > 0. We obtain

_ L
S sup [[[gm (#)] 5 B |y 27

>0 t>0
<, o= nlbtad(y—3))gra(d(y— ) +e) < og—n(b—ad(;—5—¢))
Since we assume b > ad(1/p—1/2) this leads to (7.29) and then to the claim
(7.28) via Theorem 6.1. O

Given Proposition 7.10, we can now derive an improved sparse bound for
a lacunary maximal function and a corresponding square function associated
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with the multipliers m, p; thus for these examples we improve on Corollary
7.9.

Corollary 7.11. Let 1 <p<2,a>0,b>ad(l/p—1/2). Then

/Rd (Z \ma,b(QkD)f(x)\Q)I/Qw(x)d:c S AL (f ).

kEZ

Proof. Choose ¢y = £1 in (7.26). Then Proposition 7.10 together with a
randomization argument exactly as in the proof of Corollary 7.9 yields the
assertion. (]

7.3. Prototypical versions of singular Radon transforms. Let o be a
bounded Borel measure supported in {x : |z| < 1} and satisfying

/da =0 and sup(l+¢))%5(6)] < oo forsomeb>0. (7.32)
¢eRrd
Let {a;} ez satisfy
la;| <1 (7.33)
and define

Na
S f@) = 3, a2 (27 x f(2)
J=M
and
Si@)= Jim SN2 (). (7.34)
N12_T>_O§O

This is the “prototypical” singular Radon transform considered by R. Ober-
lin [89], see also Duoandikoetxea and Rubio de Francia [39]. It is easy to see
using the cancellation of the kernel that the limit exists pointwise for Cg°
functions.

In addition, we assume that o is LP° improving, i.e.

lo fllg < Allfllpo (7.35)

for some ¢ with py < g < co. The following result is due to R. Oberlin.

Proposition 7.12 ([89]). Let o be as in (7.32), and {a;}jcz, S be as in
(7.33), (7.34). Let 1 < po <p < q < oo and assume that (7.35) holds. Then
S satisfies the (p,q')-sparse bound

(Sf,w)| S Ay (frw).

The same sparse bound holds for the operators Sy, n,, uniformly in N1, Na.

We emphasize that Oberlin also proved certain endpoint estimates for
p = po, working with local Orlicz norms in the definition of sparse forms.
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One can extend Proposition 7.12 to cover associated maximal truncation
and variational truncation operators defined by

S.f(x) = sup
N1<N>

Zaﬂ Ho(277) « ()],

Ti+1

ViSf(z) = sup sup <Z‘ Z a; 279 (279 % f(x )‘ )1/r.

MeNn1<---<np i=1 j=n;+1

Proposition 7.13. Let 1 < py < p < g < oo, r > 2 and o, {a;} be as in
(7.32), (7.33), (7.35). Then S, and VIS satisfy the sparse bounds

[(Sefs )| + [VESf,w) S A o (f,w).

Proof. We apply Theorems 5.3 and 5.4. To verify the assumptions (5.11a),
(5.11b) see [39, Theorem EJ. To verify assumptions (5.12a), (5.12b) see [59,
Theorem 1.2]. Interpolation arguments using the Fourier decay assumption
n (7.32), and Lemma 3.6 can be used to establish the additional Holder
condition in (1.9). O

The setup above is also similar in spirit to the theorems on truncations
of rough singular integrals with bounded kernels [37]. We have been delib-
erately short in our presentation as the results in this section are essentially
known. For a more detailed exposition the reader may consult §7.4 below,
in which a singular Radon transform built on spherical integrals, and other
versions of maximal functions associated to singular Radon transforms, are
considered.

7.3.1. An approach via Fourier multipliers. In order to understand the scope
of our multiplier theorems, it is instructive to deduce the sparse bounds
for the prototypical singular Radon transform & in Proposition 7.12 from
Theorem 6.1 (or Theorem 1.6). Since o is a finite Borel measure we have
|97 (27t-) || apras = O(1) for 1 < ¢ < oo. By (7.32) and interpolation with
L? — L? bounds we have for some ¢¢(q) > 0

167 (27¢-) || aras S Cqmin{(274)%0D (274)~20@} 1 < g < o0,  (7.36)

~

using either cancellation or decay, and by Young’s inequality we get the
same bound for ||¢a(27t-)||prpa when 1 < p < ¢, 1 < g < oo. This takes care
of the term ¢ = 0 in the condition (6.2a). To verify the remaining hypothesis
of Theorem 6.1 it suffices to check that for ¢ > 0 the condition

sup Y _ [[[¢(271)] + Wyl pgpa < 27/ 1/D)FE) (7.37)

JEZL
is satisfied, as the condition (6.2b) trivially follows by the assumption (7.32).
Since & is smooth we have for 27t < 1

1[65 (27¢)] # Wyl[arrs < Cn2~N, 27t <1,
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for 1 < r < s < oo and therefore by interpolation with (7.36) and taking
geometric means we see that there is an €;(r,s) such that e;(r,s) > 0 if
1<r<s<ooand

1[¢5(278-)] % Wyl agrs < Cn2-4(201) ) 27 < 1. (7.38)

The contributions for 2/t > 1 are more interesting. Since o is supported
in {z: |z| <1} we have the kernel estimate

[F o (274))(2)] Sn el for |z > 27t
and hence
1[65(27¢)] % Wyl agma <27 for 20 > 27H4 > 1. (7.39)
For 2¢ < 27+4¢ we do a rescaling argument to estimate
163 (27¢)] * Uellamoa S 18278 |[arroa = (276) =P~ D |G|y

and by assumption ¢ € MPo-9, Interpolating with the M%7 estimate in
(7.36) we get for pg < p < ¢

1[65(278)] % Wyl pppa < (278) =4 /P=1/D=e0)  for 20+4 > 26 (7.40)

Combining (7.38), (7.39) and (7.40) and summing in j we get (7.37) for a
suitable € = e(p,q) > 0.

7.4. Densities on spheres: Maximal singular integrals. As discussed
in §7.3 the Corollary 1.2 covers classes of singular Radon transforms and
also associated maximal operators for truncations. Here we will consider
a natural singular integral variant of the spherical maximal function, and
obtain a sparse domination inequality analogous to the one for spherical
maximal functions with specific dilation sets in [3, 93]. Let o be the surface
measure on the unit sphere {x : |z| = 1} in R? for d > 2 and yu = yo with a
choice of smooth x such that
/ du = 0.

For every t € [1,2] we consider, for fixed t € [1, 2], the prototypical singular
Radon transform as in the previous section

No
S f = Z poirx [, Suf = Niiinoo st (7.41)

)

J=N1 Ni——o00

and then form, for F' C [1,2], the maximal function

8pf(x) = sup |Sef ()] (7.42)
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For 0 < B < a < 1 define R(B, ) C [0,1]? as the union of the interior of
the convex hull of the points

Q1= (0,0), Q25 = (df%ﬂ, di'll%lﬁ),

_(_d-8 1 _ (_d(d-1) d—1
Q3p = (T a=571)  Qao = (Frz—1 #rza1)

with the open segment connecting ¢ and ()2 3.

1
q

Q2,3

) Q3
Q4,a

o)

D=

FIGURE 3. The region R(3,«) with 8 =0.75, « = 0.9, d = 3.

For E C [1,2] denote by dimy; E' the upper Minkowski dimension of E
and by dimga E the quasi-Assouad dimension of E (see [93] for definitions
and background, and for a discussion of classes of sets E for which the
single-scaled LP — L4 results described above are sharp).

Proposition 7.14. Let d > 2, E C [1,2] and (1/p,1/q) € R(B,a) with
f = dimy E, a = dimga E. Then there is the (p,q’)-sparse domination
inequality

[(Spf,w)| < CAp 4 (f,w).

The two-dimensional version of our operator models a maximal operator
associated to a family of Hilbert transforms on curves considered in [49, 50]
where nonisotropic dilations are used (see also the previous papers [86, 48]
for related problems). In this nonisotropic case one could also consider more
general situations, i.e. when E is not a subset of [1, 2] (see also the prior work
[86] on maximal functions) but this involves multi-parameter structures for
which sparse domination result are difficult and in some cases are proved to
not hold [7].

Proof of Proposition 7.14. Using the density Lemma A.1 we may assume
that f € C2°. It is then easy to see that for any bounded set U € R"
we have 05, * f(z) = 0 for all x € U, t € [1,2] and sufficiently large j.
Moreover using the cancellation of p and the smoothness of f we see that
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poiy ¥ f(x) = O(27) as j — —oo. Thus we see that for f € C2° the function
S f is well defined and
lim  sup |Spf — SN2 f =0,

N2—00, 4e[1,2
Ni——00 6[ ’ ]

where the limit is uniform on compact sets. It is therefore sufficient to prove
a sparse bound for the maximal function sup;cp ]Siv N2 £ which is uniform
in N1, No. In what follows we will drop the superscript in StN LN2 bt assume
that we still working with a truncated sum depending on Ny, Ns.

To verify conditions (1.8), (1.9) in Corollary 1.2 we first note that for
(%, %) € R(B, a) there is e(p, q) > 0 such that for A > 2

Isup e Flly o APl f € Eann() (7.43)
S

This is coupled with an elementary LP — L9 estimate with constant O(1)
estimate for functions with frequency support near the origin to yield (1.9a)
via Lemma 3.6; this also settles (1.9a) by translation invariance. For in-
equality (7.43) we may refer to [93, Cor. 2.2].

It remains to verify (1.7a) and (1.7b) which follow by verifying the LP
boundedness of Sg for (%, %) on the open interval (Q1Q2,3). To accomplish
this we make a further decomposition on the frequency side. Let 7, be as
in (3.9), (3.10), and set 1y ; = 2799,(277), so that 7 is supported where
€| <277 and 7 is supported where |¢| ~ 2677, Setting

No
Stef(x) = sup | S oy ey f ()
teB | =
J=N1
it then suffices to show
185 £ s Sp 2~ @Il (7.44)
with d(p) > 0 for (1,1) € (Q1Q25). The estimate for £ = 0 reduces to

p’p
standard singular integral theory; this uses the cancellation of y. Thus from

now on we assume £ > 0.
We shall first discuss the case when either d > 3 or d = 2, § < 1 where
we use arguments as in [101]. Because of |fi(¢)] < min{|¢],|¢|~@D/2} we

get
Na

sup | > fin(€)7;(€)] S 271D,
EERE " j—N;

which implies an L? boundedness result for the operators Sf with constant
O(2~4d=1/2) ymiformly in t € [1,2].
We also have the LP boundedness result

N2
| > =1 S Gollsl 1<p<o0
Jj=MN
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which is a consequence of results on isotropic singular Radon transforms as,
say, in [39]. By interpolation we get for all ¢ > 0

N2
H > wasene gt

Jj=MN

d—1 _pd—1
|02 0 min(@ 2T ] 1< < oo
p

The same estimate with ji95, * 1 ; replaced by 2*52*jd[%ut *10](277+) also
holds. We cover the set E with O(2¢(3+)) intervals of length 2—¢ and argue
as in [101, p.119] to obtain

o8 . a—pd=l __gd=l
18511y Se 2“7 min2™ 2757 || £l
This gives (7.44), provided that d >3 or d =2, § < 1.

For the case d = 2, § = 1, we need to show LP boundedness for p > 2.
By a Sobolev embedding argument this follows from the inequality

</12 H f W.t*%*fHZdt)l/pH—z(/lQ H% % Nth*Wyj*fHZdty/p
Jj=N1 j=N1

S e@ p, (7.45)

where a(p) > 0 for 2 < p < co. By Littlewood—Paley theory we see that the
bound for the first term in (7.45) reduces to

(IS e s?) ) * s 20| (i) )
J=MN -

(7.46)
for 2 < p < 0o. (7.46) is established by a local smoothing argument as in [49]
(see in particular an isotropic version of Corollary 3.6 of that paper). We
thus have established the bound for the first term in (7.45), and the argument
for the second term is analogous. Finally from (7.45) we obtain (7.44) by
another application of Littlewood—Paley theory (applying the inequality to
functions f; with ]?] supported where |¢| ~ 2677). g

7.5. On radial Fourier multipliers. We consider radial Fourier multipli-

ers on R? with d > 2, of the form m(¢) = h(|¢|) where h satisfies the con-

dition supy [|8R(t-)||2 < oo for suitable o; here L2 is the usual Sobolev

space on the real line and 8 is any nontrivial C¢° function with compact

support in (0,00). By duality we only need to consider the range p < 2.
The inequality

1Dl < supt™s =D Bh(E) g, @ >d(1/g—1/2)  (747)
>

2(d+1)
a+3

holds for Zglfgl) <p< % and p < ¢ < %p’. Indeed, as a straightforward

consequence of the Stein—Tomas restriction theorem and Littlewood—Paley

isknown to hold for 1 < p <

p < g < 2 and one may conjecture that it
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theory one gets for the endpoint p = Q(C;ij;), q = 2, a = 0, a complete

characterization of radial Fourier multipliers in MP?2; namely
11y, [H ds\1/2
A1 Dllagna ~ sup 5= ([~ ho)PT) ™
¢

see e.g. [46]. The case p =q = d 1 has been settled only in two dimensions
in [22, 25], but remains open in three and higher dimensions. Note that as
a special case one has the Bochner-Riesz conjecture when h(s) = (1 — s%)7.
For partial LP — LP results in higher dimensions (via the connection [25]
with Stein’s square function) we refer to [27, 97, 70, 69], cf. §7.6.2 below.

We formulate sparse bounds for the multipliers satisfying (7.47); in fact
our hypotheses will involve the single scale variant

lg(l- Dllagea < Cl)llgllrz, o> d(1/q —1/2), supp(g) C [1/2,2]. (7.48)
Typically, the assumption (7.48) will be applied to g of the form SBh(t-).

Theorem 6.1 leads to the following result.

Proposition 7.15. Let 1 < p < q < 2 and let T}, be the convolution operator
with multiplier h(|-|). Then

(i) Assume (7. 48) holds for a specific exponent pair (p,q) with 1 < p <
p<q< mln{de 2}, and all « > d(1/q — 1/2). Then

Thllsp, ) < CosuplIBh(E) g b>d(1/p=1/2). (749

d+1’

(ii) In particular, (7.49) holds true for 1 < p < 2(5131), p<q<2.

Proof. We need to verify the assumptions of Theorem 6.1. This amounts to
veryfing the finiteness of the condition (6.2a). Setting g = Sh(t-) and fixing
b > d(1/p —1/2) this follows from proving that for £ > 1 we have

(|- 1) * Tellagma S 27 GO g (7.50)

for some £(b) > 0.

Let vg be supported in {s € R : \ \ < 1/2} such that [wvg(s)ds = 1. For
n > 1 let vu(s) = vo(27s) — vo(2" 1), and define g,(s) = g * v,(s). By
assumption (7.48), we have || gn(|-|)|[aea S ||gnllr2 for any o > d(1/q—1/2)
and hence also ’

lgn (- 1) * Wellarma S llgn(l - Dliama < llgnllzz S 27" llgllze.  (7.51)
For our fixed choice of b > d(1/p—1/2), we choose by < b such that d(1/p—
1/2) < by < b, so that (7.51) holds for the choice & = by —d(1/p—1/q) >
d(1/q—1/2).
We let € = (b— b1)(2d)~! and use (7.51) for n > £(1 +€)~!. Since
(3 —2)+b—b d(}_ _ b—by—ed(} — 1) _b-b
p

_ g =e(b 0
1+¢€ e(b) >

1+4+¢ — 14e€

|-
S—r
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we get

T —E(d Ly —o(d—dyep
S llgn(l - D) # Tellama < 27 TG g) o S 27 G g

4
TLZ 1+e€

For n < ¢/(1 + €) we observe that any derivative of order k of g,(|-|) is
O(2¥"||g|l1) and an N-fold integration by parts gives |F~t[gn(| - |)](z)| <
Cn2=ON for |z| ~ 2¢, for all N € N. We use this with N := 10dit<. By
Young’s inequality

€

ST IF  gall - 1) # Tllama S Ce2" G "aDa~MEN) < oo s

14
’I’LS 1+eq

and (7.50) is verified. O

As an example in the above class of multiplier transformations we consider
a multi-scale version of Bochner—Riesz operators. The Bochner—Riesz means
of the Fourier integral are defined by

SM(E) = (1— EP/)LF(©) (7.52)

and are conjectured to be bounded from LP — L9 if A\ > d(1/q—1/2) —1/2
and 1 < p <qg< min{g—ﬁp’, 2}, with operator norm O(t41/P=1/9)) One
may reduce to ¢t = 1 by scaling, and if hy(s) = (1 — s?)} then hy € L2 for
A > v+ 1/2. Therefore, Proposition 7.15 immediate leads to sparse bounds
for operators such as y 7o :l:(Sé\k — Sg‘kﬂ). with uniform bounds in the
choice of the sequence of signs. After a standard averaging argument using
Rademacher functions this implies sparse bounds for lacunary square func-
tions The vector-valued version of Theorem 6.1 leads to sparse domination
for the lacunary square-function

(Y187 - Shens?)

kEZ

and consequently to sparse bounds for lacunary Bochner—Riesz maximal
functions M) f = supycz |S§‘k f|- These results can be viewed as a natural
multi-scale generalization of the sparse domination results for Bochner—Riesz
means in [16, 68]. In this context, we remark that there are sharper endpoint
sparse domination result for Bochner-Riesz means [61] which yield back
some of the known weak type (p,p) endpoint bounds for

A=d(1/p—1/2) —1/2.

However, currently there is no sparse bound for analogous endpoints which
involve multiple frequency scales. We intend to return to this question in
the future.
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7.6. Stein’s square function. In [102] Stein introduced the square func-
tion defined via Bochner—Riesz means by,

G (x) = (/OOO DS, )
— o [ 15 @) - spsP )

in order to establish pointwise convergence and strong summability results.
Another important connection was established in [25], namely that an LP-
boundedness result for G implies that the condition sup; [|8h(t-)| 12 < oo
is sufficient for A(|-|) € M,. Moreover, G* also controls maximal operators
associated to radial Fourier multipliers [23].

The expression G*f(x) is almost everywhere equivalent to many alterna-
tive square functions, which can be obtained via versions of Plancherel’s the-
orem with respect to the t-variable; see the paper by Kaneko and Sunouchi
[60]. We distinguish the cases 1 < p < 2, in which by a result of Sunouchi
[109] we have LP boundedness for a > d(1/p — 1/2) + 1/2, and the more
subtle case 2 < p < 0o, where LP(R%) boundedness for d > 2 is conjectured
for p > 24 and o > d(1/2 —1/p), and known if d = 2 [22]. L? boundedness
in the latter problem is closely related to the multiplier problem discussed in
§7.5; see [27, 97, 70, 69] for partial results and [71, 72] for certain endpoint
and weighted bounds.

We recall some basic decompositions of the Bochner—Riesz means. One
splits

(L= P53 = (1= 1eP)E =D 27" Duu(lé),

n>0

where uo(0) = 0, the u,, are smooth, and for n > 1 we have
supp(u,) C (1 —27"FH 1 —27n71)

and | 2w, (s)] < €52 for j € No. Let K, = F un(| - )], Kns = 52K (s7)

and
o0 ds\1/2
n — Kns 2— 5
Gut@) = ([ 1Kns s@P )
so that

2) $ Y 27"TNG, f(x).
n=0

We shall rely on the standard pointwise estimates obtained by stationary
phase calculations,

[Kn(@)| Sy (L4 |2)™F (1427 2)) ™ (7.53)
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7.6.1. The case 1 < p < 2. A pointwise sparse domination result for o >
(d 4+ 1)/2 was proved by Carro and Domingo-Salazar [26]. For 1/2 < a <
(d +1)/2 we have LP boundedness (p < 2) only in the restricted range
% < p < 2 by Sunouchi’s result which is sharp. Thus in this range we
are seeking sparse domination results for the forms (G“f1, f2). Theorem 6.1

yields the following.

Proposition 7.16. Let d > 2, % <a< %. Then for 2@4_2% <p<2we
have the (p,p)-sparse domination inequality

(G fw)| < CAy L (f, @)

Proof. The operators G,, are defined through smooth kernels and therefore
the result in [26] yields pointwise sparse bounds, with norms depending on
n. This settles the case of small values of n. For large values of n, given
€ > 0 we have to show

(G fyw)] Se 2675759 AT (f, w) (7.54)

since in the assumed range of p we have a—1 > d/p—d/2—1/2 and therefore
we can sum in n to obtain the result for G*. Let H be the Hilbert space
LQ(]RJF,%). By the linearization argument in §4.3, the inequality (7.54)
follows, for a scalar function f; and an H-valued function fy = {f2 s}, from

ds | _ _(d_d_1
‘//Kns*fl ) fa,s(x Sdm‘ <. 2 2+E)A7,’ e (15 f2).

By Theorem 6.1 this follows from

~ d_d_ . d_d_1
sup [|[8(1 - un(t] - )] Tel] o 2007770 <o 2262709 (7.55)
t>0 C,7H*

for some €; > 0. To verify (7.55) we argue by interpolation and reduce to the
cases p = 2 and p = 1. It will be helpful to observe that for 1/8 <t/s <8
we can replace the kernel K, on the left hand side of the inequality in (7.53)
by FHB(] - Dun (] - [)]. Thus

1/2
/lf B Dun( |'|)]($)|2%> Sn (U [2)7F (1427 f2) . (7.56)
Here we used that given ¢ the integrand is zero unless s € [t/2,2t]. Hence

for any €2 > 0 (which we choose < min{e,€;}) we get

sup 1B Dun(t] - ])] * (I\IEHM@&(* SN 2N i 0> n(l+e).  (7.57)
If p = 2 we have also have, for £ < n(1 + €2),

680 D D1 el 25, 2 5 2 sup ([ 180D ) ™

C,H*
(7.58)
< 2@612771/2 < 2ne1(1+62)27n/2‘
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Furthermore, for p =1 and ¢ < n(1 + e3) we use (7.56) to see that
1B Dua(t] - )] * W[ 1,00 264 (7.59)
C,3*
< 2€(d+51)2—n(d+1)/2 < gn(l+e2)(d+er)—(d+1)/2 < gn(d—1)/2+e

Combining (7.58), (7.59) with (7.57) we obtain the cases of (7.55) for p =1
and p = 2 and (7.55) follows by interpolation for 1 <p < 2. O

7.6.2. The case 2 < p < co. The reduction to sparse bounds will be similar
as in the case p < 2, but the input information is more subtle. Instead of
the pointwise bounds (7.53) we now use that

([ Jos 22)™) s 2650000, r

for2<r<p,p> (dH) , which was proved using the Stein—Tomas restric-

tion theorem [27, 97, 71]. We then obtain a satisfactory result for a > d%‘ﬁl.

Proposition 7.17. Let d > 2, djl—l <a< d. Then for dzga < p < oo we

have the (2, p)-sparse domination inequality

(G f,w)| < CA3(f, W)

Proof. Note that in the given p-range, p > (d+1) when a > 295 +1 We use

the notation in the proof of the preceding propos1t10n. By linearization (see
the argument in §4.3) it suffices to prove

ds n(d_d_
] K @) nle) e e 22500

and by Theorem 6.1 this follows, given € > 0 from
~ d_d d_d_
H[ﬁﬂ Pun(t] - )] = ‘I’EHME,%* 2z p+e) Se (= ~1Fe) (7.61)

for some €; > 0, uniformly in ¢ > 0. For ¢ < n(1 + e3) the left hand side is
bounded by

2n(1+62)(g—%+€1)”ﬁ(| . ’) n HMQP X (762)

C,3*

Using (7.60) for r = 2 we get
8t B R 1/2 Y
[ 180 D1 DAPE) | s 271812
t/8 P

s . n(l4e)(d—24e))—n .
and thus the expression in (7.62) is O(2 2 ). Finally, we choose
€1, €2 < € and combine this with the error estimates (7.57). This completes
the verification of (7.61). O

APPENDIX A. FACTS ABOUT SPARSE DOMINATION

For completeness, we collect a number of auxiliary results, some of them
well-known, about sparse domination.
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A.1. Replacing simple functions. It is often convenient to replace the
spaces Sp, and Spy in the definition of the Sp,, (p1, B1, p2, B3) norms by other
suitable test function classes such as the spaces of compactly supported C'*°
functions or Schwartz functions. This is justified by the following Lemma.

Lemma A.1. Suppose 1 < p1 < py and py < p < ph and let T € Sp.,(p1,p2)-
Let V1 be a dense subspace of L%l and Vs be a dense subspace of L’Z_;S. Then

(T f1, fo)]
ITI$p, (p1,B1,p2,B5) = SUP
p, (p1,B1,p2,B5) ;17314)2735(]017]02)

L€V fi#£0,i=1,2}.
(A.1)

Proof. We first assume that V| = L%l and Vo = L’g;. In what follows

we omit the reference to By, Bj. The right-hand side of (A.1) dominates
HTHSpW(pl’pQ), defined in (1.5). In order to verify the reverse inequality we

have to show that given € > 0 and given f; € LP, fo € L’ we have the
inequality
(T f1, f2)l < (T Nlsp., (p1,pa) + €) Ay o (f15 S2)- (A.2)

This is clear if one of the f; is zero almost everywhere. We may thus assume
that || f1l[, > 0, || f2ll, > 0. For any £1 > 0 choose g1 € Sp,, g2 € Sp; so that

11 =91llp < €1 [[f2 = g2llpy < €1, and also |lgifl, < 2[[f1llp ;s llg2lly < 2/l 2llpr

and estimate, using the definition of HTHSpW(prQ),

(T f1, 20l < KT = gl Sl + KT frs f2 = 922 + [(T'g1, g2)|
<N Tlp—p (1 = grllpllf2lly + I f1llpllf2 = g21l) + 1T lIsp. (o1.00) Ay s (915 92)
<N Tllp-p(erllfallp + 1 £1lper) + 1T lIsp, o152 Ay 2 (91, 92)-

Moreover, for p; < p < pj, one has using (ii) in Lemma A.2. that

A;l,p2(gl7g2> S A;LpQ(gl - f17g2> + A;hpQ(fth - f2) + A;hpQ(fla f2)
< Ci(p,p1,p2)(llg1 = fillpllglly + 1 fillpllge = fallyr) + Ap, p, (f1s f2)
< Ci(p, p1,p2) 2l fallprer + [ fillp€r) + Ay, py (1, f2)

and thus

|<Tf]-’ f2>| < ||T”Sp,y(p1,p2) A;;l,pg (fla f2) + g?

with & < C(f1, f2,p,p1,p2, T)e1. Choosing a suitable €; depending on € we
obtain the assertion (A.2), for the case V; = LP, Vo = LP.
In the general case we replace the couple of pairs (Sp,,Sp;) and (L?, L)

by the couple of pairs (V1, Vs) and (LP, L) and see that a repetition of the
above arguments settles this case as well. O
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A.2. The Hardy—Littlewood maximal function. It is a well-known fact
that the Hardy-Littlewood maximal operator, denoted by M, satisfies a
sparse domination inequality. We have not been able to identify the original
reference for this fact and refer to Lerner’s expository lecture [74] instead.
This constitutes a first nontrivial example for sparse domination and we
include a standard proof for completeness.

Lemma A.2. Let f € L} (R?). Then there exist y-sparse families &;(f),
i=1,...,3% such that

Sd
M) <291 =90 > (Hoale).
i=1 Qe6;(f)

Proof. Let © be a dyadic lattice and let M® denote the dyadic maximal
function associated to D, that is, M® f(z) := supgss (flg- FixaeRa
€D

constant to be determined later, and for each k € Z, define the sets
Q= {z e RY: M f(z) > aF} = U Q{C
Qled
where {Qi} ; € ® are the maximal disjoint dyadic cubes for €, that is,

ak < (g < ak2e. (A.3)

Define the sets Ei = i\QkH, and note that the family of sets {Ei}k] is
pairwise disjoint and [E}| > (1 — %)]Qi\; for the last claim, note that

]Qi N Qpp1| = Z |Qi N Qr+1,| = Z | Qs

i:QZ+1CQi

1 1 od .
_ — J
< ¥ g Mg [ <ol
Qi 1CQ% kel k

using the disjointness of the cubes Q}'C_H and (A.3) for Q};H and Qi. Thus,

choosing a = 2¢(1—7)71, &(f) := {Q?c}’w is a y-sparse family, and moreover

M2 f(a) =Y M2 f(@)lgno,,, (2) < DD a1 ()

kez ke, Qk
<a) (Nglyg@=a Y (Holel)
k.j Qes(f)

by (A.3). Finally, the result for the maximal function M follows from the
3%-trick (see [79, Theorem 3.1]), which ensures that there exist 3¢ dyadic
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lattices ®;, i = 1,..., 3% such that
3d
x) < Z./\/lglf(x) O

Remark. If f has values in a Banach space B, the same argument applies
to f — M(|f|B). However, there are more interesting vector-valued exten-
sions such as in the Fefferman—Stein theorem [42], and corresponding general
sparse domination results with additional hypotheses on the Banach space
are discussed in a paper by Hénninen and Lorist [52].

A.3. Operators associated with dilates of Schwartz functions. It is
convenient in many applications to observe that maximal functions and vari-
ation operators generated by convolution operators with Schwarz functions
satisfy sparse bounds. We choose to deduce the variational statements as a
consequence of our Theorems in §5, but it could also be based e.g. on [37].
For the definition of the dyadic and short variation operators we refer to
Remark 7.3; here V} is understood with E = (0, c0).

Lemma A.3. Let K € C?(R%) be a convolution kernel satisfying, for all
multiindices a € N& with 3, |a;| < 2,
0K ()] < (1 + |2)™
Let Ky(x) =t K (t7'2) and let Kif = K; * f(:x) Then for 1 <p <q < oo
| Sup Kefl,w)l S Ap g (f,w)

(s
(dead’Cﬁ W) SA, ¢ (frw), 2 <71 < o0,
(V.

|
| h’Cfv >‘NA;;,q’(f7w>7 2<r<oo.

Proof. Since sup;~ |IC; * f| is pointwise dominated by the Hardy-Littlewood
maximal function the sparse bound for (sup;~ |KC¢f|,w) can be directly de-
duced from the sparse bound for the Hardy—Littlewood maximal function
M in §A.2.

For the variation norm inequalities we decompose K = >~ ;K" where
K™ denotes convolution with K" := KWV, (here V¥, is supported where
|z| ~ 2™ when n > 0, see (6.1)). We can form the long and short variation
operators with respect to the family of operators {K}'};~o where K}' denotes
convolution with KJ' := t~¢K™(t~!.). Using the pointwise bound on VK
and results in [58] or [59] we have

Vayad K" fllp Sp 27" 1 fllpy 1 <p< o0, 7> 2,
IVl K" fllp Sp 27" I fllps, 1<p<oo, r>2.

The kernel K} is supported in {z : |z| < 2""!t} and from our assumptions
it is easy to see that the rescaled estimate

Vi g £2" B @) Y], S 27" fllps 1<p<g<oo, 1< <o,
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holds. Moreover, using the bound for VK and V2K we also get
IV {2 K7 27) = A Y|, S 270D £l

for 1 <p<qg<oo,1<r<oo. Applications of Theorem 5.2 and Theorem
5.1 (for ¢"-sums and with the choice of By a subspace of V[I 2] of large finite

dimension) together with the monotone convergence theorem yield
|(Vdyad K" frw)| S 27"Ap o (fw), 7> 2,
[(VRK" fw)| S 270 YDAs L (fw), r > 2.

The proof is completed by summation in n. O

APPENDIX B. SPARSE DOMINATION: CASES WHERE p =1 OR ¢ = 00

Here we describe analogues of our main result Theorem 1.1 which cover
cases where p = 1 or ¢ = oo; we refer to Remark (iv) following the statement
of Theorem 1.1 for an explanation of why these cases need to be treated
separately. We formulate three different results, one for p = 1, ¢ < oo,
one for ¢ = oo, p > 1, and one for p = 1, ¢ = oco. This allows us to
recover the classical case of Calderén—Zygmund operators, although we do
not claim universality of sparse-domination results here: for example, we do
not recover the sparse domination for Carleson-type operators from [38, 9, 8],
neither the works for p = 1 by Conde-Alonso, Culiuc, Di Plinio and Ou [29]
and by Lerner [78] which also treat results on rough singular integrals, nor
the works for ¢ = oo which can often be upgraded to stronger pointwise
sparse domination results of the type (1.1) (see in particular [77], [80], [85]).

We will sketch the proofs of our results, indicating only what modifications
need to be made compared to the proof of Theorem 1.1. Theorems B.1, B.2
and B.3 below have applications to maximal operators, square functions and
long variation operators (as formulated in §5) similar to those of Theorem
1.1. We leave the details to the interested reader.

B.1. The case p=1,q < co. If p =1, one can drop the condition of weak
type (1,1). Our variant of Theorem 1.1 is then as follows.

Theorem B.1. Let 1 < g < oo. Let {Tj}jez be a family of operators in
Opp, B, such that

o the support condition (1.6) holds,

o the restricted strong type (q,q) condition (1.7b) holds,

o the single scale (1,q) condition (1.8) holds,

o the single scale e-regularity conditions (1.9a), (1.9b) hold with p = 1.
Define

C = Alg) + Ao(1,q)log (2 + 5-5).
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Then, for all integers N1, Ny with N1 < No,

No
> o <gema C.
J ~q5E,7,s
Sp~(1,B1,¢',B3
j=N1 p’y( 14',B3)

Proof. We argue as in the proof of Theorem 1.1, with the decomposition
(4.13) and the bound (4.14). The terms (4.15a), (4.15b) are handled exactly
as in the proof of Theorem 1.1. Consider the splitting of IIT as in (4.19).
The terms (4.19c) and (4.19d) are estimated as in the proof of Theorem 1.1.
We are thus only left with estimating the term

L+ 1= Y > (Tibuw,g2)-

N1<j<Ns WeW
L(W)<j

The argument in the proof of Theorem 1.1 does no longer work; recall that
for p > 1 these terms were bounded immediately via the weak type (p,p)
condition (1.7a) and the duality of L%’gf and Lg;. Instead, here we will
bound 111y 4+ I115 using (1.8) and the regularity condition (1.9a), close in
spirit to the bounds of the terms IV} and IV (defined in (4.25)) in the proof
of Theorem 1.1.

We let 0 < &’ < min{1/¢,e} and £ > 0 be as in (4.24), that is,

100 B
2t < —(2+

< f+1.
o Pt aag) =2

Let R, be the collection of dyadic subcubes of Qg of side length 27. We tile
Qo into such cubes and write

ITL + 11 =Y 111,
S

where

I, = Z Z( Z Tib1,w, 9213R). (B.1)

Ni<j<N; Re®;  WCR

L(W)=j—s
We first note
—id(1=1
ITillzy, —rg,, S Ao(1, 92777077, (B.2a)
il — s—5) 11 a e - _%)2_518. B.2b
T =Esj)lry, e e B2 st
1 2

where (B.2a) follows from the single scale (1,¢q) condition (1.8) and (B.2b)
follows from the single scale e-regularity condition (1.9a) and Corollary 3.5.
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For L(W) = j — s, we have byw = (I — Es—;)fiw. Let R € R;. By
(B.2a) we get

‘< Z Tiby,w, 9213R>‘

s, "92]13RHL(§§

_(1-1 !
SALQIRITT ST bl 1RV (),

WCR
L(W)=j—s

S As(1,9) Z ’W‘<f1>QO,1<f2>3Q0,q’7 (B.3a)

WCR
LW)=j—s

and by (B.2b),

‘< Z T;b1,w, 92]13R>‘

WCR
L(W)=j—s

< HTj(f —Es—j)

H92]13RHL4
L(W)—j s

’ —(1-1 !
<: B27°°|R| (=2 Z Hfl,WHLgJR’l/q<f2>3Qo,q/

WCR
L(W)=j—s

SB2 Y W) gen (f2)3go. (B.3b)
WCR

L(W)=j—s
Note that in obtaining the above bounds we have used (4.9a) and (4.10).

In the above definition (B.1) for 111, we write j = sn+iwithi=1,...,s
so that

IIIT,| <. min{A (1,q), B2~}

Z > > Z (W) Qo p{ 22300,

nez ReR sn+i
sn+z€[N1,N2] L(W) sn—H s

Now interchange the order of summation; here consider for fixed W € W
the set of all triples (R, n,4) such that L(W) = s(n —1) 4+, R € Rgpyi and
W C 3R, and observe that the cardinality of this set is 1. Combining this
with the above estimates and summing over the disjoint cubes W € W we
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obtain the bound

o0
(I + 111o] Sape (F)gpa(f2)sgee O WD min{As(1,q), B2}
wew s=1

B
S Ao(1,q) log (2 + m)‘Q0’<f1>Q0,1<f2>3Q0,q’7
as desired. O

In the spirit of Section 2, it is possible to deduce that the sparse bound in
Theorem B.1 implies that the multi-scale sums Z;Vﬁ ~, Ij are of weak-type
(1,1). The proof of this fact is slightly different than the one given in Section
2 for p > 1, as it cannot rely on the duality between LP>° and LP''. We
refer to the reader to [29, Appendix B] for details.

B.2. The case p > 1, ¢ = co. If ¢ = oo one can drop the restricted strong
type (g,q) condition (1.7b). Our variant of Theorem 1.1 is then as follows.

Theorem B.2. Let 1 < p < oo. Let {Tj}jez be a family of operators in
Opg, B, such that

o the support condition (1.6) holds,

o the weak type (p,p) condition (1.7a) holds,

o the single scale (p,00) condition (1.8) holds,

o the single scale e-reqularity conditions (1.9a), (1.9b) hold with q =

0.
Define
B
C =A(p) + Ao(p, ) log (2 + W)'

Then, for all integers N1, Ny with N1 < No,

No
H Z TjHSp (p,B1,1,B3) Spierd
j:Nl ¥ ’ 1Ly

Proof. Again we argue as in the proof of Theorem 1.1 and describe the main
induction step. Using the previous notations we now decompose

(Sfi, fo) =1+ 1T+ 11 +1V (B.4)

where

I= > (Swfi, f2)

Wew
M= ((S— > Sw)fig2)
Wew
M= ((S— > Sw)gr ba)
Wew

IV =((S= ) Sw)bi,ba).
wew
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Note that the numbering here is slightly different from the one in the proof
of Theorem 1.1. We deal with the term I using the induction hypothesis as
in the proof of Theorem 1.1 and, using the argument therein, it suffices to
show that the terms II, IIl and IV are bounded by ¢C|Qol(f1)g, ,(/2)30,.1-

We first consider II = II; — II; where
i = (Sfi,92), 2= (Swfig2)-

w
Here we use the weak type (p,p) assumption (1.7a) for p > 1 and (4.11) for
ro =p < oo to get

(Sfi,92) <|IShH |

< AW Allp{f2)30,.11Qol 17
AP)Qol(f1) .00 (F2)300.1

and
> (Swhig2) <D 1ISwlfilw] HLP‘” g2l s, ||]13W||Lp
wew w B3
SAP) Y IATwlp(f2)sg WP
wew
) > W) g (2300
wew
and hence, by the disjointness of the cubes W € W,
] < [T |+ [H2| S AP)IQol(f1)p,0, (f2)300,1- (B.5)

The last term IV corresponds exactly to the sum I113+4 11, in the proof
of Theorem 1.1, defined in (4.19¢), (4.19d), and it is therefore treated in the
same way; here the weak type and restricted strong type assumptions are
not used. In particular, we obtain

B
[IV] < Ao(p, 00) log (2 + m)‘@o“ﬁ%gdﬁ)g&,r (B.6)

It remains to bound the term III. By the definition of g; and Sy we have

> Swa= ) Z Tjlavw [A1]1lw] = Z > Tilavw[fi]lw]

Wew Wew j= j=N1 Wew
JSLW)

and thus we may split 111 = I} + I1I; where
I = <5[91]190] b2)

I, = Z > (Tilavw[Ai]1w], be).

j=N1 WeWw
LW)<y
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Let 2R be the collection of dyadic subcubes of () of side length 27, We tile
Qo into such cubes and write

111, = Z S (Tlgrlgen gl b2) = Z > (Tilglgongls > bawlsr).

Jj=N1 RER; Jj=N1 RENR; wrew

Next, note that in order to have (T[g11neng), D wrew 2w 13r) # 0 we
must have that Q°NR # 0 and W/ N3R # 0. As W' € W, the above implies

5diam(W’) < dist(W’, Q%) < 3diam(R)

and therefore L(W') < j. Thus,

IHI—Z > (Tilglgongl > bawrlsr). (B.7)

j=N1 RER; W’'ew
L(W")<j

We next decompose 111y = Il 1 + III5 2, where

N2
My =Y (T;[ > avwlAllw], > bow) (B.8a)
j=N1 Wew w'ew
L(W)<; L(W")=j
Iy := Z Y (TilavwlAllw], D bawr) (B.8b)
j=N1 Wew W’ew
L(W)<j L(W')<j

The term IIls; can be treated as in the estimation of the term I1/3 in
the proof of Theorem 1.1, defined in (4.19¢), as cancellation does not play
a role in this argument. The geometry expressed in (4.20) is crucial, i.e. we
have likewise

(Tjlavw filw], bawr) # 0

L(W) < j < L(W') } = J<LW)<SLW)+2<j+2.

(B.9)
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This implies

Ma < ) Z > (Tjlavw [f1]Tw], bo,w)|

N1<j<N2 W W
LW i LW SR L W<
Wc3w’
< Ao(pyoo) Y 277U > lavw [ 2wy, (12w llzL,
N1<j<Na W,W' eW: Wc3w’ 2
JSL(W') <542
L(W")—2<L(W)<y

5 Ao(p’ OO) <f1>QO,p<f2>3Q0,1
< Z Z ekl abyedvid
N1<j<N2 WW':Wc3w’

JSL(W')<j+2
L(W")—2<L(W)<j

S Ao(p,o0) (1) gy plf2)ager D WIS Ac(p,00)|Qol(f1) gy p(F2)300,1-

w’'ew

The terms III; and Il 2 can be treated in a similar way as in the estima-
tion of the terms I'V;,IV3 (defined in (4.25)) in the proof of Theorem 1.1.
Let 0 < ¢’ < min{1/p,e} and ¢ > 0 be as in (4.24). Then we split

I = IIE + 15, Il = 1115, + T35

where
118 = Z > Z ilolosngl, Y. bawlsg)
Jj=N1 ReER; s=1 wW’'ew
L(W")=j—s
No o)
" = Z Z Z (N lgenr T5 | Z bo,wr I3R])
j=N1 Re‘ﬁj s=0+1 Ww'ew
L(W")=j—s
and
IIIl2g2 = Z Z Z Z aVW[fl]]lw] Z b2,W’ﬂ3R>7
j=N1 RER; s=1 WCR w'ew
L(W)<j L(W")=j—s
155 = Z Z Z Z av [f1] 1w, T; | Z bo,w L3R] ).
j=N1 RER; s=0+1 WCR W’'ew
L(W)<j L(W")=j—s

Observe that the terms II17™, I113% involve very small cubes W’ for which

the cancellation of by 13 can be most effectively used. The terms IHllg , 11112%2
involve larger cubes; for these terms it is more effective to use the single
scale (p, q) conditions (1.8).
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We note that the terms IIIllg and 11112%2 behave very similarly, and also the
terms 117" and III5%%.

Indeed, if hpg, h gr denote either of the first functions on the bilinear form,

hr(z) = g1(2)lgenp,  he(x) = > avw[Allw(@),
WCR
L(W)<j

then it follows from the definition of 0 and the disjointness of the W € W
that hr, hr share the relevant property

”hRHLgla HhRHLT51 < ’R|1/T<f1>Q07p, 1 <r <o,

which we will use with r = p.
By the above considerations, the hypothesis (1.8) and (4.9a) we have

No J4
I =" > > (Tjhg, > bawilsg)

j:Nl REERj s=1 W'ew
L(W')=j—s2
N2
—_id

S Y Ao hallyy, | D bawilan]|

s=1j=Ni RGER]' W’ew B;

LOV')=5-5
y4 No

S/ZAO(p7 OO)<f1>QO,p Z Z Z HbZW'HL}B*

s=1 j=N1 RER; W'C3R 2

L(W")=j—s

V4 N
S Ao oo) (M aup 3001 D D D W]

s=1j=N1 W'ew

L(W')=j—s
S Ao (p, 00)[Qol{f1) gy p{f2) 300 1

and hence, by the definition of /,

I 5 Aol og(2 + 20— Qul gy s

Similarly we show (after replacing hr with hr in the above calculation)
1 B
HI2g,2 S Ao(p, 00) log(2 + m)|QO‘<f1>QO,p<f2>3QO,1‘
For the estimation of IIT3™, III5% we use the e-regularity property (1.9b)

and Corollary 3.5 to get

HT]* (I- ES*])HLlB N Se B2 Id/ry=es, (B.10)
1

Ba
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Moreover we use the formula by = (I—Es—;) fo,w, valid for L(W') = j—s.
Thus, via Holder’s inequality

No 00
Z Z Z<hRan[ Z bowr 13R])

j=N1 RER; s=(+1 wW'ew
LW )=j—s

Z > gl 1751 B J)IILl

j=N1 s=£+1 W'ew B3

Z Z Z |RIYP(f1) 0opB2” €'sg- Jd/p” Z f2,W’]l3R‘

j=N1 RER; s=(+1 w’'ew
L(W')=j—s2

< Z Z 32_6’5<f1>Q07p Z Z ||f27W/||L1B§

J=N1 s=(+1 ReR; W’'C3R
L(W"=j—s

No e’}
SYN . B2 (g fdsaen DL DL WL

j=N1 s=t+1 RER, W'C3R
L(W"=j—s

We sum in W' and then use 2, B27"5 < A,(p, 00) to obtain
™| < Ao (p, OO)|QO‘<f1>QO7p<f2>3QO,1‘

In exactly the same way (replacing hg by h Rr) we obtain

|11 %I,g| S Ao(ps OO)|QO|<f1>QO7p<f2>3QO,1‘
This concludes the proof. O

B.3. The case p =1 and ¢ = co. In this case we can get rid of both the
weak (p,p) and restricted strong type (g, q) hypotheses, but we shall still
assume either a weak-type estimate (r,r) or restricted strong type (r,r) for
some 1 < r < oo.

Theorem B.3. Let {T}}jez be a family of operators in Opp, g, such that

o the support condition (1.6) holds,

o there exists r € (1,00) so that either the weak type (r,r) condition
(1.7a) holds or the restricted strong type (r,r) condition (1.7b) holds,

o the single scale (1,00) condition (1.8) holds,

o the single scale e-regularity conditions (1.9a), (1.9b) hold with p =1
and ¢ = 00

Define
C = A(r) + As(1,00) log (2 + 5 F =)
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Then, for all integers N1, Ny with N1 < No,

N
H H S ¢
§ J ~THEY,d Yo
Sp.(1,B1,1,B%
j:Nl p'y( »B1,4, 2)

Sketch of proof. We use the terminology in the proofs of Theorems B.1 and
B.2. An examination of the proofs reveals that it only remains to establish
the inequality

(S = D> Sw)grg2)l S AM)IQol (1) g1 {f2)300,1: (B.11)
wew

either under the restricted strong type (r,r) assumption (1.7b), or under
the weak type (r,r) assumption (1.7a). Here we will strongly use (4.10) for
both ¢g; and go.

We first verify (B.11) assuming (1.7b). By Holder’s inequality,

(g1, 92)| S 1Sg1lley, o2l < A(T)Ilgl\ngilQo\l/T
2

S A(T')|Q0|<f1>Q0,p<f2>3Q0,1'
Moreover for each W € W

||92||L°B°3

[(Swg1, 92)| = [{(Swlorlw], g21aw)| < [1Sw o Iwllicy, llg2Tawll L,
2

S AW llgrbw W llgaLawllrg, S AMIWI) gy p(f2) 300,10

By ™
and by summing over the disjoint cubes W € W we obtain

> [(Swarg2)| S A)IQol{f1) gy p(f2)300.1-

wew

Combining the two bounds yields (B.11) (under the assumption (1.7b)).

We now verify (B.11) assuming (1.7a). First, by Holder’s inequality for
Lorentz spaces,

{591, 92)| < 1591l e llgall

A
X
B3

S A()llgr oy, 1Qol " lgalzss,

S ‘Q0|<f1>Q07p<f2>3Q0,1'
Similarly, for all W € W,
[(Swg1, 92)] S IWI(f1)q.p(f2)300,1

and then after summation

> 1 (Swar, 92| S 1Qol{f1) gy p(F2) 3001

wew
This yields (B.11) (under the assumption (1.7a)). O
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APPENDIX C. FACTS ABOUT FOURIER MULTIPLIERS

For completeness, we provide proofs of the facts stated in the remark after
the definition of the B[m]. The proofs will be given for scalar multipliers
but they carry over to the setting with £(JHi, Hs)-valued multipliers. We
start with the following simple observations.

Lemma C.1. Let ¥ € C®(R?) be supported in {x € R : 1/2 < |z| < 2}.
Let ® € C*(RY) be supported in {x € R? : |z| < 2}. Let N > d and r be
such that

sup (1 + [z])V]r(2)] < 1.

z€eR?
Then the following holds.

(i) Let 1 < p < R/8. Then

R+ RG] # 50 S 7 o BT
(i1) Let 1 < p < R/8. Then
R« #3(0)] = RG0S B = 9180 1

Proof. Let K = F~'[m] and set || K||cp(pq) = | K|[aspa. The expression in
(i) is equal to
o) [ wwr -y e -

Observe that by the support properties of ®, U the integral in y is extended
over R/2 —2p < |y| < 2R+ 2p, hence |y| € (R/4,4R). Thus the displayed
quantity is bounded by

/ KWK = )R = 9)llevpag) B
R/4<|y|<4R

</ |5(y)| dy ||m = R (R:) || srpa
R/A<|y|<4R

and the desired bound follows from the hypothesis on . Part (ii) is proved
in the same way. ([l

Lemma C.2. Let ¥,,, n > 0, be as in §6.1. Let N > d and let x bf such
that ||0g'x|[1 < A for all & € No such that |af < N. Let h € LY(R?) be
supported in {¢ € RY:1/2 < |¢| < 2}. Then

1(hx) * Bellarra S A Cy—a(n, )|l = Uy || agra
n=>0

for any £ > 0, where
1 if—5<n</l+5,
Cn,(n,0) ;== 27N if0<n< -5, (C.1)
2 nNL - if P45 < .
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Proof. We write (hx) « Wy = > [(h*\/l}n)x] #W,. The result then follows by
noting that |F~1[x](z)| < (1+ \x|) and an application of Lemma C.1.

C.1. Multiplication by smooth symbols. The above observations can
be applied to show that the space defined by the finiteness of B[m] in (6.2a) is
invariant under multiplication with multipliers satisfying a standard symbol
of order 0 assumption. There is of course also a corresponding similar and
immediate statement for Bo[m].

Lemma C.3. Let a € COO(]IA%d). Then

Blam] S B[m] ) sup [¢[*0%a(¢)],

la|<2d+1 §ERY

where o € Ny. Consequently, if [0°a(€)] <a (1 + €))7 for all ¢ € R and
all o € N¢, we have Blam] < B[m).

Proof. Let = C’é’o(ﬂid) be supported in {§ € RY 1/4 < [¢| < 4} and such
that ¢(¢) =1 for 1/2 < |€| < 2. Let a'(€) = ¢(&)a(tf).

o0
~ ~

[pa(t-)m(t-)] * \Tlg = Z [([gam(t)] * \I/n)at] * Wy,

n=0

We have 3, <2441 |0%at(¢)] < 1, uniformly in t. By Lemma C.2 with
N1 = 2d + 1,

31+ 029901 [ga(t-ym(t)] * Bl agna
=0

< Z Z Cayr(n, O)(1 + 02" 40PV [gm(t)] 5 W[ arpea
¢=0 n=0

< DU+ 2D [om(t)] « Uyl arra

n=0

where in the last line we used that

1+¢ 1
sup £ o (=n)d(}

—JC ¢ O
P 1 +n d+1(n )

C.2. Independence of ¢,V in the finiteness of B[m]. The previous
argument in Lemma C.3 can also be used to show that the space defined by
the finiteness of B[m], B,[m] is independent of the specific choices of ¢, ¥
in §6.1. We only give the argument for B[m]| and a similar reasoning applies
to Bo[m)].
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Lemma C.4. Denote the left hand side of (6.2a) by B[m, ¢, ¥]. Given two

choices of (¢, V) and (25, \T/) with the specifications in the first paragraph of
§6.1, there is a constant C = C(¢,¥) > 1 such that

~1B[m, ¢, V] < Blm, ¢, ¥] < CB[m, ¢, ¥].

Proof. We show the second inequality. Note that [, [¢(s& )|2% >c¢> 0 for
& # 0. Let B° be defined by

_ dsT9ee)
Jo~ |olos )P F

We then have, in view of the support conditions on ¢ and gzNS,

35(€)

4 ds
P(&) = | B(s§)op(sE)—
1/4 S

and hence
~ ~ 4 d
m(t) Byl < /1/ 1335 m(e)] % el s
= d
:/ W=D || [BEp(Ymlts )] 5~ p(571)|| g
/4 §

4 ~
Bs Im(ts™1)] x U x5 M, (s —
< ; / NE Oms 91 80) 5™ 5™

By Lemma C.2 this is dominated by
4 —1 = ds
Cn—d(n, {) » [oCIm(ts™ )] * Unl| g —

S

where Cy_q4(n,£) is as in (C.1). It is now easy to see that for N > 2d + 1

22&1(%7%)(1 + g)”&m(t‘) * :T;ZHMWI

>0
4 gd(l_l) ~1 =~ ds
5/ S5 O a(n, 025D+ 0)||[6( mts )] 5 B g
1/44>0 n>0 5
<supZ2 N6+ By

This establishes the inequality B[m, ¢, U] < CB[m, , ¥] and the converse
follows by interchanging the roles of (¢, V) and ((Z), U). O
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