
MULTI-SCALE SPARSE DOMINATION

DAVID BELTRAN JORIS ROOS ANDREAS SEEGER

Abstract. We prove a bilinear form sparse domination theorem that
applies to many multi-scale operators beyond Calderón–Zygmund the-
ory, and also establish necessary conditions. Among the applications,
we cover large classes of Fourier multipliers, maximal functions, square
functions and variation norm operators.
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1. Introduction

Sparse domination results have received considerable interest in recent
years since the fundamental work of Lerner on Calderón–Zygmund opera-
tors [75, 76], which provided an alternative proof of the A2-theorem [57].
The original Banach space domination result was refined and streamlined to
a pointwise result [31, 79, 65, 77], but it is the concept of sparse domination
in terms of bilinear (or multilinear) forms [18, 33] that has allowed to ex-
tend the subject to many operators in harmonic analysis beyond the scope
of Calderón–Zygmund theory. Among other examples, one may find the
bilinear Hilbert transform [33], singular integrals with limited regularity as-
sumptions [29, 15, 78], Bochner–Riesz operators [16, 68], spherical maximal
functions [66], singular Radon transforms [28, 89, 54], pseudo-differential
operators [11], maximally modulated singular integrals [38, 8], non-integral
square functions [6], and variational operators [36, 35, 17], as well as results
in a discrete setting (see for instance [64, 34, 2]).

Many operators in analysis have a multiscale structure, either on the space
or frequency side. We consider sums

T =
∑
j∈Z

Tj ,

where the Schwartz kernel of Tj is supported in a 2j neighborhood of the di-
agonal and where suitable rescalings of the individual operators Tj and their
adjoints satisfy uniform Lp → Lq bounds. Moreover we assume that all par-
tial sums

∑N2
j=N1

Tj satisfy uniform Lp → Lp,∞ and Lq,1 → Lq bounds. The

goal of this paper is to show bilinear form (p, q′)-sparse domination results
(with q′ = q/(q− 1) the dual exponent) and investigate to which extent our
assumptions are necessary. We prove such results under a very mild addi-
tional regularity assumption on the rescaled pieces; for a precise statement
see Theorem 1.1 below. To increase applicability, we cover vector-valued
situations, thus consider functions with values in a Banach space B1 and
operators that map simple B1-valued functions to functions with values in
a Banach space B2. Our results apply to many classes of operators beyond
Calderón–Zygmund theory, and cover general classes of convolution opera-
tors with weak assumptions on the dyadic frequency localizations, together
with associated maximal functions, square functions, variation norm opera-
tors, and more. See Theorem 1.4 for a particularly clean result on translation
invariant maximal functions. We shall formulate the results with respect to
cubes in the standard Euclidean geometry but there are no fundamental
obstructions to extend them to other geometries involving nonisotropic di-
lations (see e.g. [28]). Our approach to sparse domination extends ideas in
the papers by Lacey [66] on spherical maximal functions and by R. Oberlin
[89] on singular Radon transforms to more general situations.

We now describe the framework for our main theorem and first review
basic definitions. For a Banach space B let SB be the space of all B-valued
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simple functions on Rd with compact support, i.e. all functions of the form
f =

∑N
i=1 ai1Ei where ai ∈ B and Ei are Lebesgue measurable subsets of

Rd contained in a compact set. For Banach spaces B1, B2 we consider the
space OpB1,B2

of linear operators T mapping functions in SB1 to weakly
measurable B2-valued functions (see e.g. [56] for an exposition of Banach-
space integration theory) with the property that x 7→ 〈Tf(x), λ〉 is locally
integrable for any bounded linear functional λ ∈ B∗2 . If T ∈ OpB1,B2

, then
the integral 〈

Tf1, f2

〉
=

∫
Rd
〈Tf1(x), f2(x)〉(B2,B∗2 )dx

is well-defined for all f1 ∈ SB1 and f2 ∈ SB∗2 . For a Banach space B and p, r ∈
[1,∞] we define the Lorentz space Lp,rB as the space of strongly measurable

functions f : Rd → B so that the function x 7→ |f(x)|B is in the scalar
Lorentz space Lp,r (and we endow Lp,rB with the topology inherited from
Lp,r). In particular, LpB = Lp,pB coincides with the standard Banach space
valued Lp space as defined in [56], up to equivalence of norms. If p ∈ (1,∞)
and r ∈ [1,∞], then Lp,rB is normable and we write ‖ · ‖Lp,rB to denote the

norm induced by the norm on scalar Lp,r defined via the maximal function
of the nonincreasing rearrangement [55].

In the definition of sparse forms it is convenient to work with a dyadic
lattice Q = ∪k∈ZQk of cubes, in the sense of Lerner and Nazarov [79, §2]. A
prototypical example is when the cubes in the k-th generation Qk are given
by

Qk =

{
{2−kz + [−1

32−k, 1
32−k+1)d : z ∈ Zd} if k is odd,

{2−kz + [−1
32−k+1, 1

32−k)d : z ∈ Zd} if k is even,

but many other choices are possible. Notice in this example the cubes in
Qk have side length 2−k. This family satisfies the three axioms of a dyadic
lattice in [79]. We briefly review the definition. Q is a dyadic lattice if

(i) every child of a cube Q ∈ Q is in Q,
(ii) every two cubes Q, Q′ have a common ancestor in Q, and

(iii) every compact set in Rd is contained in a cube in Q.

For each dyadic lattice there is an α ∈ [1, 2) such that all cubes Q ∈ Q are
of side length α2−k for some k ∈ Z. Fixing k we then call the cubes of side
length α2−k the k-th generation cubes in Q. If Q ∈ Q we can, for every
l ≥ 0, tileQ into disjoint subcubes Q of side length equal to 2−l times the side
length of Q. We denote this family by Dl(Q) and let D(Q) = ∪l≥0Dl(Q),
the family of all dyadic subcubes of Q. Then for every Q ∈ Q we have
D(Q) ⊂ Q. Note that because of condition (iii) the standard dyadic lattice
is not a dyadic lattice in the above sense.

Definition. Let 0 < γ < 1. A collection S ⊂ Q is γ-sparse if for every Q ∈ S
there is a measurable subset EQ ⊂ Q such that |EQ| ≥ γ|Q| and such that
the sets on the family {EQ : Q ∈ S} are pairwise disjoint.
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We next review the concept of sparse domination. Given a cube Q, 1 ≤
p <∞ and a B-valued strongly measurable locally integrable function f we
use the notations

avQf = |Q|−1

∫
Q
f(x)dx, 〈f〉Q,p,B =

(
|Q|−1

∫
Q
|f(x)|pBdx

)1/p

for the average of f over Q and the Lp norm on Q with normalized measure,
thus 〈f〉Q,p,B = (avQ|f |pB)1/p. For an operator T ∈ OpB1,B2

we say that

pointwise sparse domination [31, 79] by Lp-averages holds if for every f ∈
SB1 there are at most 3d sparse families Si(f) such that

|Tf(x)|B2 ≤ C
3d∑
i=1

∑
Q∈Si(f)

〈f〉Q,p,B11Q(x) for a.e. x (1.1)

and we denote by ‖T‖spγ(p,B1,B2) the infimum over all C such that (1.1)

holds for some collection of 3d γ-sparse families depending on f .

For many operators it is not possible to obtain pointwise sparse domina-
tion and the concept of sparse domination of bilinear forms, which goes back
to [18] and [33], is an appropriate substitute. Given a γ-sparse collection of
cubes S and 1 ≤ p1, p2 <∞, one defines an associated sparse (p1, p2)-form
acting on pairs (f1, f2) where f1 is a simple B1-valued function and f2 is a
simple B∗2-valued function. It is given by

ΛS
p1,B1,p2,B∗2

(f1, f2) =
∑
Q∈S
|Q|〈f1〉Q,p1,B1〈f2〉Q,p2,B∗2 , (1.2)

and will be abbreviated by ΛS
p1,p2(f1, f2) if the choice of B1, B

∗
2 is clear from

context. The form (1.2) acts a bi-sublinear form on (|f1|B1 , |f2|B∗2 ). All
sparse forms are dominated by a maximal form

Λ∗p1,B1,p2,B∗2
(f1, f2) = sup

S:γ-sparse
ΛS
p1,B1,p2,B∗2

(f1, f2), (1.3)

again also abbreviated by Λ∗p1,p2(f1, f2) if the choice of B1, B
∗
2 is clear from

the context. The maximal form may not be a sparse form itself but, ob-
viously, for every f1, f2 there exists a sparse family S(f1, f2) such that

Λ
S(f1,f2)
p1,B1,p2,B∗2

(f1, f2) ≥ 1
2Λ∗p1,B1,p2,B∗2

(f1, f2) (cf. [67], [32] for more explicit

constructions). Note from (1.2) that for each pair of simple functions (f1, f2),

Λ∗p1,B1,p2,B∗2
(f1, f2) ≤ γ−1‖f1‖∞‖f2‖∞meas(suppf1 ∪ suppf2) <∞.

We say that T ∈ OpB1,B2
satisfies a sparse (p1, p2) bound if there is a

constant C so that for all f1 ∈ SB1 and f2 ∈ SB∗2 the inequality∣∣〈Tf1, f2〉
∣∣ ≤ CΛ∗p1,B1,p2,B∗2

(f1, f2) (1.4)
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is satisfied. The best constant in (1.4) defines a norm ‖ · ‖Spγ(p1,B1,p2,B∗2 ) on

a subspace of OpB1,B2
. Thus ‖T‖Spγ(p1,B1;p2,B∗2 ) is given by

sup
{ |〈Tf1, f2〉|

Λ∗p1,B1,p2,B∗2
(f1, f2)

: f1 ∈ SB1 , f2 ∈ SB∗2 , fi 6= 0, i = 1, 2
}
, (1.5)

where fi 6= 0 means that fi(x) 6= 0 on a set of positive measure. It is
then immediate that ‖T‖Spγ(p1,B1,p2,B∗2 ) ≤ ‖T‖spγ(p1,B1,B2) for p2 ≥ 1. It can

be shown that the space of operators in OpB1,B2
for which (1.4) holds for

all f1, f2 with a finite C does not depend on γ. We denote this space by
Sp(p1, B1, p2, B

∗
2) or simply Sp(p1, p2) if the choices of B1, B

∗
2 are clear from

context. The norms ‖ · ‖Spγ(p1,B1,p2,B∗2 ), 0 < γ < 1, are equivalent norms

on Sp(p1, B1, p2, B
∗
2). Moreover, if B1, B2 are separable Banach spaces and

p1 < p < p′2, then all operators in Sp(p1, B1, p2, B
∗
2) extend to bounded

operators from LpB1
to LpB2

.

1.1. The main result. For a function f define Diltf(x) = f(tx). For an
operator T define the dilated operator DiltT by

DiltT = Dilt ◦ T ◦Dilt−1 .

Note that if T is given by a Schwartz kernel (x, y) 7→ K(x, y), then the
Schwartz kernel of DiltT is given by (x, y) 7→ tdK(tx, ty).

Basic assumptions. Let {Tj}j∈Z be a family of operators in OpB1,B2
. We

shall make the following assumptions.

Support condition. For all f ∈ SB1 ,

supp (Dil2jTj)f ⊂ {x ∈ Rd : dist(x, supp f) ≤ 1}. (1.6)

This means that if Tj is given by integration against a Schwartz kernel Kj ,
then Kj lives on a 2j-neighborhood of the diagonal.

Weak type (p, p) condition. For all integers N1 ≤ N2, the sums
∑N2

j=N1
Tj

are of weak type (p, p), with uniform bounds,

sup
N1≤N2

∥∥∥ N2∑
j=N1

Tj

∥∥∥
LpB1
→Lp,∞B2

≤ A(p). (1.7a)

Restricted strong type (q, q) condition. For all integers N1 ≤ N2, the sums∑N2
j=N1

Tj are of restricted strong type (q, q), with uniform bounds,

sup
N1≤N2

∥∥∥ N2∑
j=N1

Tj

∥∥∥
Lq,1B1
→LqB2

≤ A(q). (1.7b)

Single scale (p, q) condition. The operators Tj satisfy the uniform im-
proving bounds

sup
j∈Z
‖Dil2jTj‖LpB1

→LqB2
≤ A◦(p, q). (1.8)
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Single scale ε-regularity conditions. For some ε > 0 the operators Tj and
the adjoints T ∗j satisfy

sup
|h|≤1

|h|−ε sup
j∈Z
‖(Dil2jTj) ◦∆h‖LpB1

→LqB2
≤ B, (1.9a)

sup
|h|≤1

|h|−ε sup
j∈Z
‖(Dil2jT

∗
j ) ◦∆h‖Lq′

B∗2
→Lp

′
B∗1

≤ B, (1.9b)

where
∆hf(x) := f(x+ h)− f(x). (1.10)

The above hypotheses assume certain boundedness assumptions in Lebes-
gue or Lorentz spaces of vector-valued functions; it is then implied that all
operators Tj map simple B1-valued functions to B2-valued functions which
are strongly measurable with respect to Lebesgue measure. We formulate
our main result for 1 < p ≤ q < ∞ and refer to Appendix B for variants
with p = 1 or q =∞.

Theorem 1.1. Let 1 < p ≤ q <∞. Let {Tj}j∈Z be a family of operators in
OpB1,B2

such that

◦ the support condition (1.6) holds,
◦ the weak type (p, p) condition (1.7a) holds,
◦ the restricted strong type (q, q) condition (1.7b) holds,
◦ the single scale (p, q) condition (1.8) holds,
◦ the single scale ε-regularity conditions (1.9a), (1.9b) hold.

Define
C = A(p) +A(q) +A◦(p, q) log

(
2 + B

A◦(p,q)

)
. (1.11)

Then, for all integers N1, N2 with N1 ≤ N2,∥∥∥ N2∑
j=N1

Tj

∥∥∥
Spγ(p,B1,q′,B∗2 )

.p,q,ε,γ,d C. (1.12)

The estimate (1.12) implies, via a linearization technique (cf. Lemma 4.4)
the following variant which leads to a sparse domination result for maximal
functions, square functions and variational operators, see Ch.5. Instead of
Tj ∈ OpB1,B2

we use the more restrictive assumption that the Tj map

functions in SB1 to locally integrable B2-valued functions. We let L1
B2,loc be

the space of all strongly measurable B2-valued functions which are Bochner
integrable over compact sets.

Corollary 1.2. Let 1 < p ≤ q < ∞. Let {Tj}j∈Z be a family of operators,
with Tj : SB1 → L1

B2,loc, and satisfying the assumptions of Theorem 1.1. Let

C be as in (1.11). Then for all f ∈ SB1, all R-valued nonnegative measurable
functions ω, and all integers N1, N2 with N1 ≤ N2,∫

Rd

∣∣∣ N2∑
j=N1

Tjf(x)
∣∣∣
B2

ω(x)dx .p,q,ε,γ,d C Λ∗p,B1,q′,R(f, ω). (1.13)
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Remarks. (i) We emphasize that the implicit constants in (1.12) and (1.13)
are dependent on the input constants in (1.7a), (1.7b), (1.8), (1.9a), (1.9b)
but otherwise not dependent on the specific choices of the Banach spaces B1,
B2. In some applications this enables us to perform certain approximation
arguments, where for example the Banach spaces are replaced by finite-
dimensional subspaces of large dimension.

(ii) We note that for operators Tj which commute with translations Con-
dition (1.9b) is implied by Condition (1.9a).

(iii) The Hölder-type regularity assumption (1.9) for the operator norm
can be further weakened. In applications this will often be used for the situ-
ation that an operator T is split into a sum

∑
`≥0 T

` where each T ` =
∑

j T
`
j

satisfies the assumptions with A(p), A(q), A◦(p, q) = O(2−`ε
′
) for some ε′ > 0

and B = 2`M , for a possibly very large M . The conclusion will then say
that ‖T `‖Spγ(p,q′) = O(`2−`ε

′
), which can be summed in `, leading to a sparse

bound for T .

(iv) In this paper we are mainly interested in applications beyond the
Calderón–Zygmund theory and focus on the case p > 1 and q < ∞. There
are some elements in our proof such as the property of Lp,∞ being the dual
space of Lp

′,1 for which there is no analog for p = 1 and similarly the failure
of a suitable notion of restricted strong type for q = ∞; hence Theorem
1.1 does not immediately apply to the situations where p = 1 or q = ∞.
Nevertheless one can formulate variants of the theorem which cover these
missing cases. We treat them in Appendix B; indeed they are close to results
already covered in other works, in particular [29].

(v) The role of the simple functions is not essential in Theorem 1.1, and the
sparse bound can be extended to other classes of functions under appropriate
hypotheses; see Lemma A.1.

(vi) We use the Banach space valued formulation only to increase appli-
cability. We emphasize that we make no specific assumptions on the Banach
spaces in our formulation of Theorem 1.1 (such as UMD in the theory of
Banach space valued singular integrals). In applications to Banach space val-
ued singular integrals, such assumptions are made only because they may
be needed to verify Lp-boundedness hypotheses but they are not needed to
establish the implication in Theorem 1.1.

1.2. Necessary conditions. Under the additional assumption that Tj :
SB1 → L1

B2,loc, together with p < q, one has that the weak type (p, p)

condition (1.7a) and the restricted strong type condition (1.7b) are necessary
for the conclusion of Theorem 1.1 to hold. Moreover, if we strengthen the
support condition (1.6) assuming that the Schwartz kernels of Tj are not
only supported in {|x− y| . 2j} but actually in {|x− y| ≈ 2j}, then we can
also show that the single scale (p, q) condition (1.8) is necessary.
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We also have an analogous statement for Corollary 1.2. Indeed, as the
corollary is proved via the implication

(1.12) =⇒ (1.13),

see Lemma 4.4 below, we will simply formulate the necessary conditions for
the conclusion in Corollary 1.2, which will also imply those in Theorem 1.1.

To be precise in the general setting, let us formulate the following as-
sumption on a family of operators {Tj}j∈Z.

Strengthened support condition. There are δ1 > δ2 > 0 such that for all
j ∈ Z and all f ∈ SB1

supp(Dil2jTjf) ⊂ {x : δ1 ≤ dist(x, suppf) ≤ 1},
whenever diam(suppf) ≤ δ2. (1.14)

If the Tj are given by a Schwartz kernel Kj , then the condition is satisfied
provided that

supp(Kj) ⊂ {(x, y) : (δ1 − δ2)2j ≤ |x− y| ≤ 2j}.

Theorem 1.3. Suppose that 1 < p < q < ∞. Let {Tj}j∈Z be a family
of operators, with Tj : SB1 → L1

B2,loc, and satisfying the support condition

(1.6). Assume the conclusion of Corollary 1.2, that is, there exists C > 0
such that for all N1, N2 with N1 ≤ N2, all f1 ∈ SB1, and all nonnegative
simple functions ω∫

Rd

∣∣∣ N2∑
j=N1

Tjf(x)
∣∣∣ω(x) dx ≤ CΛ∗p,B1,q′,R(f, ω).

Then

(i) Conditions (1.7a) and (1.7b) hold, i.e., there is a constant c > 0
only depending on d, p, q, γ such that for all N1, N2 with N1 ≤ N2,∥∥∥ N2∑

j=N1

Tj

∥∥∥
LpB1
→Lp,∞B2

≤ cC,
∥∥∥ N2∑
j=N1

Tj

∥∥∥
Lq,1B1
→LqB2

≤ cC .

(ii) If, in addition, the Tj satisfy the strengthened support condition
(1.14) then condition (1.8) holds, i.e., there is a constant c > 0
only depending on d, p, q, γ such that

sup
j∈Z
‖Dil2jTj‖LpB1

→LqB2
≤ cC.

Remarks. (i) Note that in Theorem 1.3 there are no additional assumptions
on the Banach spaces. The a priori assumption Tj : SB1 → L1

B2,loc enters in
the proof of necessary conditions for both Theorem 1.1 and Corollary 1.2.

(ii) There is an alternative version for necessary conditions for Theorem
1.1 where one a priori assumes merely that the Tj belong to OpB1,B2

(i.e.
Tjf is only a priori weakly integrable for f ∈ SB1), but where one imposes
the assumption that B2 is reflexive. See Theorem 2.5 below.



10 D. BELTRAN J. ROOS A. SEEGER

(iii) We have no necessity statement regarding the regularity conditions
(1.9) in Theorem 1.1, or Corollary 1.2. However, these conditions enter in
the conclusion of both Theorem 1.1 and Corollary 1.2 only in a logarithmic
way (see (1.11)), hence the gap between necessity and sufficiency appears
to be small. Note that the necessary and sufficient conditions are formu-
lated for a uniform statement on a family of operators {

∑N2
j=N1

Tj}N1,N2

but, with the generality of our current formulation, we are unable to prove
a necessary condition for sparse domination for a specific operator in this
family. Nevertheless, the formulation allows us to show necessary conditions
for several specific maximal operators, variation norm operators and other
vector-valued variants, in particular those considered in §5.1, §5.2, §5.3 and
§7.1.

(iv) The constant c in the conclusion of Theorem 1.3 is independent of
the particular pair of Banach spaces B1, B2. This is significant for apply-
ing the theorem to families of maximal and variational operators where for
the necessity conditions one can replace the spaces `∞, L∞, V r by finite-
dimensional subspaces of large dimension.

(v) Since ‖T‖Spγ(p1,B1,p2,B∗2 ) ≤ ‖T‖spγ(p1,B1,B2) for p2 ≥ 1, the necessary

conditions in Theorem 1.3 can also be used to prove the impossibility of
pointwise sparse domination for many of the operators considered in this
paper.

1.3. An application to maximal functions. We illustrate Remark (iii)
above with a brief discussion about maximal operators associated to a distri-
bution σ compactly supported in Rd\{0} (for example a measure), for which
we have necessary conditions for sparse bounds. Denote by σt = t−dσ(t−1·)
the t-dilate in the sense of distributions. For a dilation set E ⊂ (0,∞) we
consider the maximal operator

Mσ
Ef(x) = sup

t∈E
|f ∗ σt(x)|. (1.15)

The maximal function is a priori well defined as measurable function if f
is in the Schwartz class; alternatively we may just restrict to countable E
(see §7.1.1 for comments why this is not a significant restriction).

For the formulation of our theorem we also need the rescaled local oper-
ators Mσ

Ej
with

Ej = (2−jE) ∩ [1, 2]. (1.16)

A model case is given when E consists of all dyadic dilates of a set in [1.2],
i.e.

E =
⋃
j∈Z

2jE◦ with E◦ ⊂ [1, 2].

In this case

Mσ
Ej = Mσ

2−jE∩[1,2] = Mσ
E◦ for all j ∈ Z.
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Definition. The Lebesgue exponent set of the pair (σ,E), denoted by L(σ,E),
consists of all (1/p, 1/q) for which

‖Mσ
E‖Lp→Lp,∞ + ‖Mσ

E‖Lq,1→Lq + sup
j∈Z
‖Mσ

Ej‖Lp→Lq <∞. (1.17)

The sparse exponent set of ME , denoted by Sp[Mσ
E ] consists of all pairs

(1/p1, 1/p2) with 1/p2 ≥ 1/p1 for which there is 0 < γ < 1 and a constant
C such that ∫

Rd
Mσ
Ef(x)ω(x)dx ≤ C Λ∗p1,p2(f, ω)

for all simple f and simple nonnegative ω.

Let ε > 0. We let Eann(λ) be the space of tempered distributions whose
Fourier transform is supported in {ξ : λ/2 < |ξ| < 2λ}. We say that the
pair (σ,E) satisfies an ε-regularity condition if there exists C ≥ 0, and an
exponent p0 ≥ 1 such that for all λ > 2, j ∈ Z, we have

‖Mσ
Ejf‖p0 ≤ Cλ

−ε‖f‖p0 for all f ∈ S ∩ Eann(λ). (1.18)

Remark. The usual lacunary maximal operator correspond to the case where
E = Z. Under this assumption, Mσ

E satisfies an ε-regularity condition for
some ε > 0 if and only if there is an ε′ > 0 such that

σ̂(ξ) = O(|ξ|−ε′).

Moreover the condition supj∈Z ‖Mσ
Ej
‖Lp→Lq <∞ is, in this case, equivalent

with the Lp improving inequality

‖σ ∗ f‖q . ‖f‖p
for all f ∈ Lp.

Denote by Int(Ω) the interior of a planar set Ω. Define Φ : R2 → R2 by

Φ(x, y) = (x, 1− y).

We will show that, under the assumption of an ε-regularity condition for
some ε > 0, the interiors of L(σ,E) and Sp[Mσ

E ] are in unique correspon-
dence under Φ (see Figure 1). That is,

Int(Sp[Mσ
E ]) = Φ(Int(L(σ,E))); (1.19)

this can be deduced as a consequence of Corollary 1.2 and Theorem 1.3.
The next theorem contains a slightly more precise statement.

Theorem 1.4. Suppose that σ is a compactly supported distribution sup-
ported in Rd\{0}, and suppose that (σ,E) satisfies the ε-regularity condition
(1.18) for some ε > 0. Let 1 < p < q <∞. Then the following implications
hold:

(1
p ,

1
q ) ∈ Int(L(σ,E)) =⇒ (1

p ,
1
q′ ) ∈ Sp[Mσ

E ] , (1.20)

(1
p ,

1
q ) ∈ L(σ,E)⇐= (1

p ,
1
q′ ) ∈ Sp[Mσ

E ] . (1.21)
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1
q

1
p

1
q′

1
p

Figure 1. Example for L(σ,E) (left) and Sp[Mσ
E ] (right).

It may occur that the closure of L(σ,E) is not a polygonal
region, see for example [93].

Remarks. (i) The correspondence (1.19) is an immediate consequence of
Theorem 1.4.

(ii) If σ is as in Theorem 1.4 then similar statements characterizing the
sparse exponent set hold for variation norm operators. See the statement of
Propositions 7.2.

(iii) In the case of σ being the surface measure on the unit sphere one
recovers as a special case the results by Lacey [66] on the lacunary and full
spherical maximal functions.

1.4. Fourier multipliers. Given a bounded function m we consider the
convolution operator T given on Schwartz functions f : Rd → C by

T̂ f(ξ) = m(ξ)f̂(ξ), ξ ∈ R̂d, (1.22)

i.e. T f = F−1[m]∗f where F−1[m] is the Fourier inverse of m in the sense of
tempered distributions. If 1 ≤ p <∞, we say that m ∈Mp if T extends to
a bounded operator on Lp and we define ‖m‖Mp to be the Lp → Lp operator
norm of T . A similar definition applies to p =∞; however one replaces L∞

by the space C0 of continuous functions that vanish at ∞ (i.e. the closure

of the Schwartz functions in the L∞ norm). By duality we have Mp = Mp′

for 1/p′ = 1− 1/p. Moreover, M2 = L∞, Mp ⊂ L∞ and M1 is the space of
Fourier transforms of finite Borel measures. Similarly, if 1 ≤ p, q < ∞, we
say that m ∈Mp,q if T is bounded from Lp to Lq and we define by ‖m‖Mp,q

to be the Lp → Lq operator norm of T . For these and other simple facts on
Fourier multipliers see [53] or [106].

Let φ be a nontrivial radial C∞c function compactly supported in R̂d\{0}.
A natural single scale assumption would be to assume a uniform Mp0 bound
for the pieces φ(t−1·)m which is equivalent by dilation-invariance to the
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condition
sup
t>0
‖φm(t·)‖Mp0 <∞. (1.23)

Inequality (1.23) is a necessary and sufficient condition for T to be bounded

on the homogeneous Besov spaces Ḃs
p0,q, for any s ∈ R, 0 < q ≤ ∞; see [107],

[110, §2.6]. However, it does not imply boundedness on the Lebesgue spaces,
except on L2. Indeed, Littman, McCarthy and Rivière [84] and Stein and
Zygmund [107] give examples of m satisfying (1.23) for a p0 6= 2 for which
m /∈Mp for all p 6= 2.

The papers by Carbery [24] and by one of the authors [98] provide positive
results under an additional dilation invariant regularity condition,

sup
t>0
‖φm(t·)‖Cε <∞, (1.24)

where Cε is the standard Hölder space. Indeed, it is shown in [24, 98] that
for 1 < p0 < 2, 0 < ε < 1,

‖m‖Mp ≤ C(p, ε) sup
t>0

(
‖φm(t·)‖Mp0 + ‖φm(t·)‖Cε

)
, p0 < p < p′0.

If the standard Hölder condition ‖φm(t·)‖Cε = O(1) is replaced by its Mp0

variant, supt>0 ‖∆h[φm(t·)]‖Mp0 = O(|h|ε), one obtains a conclusion for
p = p0. We will show that for fixed p ∈ (p0, p

′
0), the Lp-boundedness self-

improves to a sparse domination inequality.

Theorem 1.5. Let 1 < p0 < 2, 0 < ε < 1, and assume that (1.23) and
(1.24) hold. Then for every p ∈ (p0, 2] there is a δ = δ(p) > 0 such that
T ∈ Sp(p− δ, p′ − δ).

We note that, in view of the compact support, for p ≤ q the quantity
‖φm(t·)‖Mp,q can be bounded by C‖φm(t·)‖Mp via Young’s inequality. In
Theorem 1.5 the self-improvement to a sparse bound is due to a tiny bit
of regularity as hypothesized in (1.24). This together with (1.23) implies
a mild regularity condition for φm(t·) measured in the Mp,q norm. If one
seeks better results on the sparse bound in terms of q a further specification
of this regularity is needed. For this we use the iterated difference operators

∆M
h = ∆h∆M−1

h for M ≥ 2,

where ∆h is as in (1.10). With φ as above we get the following.

Theorem 1.6. Let m ∈ L∞(Rd) and T as in (1.22). Let 1 < p ≤ q < ∞.
Assume that there exists s > d(1/p− 1/q) and an M ∈ N such that

sup
t>0

sup
|h|≤1

|h|−s
∥∥∆M

h [φm(t·)]
∥∥
Mp,q <∞. (1.25)

Then T ∈ Sp(p, q′).

One should always take M > s. Indeed, note that if M < s, then (1.25)
implies m ≡ 0. We note that the Lp → Lq conditions (1.8), (1.9) in Theorem
1.1 correspond in the instance of convolution operators to an Mp,q condition
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of derivatives of order s > d(1/p − 1/q) on the localizations of the Fourier
multiplier. Also, for fixed s > d(1/p−1/q), if (1.25) holds with some M ≥ s,
then it holds for all integers M > s. For an illustration of this and the broad
scope of Theorem 1.6, see the discussion on singular Radon transforms in
§7.3.1 and on various classes of Fourier multipliers related to oscillatory
multipliers in §7.2 and to radial multipliers in §7.5.

Theorems 1.5 and 1.6 will be deduced in §6.1 from the more precise, but
also more technical Theorem 6.1 which expresses the regularity via dyadic
decompositions of F−1[φm(t·)]. Moreover, there we will cover a version in-
volving Hilbert space valued functions which is useful for sparse domination
results for objects such as Stein’s square function associated with Bochner–
Riesz means.

1.5. Application to weighted norm inequalities. It is well known that
sparse domination implies a number of weighted inequalities in the context
of Muckenhoupt and reverse Hölder classes of weights, and indeed this serves
as a first motivation for the subject; see the lecture notes by Pereyra [91] for
more information. Here we just cite a general result about this connection
which can be directly applied to all of our results on sparse domination and
is due to Bernicot, Frey and Petermichl [18]. Recall the definition of the
Muckenhoupt class At consisting of weights for which

[w]At = sup
Q
〈w〉Q,1〈w

−1〉Q,t′−1 <∞,

and the definition of the reverse Hölder class RHs consisting of weights for
which

[w]RHs = sup
Q

〈w〉Q,s
〈w〉Q,1

<∞.

In both cases the supremum is taken over all cubes Q in Rd.

Proposition 1.7 ([18]). If T ∈ Sp(LpB1
, Lq

′

B∗2
), then one has the weighted

norm inequality(∫
Rd
|Tf(x)|rB2

w(x) dx
) 1
r
. ‖T‖Spγ(p1,B1;p2,B∗2 )×

([w]Ar/p [w]RH(q/r)′ )
α
(∫

Rd
|f(x)|rB1

w(x) dx
) 1
r

for all w ∈ Ar/p ∩ RH(q/r)′ and p < r < q, where α := max( 1
r−p ,

q−1
q−r ).

We refer to [18, §6] for more information and a detailed exposition. See
also [44] for other weighted norm inequalities.

1.6. Structure of the paper and notation. We begin addressing nec-
essary conditions, and prove Theorem 1.3 in §2. In §3 we review useful
preliminary facts needed in the proof of Theorem 1.1 regarding the single
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scale regularity conditions; in particular, an alternative form for the regu-
larity conditions in (1.9). The proof of Theorem 1.1 is presented in §4. The
main part of the argument consists of an induction step, which is contained
in §4.4. The implication that yields Corollary 1.2 from Theorem 1.1 is given
in §4.3. In §5 we apply Corollary 1.2 to deduce sparse domination results
for maximal functions, square functions and variation norm operators, as
well as Cotlar-type operators associated to truncations of operators. In the
case of maximal functions, the assumptions of Theorem 1.1 can be slightly
weakened, and we present this in §5.4. Theorems 1.5 and 1.6 are proved in
§6. Finally, in §7 we apply our main theorems to several specific examples,
including the proof of Theorem 1.4 in §7.1.1. Moreover, we give several
applications of Theorem 1.6 to specific classes of multipliers. For complete-
ness, we include several appendices. Appendix A covers some basic facts on
sparse domination. Appendix B covers versions of the main Theorem 1.1
for p = 1 and/or q = ∞. Some basic facts on Fourier multipliers needed in
§6 are covered in Appendix C.

Notation. The notation A . B will be used to denote that A ≤ C ·B, where
the constant C may change from line to line. Dependence of C on various
parameters may be denoted by a subscript or will be clear from the context.
We use A ≈ B to denote that A . B and B . A.

We shall use the definition f̂(ξ) = Ff(ξ) =
∫
Rd e

−i〈y,ξ〉f(y)dy for the

Fourier transform on Rd. We let F−1 be the inverse Fourier transform and
use the notation m(D)f = F−1[mf̂ ]. We denote by S ≡ S(Rd) the space of
Schwartz functions on Rd, by S ′ the space of tempered distributions on Rd,
and by Eann(λ) the space of all f ∈ S ′ such that the Fourier transform f̂ is

supported in the open annulus {ξ ∈ R̂d : λ/2 < |ξ| < 2λ}.
For a d-dimensional rectangle R = [a1, b1] × · · · × [ad, bd] we denote by

xR the center of R, i.e. the points with coordinates xR,i = (ai + bi)/2,
i = 1, . . . , d. If τ > 0, we denote by τR to be the τ -dilate of R with respect
to its center, i.e.

τR =
{
x ∈ Rd : xR +

x− xR
τ

∈ R
}
.

We shall use many spatial or frequency decomposition throughout the paper:

◦ {λk}k≥0, {λ̃k}k≥0 are specific families of Littlewood–Paley type op-
erators that can be used for a reproducing formula (3.1); they are
compactly supported and have vanishing moments (cf. §3.2);
◦ {Ψ`}`≥0 is an inhomogeneous dyadic decomposition in x-space, com-

pactly supported where |x| ≈ 2` if ` > 0 (cf. §6.1);
◦ {η`}`≥0 is an inhomogeneous dyadic frequency decomposition so that
η̂` is supported where |ξ| ≈ 2` if ` > 0 (cf. §3.3, §7.4).

Similarly, we shall use the following bump functions:
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◦ φ is a radial C∞(R̂d) function supported in |ξ| ≈ 1 and not identically
zero (cf. §6.1);
◦ θ is a radial C∞(Rd) function supported in |x| . 1 with vanishing

moments and such that θ̂(ξ) > 0 in |ξ| ≈ 1 (cf. §6.1);

◦ β is any nontrivial C∞c (R̂) function with compact support in (0,∞)
(cf. §7.5).
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2. Necessary conditions

In this section we prove Theorem 1.3 and another partial converse for
Theorem 1.1, namely Theorem 2.5 below.

We begin with an immediate and well known, but significant estimate for
the maximal sparse forms which will lead to simple necessary conditions. In
what follows, let M denote the Hardy–Littlewood maximal operator.

Lemma 2.1. The following hold for the maximal forms defined in (1.3).

(i) For f1 ∈ SB1, f2 ∈ SB∗2 ,

Λ∗p1,B1,p2,B∗2
(f1, f2) ≤ γ−1

∫
Rd

(M[|f1|p1B1
](x))1/p1(M[|f2|p2B∗2 ](x))1/p2dx.

(2.1)

(ii) If 1 ≤ p1 < p, and f1 ∈ Lp,1B1
, f2 ∈ Lp

′

B∗2
, then

Λ∗p1,B1,p′,B∗2
(f1, f2) .p,p1 γ

−1‖f1‖Lp,1B1

‖f2‖Lp′
B∗2

, (2.2)

(iii) If 1 < p < p′2, and f1 ∈ LpB1
, f2 ∈ Lp

′,1
B∗2

, then

Λ∗p,B1,p2,B∗2
(f1, f2) .p,p2 γ

−1‖f1‖LpB1
‖f2‖Lp′,1

B∗2

, (2.3)
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Proof. For a γ-sparse family of cubes we have

ΛS
p1,B1,p2,B∗2

(f1, f2) ≤
∑
Q∈S

1

γ

∫
EQ

(M[|f1|p1B1
](x))1/p1(M[|f2|p2B∗2 ](x))1/p2dx

and (2.1) follows by the disjointness of the sets EQ and taking supremum
over all sparse families.

Now let f1 ∈ SB1 , f2 ∈ SB∗2 . For (2.2) we use (2.1), with p2 = p′, together

with the fact that for p1 < p the operator g 7→ (M|g|p1B1
)1/p1 maps Lp,1B1

to
itself; this follows by real interpolation from the fact that it maps Lp to
itself, for all p > p1. We can now estimate

Λ∗p1,B1,p′,B∗2
(f1, f2) . γ−1‖(M[|f1|p1B1

])1/p1‖Lp,1‖(M[|f2|p
′

B∗2
])1/p′‖Lp′,∞

.p.p1 γ
−1‖f1‖Lp,1B1

‖f2‖Lp′
B∗2

.

Since simple B1-valued functions are dense in Lp,1B1
and simple B∗2-valued

functions are dense in Lp
′

B∗2
we get (2.7) for all f1 ∈ Lp,1B1

and f2 ∈ Lp
′

B∗2
, by a

straightforward limiting argument.

For (2.3) we argue similarly. We use (2.1) with p1 = p, together with the

fact that for p2 < p′ the operator g 7→ (M|g|p2B∗2 )1/p2 maps Lp
′,1
B∗2

to itself, and

hence

Λ∗p,B1,p2,B∗2
(f1, f2) . γ−1‖(M[|f1|pB1

])1/p‖Lp,∞‖(M[|f2|p2B∗2 ])1/p2‖Lp′,1

.p,p2 γ
−1‖f1‖LpB1

‖f2‖Lp′,1
B∗2

. �

The estimates in Lemma 2.1 immediate yield estimates for the forms
〈Tf1, f2〉, since by the definition (1.5)

|〈Tf1, f2〉| ≤ ‖T‖Spγ(p1,B1;p2,B∗2 ) Λγ,∗p1,B1,p2,B∗2
(f1, f2).

We shall now prove Theorem 1.3 in §2.1, and a variant under reflexivity
of B2 in §2.2.

2.1. The local integrability hypothesis. If Tf1 ∈ L1
B2,loc, Lemma 2.1

further yields bounds for the LpB2
or Lp,∞B2

norms of Tf1 via a duality result
for scalar functions.

Lemma 2.2. Suppose T : SB1 → L1
B2,loc. Then the following hold.

(i) If 1 ≤ p1 < p <∞ and if for all f ∈ SB1 and all R-valued nonnega-
tive simple functions ω∫

Rd
|Tf(x)|

B2
ω(x)dx ≤ A1Λ∗p1,B1,p′,R(f, ω),

then T extends to a bounded operator from Lp,1B1
to LpB2

so that

‖T‖
Lp,1B1
→LpB2

.p1,p γ
−1A1. (2.4)
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(ii) If 1 < p < p′2 and if for all f ∈ SB1 and all R-valued nonnegative
simple functions ω∫

Rd
|Tf(x)|

B2
ω(x)dx ≤ A2Λ∗p,B1,p2,R(f, ω),

then T extends to a bounded operator from LpB1
to Lp,∞B2

so that

‖T‖LpB1
→Lp,∞B2

.p2,p γ
−1A2. (2.5)

Proof. We rely on Lemma 2.1. For part (i) we use (2.2) to estimate, for
f2 ∈ SB2 , ∫

Rd
|Tf(x)|

B2
ω(x)dx . γ−1A1‖f‖Lp,1B1

‖ω‖Lp′ .

By Lp duality this implies an Lp bound for the locally integrable scalar
function x 7→ |Tf(x)|B2 and consequently Tf ∈ LpB2

with

‖Tf‖LpB2
. γ−1A1‖f‖Lp,1B1

and (2.4) follows.

For part (ii) we argue similarly. We use (2.3) to estimate∫
Rd
|Tf(x)|

B2
ω(x)dx . γ−1A2‖f‖LpB1

‖ω‖Lp′,1 .

By the duality (Lp
′,1)∗ = Lp,∞ for scalar functions for 1 < p < ∞ [55] we

get

‖Tf‖Lp,∞B2
. γ−1A2‖f1‖LpB1

and (2.5) follows. �

Corollary 2.3. Assume that T : SB1 → L1
B2,loc and let 1 ≤ p1 < p < p′2. If

for all f ∈ SB1 and all R-valued nonnegative simple functions ω∫
Rd
|Tf(x)|

B2
ω(x)dx ≤ AΛ∗p1,B,p2,R(f, ω),

then T extends to a bounded operator from LpB1
to LpB2

so that

‖T‖LpB1
→LpB2

.p,p1,p2 γ
−1A. (2.6)

Proof. Lemma 2.2 implies T maps boundedly Lp̃1B1
→ Lp̃1,∞B2

and L
p̃′2,1
B1
→ L

p̃′2
B2

for any p1 < p̃1 < p and p < p̃′2 < p′2; the desired LpB1
→ LpB2

boundedness

for p1 < p < p′2 then follows by interpolation.

Alternatively, one could deduce this result directly from (2.1). Arguing as
in the proofs of (ii) or (iii) in Lemma 2.1, by the Hardy–Littlewood theorem
and (2.1) one has

Λ∗p1,B1,p2,B∗2
(f1, f2) .p,p1,p2 γ

−1‖f1‖LpB1
‖f2‖Lp′

B∗2

(2.7)
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for 1 ≤ p1 < p < p′2. Then one can argue as in the proof of Lemma 2.2, to
deduce (2.6) from (2.7). �

We next turn to the necessity of the condition (1.8) in Corollary 1.2 and
Theorem 1.1. In this generality, this type of implication appears to be new in
the sparse domination literature. It is inspired by the philosophy of adapting
the counterexamples for Lp → Lq estimates to sparse bounds (see i.e. the
examples for spherical maximal operators in [66]).

Lemma 2.4. Let {Tj}j∈Z be a family of operators, with Tj : SB1 → L1
B2,loc,

and satisfying the strengthened support condition (1.14). Let 1 ≤ p < q ≤
∞ and suppose that for all f ∈ SB1 and all R-valued nonnegative simple
function ω, the estimate∫

Rd
|Tjf(x)|

B2
ω(x)dx ≤ CΛ∗p,B1,q′,R(f, ω)

holds uniformly in j ∈ Z. Then

sup
j∈Z
‖Dil2jTj‖LpB1

→LqB2

.γ,d,δ1,δ2,p,q C.

Proof. Fix j ∈ Z and let S = Dil2jTj . We first apply a scaling argment.
Note that by assumption∫

|Sf(x)|
B2
ω(x)dx = 2−jd

∫ ∣∣Tj [f(2−j ·)](x)
∣∣
B2

ω(2−jx)dx

≤ C 2−jdΛ∗p,B1,q′,R(f(2−j ·), ω(2−j ·))

If ΛS
p,B1,q,R is a sparse form with a γ-sparse collection of cubes we form the

collection Sj of dilated cubes {2−jy : y ∈ Q} where Q ∈ S. Then

2−jdΛS
p,B1,q′,R(f(2−j ·), ω(2−j ·)) = Λ

Sj
p,B1,q′,R(f, ω)

and therefore we get the estimate∫
|Sf(x)|

B2
ω(x)dx ≤ CΛ∗p,B1,q′,R(f, ω). (2.8)

Suppose that b is the smallest positive integer such that

2−b ≤ d−1/2 min{δ1/2, δ2}.
For z ∈ Zd let

Qz = {x : 2−bzi ≤ xi < 2−b(zi + 1), i = 1, . . . , d}
and let fz = f1Qz . Let Rz the cube of side length 3 centered at 2−bz. Then

Sfz is supported in Rz. We decompose Rz into 3d2bd cubes Rz,ν of side length

2−b, here ν ∈ Iz with #Iz = 3d2bd.

Fix z, ν and a simple nonnegative function ω with ‖ω‖Lq′ ≤ 1. We first
prove that for ν ∈ Iz∫

|Sfz(x)|
B2
ω(x)1Rz,ν (x)dx . C ‖fz‖LpB1

‖ω‖Lq′ . (2.9)
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In this argument we shall not use strong measurability of Sfz. By (2.8) we
have ∫

|Sfz(x)|
B2
ω(x)1Rz,ν (x)dx ≤ CΛ∗p,B1,q′,R(fz, ω1Rz,ν )

and therefore we find a sparse family Sz,ν such that∫
|Sfz(x)|

B2
ω(x)1Rz,ν (x)dx ≤ 2C

∑
Q∈Sz,ν

|Q|〈fz〉Q,p〈ω1Rz,ν 〉Q,q′ . (2.10)

By the strengthened support condition, (1.14),

Sfz1Rz,ν 6= 0 =⇒ dist(Qz, Rz,ν) ≥ δ1 − 2−b
√
d. (2.11)

Assuming that the left-hand side is not 0 in (2.10), and in view of (2.11),

we see that for a cube Q ∈ Sz,ν we have, recalling that δ1 ≥
√
d 2−b+1,

Qz ∩Q 6= ∅
Rz,ν ∩Q 6= ∅

}
=⇒ diam(Q) ≥ δ1 − 2−b

√
d ≥ 2−b

√
d.

Hence all cubes that contribute to the sum in (2.10) have side length ≥ 2−b.
Denote the cubes in Sz,ν with side length in [2`, 2`+1) by Sz,ν(`) and note
that for every ` ≥ −b there are at most C(d) many cubes that contribute.
Hence we may estimate∑

Q∈Sz,ν

|Q|〈fz〉Q,p〈ω1Rz,ν 〉Q,q′

≤
∑
`≥−b

∑
Q∈Sz,ν(`)

|Q|
1
q
− 1
p

(∫
Q
|fz(y)|pB1

dy
) 1
p
(∫

Q
|ω(x)1Rz,ν (x)|q′dx

) 1
q′

.d
∑
`≥−b

2
`d( 1

q
− 1
p

)‖fz‖LpB1
‖ω‖Lq′ .b,d,p,q ‖fz‖LpB1

where we used the assumption q > p to sum in `. This establishes (2.9).

By duality combined with (2.9) we have

‖Sfz‖LqB2
(Rz,ν) . sup

ω∈SR
‖ω‖

Lq
′≤1

∫
|Sfz(x)|

B2
|ω(x)|1Rz,ν (x)dx . C ‖fz‖LpB1

.

(2.12)
Considering this for various ν ∈ Iz we get

‖Sfz‖LqB2

.
∑
ν∈Iz

‖Sfz‖LqB2
(Rz,ν) .

∑
ν∈Iz

C ‖fz‖LpB1
.d,δ1,δ2 C ‖fz‖LpB1

.
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Then

‖Sf‖LqB2

=
∥∥∥∑
z∈Zd

Sfz

∥∥∥
LqB2

. Cd2
bd
(∑

z∈Zd
‖Sfz‖qLqB2

)1/q
(2.13)

.d,δ1,δ2 C
(∑

z∈Zd
‖fz‖qLpB1

)1/q
. C

(∑
z∈Zd
‖fz‖pLpB1

)1/p
. C ‖f‖LpB1

.�

Theorem 1.3 now follows from Lemmata 2.2 and 2.4.

2.2. The reflexivity hypothesis. In this section we prove a version of
Theorem 1.3 where we drop the a priori assumption on Tj sending SB1 to
L1
B2,loc and thus we can no longer assume the strong B2 measurability of

Tf . We still get a partial converse to Theorem 1.1 if we assume that the
Banach space B2 is reflexive.

Theorem 2.5. Let B2 be reflexive and let 1 < p < q < ∞. Let {Tj}j∈Z
be a family of operators in OpB1,B2

satisfying the support condition (1.6).
Assume the conclusion of Theorem 1.1, that is, there exists C > 0 such that
for all N1, N2 with N1 ≤ N2 and every f1 ∈ SB1, f2 ∈ SB∗2 ,∣∣∣〈 N2∑

j=N1

Tjf1, f2

〉∣∣∣ ≤ CΛ∗p,B1,q′,B∗2
(f1, f2).

Then

(i) Conditions (1.7a) and (1.7b) hold, i.e., there is a constant c > 0
only depending on d, p, q, γ such that for all N1, N2 with N1 ≤ N2,∥∥∥ N2∑

j=N1

Tj

∥∥∥
LpB1
→Lp,∞B2

≤ cC,
∥∥∥ N2∑
j=N1

Tj

∥∥∥
Lq,1B1
→LqB2

≤ cC .

(ii) If, in addition, the Tj satisfy the strengthened support condition
(1.14) then condition (1.8) holds, i.e., there is a constant c > 0
only depending on d, p, q, γ such that

sup
j∈Z
‖Dil2jTj‖LpB1

→LqB2
≤ cC.

In the vector valued setting of Theorem 2.5 we need to use a more abstract
duality argument which requires some care because of a potential lack of
strong local integrability. We briefly discuss the issue of duality.

Let B be a Banach space. Recall that for 1 ≤ p ≤ ∞, 1/p+ 1/p′ = 1, the

space Lp
′

B∗ is embedded in (LpB)∗ via the canonical isometric homomorphism.
In the scalar case this isometry is also surjective when 1 ≤ p <∞, and the
proof of this fact relies on the Radon–Nikodym theorem. In the vector-
valued case the surjectivity is equivalent with the dual space B∗ having the
Radon–Nikodym property (RNP) with respect to Lebesgue measure (see [56,
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Chapter 1.3.b] for the formal definition). Thus under this assumption we

have an identification of the dual of LpB with Lp
′

B∗ . To summarize,

B∗ ∈ RNP ⇐⇒ (LpB)∗ = Lp
′

B∗ , 1 ≤ p <∞. (2.14)

Similarly, the Radon–Nikodym property for B∗ also implies

(Lp,rB )∗ = Lp
′,r′

B∗ , 1 < p <∞, 1 ≤ r <∞;

this is not stated in [56] but follows by a similar argument as in the scalar case
[55, (2.7)], essentially with the exception of the application of the Radon–
Nikodym property in place of the scalar Radon–Nikodym theorem. For a
detailed discussion of the Radon–Nikodym properties and its applications
we refer to [56, Chapter 1.3.c]. The class of spaces which have the Radon–
Nikodym property with respect to all σ-finite measure spaces includes all
reflexive spaces and also all spaces that have a separable dual (cf. [56, The-
orem 1.3.21]). If B is reflexive, so is B∗, and therefore (2.14) holds for
reflexive spaces B.

Under the assumption that the double dual B∗∗2 satisfies the Radon–
Nikodym property, we can show that the sparse bound implies that Tf
can be identified with a B∗∗2 strongly measurable function. This leads to a
satisfactory conclusion under the stronger assumption that B2 is reflexive.

Lemma 2.6. Assume that T ∈ OpB1,B2
and that B∗∗2 satisfies the Radon–

Nikodym property. Then the following hold.

(i) If 1 ≤ p1 < p < ∞ and T ∈ Spγ(p1, B1, p
′, B∗2) then T extends to a

bounded operator from Lp,1B1
to LpB∗∗2

so that

‖T‖
Lp,1B1
→Lp

B∗∗2

.p1 γ
−1‖T‖Spγ(p1,B1,p′,B∗2 ). (2.15)

(ii) If 1 < p < p′2 and T ∈ Spγ(p,B1, p2, B
∗
2) then T extends to a bounded

operator from LpB1
to Lp,∞B∗∗2

so that

‖T‖LpB1
→Lp,∞

B∗∗2
.p2 γ

−1‖T‖Spγ(p,B1,p2,B∗2 ). (2.16)

Proof. We rely, as in the proof of Lemma 2.2, on Lemma 2.1.

For part (i), we use (2.2) to obtain

|〈Tf1, f2〉| . γ−1‖T‖Spγ(p,B1;p2,B∗2 )‖f1‖Lp,1B1

‖f2‖Lp′
B∗2

.

This inequality establishes the form f2 7→ 〈Tf1, f2〉 as a linear functional on

Lp
′

B∗2
. Since B∗∗2 has the Radon–Nikodym property and thus (Lp

′

B∗2
)∗ = LpB∗∗2

,

we can identify Tf1 as a member of LpB∗∗2
. Since

‖T‖
Lp,1B1
→Lp

B∗∗2

= sup
‖f1‖

L
p,1
B1

≤1
sup

‖f2‖
L
p′
B∗2

≤1
|〈Tf1, f2〉|,

we have established (2.15).
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Similarly, for part (ii) we use (2.3) to obtain

|〈Tf1, f2〉| . γ−1‖T‖Spγ(p,B1;p2,B∗2 )‖f‖LpB1
‖g‖

Lp
′,1
B∗2

.

Since Lp,∞B∗∗2
can be identified with (Lp

′,1
B∗2

)∗ we then get

‖T‖LpB1
→Lp,∞

B∗∗2
= sup
‖f1‖Lp

B1

≤1
sup

‖f2‖
L
p′,1
B∗2

≤1
|〈Tf1, f2〉|

and obtain (2.16). �

Lemma 2.7. Assume that B∗∗2 satisfies the Radon–Nikodym property. Let
{Tj}j∈Z be a family of operators in OpB1.B2

, satisfying the strengthened
support condition (1.14). Suppose that 1 ≤ p < q ≤ ∞ and

sup
j∈Z
‖Tj‖Spγ(p,B1,q′,B∗2 ) ≤ C.

Then
sup
j∈Z
‖Dil2jTj‖LpB1

→Lq
B∗∗2
.γ,d,δ1,δ2,p,q C.

Proof. We let S = Dil2jTj , Rz, Rz,ν , ν ∈ Iz as in the proof of Lemma 2.4.
The proof of (2.9) can be modified just with appropriate notational changes,
such as replacing expressions as one the left -hand side of (2.9) with

λf,z,ν(g) := 〈Sfz, g1Rz,ν 〉.
This leads to the inequality

|〈Sfz, g1Rz,ν 〉| . C‖fz‖LpB1
‖g‖Lq

B∗2
(2.17)

in the place of (2.9). Inequality (2.17) shows that λf,z,ν is a continuous linear

functional on the space Lq
′

B∗2
(Rz,ν); recall that by assumption 1 ≤ q′ <∞. By

the Radon–Nikodym property of B∗∗2 , the linear functional λf,z,ν is identified
with a function Sfz restricted to Rz,ν , in the space LqB∗∗2

(Rz,ν). Hence we

now get a variant of inequality (2.12), namely

‖Sfz‖Lq
B∗∗2
.
∑
ν∈Iz

‖Sfz‖Lq
B∗∗2

(Rz,ν)

.
∑
ν∈Iz

sup
‖g‖

L
q′
B∗2

≤1
|〈Sfz, g1Rz,ν 〉 .d,δ1,δ2 C‖fz‖LpB1

.

We finish as in (2.13) to bound ‖Sf‖Lq
B∗∗2
. C‖fLpB1

. �

Conclusion of the proof of Theorem 2.5. Since we are assuming that B2 is
reflexive we have that B2 = B∗∗2 satisfies the Radon–Nikodym property.

Hence now the necessity of the Lq,1B1
→ LqB2

and LpB1
→ Lp,∞B2

conditions
follow from Lemma 2.6, and the necessity of the single scale Lp → Lq condi-
tions follows from using the assumption with N1 = N2 and applying Lemma
2.7. �
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3. Single scale sparse domination

We collect some preliminary results which are needed in the proof of
Theorem 1.1.

3.1. A single scale estimate. We state an elementary lemma which is
used to establish the base case in the induction proof of Theorem 1.1. Recall
that for a cube Q, we let 3Q denote the cube centered at the center of Q
with three times the side length of Q, which is also the union of Q and its
neighbors of the same side length.

Lemma 3.1. Let Tj ∈ OpB1,B2
satisfy (1.6) and (1.8) for some exponents

p, q ∈ [1,∞]. Let Q be a cube of side length 2j. Then for f1 ∈ SB1, f2 ∈ SB∗2 ,

|〈Tj [f11Q], f2〉| ≤ 3d/q
′
A◦(p, q)|Q|〈f1〉Q,p〈f2〉3Q,q′ .

Proof. By the support property (1.6), Tj [f11Q] is supported in 3Q. By
re-scaling we get from (1.8) that

‖Tj‖Lp→Lq ≤ 2−jd(1/p−1/q)A◦(p, q)

and thus

|〈Tj [f11Q], f2〉| = |〈Tj [f11Q], f213Q〉|

≤ A◦(p, q)2−jd(1/p−1/q)‖f11Q‖p‖f213Q‖q′

= A◦(p, q)3
d/q′ |Q|〈f1〉Q,p〈f2〉3Q,q′ ,

as claimed. �

This implies a sparse bound for the single scale operators Tj ; indeed the
sparse collection is a disjoint collection of cubes.

Corollary 3.2. For 0 < γ ≤ 1 and 1 ≤ p, q ≤ ∞,

‖Tj‖Spγ(p,q′) ≤ 3d(1/p+1/q′)A◦(p, q).

Proof. We tile Rd by a family Qj of dyadic cubes of side length 2j and
estimate

|〈Tjf1, f2〉| ≤
∑
Q∈Qj

|〈Tj [f11Q], f2〉| ≤ A◦(p, q)3d/q
′ ∑
Q∈Qj

|Q|〈f1〉Q,p〈f2〉3Q,q′

≤ A◦(p, q)3d(1/q′−1/p′)
∑
Q∈Qj

|3Q|〈f1〉3Q,p〈f2〉3Q,q′ .

The family {3Q : Q ∈ Qj} can be split into 3d subfamilies consisting each
of disjoint cubes of side length 3 · 2j . This implies the assertion (for every
0 < γ ≤ 1) since for every 3Q involved in each subfamily we can choose
E3Q = 3Q. �
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3.2. A resolution of the identity. It will be quite convenient to work with
a resolution of the identity using Littlewood–Paley decompositions which are
localized in space. We have

I =

∞∑
k=0

ΛkΛ̃k (3.1)

which converges in the strong operator topology on LpB1
(Rd), 1 ≤ p < ∞.

Here Λk, Λ̃k are convolution operators with convolution kernels λk, λ̃k such
that λ0 ∈ C∞c has support in {x : |x| < 1/2},

∫
λ0 = 1, λ1 = 2λ0(2·) −

λ0 and λ̃0, λ̃1 ∈ S with
∫
λ̃0 = 1, and

∫
λ̃1 = 0. Moreover, for k ≥ 1,

λk = 2(k−1)dλ1(2k−1·), λ̃k = 2(k−1)dλ̃1(2k−1·). For later applicability we
may choose λ1, so that∫

λ1(x)

d∏
i=1

xαii dx = 0, for

d∑
i=1

αi ≤ 100d

and the same for λ̃1.

A proof of (3.1) with these specifications can be found in [100, Lemma

2.1] (the calculation there shows that λ̃0, λ̃1 can be chosen with compact
support as well). For later use we let Pk be the operator given by convolution
with 2kdλ0(2k·) for k ≥ 0, and also set P−1 = 0, and observe that by our
construction

Λk = Pk − Pk−1, for k ≥ 1. (3.2)

3.3. Single scale regularity. In our proof of Theorem 1.1 it will be useful
to work with other versions of the regularity conditions (1.9) which are
adapted to the dyadic setting. To formulate these, we fix a dyadic lattice of
cubes Q. Let {En}n∈Z be the conditional expectation operators associated
to the σ-algebra generated by the subfamily Qn of cubes in Q of side length
in [2−n, 21−n), that is, Enf(x) = avQf for every x ∈ Q with Q ∈ Qn. Define
the martingale difference operator Dn by

Dn = En − En−1 for n ≥ 1.

We also use the operators Λk, Λ̃k in the decomposition (3.1).

Lemma 3.3. Let T ∈ OpB1,B2
.

(i) Let 1 ≤ p ≤ q <∞, 0 < ϑ < 1/p. Then

‖TE0‖LpB1
→LqB2

+ sup
n>0

2nϑ‖TDn‖LpB1
→LqB2

.ϑ sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

. (3.3)

(ii) Let 1 ≤ p ≤ q ≤ ∞, 0 < ϑ < 1. Then

sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

≈ϑ ‖T‖LpB1
→LqB2

+ sup
0<|h|<1

|h|−ϑ‖T∆h‖LpB1
→LqB2

.

(3.4)
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(iii) Let 1 < p ≤ q ≤ ∞, 0 < ϑ < 1− 1/p. Then

sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

.ϑ ‖TE0‖LpB1
→LqB2

+ sup
n>0

2nϑ‖TDn‖LpB1
→LqB2

. (3.5)

An immediate consequence is the following.

Corollary 3.4. For 1 < p ≤ q <∞ and 0 < ϑ < min{1/p, 1− 1/p},

‖TE0‖LpB1
→LqB2

+ sup
n>0

2nϑ‖TDn‖LpB1
→LqB2

≈ϑ

‖T‖LpB1
→LqB2

+ sup
0<|h|<1

|h|−ϑ‖T∆h‖LpB1
→LqB2

.

Proof of Lemma 3.3. We rely on arguments used before in considerations
of variational estimates [58], [59], of basis properties of the Haar system in
spaces measuring smoothness [47] and elsewhere. We use

‖Λk‖LpB1
→LpB1

= O(1), ‖Λ̃k‖LpB1
→LpB1

= O(1), ‖En‖LpB1
→LpB1

= O(1)

throughout the proof. Since ϑ > 0 we get from (3.1)

‖TE0‖LpB1
→LqB2

.
∑
k≥0

‖TΛk‖LpB1
→LqB2

.ϑ sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

.

To estimate TDn we will need

‖Λ̃kDn‖LpB1
→LpB1

. min{1, 2(k−n)/p}, (3.6)

and only the case k ≤ n needs a proof. A standard calculation using can-
cellation of Dn yields (3.6) for p = 1 and the rest follows by interpolation.
Consequently we can estimate

2nϑ‖TDn‖LpB1
→LqB2

≤ 2nϑ
∑
k≥0

‖TΛkΛ̃kDn‖LpB1
→LqB2

≤ 2nϑ
∑
k≥0

‖TΛk‖LpB1
→LqB2

‖Λ̃kDn‖LpB1
→LpB1

.
∑

0≤k≤n
2kϑ‖TΛk‖LpB1

→LqB2
2
−(n−k)( 1

p
−ϑ)

+
∑
k>n

2kϑ‖TΛk‖LpB1
→LqB2

2−(k−n)ϑ

. sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

,

where we used ϑ < 1/p for the first sum. This proves (3.3).

We now turn to (3.4) and estimate the left-hand side. By (3.2) we can
write

‖TΛk‖LpB1
→LqB2

≤ ‖T (I− Pk)‖LpB1
→LqB2

+ ‖T (I− Pk−1)‖LpB1
→LqB2

.

Note that, as
∫
λ0 = 1,

(I− Pk−1)f(x) =

∫
2(k−1)dλ0(2k−1h)∆−hf(x)dh,
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so

‖T (I− Pk−1)f‖LpB1
→LqB2

=

∫
2(k−1)d|λ0(2k−1h)|‖T∆−h‖LpB1

→LqB2
dh

. sup
|h|≤2−k

‖T∆h‖LpB1
→LqB2

and the same bound for ‖T (I − Pk)f‖LpB1
→LqB2

. This establishes that the

left-hand side is smaller than the right-hand side in (3.4).

We argue similarly for the converse inequality. We estimate

‖T‖LpB1
→LqB2

≤
∑
k≥0

‖TΛk‖LpB1
→LqB2

. sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

.

For the main terms

‖T∆h‖LpB1
→LqB2

≤
∑
k≥0

‖TΛk‖LpB1
→LqB2

‖Λ̃k∆h‖LpB1
→LpB1

.

Now

‖Λ̃k∆h‖LpB1
→LpB1

. ‖λk(·+ h)− λk(·)‖1 . min{1, 2k|h|} (3.7)

and therefore

|h|−ϑ‖T∆h‖LpB1
→LqB2

≤
∑
k≥0

‖TΛk‖LpB1
→LqB2

2kϑ(2k|h|)−ϑ min{1, 2k|h|}

. sup
k≥0

2kϑ‖TΛk‖LpB1
→LqB2

since
∑

k≥0(2k|h|)−ϑ min{1, 2k|h|} .ϑ 1 if 0 < ϑ < 1. This completes the

proof of (3.4).

It remains to prove (3.5). Setting D0 := E0 we observe that I =
∑

n≥0 Dn
and Dn = DnDn, and thus

‖TΛk‖LpB1
→LqB2

≤
∑
n≥0

‖TDn‖LpB1
→LqB2

‖DnΛk‖LpB1
→LpB1

.

We use ‖DnΛk‖LpB1
→LpB1

. 1 for n ≥ k and

‖DnΛk‖LpB1
→LpB1

. 2
(n−k)(1− 1

p
)

for n < k. (3.8)

This is clear for p = 1 and by interpolation it suffices to show it for p =∞.
Let Q be a dyadic cube of side length 2−n+1. Let Ch(Q) be the set of 2d

dyadic children of Q (i.e. the dyadic sub-cubes of side length 2−n). Let

FQ,k = {x : dist(x, ∂Q̃) ≤ 2−k for some Q̃ ∈ Ch(Q)}.

Then |FQ,k−1| . 2−n(d−1)2−k. Let gQ,k = f1Q\FQ,k and observe that by
Fubini’s theorem and the cancellation and support properties of λk

EnΛkgQ,k(x) = 0 and En−1ΛkgQ,k(x) = 0 for x ∈ Q.



28 D. BELTRAN J. ROOS A. SEEGER

Hence for x ∈ Q,

|DnΛkf(x)| = |DnΛk(f1FQ,k)(x)|

. 2nd
∫ ∫

|λk(w − y)||f(y)|dw1FQ,k(y)dy

. 2nd|FQ,k−1|‖f‖∞ . 2n−k‖f‖∞.

This implies (3.8) for p =∞.

To finish we write

2kϑ‖TΛk‖LpB1
→LqB2

≤
∑
n≥0

‖TDn‖LpB1
→LqB2

2kϑ min{1, 2(n−k)(1−1/p)}

. sup
n≥0

2nϑ‖TDn‖LpB1
→LqB2

where we used
∑

n≥0 2(k−n)ϑ min{1, 2(n−k)(1−1/p)} . 1 provided that 0 <

ϑ < 1− 1/p. This proves (3.5). �

In the proof of Theorem 1.1 we use the following Corollary.

Corollary 3.5. Let 1 ≤ p ≤ q <∞ and 0 < ϑ < 1/p. Then

(i) For any n ≥ 0,

‖T (I− En)‖LpB1
→LqB2

.ϑ 2−nϑ sup
0<|h|<1

|h|−ϑ‖T∆h‖LpB1
→LqB2

.

(ii) If Tj is such that (1.9a) holds then

‖Tj(I− En−j)‖LpB1
→LqB2

.ϑ B2−nϑ2
−jd( 1

p
− 1
q

)
.

Proof. We write I = En +
∑∞

k=1 Dn+k, and thus

‖T (I− En)‖LpB1
→LqB2

≤
∞∑
k=1

‖TDn+k‖LpB1
→LqB2

.ϑ

∞∑
k=1

2−(n+k)ϑ sup
0<|h|<1

|h|−ϑ‖T∆h‖LpB1
→LqB2

by combining part (3.3), (3.4) in the statement of Lemma 3.3. We sum and
get the assertion. Part (ii) follows by rescaling and the hypotheses. �

We finally discuss a formulation of the regularity condition which involves
the Fourier support of the function and is therefore limited to the case where
B1 is a separable Hilbert space, here denoted by H. It is convenient to use
a frequency decomposition

f =
∑
`≥0

η` ∗ f, (3.9)
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with η̂0 is supported in {ξ : |ξ| < 1} such that η̂0(ξ) = 1 for |ξ| ≤ 3
4 , and

with η` defined by η̂`(ξ) = η̂0(2−`ξ)− η̂0(21−`ξ) for ` ≥ 1, i.e. we have

supp(η̂`) ⊂ {ξ : 2`−2 < |ξ| < 2`}, ` ≥ 1. (3.10)

Recall that Eann(λ) denotes the space of tempered distributions whose Fourier
transform is supported in {ξ : λ/2 < |ξ| < 2λ}.

Lemma 3.6. Let H be a separable Hilbert space and T ∈ OpH,B2
. Suppose

that T : LpH → LqB2
satisfies

‖T‖Lp
H
→LqB2

≤ A, (3.11)

and for all λ > 2 and all H-valued Schwartz functions f ∈ Eann(λ),

‖Tf‖LqB2
≤ Aλ−ϑ‖f‖Lp

H
. (3.12)

Then

sup
0<|h|<1

|h|−ϑ‖T∆h‖Lp
H
→LqB2

.ϑ A.

Proof. By the assumptions (3.11) (` = 0) and (3.12) (` ≥ 1) we have

‖T [η` ∗∆hf ]‖LqB2
≤ A2(1−`)ϑ‖η` ∗∆hf‖Lp

H

Arguing as in (3.7) we get

‖η` ∗∆hf‖Lp
H

= ‖∆hη` ∗ f‖Lp
H
. min{1, 2`|h|}‖f‖Lp

H
.

Thus using (3.9) we obtain

‖T∆hf‖LqB2
≤
∞∑
`=0

‖T [η` ∗∆hf ]‖LqB2
. A

∞∑
`=0

2−`ϑ min{1, 2`|h|}‖f‖Lp
H

and after summing in ` we arrive at ‖T∆hf‖LqB2
.ϑ |h|ϑ‖f‖Lp

H
. �

4. Proof of the main result

4.1. A modified version of sparse forms. We fix a dyadic lattice Q in
the sense of Lerner and Nazarov, where we assume that the side length of
each cube in Q is dyadic, i.e. of the form 2k with k ∈ Z. Also fix γ ∈ (0, 1)
and 1 < p ≤ q < ∞. It will be convenient to use variants GQ0 ≡ GQ0,γ of
the maximal form Λ∗p,q′ defined in (1.3). The presence of the triple cubes in
the new form allows one to exploit more effectively the support condition
(1.6).

Definition 4.1. Given a cube Q0 ∈ Q let

GQ0(f1, f2) = sup
∑
Q∈S
|Q|〈f1〉Q,p,B1

〈f2〉3Q,q′,B∗2

where the supremum is taken over all γ-sparse collections S consisting of
cubes in D(Q0).
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Notational convention. From now on in this proof, the dependence on the
Banach spaces B1, B∗2 will not be explicitly indicated, i.e. 〈f1〉Q,p should be

understood as 〈f1〉Q,p,B1
and 〈f2〉Q,q′ should be understood as 〈f2〉Q,q′,B∗2 .

The key step towards proving Theorem 1.1 is to establish a variant in
which Λ∗p,q′ is replaced by GQ0 , that is,

∣∣〈 N2∑
j=N1

Tjf1, f2

〉∣∣ .p,q,ε,d,γ CGQ0(f1, f2) (4.1)

for f1 ∈ SB1 , f2 ∈ SB∗2 and a sufficiently large cube Q0 ∈ Q. The reader
will notice that GQ0 does not define a sparse form, and we will show in §4.2
how to finish the proof of Theorem 1.1 given (4.1). The proof of (4.1) will
be done by induction, which leads us to the following definition.

Definition 4.2. For n = 0, 1, 2, . . . let U(n) be the smallest constant U so
that for all families of operators {Tj} satisfying the assumptions of Theorem
1.1, for all pairs (N1, N2) with 0 ≤ N2 − N1 ≤ n and for all dyadic cubes
Q0 ∈ Q of side length 2N2 we have

∣∣〈 N2∑
j=N1

Tjf1, f2

〉∣∣ ≤ UGQ0(f1, f2)

whenever f1 ∈ SB1 with supp(f1) ⊂ Q0 and f2 ∈ SB∗2 .

Thus, in order to show (4.1), it suffices to show that

U(n) .p,q,ε,d,γ C

uniformly in n ∈ N0. This will be proven by induction on n. By Lemma 3.1
we have the base case

U(0) ≤ 3d/q
′
A◦(p, q) (4.2)

and, more generally, U(n) ≤ (n+ 1)3d/q
′
A◦(p, q), which shows the finiteness

of the U(n). The proof then reduces to the verification of the following
inductive claim.

Claim 4.3. There is a constant c = cp,q,ε,d,γ such that for all n > 0,

U(n) ≤ max{U(n− 1), c C},

with C defined as in (1.11).

Our proof of the claim is an extension of the proof for sparse bounds of
the prototypical singular Radon transforms in [89], which itself builds on
ideas in [66]. It is contained in §4.4.
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4.2. Proof of Theorem 1.1 given Claim 4.3. Fix N1 ≤ N2, f1 ∈ SB1 ,
f2 ∈ SB∗2 . We choose any dyadic lattice with cubes of dyadic side length
as in the previous subsection. By (1.6) we may choose a cube Q0 ∈ Q of

side length 2L(Q0) with L(Q0) ≥ N2 such that f1 is supported in Q0. Then∑N2
j=N1

Tjf1 is supported in 3Q0. Define the operators Sj = Tj when N1 ≤
j ≤ N2 and Sj = 0 otherwise. Then the assumptions of Theorem 1.1 apply

to the family {Sj}. By (4.2) and Claim 4.3 applied to S =
∑L(Q0)

j=N1
Sj =∑N2

j=N1
Tj we obtain

|〈Sf1, f2〉| ≤ cp,q,ε,d,γ CGQ0(f1, f2).

In order to complete the proof of Theorem 1.1 it remains to replace GQ0

by the maximal sparse form Λ∗p,q. This argument relies on facts in dyadic
analysis which we quote from the book by Lerner and Nazarov [79].

We first note that for ε > 0 there is a γ-sparse collection Sε ⊂ D(Q0)
such that∣∣〈Sf1, f2〉

∣∣ ≤ (cp,q,ε,d,γ C + ε)
∑
Q∈Sε

|Q|〈f1〉Q,p〈f2〉3Q,q′

≤ 3d/p−d(cp,q,ε,d,γ C + ε)
∑
Q∈Sε

|3Q|〈f1〉3Q,p〈f2〉3Q,q′ . (4.3)

By the Three Lattice Theorem [79, Theorem 3.1] there are dyadic lattices

D(ν), ν = 1, . . . , 3d, such that every cube in the collection 3Sε := {3Q : Q ∈
Sε} belongs to one of the dyadic lattices D(ν). Moreover, each collection

S(ν)
ε = 3Sε ∩D(ν)

is a 3−dγ-sparse collection of cubes in D(ν). Each S
(ν)
ε is a 3dγ−1-Carleson

family in the sense of [79, Definition 6.2]. By [79, Lemma 6.6] we can write,

for each integer M ≥ 2, the family S
(ν)
ε as a union of M sub-families S

(ν)
ε,i ,

each of which is a M̃ -Carleson family, with M̃ = 1 + M−1(3dγ−1 − 1). By

[79, Lemma 6.3] the collections S
(ν)
ε,i are γ̃-sparse families where γ̃ = M̃−1 =

(1 + M−1(3dγ−1 − 1))−1. By choosing M large enough we can have γ̃ > γ
and then, from (4.3), one has

|〈Sf1, f2〉| ≤ 3d/p−d(cp,q,ε,d,γ C + ε)
∑
Q∈Sε

|3Q|〈f1〉3Q,p〈f2〉3Q,q′

≤M3d/p(cp,q,ε,d,γ C + ε) sup
i=1,...,M
ν=1,...3d

∑
R∈S(ν)

ε,i

|R|〈f1〉R,p〈f2〉R,q′

≤M3d/p(cp,q,ε,d,γC + ε) Λ∗p,q(f1, f2)

which gives the desired γ-sparse bound with ‖S‖Spγ(p,q′) ≤M3d/pcp,q,ε,d,γ C.
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4.3. Proof of Corollary 1.2. Corollary 1.2 is a consequence of Theorem
1.1 and the following lemma, applied to T =

∑N2
j=N1

Tj .

Lemma 4.4. Let T : SB1 → L1
B2,loc and assume that

‖T‖Spγ(p,B1;q′,B∗2 ) ≤ C.

Then we have for all f ∈ SB1 and all nonnegative simple ω∫
Rd
|Tf(x)|B2ω(x)dx ≤ CΛ∗p,B1,q′,R(f, ω). (4.4)

Proof. By the monotone convergence theorem we may assume that ω is a
compactly supported simple function. Moreover, since T : SB1 → L1

B2,loc we

can approximate, in the L1
B2

(K) norm for every compact set K, the function
Tf (for f ∈ SB1) by simple B2-valued functions. Thus given ε > 0 there is
h ∈ SB2 such that ∫

Rd
|Tf(x)− h(x)|

B2
ω(x)dx ≤ ε.

Moreover, there is a compactly supported λ ∈ SB∗2 with maxx∈Rd |λ(x)|B∗2 ≤
1 (depending on h, ω) such that∫

Rd
|h(x)|

B2
ω(x)dx ≤ ε+

∫
Rd
〈h(x), λ(x)〉ω(x)dx,

and we also have∣∣∣ ∫
Rd
〈h(x)− Tf(x), λ(x)〉ω(x)dx

∣∣∣ ≤ ∫
Rd
|h(x)− Tf(x)|

B2
ω(x)dx ≤ ε.

Consequently∫
Rd
|Tf(x)|B2ω(x)dx ≤ 3ε+

∫
Rd

〈
Tf(x), λ(x)

〉
ω(x)dx.

Thus in order to show (4.4) it suffices to show∫
Rd

〈
Tf(x), λ(x)

〉
ω(x)dx ≤ CΛ∗p1,B1,p2,R(f, ω) (4.5)

for any choice of compactly supported λ ∈ SB∗2 such that ‖λ‖L∞
B∗2
≤ 1. Let

f2(x) = ω(x)λ(x). Then f2 ∈ SB∗2 with |f2(x)|B∗2 ≤ ω(x) for all x ∈ Rd. By
the hypothesis, applied to f and f2 = ωλ,∫

Rd

〈
Tf(x), ω(x)λ(x)

〉
dx ≤ CΛ∗p1,B1,p2,B∗2

(f, ωλ).

Since 〈ωλ〉Q,p2,B∗2 ≤ 〈ω〉Q,p2,R, we have established (4.5), and the proof is
finished by letting ε→ 0. �
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4.4. The inductive step. In this section we prove Claim 4.3, the key in-
gredient in the proof of Theorem 1.1. Let Q0 be a dyadic cube of side length
2N2 . Recall that f1 is supported in Q0 and thus

〈 N2∑
j=N1

Tjf1, f2

〉
=
〈 N2∑
j=N1

Tjf1, f213Q0

〉
.

Hence without loss of generality we may assume that f2 is supported in 3Q0.

Let M denote the Hardy–Littlewood maximal operator and let Mpf =

(M|f |p)1/p. By the well known weak (1, 1) inequality for M,

meas({x ∈ Rd :Mpf > λ}) ≤ 5dλ−p‖f‖pp.

Define Ω = Ω1 ∪ Ω2 where

Ω1 = {x ∈ 3Q0 :Mpf1(x) >
(

100d

1−γ
)1/p〈f1〉Q0,p

},

Ω2 = {x ∈ 3Q0 :Mq′f2(x) >
(

100d

1−γ
)1/q′〈f2〉3Q0,q′

}.
(4.6)

We then have |Ω| ≤ |Ω1|+ |Ω2| < (1− γ)|Q0| and if we set

EQ0 = Q0 \ Ω,

then |EQ0 | > γ|Q0|.
We perform a Whitney decomposition of Ω. It is shown in [103, VI.1.2]

that given any β >
√
d, one can write Ω as a union of disjoint dyadic Whitney

cubes W ∈ Wβ ⊂ Q, with side length 2L(W ) and L(W ) ∈ Z, so that

(β −
√
d)2L(W ) ≤ dist(W,Ω{) ≤ β2L(W )+1

for W ∈ Wβ . In [103, VI.1.1] the choice of β = 2
√
d is made; here we need

to choose β sufficiently large and β = 6
√
d will work for us. We fix this

choice and label as W the corresponding family of Whitney cubes. We then
have

5 diam(W ) ≤ dist(W,Ω{) ≤ 12 diam(W ) for all W ∈ W . (4.7)

We set for i = 1, 2,

fi,W = fi1W ,

bi,W = (fi − av
W
fi)1W = (I− E−L(W ))fi,W ,

and

bi =
∑
W∈W

bi,W ,

gi = fi1Ω{ +
∑
W∈W

av
W
fi 1W .

Then we have the Calderón–Zygmund decompositions fi = gi + bi (using
the same above family of Whitney cubes for f1 and f2). For i = 1 we add
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an observation, namely that

b1 =
∑
W∈W
W⊂Q0

b1,W .

Since f1 is supported in Q0, this follows from the fact that

W ∩Q0 6= ∅ =⇒ W ( Q0. (4.8)

Indeed, if (4.8) fails, we must have Q0 ⊆ W as W and Q0 are dyadic. But
then |Q0| ≤ |W | ≤ |Ω| < (1− γ)|Q0|, which is a contradiction.

We note from (4.7) and the definition of Ω that

〈f1〉W,p .d,γ 〈f1〉Q0,p
, 〈f2〉W,q′ .d,γ 〈f2〉3Q0,q′

(4.9a)

for every W ∈ W , as a fixed dilate of W intersects Ω{. Indeed,

〈f1〉Q,p .d,γ 〈f1〉Q0,p
, 〈f2〉Q,q′ .d,γ 〈f2〉3Q0,q′

(4.9b)

for every cube Q which contains a W ∈ W . Moreover, by the definition of
gi and Ω,

‖g1‖L∞B1
.d,γ 〈f1〉Q0,p

, ‖g2‖L∞
B∗2
.d,γ 〈f2〉3Q0,q′

. (4.10)

Since supp(f1) ⊂ Q0 and supp(f2) ⊂ 3Q0 we also get supp(g1) ⊂ Q0 and

supp(g2) ⊂ 3Q0; here we use (4.8). Since ‖1Q‖Lr,1 .r |Q|1/r for r <∞, we
obtain from (4.10) that for r1, r2 <∞,

‖g1‖Lr1,1B1

.d,r1,γ |Q0|1/r1〈f1〉Q0,p
, ‖g2‖Lr2,1

B∗2

.d,r2,γ |Q0|1/r2〈f2〉3Q0,q′
.

(4.11)

For every dyadic cube Q ∈ Q we have by disjointness of the W∥∥∥ ∑
W⊂Q

b1,W

∥∥∥
LrB1

.
( ∑
W⊂Q

‖f1,W ‖rLrB1

)1/r

and thus ∥∥∥ ∑
W⊂Q

b1,W

∥∥∥
LrB1

.
(∫

Q
|f1(x)|rB1

dx
)1/r

. (4.12)

Likewise we get for f2,∥∥∥ ∑
W⊂Q

b2,W

∥∥∥
Lr
B∗2

.
(∫

Q
|f2(x)|rB∗2dx

)1/r
.

We now begin the proof of the induction step in Claim 4.3. Let

S ≡ SN1,N2 =

N2∑
j=N1

Tj .

By the Calderón–Zygmund decomposition for f1 we have

|〈Sf1, f2〉| ≤ |〈Sg1, f2〉|+ |〈Sb1, f2〉|. (4.13)
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Using the Lq,1B1
→ LqB2

boundedness of S (from the restricted strong type

(q, q) condition (1.7b)) and (4.11) with r1 = q <∞ we get

|〈Sg1, f2〉| ≤ ‖Sg1‖LqB2
‖f213Q0‖Lq′

B∗2

(4.14)

≤ A(q)‖g1‖Lq,1B1

‖f213Q0‖Lq′
B∗2

. d,q,γA(q)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

.

Define, for each W ∈ W (recalling that the side length of W is 2L(W )),

SW f = SN1,L(W )[f1W ] ≡
∑

N1≤j≤L(W )

Tj [f1W ].

We decompose the second term in (4.13) as in [89] and write

〈Sb1, f2〉 = I + II + III,

where

I =
〈 ∑
W∈W

SW f1, f2

〉
, (4.15a)

II = −
〈 ∑
W∈W

SW (avW [f1]1W ), f2

〉
, (4.15b)

III =
〈 ∑
W∈W

(S − SW )b1,W , f2

〉
. (4.15c)

The first term (4.15a) is handled by the induction hypothesis. In view of
(4.8), each W that contributes a non-zero summand in (4.15a) is a proper
subcube of Q0. Therefore we have L(W ) − N1 ≤ n − 1 and thus by the
induction hypothesis,

|〈SW f1, f2〉| ≤ U(n− 1)GW (f11W , f2).

That is, given any ε > 0 there is a γ-sparse collection SW,ε of subcubes of
W such that

|〈SW f1, f2〉| ≤ (U(n− 1) + ε)
∑

Q∈SW,ε

|Q|〈f1〉Q,p〈f2〉3Q,q′ . (4.16)

Because of the γ-sparsity there are measurable subsets EQ of Q with |EQ| ≥
γ|Q| so that the EQ with Q ∈ SW,ε are disjoint. We combine the various
collections SW,ε and form the collection Sε of cubes

Sε := {Q0} ∪
⋃

W∈W
W⊂Q0

SW,ε .

Observe that the collection Sε is indeed γ-sparse: as defined above, EQ0 =
Q0 \Ω, and therefore |EQ0 | > γ|Q0|. By disjointness of the W ⊂ Q0 the sets
EQ, for Q ∈ Sε are disjoint; moreover they satisfy |EQ| ≥ γ|Q|.
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We consider the term II in (4.15b). Here we will use that the restricted
strong type (q, q) condition (1.7b) implies ‖SW ‖Lq,1B1

→LqB2

≤ A(q), and

‖avW [f1]1W ‖Lq,1B1

. |avW [f1]|B1 |W |1/q .q 〈f1〉W,p|W |
1/q

for q < ∞. Together with the disjointness of the cubes W and (4.9a), we
get

|II| ≤
∑
W∈W

‖SW (avW [f1]1W )‖LqB2
‖f213W ‖Lq′

B∗2

(4.17)

.q
∑
W∈W

〈f1〉W,pA(q)|W |1/q(3d|W |)1/q′〈f2〉3W,q′

.d,q,γ A(q)
∑
W∈W

|W |〈f1〉Q0,p
〈f2〉3Q0,q′

.d,q,γ A(q)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

.

Regarding the third term in (4.15c) we claim that

|III| .p,q,ε,d,γ (A(p) + A◦(p, q) log(2 + B
A◦(p,q)

))|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

.

(4.18)

Taking (4.18) for granted we obtain from (4.14), (4.17), (4.18) and (4.16)
that there exist constants C1(d, q, γ) and C2(p, q, ε, d, γ) such that

|〈Sf1,f2〉| ≤ C1(d, q, γ)A(q)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

+ C2(p, q, ε, d, γ)(A(p) +A◦(p, q) log(2 + B
A◦(p,q)

)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

+
∑
W∈W
W⊂Q0

∑
Q∈SW,ε

(U(n− 1) + ε)|Q|〈f1〉Q,p〈f2〉3Q,q′ .

This implies

|〈Sf1, f2〉| ≤ max{U(n− 1) + ε, cp,q,ε,d,γ C}
∑
Q∈Sε

|Q|〈f1〉Q,p〈f2〉3Q,q′

≤ max{U(n− 1) + ε, cp,q,ε,d,γC}GQ0(f1, f2)

for all ε > 0. Letting ε → 0 implies Claim 4.3. We are now coming to the
most technical part of the proof, the estimation of the error term III in
(4.15c) for which we have to establish the claim (4.18).
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Proof of (4.18). We now use the Calderón–Zygmund decomposition for f2 =

g2 +
∑

W∈W b2,W as described above. We split III =
∑4

i=1 IIIi where

III1 =
〈 ∑
W∈W

Sb1,W , g2

〉
, (4.19a)

III2 = −
∑
W∈W

〈SW b1,W , g2〉, (4.19b)

III3 =
∑

N1≤j≤N2

∑
W∈W:
L(W )<j

∑
W ′∈W:
L(W ′)≥j

〈Tjb1,W , b2,W ′〉, (4.19c)

III4 =
∑

N1≤j≤N2

∑
W∈W:
L(W )<j

∑
W ′∈W:
L(W ′)<j

〈Tjb1,W , b2,W ′〉. (4.19d)

We use the weak type (p, p) condition (1.7a) that S maps LpB1
to Lp,∞B2

,

which is isometrically embedded in Lp,∞B∗∗2
. As p > 1, we obtain using (4.11)

for r2 = p′ <∞

|III1| ≤
∥∥∥S[

∑
W∈W

b1,W ]
∥∥∥
Lp,∞
B∗∗2

‖g2‖Lp′,1
B∗2

.d,p,γ ‖S‖LpB1
→Lp,∞B2

∥∥∥ ∑
W∈W

b1,W

∥∥∥
LpB1

|Q0|1/p
′〈f2〉3Q0,q′

.

By (4.12) for r = p we obtain

|III1| .d,p,γ A(p)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

.

Likewise, the weak type (p, p) condition (1.7a) implies LpB1
→ Lp,∞B2

boundedness of SW . Using this and supp(SW b1,W ) ⊂ 3W , (4.9a), (4.10),
and p > 1 we estimate,

|III2| ≤
∑
W∈W

‖SW b1,W ‖Lp,∞
B∗∗2
‖g213W ‖Lp′,1

B∗2

≤ A(p)
∑
W∈W

‖b1,W ‖LpB1
‖g2‖L∞

B∗2
‖13W ‖Lp′,1

B∗2

.d,p,γ A(p)
∑
W∈W

|W |1/p〈f1〉W,p‖g2‖L∞
B∗2
|W |1/p′

.d,γ A(p)
∑
W∈W

|W |〈f1〉Q0,p
〈f2〉3Q0,q′

and hence, by the disjointness of the cubes W ,

|III2| .d,p,γ A(p)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

.
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Next we estimate III3 and first show that

〈Tjb1,W , b2,W ′〉 6= 0

L(W ) < j ≤ L(W ′)

}
=⇒ j ≤ L(W ′) ≤ L(W ) + 2 ≤ j + 2. (4.20)

To see (4.20) first observe that Tjb1,W is supported on a cube RW centered

at xW with side length 2j+1 + 2L(W ). Hence, if 〈Tjb1,W , b2,W ′〉 6= 0, then we
get from (4.7) and the triangle inequality

5 diam(W ′) ≤ dist(W ′,Ω{) ≤ diam(W ′) + diam(RW ) + dist(W,Ω{)

≤ diam(W ′) + (2j+1 + 2L(W ))
√
d+ 12

√
d2L(W ).

Hence since L(W ) < j ≤ L(W ′) we get 2L(W ′)+1 ≤ 13 · 2L(W ) which gives
(4.20). Also, with these specifications W ⊂ 3W ′ if 〈Tjb1,W , b2,W ′〉 6= 0. By
the single scale (p, q) condition (1.8),

‖Tj‖Lp→Lq ≤ 2−jd(1/p−1/q)A◦(p, q). (4.21)

Hence using Hölder’s inequality, (4.21) and (4.9a) we get

|III3| ≤
∑

N1≤j≤N2

∑
W ′∈W:

j≤L(W ′)≤j+2

∑
W∈W:

L(W ′)−2≤L(W )≤j
W⊂3W ′

|〈Tjb1,W , b2,W ′〉|

≤ A◦(p, q)
∑

N1≤j≤N2

2−jd(1/p−1/q)
∑

W,W ′∈W:W⊂3W ′

j≤L(W ′)≤j+2
L(W ′)−2≤L(W )≤j

‖b1,W ‖LpB1
‖b2,W ′‖Lq′

B∗2

.d,γ A◦(p, q)〈f1〉Q0,p
〈f2〉3Q0,q′

×
∑

N1≤j≤N2

∑
W,W ′:W⊂3W ′

j≤L(W ′)≤j+2
L(W ′)−2≤L(W )≤j

2−jd(1/p−1/q)|W |1/p|W ′|1−1/q

.d,γ A◦(p, q)〈f1〉Q0,p
〈f2〉3Q0,q′

∑
W ′∈W

|W ′|

and thus, by disjointness of the W ′,

|III3| .d,γ A◦(p, q)〈f1〉Q0,p
〈f2〉3Q0,q′

|Q0|.

Finally, consider the term

III4 =
∑

N1≤j≤N2

∑
(W,W ′)∈W×W

L(W )<j
L(W ′)<j

〈Tjb1,W , b2,W ′〉. (4.22)

Let ε′ > 0 such that

ε′ < min{1/p, 1/q′, ε} (4.23)
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and let ` be a positive integer so that

` <
100

ε′
log
(
2 +

B

A◦(p, q)

)
≤ `+ 1. (4.24)

We split

Vj = (−∞, j)2 ∩ Z2 = Vj,1 ∪ Vj,2 ∪ Vj,3

into three regions putting

Vj,1 = {(L1, L2) ∈ Vj : j − ` ≤ L1 < j, j − ` ≤ L2 < j},

Vj,2 = {(L1, L2) ∈ Vj \ Vj,1 : L1 ≤ L2},
Vj,3 = {(L1, L2) ∈ Vj \ Vj,1 : L1 > L2}.

Then III4 =
∑3

i=1 IVi where for i = 1, 2, 3,

IVi =
∑

N1≤j≤N2

∑
W,W ′∈W

(L(W ),L(W ′))∈Vj,i

〈Tjb1,W , b2,W ′〉. (4.25)

Let Rj be the collection of dyadic subcubes of Q0 of side length 2j . To
estimate IV1 we tile Q0 into such cubes and write

IV1 =
∑

N1≤j≤N2

∑
R∈Rj

〈 ∑
W⊂R

j−`≤L(W )<j

Tjb1,W ,
∑

j−`≤L(W ′)<j

b2,W ′13R

〉
. (4.26)

By Hölder’s inequality and the single scale (p, q) condition (1.8) (in the form
of (4.21)) we get

|IV1| ≤ A◦(p, q)
∑

N1≤j≤N2

2−jd(1/p−1/q)

×
∑
R∈Rj

∥∥∥ ∑
W⊂R

j−`≤L(W )<j

b1,W

∥∥∥
LpB1

∥∥∥ ∑
j−`≤L(W ′)<j

b2,W ′13R

∥∥∥
Lq
′
B∗2

≤ A◦(p, q)
∑

N1≤j≤N2

∑
R∈Rj

|R|−(1/p−1/q)

×
( ∑

W⊂R
j−`≤L(W )<j

‖b1,W ‖pLpB1

)1/p( ∑
W ′⊂3R

j−`≤L(W ′)<j

‖b2,W ′‖q
′

Lq
′
B∗2

)1/q′
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and using (4.9a) this expression is bounded by Cd,γA◦(p, q) times∑
N1≤j≤N2

〈f1〉Q0,p
〈f2〉3Q0,q′

∑
R∈Rj

|R|−(1/p−1/q)

×
( ∑

W⊂R
j−`≤L(W )<j

|W |
)1/p( ∑

W ′⊂3R
j−`≤L(W ′)<j

|W ′|
)1/q′

.d,γ
∑

N1≤j≤N2

〈f1〉Q0,p
〈f2〉3Q0,q′

×
∑
R∈Rj

|R|−(1/p−1/q)
( ∑

W⊂3R
j−`≤L(W )<j

|W |
)1/p+1−1/q

.

Using p ≤ q and the disjointness of the W we see that the last expression is
dominated by a constant C̃d,γ,p,q times

〈f1〉Q0,p
〈f2〉3Q0,q′

∑
N1≤j≤N2

∑
R∈Rj

∑
W⊂3R

j−`≤L(W )<j

|W |

≤ 3d〈f1〉Q0,p
〈f2〉3Q0,q′

∑
N1≤j≤N2

∑
R∈Rj

∑
W⊂R

j−`≤L(W )<j

|W |

.d 〈f1〉Q0,p
〈f2〉3Q0,q′

∑
W∈W

|W |
∑

j:N1≤j≤N2

L(W )<j≤L(W )+`

1

.d `|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

.

Thus, using the definition of ` in (4.24) we get

|IV1| .d,γ,ε,p,q A◦(p, q) log
(
2 +

B

A◦(p, q)

)
|Q0|〈f1〉Q0,p

〈f2〉3Q0,q′
. (4.27)

We now turn to the terms IV2, IV3 and claim that

|IV2|+ |IV3| .d,γ,p,q,ε A◦(p, q)|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

. (4.28)

We first note that by the single scale ε-regularity conditions (1.9a), (1.9b),
and Corollary 3.5,

‖Tj(I− Es1−j)‖LpB1
→LqB2

.ε B2
−jd( 1

p
− 1
q

)
2−ε

′s1 , (4.29a)

‖T ∗j (I− Es2−j)‖Lq′
B∗2
→Lp

′
B∗1

.ε B2
−jd( 1

p
− 1
q

)
2−ε

′s2 . (4.29b)

where ε′ is as in (4.23).
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Write, with Rj as in (4.26),

IV2 =
∑

N1≤j≤N2

∑
R∈Rj

∞∑
s2=1

∞∑
s1=max{s2,`+1}〈 ∑

W⊂R
L(W )=j−s1

Tjb1,W ,
∑

W ′⊂3R
L(W ′)=j−s2

b2,W ′13R

〉
. (4.30)

Note that for L(W ) = j−s1, b1,W = (I−Es1−j)f1,W . By Hölder’s inequality
and (4.29a) we have for R ∈ Rj ,∣∣∣〈 ∑

W⊂R
L(W )=j−s1

Tjb1,W ,
∑

W ′⊂3R
L(W ′)=j−s2

b2,W ′13R

〉∣∣∣
≤
∥∥∥Tj(I − Es1−j)

∑
W⊂R

L(W )=j−s1

f1,W

∥∥∥
LqB2

∥∥∥ ∑
W ′⊂3R

L(W ′)=j−s2

b2,W ′
∥∥∥
Lq
′
B∗2

.ε B2−ε
′s1 |R|−( 1

p
− 1
q

)
( ∑

W⊂R
L(W )=j−s1

‖f1,W ‖pLpB1

)1/p( ∑
W ′⊂3R

L(W ′)=j−s2

‖b2,W ′‖q
′

Lq
′
B∗2

)1/q′

.

In the above formula for IV2 we interchange the j-sum and the (s1, s2)-sums,
write j = s1n+ i with i = 1, . . . , s1 and estimate (invoking (4.9a) again)

|IV2| .ε
∞∑
s2=1

∞∑
s1=max{s2,`+1}

B2−ε
′s1

s1∑
i=1

∑
n∈Z

s1n+i∈[N1,N2]

∑
R∈Rs1n+i

|R|−( 1
p
− 1
q

)

×
( ∑

W⊂R
L(W )=s1n+i−s1

‖f1,W ‖pLpB1

) 1
p
( ∑

W ′⊂3R
L(W ′)=s1n+i−s2

‖b2,W ′‖q
′

Lq
′
B∗2

) 1
q′

.d,γ

∞∑
s2=1

∞∑
s1=max{s2,`+1}

B2−ε
′s1

×
s1∑
i=1

∑
n∈Z

s1n+i∈[N1,N2]

∑
R∈Rs1n+i

〈f1〉Q0,p
〈f2〉3Q0,q′

Γ(R,n, i),

where

Γ(R,n, i) = |R|−( 1
p
− 1
q

)
( ∑

W⊂R
L(W )=s1n+i−s1

|W |
) 1
p
( ∑

W ′⊂3R
L(W ′)=s1n+i−s2

|W ′|
)1− 1

q
.
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We crudely estimate, using p ≤ q,

Γ(R,n, i) ≤ |R|−(1/p−1/q)
( s1n+i−s2∑
ν=s1n+i−s1

∑
W⊂3R
L(W )=ν

|W |
)1/p+1−1/q

≤ 3d(1/p−1/q)
s1n+i−s2∑

ν=s1n+i−s1

∑
W⊂3R
L(W )=ν

|W |.

For fixedW ∈ W consider the set of all triples (R,n, i) such that s1n+i−s1 ≤
L(W ) ≤ s1n + i − s2, R ∈ Rs1n+i and W ⊂ 3R, and observe that the
cardinality of this set is bounded above by 3d(s1 − s2 + 1). Combining this
with the above estimates and summing over W ∈ W we obtain the bound

|IV2| .d,γ,ε 〈f1〉Q0,p
〈f2〉3Q0,q′

|Q0|
∞∑
s2=1

∞∑
s1=max{s2,`+1}

B2−ε
′s1(s1 − s2 + 1)

and the double sum is bounded by

Cε,p,q

( `+1∑
s2=1

B2−ε
′`(`+ 1) +

∞∑
s2=`+1

B2−ε
′s2
)

.ε,p,q B2−ε
′`(`+ 1)2 .ε,p,q B2−ε

′`/2 .ε,p,q A◦(p, q)

by the definition of ` in (4.24). This establishes (4.28) for the term |IV2|.
The estimation of IV3 is very similar. We may write

IV3 =
∑

N1≤j≤N2

∑
R∈Rj

∞∑
s1=1

∞∑
s2=max{s1+1,`+1}〈 ∑
W∈W:
W⊂R

L(W )=j−s1

b1,W1R,
∑

W ′∈W:
L(W ′)=j−s2

T ∗j [b2,W ′13R]
〉

(4.31)

By Hölder’s inequality and (4.29b) we get for R ∈ Rj∣∣∣〈 ∑
W⊂R

L(W )=j−s1

b1,W ,
∑

L(W ′)=j−s2

T ∗j [b2,W ′13R]
〉∣∣∣

.ε B2−ε
′s2 |R|−( 1

p
− 1
q

)
( ∑

W⊂R
L(W )=j−s1

‖b1,W ‖pLpB1

)1/p( ∑
W ′⊂3R

L(W ′)=j−s2

‖f2,W ′‖q
′

Lq
′
B∗2

)1/q′

and from here on the argument is analogous to the treatment of the term
IV2. �

Remark. It is instructive to observe that the term III4 can be treated more
crudely if one does not aim to obtain the constant A◦(p, q) log(2 + B

A◦(p,q)
)
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in (1.11). More precisely, one simply splits (−∞, j)2 ∩ Z2 into two regions

Ṽj,2 and Ṽj,3, where

Ṽj,2 = {(L1, L2) : L1 ≤ L2 < j} and Ṽj,3 = {(L1, L2) : j > L1 > L2}.

Then split III4 =
∑3

i=2 IVi, where IVi are as in (4.25) but with Vj,i replaced

by Ṽj,i. One then considers the sum in s1 in (4.30) to start directly from s2,
and the sum in s2 in (4.31) to start directly from s1 + 1. Using the same
arguments, one obtains

|IV2|+ |IV3| .d,γ,p,q,ε B|Q0|〈f1〉Q0,p
〈f2〉3Q0,q′

instead of (4.28). Note that, as the term IV1 does not appear in this case
(see the bound (4.27)), this yields sparse domination with the constant C in
(1.11) replaced by A(p) +A(q) +A◦(p, q) +B.

5. Maximal operators, square functions and long variations

In this section we show that Corollary 1.2 yields sparse domination results
for maximal functions, `r-valued variants, r-variation norm operators and
maximal and variational truncations of sums of operators. An application
of Theorem 1.3 also yields necessary conditions for our sparse domination
inequalities. We will formally state necessary conditions only for maximal
functions and `r-valued functions (Theorem 5.1) and leave to the reader
the analogous formulations of those conditions for r-variation norm oper-
ators (Theorem 5.2), maximal truncations (Theorem 5.3) and variational
truncations (Theorem 5.4).

5.1. Maximal functions and `r-variants. Given a family of operators
{Tj}j∈Z in OpB1,B2

, consider the operators

SrTf(x) =
(∑
j∈Z
|Tjf(x)|rB2

)1/r
(5.1)

when 1 ≤ r <∞ and also the maximal operator

S∞Tf(x) = sup
j∈Z
|Tjf(x)|B2 . (5.2)

Theorem 5.1. Let 1 < p ≤ q <∞ and 1 ≤ r ≤ ∞. Let {Tj}j∈Z be a family
of operators in OpB1,B2

satisfying (1.6).

(i) Suppose that the inequalities∥∥SrTf∥∥Lp,∞ ≤ A(p)‖f‖LpB1
and

∥∥SrTf∥∥Lq ≤ A(q)‖f‖
Lq,1B1

(5.3)

hold for all f ∈ SB1. Moreover, assume that the rescaled operators Dil2jTj
satisfy the single scale (p, q) condition (1.8) and single scale ε-regularity
conditions (1.9a) and (1.9b). Let C be as in (1.11). Then for all f ∈ SB1

and all R-valued nonnegative measurable functions ω,

〈SrTf, ω〉 . CΛ∗p,q′(f, ω). (5.4)
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(ii) In addition, assume 1 < p < q < ∞. If the family of operators
{Tj}j∈Z satisfies Tj : SB1 → L1

B2,loc and the strengthened support condition

(1.14), then the condition

‖SrT‖LpB1
→Lp,∞ + ‖SrT‖Lq,1B1

→Lq + sup
j∈Z
‖Dil2jTj‖LpB1

→LqB2
<∞

is necessary for the conclusion (5.4) to hold.

Proof of Theorem 5.1. We begin with the proof for 1 ≤ r <∞.

Let δkk = 1 and δjk = 0 if j 6= k. Let N1 ≤ N2 be integers, and for each
integer j ∈ [N1, N2], we define the operator Hj sending LpB1

functions to
`rB2

-valued functions by

Hjf(x, k) =

{
δjkTjf(x) if N1 ≤ k ≤ N2,

0 if k /∈ [N1, N2].
(5.5)

We note that( N2∑
j=N1

|Tjf(x)|rB2

)1/r
=
( ∞∑
k=−∞

∣∣∣ N2∑
j=N1

Hjf(x, k)
∣∣∣r
B2

)1/r
. (5.6)

By (5.3) we have∥∥∥ N2∑
j=N1

Hj

∥∥∥
LpB1
→Lp,∞(`rB2

)
≤ A(p),

∥∥∥ N2∑
j=N1

Hj

∥∥∥
Lq,1B1
→Lq(`rB2

)
≤ A(q),

where we write Lp,∞(`rB2
) to denote Lp,∞`rB2

. The adjoint of Hj , acting on

`r
′
B∗2

-valued functions g, is given by

H∗j g(x) =

N2∑
k=N1

δjkT
∗
j gk(x).

The assumptions on Dil2jTj can be rewritten as

sup
j∈Z
‖Dil2jHj‖LpB1

→Lq(`rB2
) ≤ A◦(p, q)

and

sup
|h|≤1

|h|−ε sup
j∈Z
‖(Dil2jHj) ◦∆h‖LpB1

→Lq(`rB2
) ≤ B

sup
|h|≤1

|h|−ε sup
j∈Z
‖(Dil2jH

∗
j ) ◦∆h‖Lq′ (`r′

B∗2
)→Lp

′
B∗1

≤ B.

By Corollary 1.2 applied to the sequence {Hj}j∈Z in OpB1,`rB2
, we get the

conclusion∫
Rd

( ∞∑
k=−∞

∣∣∣ N2∑
j=N1

Hjf(x, k)
∣∣∣r
B2

)1/r
ω(x)dx . CΛ∗p,q′(f, ω),
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which by (5.6) implies∫
Rd

( N2∑
j=N1

|Tjf(x)|rB2

)1/r
ω(x)dx . CΛ∗p,q′(f, ω).

We apply the monotone convergence theorem to let N1 → −∞ and N2 →∞
and obtain the desired conclusion. This is possible since the implicit constant
in the conclusion of Corollary 1.2 does not depend on B1, B2.

The proof for r =∞ is essentially the same, with notional changes. Since
Hjf(·, k) = 0 when k /∈ [N1, N2], we can work with `∞B2

over the finite set
Z∩ [N1, N2]. Then there are no complications with the dual space, which is
`1B∗2

over Z ∩ [N1, N2].

For part (ii) one uses Theorem 1.3 in conjunction with (5.6) and im-
mediately arrives at the desired conclusion, via the monotone convergence
theorem. �

5.2. Variation norms. We now turn to the variation norms V r
B2
≡ V r

B2
(Z)

defined on B2-valued functions of the integers n 7→ a(n). Let |a|V∞B2
= |a|L∞B2

and, for 1 ≤ r <∞,

|a|V rB2
= sup

n1<···<nM
|a(n1)|B2 +

(M−1∑
ν=1

|a(nν+1)− a(nν)|rB2

)1/r
(5.7)

where the supremum is taken over all positive integers M and all finite
increasing sequences of integers n1 < ... < nM . Similarly, if IN1,N2 =
[N1, N2] ∩ Z we define the V r

B2
(IN1,N2) norm on functions on IN1,N2 in the

same way, restricting n1, . . . , nM to IN1,N2 .

Given a sequence T = {Tj}j∈Z in OpB1,B2
we define VrTf(x) to be the

V r
B2

norm of the sequence j 7→ Tjf(x). The Lp norm of VrTf is just the
Lp(V r

B2
) norm of the sequence {Tjf}j∈Z. We define VrN1,N2

Tf(x) to be the

V r
B2

norm of the sequence j 7→ 1IN1,N2
(j)Tjf(x).

The proof of the following theorem is almost identical to that of Theorem
5.1.

Theorem 5.2. Let 1 < p ≤ q <∞ and 1 ≤ r ≤ ∞. Let {Tj}j∈Z be a family
of operators in OpB1,B2

satisfying (1.6). Suppose that the inequalities∥∥VrTf∥∥
Lp,∞

≤ A(p)‖f‖LpB1
and

∥∥VrTf∥∥
Lq
≤ A(q)‖f‖

Lq,1B1
(5.8)

hold for all f ∈ SB1. Moreover, assume that the rescaled operators Dil2jTj
satisfy the single scale (p, q) condition (1.8) and single scale ε-regularity
conditions (1.9a) and (1.9b). Let C be as in (1.11). Then for all f ∈ SB1

and all R-valued nonnegative measurable functions ω,

〈VrTf, ω〉 . CΛ∗p,q′(f, ω). (5.9)
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Proof. In view of Theorem 5.1, it suffices to consider the case r <∞. Given
N1 ≤ N2 we define Hjf(x, k) as in (5.5), for N1 ≤ k ≤ N2. Note that for
fixed x, N1 ≤ n1 < · · · < nM ≤ N2,

|Tn1f(x)|B2 +
(M−1∑
ν=1

|Tnν+1f(x)− Tnνf(x)|rB2

)1/r

=
∣∣∣ N2∑
j=N1

Hjf(x, n1)
∣∣∣
B2

+
(M−1∑
ν=1

∣∣∣ N∑
j=1

Hjf(x, nν+1)−
N∑
j=1

Hjf(x, nν)
∣∣∣r
B2

)1/r
.

(5.10)

By (5.8) we have∥∥∥ N2∑
j=N1

Hj

∥∥∥
LpB1
→Lp,∞(V rB2

)
≤ A(p),

∥∥∥ N2∑
j=N1

Hj

∥∥∥
Lq,1B1
→Lq(V rB2

)
≤ A(q),

where V r
B2

is interpreted to be the space V r
B2

(IN1,N2) and all the constants
in what follows will be independent of N1 and N2. The pairing between
V r
B2

(IN1,N2) and its dual is the standard one,

〈a, b〉 =

N2∑
n=N1

〈a(n), b(n)〉(B2,B∗2 )

and we have,

|b|(V rB2
(IN1,N2

))∗ = sup
|a|V r

B2
(IN1,N2

)≤1

∣∣∣ N2∑
n=N1

〈a(n), b(n)〉(B2,B∗2 )

∣∣∣.
For δ(j) = (δj,N1 , . . . , δj,N2) we have, for j = N1, . . . , N2,

|δ(j)|V rB2
(IN1,N2

) = 21/r and |δ(j)|(V rB2
(IN1,N2

))∗ = 21/r′ .

The adjoint of Hj , acting on (V r
B2

(IN1,N2))∗-valued functions g = {gk}N2
k=N1

,
is given by

H∗j g(x) =

N2∑
k=N1

δjkT
∗
j gk(x).

These observations imply

‖Dil2jHj‖LpB1
→Lq(V rB2

) = 21/r‖Dil2jTj‖LpB1
→LqB2

,

‖(Dil2jHj) ◦∆h‖LpB1
→Lq(V rB2

) = 21/r‖(Dil2jTj) ◦∆h‖LpB1
→LqB2

,

‖(Dil2jH
∗
j ) ◦∆h‖Lq′ ((V rB2

)∗)→Lp
′
B∗1

= 21/r′‖(Dil2jT
∗
j ) ◦∆h‖Lq′

B∗2
→Lp

′
B∗1

.
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The hypothesis of Theorem 1.1 are then satisfied for the sequence {Hj}j∈Z
in OpB1,V rB2

. Thus, by Corollary 1.2 we obtain∫
Rd

∣∣∣ N2∑
j=N1

Hjf(x, ·)
∣∣∣
V rB2

ω(x)dx . CΛ∗p,q′(f, ω),

which by (5.10) implies∫
Rd
VrN1,N2

Tf(x)ω(x)dx . CΛ∗p,q′(f, ω).

As the implicit constant in Corollary 1.2 does not depend on the Banach
spaces B1, B2 we may apply the monotone convergence theorem and let
N1 → −∞ and N2 →∞ to obtain the desired conclusion (5.9). �

5.3. Truncations of sums. We will give a variant of Corollary 1.2 in the
spirit of Cotlar’s inequality on maximal operators for truncations of singular
integrals.

Theorem 5.3. Let 1 < p ≤ q <∞. Let {Tj}j∈Z be a family of operators in
OpB1,B2

satisfying (1.6), (1.8), (1.9a), and (1.9b). Moreover, assume that
the estimates∥∥∥ sup

(n1,n2):
N1≤n1≤n2≤N2

∣∣ n2∑
j=n1

Tjf
∣∣
B2

∥∥∥
Lp,∞

≤ A(p)‖f‖LpB1
, (5.11a)

∥∥∥ sup
(n1,n2):

N1≤n1≤n2≤N2

∣∣ n2∑
j=n1

Tjf
∣∣
B2

∥∥∥
Lq
≤ A(q)‖f‖

Lq,1B1

(5.11b)

hold uniformly for all (N1, N2) with N1 ≤ N2. Let C be as in (1.11). Then
for all f ∈ SB1, all R-valued nonnegative measurable functions ω, and all
integers N1, N2 with N1 ≤ N2,∫

Rd
sup

(n1,n2):
N1≤n1≤n2≤N2

∣∣ n2∑
j=n1

Tjf(x)
∣∣
B2
ω(x)dx . CΛ∗p,q′(f, ω).

Proof. Define U(N1, N2) = {(n1, n2) : N1 ≤ n1 ≤ n2 ≤ N2} and `∞B2
as the

space of all bounded B2-valued functions on U(N1, N2). Define operators
Hj in OpB1,`∞B2

by

Hjf(x, n1, n2) =

{
Tjf(x) if N1 ≤ n1 ≤ j ≤ n2 ≤ N2,

0 otherwise.

Then apply Corollary 1.2 to the operators
∑N2

j=N1
Hj as in the proof of

Theorems 5.1. �

We also have a variational analogue.
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Theorem 5.4. Let 1 < p ≤ q <∞. Let {Tj}j∈Z be a family of operators in
OpB1,B2

satisfying (1.6), (1.7a), (1.7b), (1.8), (1.9a), and (1.9b). Moreover,
assume that the estimates∥∥∥ sup

M∈N
sup

N1≤n1<···<nM≤N2

(M−1∑
ν=1

∣∣ nν+1∑
j=nν+1

Tjf
∣∣r
B2

)1/r∥∥∥
Lp,∞

≤ A(p)‖f‖LpB1

(5.12a)∥∥∥ sup
M∈N

sup
N1≤n1<···<nM≤N2

(M−1∑
ν=1

∣∣ nν+1∑
j=nν+1

Tjf
∣∣r
B2

)1/r∥∥∥
Lq
≤ A(p)‖f‖

Lq,1B1

(5.12b)

hold uniformly for all (N1, N2) with N1 ≤ N2. Let C be as in (1.11). Then
for all f ∈ SB1, all R-valued nonnegative measurable functions ω, and all
integers N1, N2 with N1 ≤ N2,∫

Rd
sup
M∈N

sup
N1≤n1<···<nM≤N2

(M−1∑
ν=1

∣∣ nν+1∑
j=nν+1

Tjf(x)
∣∣r
B2

)1/r
ω(x)dx

. CΛ∗p,q′(f, ω). (5.13)

Proof. Let V r
B2
≡ V r

B2
(IN1,N2) denote the r-variation space of B2-valued

functions over the integers in [N1, N2] and for N1 ≤ j ≤ N2, N1 ≤ n ≤ N2,
define the operators Hj ∈ OpB1,V rB2

by

Hjf(x, n) =

{
Tjf(x) if N1 ≤ j ≤ n ≤ N2,

0 if j > n.

Note that, by definition of Hj , |
∑N2

j=N1
Hjf(x, ·)|V rB2

equals to

sup
M∈N

N1≤n1<···<nM≤N2

∣∣ n1∑
j=N1

Tjf(x)
∣∣
B2

+
(M−1∑
ν=1

∣∣ nν+1∑
j=N1

Tjf(x)−
nν∑

j=N1

Tjf(x)
∣∣r
B2

)1/r

(5.14)
and |Hjf(x, ·)|V rB2

= |Tjf(x)|B2 . Arguing as in Theorem 5.2, one may apply

Corollary 1.2 to the operators
∑N2

j=N1
Hj in OpB1,V rB2

. Note, in particular,

that in view of (5.14) the conditions (1.7a) and (1.7b) for
∑N2

j=N1
Hj follow

from (5.12a) and (5.12b) together with the fact that {Tj}j∈Z in OpB1,B2

satisfy (1.7a) and (1.7b). This automatically yields (5.13). �

5.4. Some simplifications for maximal operators. The goal of this
section is to remark that the proof of Theorem 5.1 can be simplified in the
case q ≤ r ≤ ∞. Rather than deducing it from Corollary 1.2, we shall
apply the proof method of Theorem 1.1 to the operators Sr and observe
that a Calderón–Zygmund decomposition on f2 is not required for the proof
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to work. In particular, this allows us to remove the regularity hypothesis
(1.9b) on the adjoints T ∗j . The precise statement reads as follows.

Theorem 5.5. Let 1 < p ≤ q <∞ and q ≤ r ≤ ∞. Let {Tj}j∈Z be a family
of operators in OpB1,B2

satisfying (1.6). Suppose that the inequalities∥∥SrTf∥∥Lp,∞ ≤ A(p)‖f‖LpB1
and

∥∥SrTf∥∥Lq ≤ A(q)‖f‖
Lq,1B1

(5.15)

hold for all f ∈ SB1. Moreover, assume that the rescaled operators Dil2jTj
satisfy the single scale (p, q) condition (1.8) and single scale ε-regularity
condition (1.9a). Let C be as in (1.11). Then for all f ∈ SB1 and all
R-valued nonnegative measurable functions ω,

〈SrTf, ω〉 . CΛ∗p,q′(f, ω).

Proof. We sketch the main changes with respect to the proof of Theorem
1.1. As in Theorem 1.1, it suffices to show∫

Rd
Sr,N1,N2f1(x)f2(x)dx . CΛ∗p,q′(f1, f2)

uniformly in N1 ≤ N2 for all f1 ∈ SB1 and f2 ∈ SR, where

Sr,N1,N2f(x) :=
( N2∑
j=N1

|Tjf(x)|rB2

)1/r

for q ≤ r <∞ and

S∞,N1,N2f(x) := sup
N1≤j≤N2

|Tjf(x)|B2 .

This will in turn follow from verifying the inductive step in Claim 4.3 for
the operators Sr,N1,N2 .

If r = ∞, let λj(x) ∈ B∗2 with |λj(x)|B∗2 ≤ 1 such that |Tjf1(x)|B2 =
〈Tjf1, λj〉(B2,B∗2 ) and let x 7→ j(x) be a measurable function such that

S∞,N1,N2f1(x) ≤ 2 |Tj(x)f1(x)|B2 .

Setting Xj := {x : j(x) = j}, note that

Sf1(x) ≡ |Tj(x)f1(x)|B2 =

N2∑
j=N1

〈Tjf1(x), λj(x)1Xj (x)〉(B2,B∗2 )

and that the Xj are disjoint measurable sets such that
∑

j 1Xj ≤ 13Q0 . If

q ≤ r < ∞, we linearise the `r(B2)-norm for each x. That is, there exists

{aj(x)}j∈Z ∈ `r
′
(B∗2), with ‖aj(x)‖`r′ (B∗2 ) ≤ 1, such that

Sf1(x) ≡ Sr,N1,N2f1(x) =

N2∑
j=N1

〈Tjf1(x), aj(x)〉(B2,B∗2 ).

Note that we can treat the cases r =∞ and q ≤ r <∞ together by setting
aj(x) = λj(x)1Xj (x) for all x ∈ 3Q0 and all N1 ≤ j ≤ N2, and aj(x) = 0
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otherwise; then {aj(x)}j∈Z ∈ `1(B∗2). Clearly, the operator S satisfies the
bounds (1.7a), (1.7b) in view of (5.15).

We then perform a Calderón–Zygmund decomposition of f1 as in (4.13).
The first term in (4.13), corresponding to g1, can be treated analogously.
The second term in (4.13), corresponding to

∑
W∈W b1,W can be further

split as in (4.15), and I and II can be treated analogously. One is then left
with proving (4.18) for III. Rather than performing a Calderón–Zygmund
decomposition on f2, we estimate the term directly.

Indeed, the analysis for III amounts to a simplified version of the analysis
of the term III4 in (4.22). One can define ` as in (4.24) and split

(−∞, j) ∩ Z = Vj,1 ∪ Vj,2,

where Vj,1 := {L : j − ` ≤ L < j} and Vj,2 = {L : L < j − `}. Note that
here there is no further need to split Vj,2, since we do not make use of a

Calderón–Zygmund decomposition of f2. Write III = IV [
1 + IV [

2 , where for
i = 1, 2,

IV [
i =

〈 ∑
N1≤j≤N2

∑
W∈W,

L(W )∈Vj,i

Tjb1,W , f2

〉
.

We first focus on IV [
1 . By Hölder’s inequality with respect to x and j

IV [
1 ≤ IV [

1,1IV
[

1,2, (5.16)

where

IV [
1,1 =

( N2∑
j=N1

∫ ∣∣∣ ∑
j−`≤L(W )<j

Tjb1,W (x)
∣∣∣q
B2

dx
)1/q

,

IV [
1,2 =

( N2∑
j=N1

∫
|aj(x)|q

′

B2
|f2(x)|q′dx

)1/q′

.

Using that ‖aj(x)‖`q′ (B∗2 ) ≤ ‖aj(x)‖`r′ (B∗2 ) = 1 if 1 ≤ r′ ≤ q′, we get

IV [
1,2 .

(∫
3Q0

|f2(x)|q′dx
)1/q′

. |Q0|1−1/q〈f2〉3Q0,q′
. (5.17)

For the term IV [
1,1, introduce as in (4.26) the family Rj of subcubes of Q0

of side length 2j and use the bounded overlap of 3R to write

IV [
1,1 .

( N2∑
j=N1

∑
R∈Rj

∥∥∥ ∑
W⊂R

j−`≤L(W )<j

Tjb1,W

∥∥∥q
LqB2

)1/q
.

The right-hand side above can then be handled essentially as IV1 in (4.26)
after using the single scale (p, q) condition (1.8) for each Tj (in the form
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(4.21)); the only difference is the presence of an `q-sum. More precisely,

IV [
1,1 . A◦(p, q)

( N2∑
j=N1

∑
R∈Rj

|R|−( 1
p
− 1
q

)q
( ∑

W⊂R
j−`≤L(W )<j

‖b1,W ‖pLpB1

)q/p)1/q

.d A◦(p, q)〈f1〉Q0,p,B1

( N2∑
j=N1

∑
R∈Rj

|R|−( 1
p
− 1
q

)q
( ∑

W⊂R
j−`≤L(W )<j

|W |
)q/p)1/q

.d A◦(p, q)〈f1〉Q0,p,B1

( N2∑
j=N1

∑
R∈Rj

∑
W⊂R

j−`≤L(W )<j

|W |
)1/q

. `1/q〈f1〉Q0,p,B1
|Q0|1/q,

and combining this with (5.17), the bound for IV [
1 immediately follows.

Regarding IV [
2 , write IV [

2 =
∑∞

s=`+1 IV
[

2 (s), where IV [
2 (s) has the sum

in L(W ) < j − ` further restricted to L(W ) = j − s. For each fixed s, one
can apply Hölder’s inequality with respect to x and j as in (5.16),

IV [
2 (s) ≤ IV [

2,1(s)IV [
2,2,

where the term IV [
2,2 (which is independent of s) can be treated as IV [

1,2 in

(5.17). For each IV [
2,1(s) we write again

IV [
2,1(s) .

( N2∑
j=N1

∑
R∈Rj

∥∥∥ ∑
W⊂R

L(W )=j−s

Tjb1,W

∥∥∥q
LqB2

)1/q
.

This term can now be treated as the term IV2 in (4.30) using the ε-regularity

condition (1.9a) to get a decay of 2−sε
′

(as in (4.29a)). The only difference
with respect to (4.30) is the presence of the `q-sum, which introduces no

difficulty, as shown above for IV [
1,1. This completes the proof. �

6. Fourier multipliers

In this section we deduce Theorems 1.5 and 1.6 from a more general result
which will lead to more precise sparse domination results and also cover
Hilbert space valued versions. We are given two separable Hilbert spaces
H1, H2 and denote by L(H1,H2) the space of bounded linear operators
from H1 to H2 (in our applications one of the Hilbert spaces will be usually
C). Consider the translation invariant operator T = Tm mapping H1-valued
functions to H2-valued functions given via a multiplier

T̂ f(ξ) = m(ξ)f̂(ξ),
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where m(ξ) ∈ L(H1,H2) for almost every ξ. For 1 ≤ p ≤ q ≤ ∞ we write
m ∈Mp,q

H1,H2
if the inequality

‖T f‖Lq(H2) ≤ C‖f‖Lp(H1)

holds for all H1-valued Schwartz functions, and the best constant defines
the norm in Mp,q

H1,H2
. We may occasionally drop the Hilbert spaces if it

is understood from the context and also write Mp for Mp,p. Note that
m ∈Mp,q

H1,H2
implies by a duality argument that m ∈M q′,p′

H∗2 ,H
∗
1
. The M2,2

H1,H2

norm is bounded by ‖m‖L∞
H1,H2

where we write L∞H1,H2
for L∞

L(H1,H2). Also

note that by the Marcinkiewicz–Zygmund theorem [56, §2.1b] any scalar
multiplier in Mp,q extends naturally, for any separable Hilbert space H, to
a multiplier

m⊗ IH ∈Mp,q
H,H, with m⊗ IH :

{
Rd → L(H,H),

ξ 7→ (v 7→ m(ξ)v)

and we have ‖m ⊗ IH‖Mp,q
H,H
≤ C‖m‖Mp,q where C does not depend on the

Hilbert space.

6.1. The main multiplier theorem. In what follows let φ be a radial C∞

function supported in {ξ ∈ R̂d : 1/2 < |ξ| < 2} (not identically zero). Let
Ψ0 ∈ C∞(Rd) be supported in {x ∈ Rd : |x| < 1/2} such that Ψ0(x) = 1 for
|x| ≤ 1/4. For ` > 0 define

Ψ`(x) = Ψ0(2−`x)−Ψ0(2−`+1x) (6.1)

which is supported in {x : 2`−3 ≤ |x| ≤ 2`−1}. Define

B[m] :=
∑
`≥0

sup
t>0
‖[φm(t·)] ∗ Ψ̂`‖Mp,q

H1,H2
2`d(1/p−1/q)(1 + `), (6.2a)

B◦[m] :=
∑
`≥0

sup
t>0
‖[φm(t·)] ∗ Ψ̂`‖L∞

H1,H2
. (6.2b)

Theorem 6.1. Let 1 < p ≤ q < ∞, 1/q′ = 1 − 1/q, and assume that m ∈
L∞H1,H2

is such that B◦[m] and B[m] are finite. Then Tm ∈ Sp(p,H1, q
′,H∗2)

with

‖Tm‖Spγ(p,H1,q′,H∗2) .d,γ,p,q B[m] + B◦[m].

The implicit constant does not depend on m,H1,H2.

We note that the finiteness of B◦[m] is implied by the finiteness of B[m]
in the case H1 = H2 = C.

Remark 6.2. The function space of all m with B◦[m] + B[m] < ∞ exhibits
familiar properties of similarly defined function spaces in multiplier theory.
For example:
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(1) The space is invariant under multiplication by a standard smooth
symbol of order 0. This fact will be used in the proof of Theorem
6.1 and for the convenience of the reader, the precise statement and
proof are contained in §C.1 below.

(2) The finiteness of B[m] and B◦[m] is independent of the choice of the
specific functions φ and Ψ. This observation will be convenient in
the proof of Theorem 6.1. It can be verified by standard arguments
but, for completeness, the proof is provided in C.2 below.

We begin by showing how Theorem 6.1 implies Theorems 1.5 and 1.6.
Then we review some known facts and estimates for Fourier multipliers and
deduce the proof of Theorem 6.1 from our main Theorem 1.1.

Proof of Theorem 1.5 using Theorem 6.1. We have to check the assumptions
of Theorem 6.1. Assumption (1.24) is equivalent with

‖[φm(t·)] ∗ Ψ̂`‖M2 ≤ 2−`ε.

Thus interpolating (1.24) and (1.23) we get for p ∈ (p0, 2),

‖[φm(t·)] ∗ Ψ̂`‖Mp ≤ 2−`ε(p) where ε(p) = ε
(

1
p0
− 1

p

)/(
1
p0
− 1

2

)
.

Let χ ∈ C∞c (R̂d \ {0}) so that χ(ξ) = 1 in a neighborhood of supp(φ). Then
by Young’s convolution inequality for all p ∈ (p0, 2), q ∈ [p,∞], t > 0,

‖χ([φm(t·)] ∗ Ψ̂`)‖Mp,q . ‖[φm(t·)] ∗ Ψ̂`‖Mp . 2−`ε(p).

On the other hand we claim that

‖(1− χ)([φm(t·)] ∗ Ψ̂`)‖Mp,q .N ‖ϕm(t·)‖12−`N . (6.3)

Indeed, integration by parts in ξ in the integral∫ ∫
eix·ξ(1− χ)(ξ)[φm(t·)](ζ)2`dΨ̂(2`(ξ − ζ))dξdζ

implies the pointwise estimate

|F−1
(
(1− χ)([φm(t·)] ∗ Ψ̂`)

)
(x)| .N 2−`N (1 + |x|)−N‖φm(t·)‖1,

whence (6.3) follows from Young’s convolution inequality.

Fix p ∈ (p0, 2). Combining the two estimates we see that condition (6.2a)
holds for a pair of exponents (p1, q1) if p1 ∈ (p0, p), q1 > p1 and

d(1/p1 − 1/q1) < ε(p1).

Then Theorem 6.1 gives T ∈ Sp(p1, q
′
1). One can then choose δ = δ(p) > 0

small enough so that p1 = p− δ and q′1 = p′− δ satisfy the above conditions.
This concludes the proof. �

Proof of Theorem 1.6 using Theorem 6.1. We need to check that B[m] < ∞,
which will follow from showing that

sup
t>0
‖[φm(t·)] ∗ Ψ̂`‖Mp,q . 2−`s (6.4)
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for some s > d(1/p − 1/q). Here we are in the case H1 = H2 = C, so this
also implies B◦[m] <∞.

We decompose Ψ` into slighly smaller pieces. Recall that Ψ1 is supported
in {x : 1/4 ≤ |x| ≤ 1} and Ψ`(x) = Ψ1(21−`x). We form a partition of unity
{ςν : ν ∈ I} such that

∑
ν∈I ςν(x) = 1 for |x| ∈ [1/8, 2], and ς is a C∞

function supported in a ball B(xν , rν) centered at xν , with |xν | ∈ [1/4, 1]
and radius rν ≤ 10−2. Let

uν =
π

2

xν
|xν |2

so that |uν | ∈ [1, 8] and 〈xν , uν〉 = π/2. This implies that | Im (ei〈x,uν〉−1)| >
1/2 for x ∈ supp(ςν). Define, for M as in (1.25),

Ψ1,ν(x) =
Ψ1(x)ςν(x)

(ei〈x,uν〉 − 1)M
, Ψ`,ν(x) = Ψ1,ν(21−`x)

and note that Ψ1,ν is smooth and Ψ`(x) =
∑

ν Ψ`,ν(x)(ei〈x,2
1−`uν〉 − 1)M .

Hence

φm(t·) ∗ Ψ̂` =
∑
ν

∆M
−21−`uν

[φm(t·)] ∗ Ψ̂`,ν

and by assumption we have for some s > d(1/p− 1/q),

‖φm(t·) ∗ Ψ̂`‖Mp,q .
∑
ν

‖∆M
−21−`uν

[φm(t·)]‖Mp,q . 2−`s.

This implies (6.4) and now Theorem 1.6 follows from Theorem 6.1. �

6.2. A result involving localizations of Fourier multipliers. We recall
a theorem from [98] (see also [24] for a similar result) which we will formulate
in the vector-valued version (see also [51]).

Let φ be as before, and fix 1 < p <∞. Assume

sup
t>0
‖φm(t·)‖Mp

H1,H2
≤ a (6.5a)

sup
t>0
‖φm(t·)‖L∞

H1,H2
≤ a◦, (6.5b)

and ∑
|α|≤d+1

sup
t>0

sup
ξ∈R̂d
|∂αξ (φm(t·))(ξ)|L(H1,H2) ≤ b, (6.5c)

where α ∈ Nd0. Then

‖m‖Mp
H1,H2

. a◦ + a log(2 + b/a)
| 1
p
− 1

2
|
. (6.6)

Of course, in the special case H1 = H2 = C the L2-boundedness condition
(6.5b) with a◦ ≤ a is implied by (6.5a) (cf. an analogous remark following
Theorem 6.1).
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6.3. Proof of Theorem 6.1. First assume that m is compactly supported

in R̂d \ {0} without making any quantitative assumption on the support.

Note that by Remark 6.2 we have some freedom to make a convenient
choice of the localizing function φ, and we will denote this choice by ϕ.
In what follows, let θ ∈ C∞c (Rd) be radial such that θ is supported in
{x ∈ Rd : |x| < 1/2}, such that

∫
θ(x)π(x)dx = 0 for all polynomials π of

degree at most 10d, and such that θ̂(ξ) > 0 for 1/4 ≤ |ξ| ≤ 4. We then

choose ϕ to be a radial C∞ function supported in {ξ ∈ R̂d : 1/2 < |ξ| < 2}
such that ∑

k∈Z
ϕ(2−kξ)θ̂(2−kξ) = 1

for all ξ 6= 0.

We then decompose T by writing

m(ξ) =

n2∑
k=n1

θ̂(2−kξ)ϕ(2−kξ)m(ξ)

where n1, n2 ∈ Z. We then decompose

F−1[ϕm(2k·)](x) =
∑
`≥0

F−1[ϕm(2k·)](x)Ψ`(x)

which yields

F−1[mf̂ ](x) =
∑
`≥0

T `f(x) =
∑
`≥0

n2∑
k=n1

T `,kf(x)

where

T̂ `,kf(ξ) = θ̂(2−kξ) [ϕm(2k·)]∗Ψ̂`(2
−kξ).

We can write T `,kf = K`
k ∗ f with

K`
k(x) =

∫
F−1[ϕ(2−k·)m](x− y)Ψ`(2

k(x− y))2kdθ(2ky) dy.

Observe that K`
k(x) is supported in {x ∈ Rd : |x| ≤ 2`+1−k}. We wish to

apply Theorem 1.1 to the operators T ` defined by

T `f =

n2∑
k=n1

K`
k ∗ f =

`+1−n1∑
j=`+1−n2

T `j f with T `j f = K`
`+1−j ∗ f.

The operators T `j satisfy the support condition (1.6). To check the conditions

(1.7a), (1.7b) we apply the above mentioned theorem from [98] (see (6.6)).
We first claim that

‖ϕ
n2∑

k=n1

K̂`
k(s·)‖Mp

H1,H2
. a` := sup

t>0
‖[ϕm(t·)] ∗ Ψ̂`‖Mp,q

H1,H2
2`d(1/p−1/q) (6.7)
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and

‖ϕ
n2∑

k=n1

K̂`
k(s·)‖L∞H1,H2

. a◦,` := sup
t>0
‖[ϕm(t·)] ∗ Ψ̂`‖L∞

H1,H2
, (6.8)

uniformly in n1, n2. We only give the proof of (6.7) as the the proof of (6.8)
is similar but more straightforward. To see this we estimate, using dilation
invariance,

‖ϕ
n2∑

k=n1

K̂`
k(s·)‖Mp

H1,H2
≤

n2∑
k=n1

‖ϕθ̂(2−ks·)‖Mp‖[ϕm(2k·)]∗Ψ̂`‖Mp
H1,H2

.

Since θ ∈ S(Rd) and since all moments of η up to order 10d vanish we get

‖ϕθ̂(2−ks·)‖Mp . min{(2−ks)10d, (2−ks)−10d}. (6.9)

Moreover,

‖[ϕm(2k·)]∗Ψ̂`‖Mp
H1,H2

. 2`d(1/p−1/q)‖[ϕm(2k·)]∗Ψ̂`‖Mp,q
H1,H2

(6.10)

and (6.7) follows combining the above. To verify (6.10) we decompose

f =
∑
ν

fν ,

where fν = f1R`,ν and the R`,ν form a grid of cubes of side length 2`. Note

that the convolution kernel K` := F−1[ϕm(2k·)∗Ψ̂`] is supported in the ball
of radius 2` centered at the origin. Hence, by Hölder’s inequality

‖K` ∗ f‖Lp
H2

=
∥∥∥∑

ν

K` ∗ fν
∥∥∥
Lp
H2

.
(∑

ν

‖K` ∗ fν‖pLp
H2

)1/p

. 2`d(1/p−1/q)
(∑

ν

‖K` ∗ fν‖pLq
H2

)1/p

. 2`d(1/p−1/q)‖K̂`‖Mp,q
H1,H2

(∑
ν

‖fν‖pLp
H1

)1/p

and since (
∑

ν ‖fν‖
p
Lp
H1

)1/p = ‖f‖Lp
H1

we get (6.10).

Straightforward calculation using (6.9) yields∑
|α|≤d+1

n2∑
k=n1

sup
t>0

sup
ξ∈R̂d
|∂αξ (ϕK̂`

k(tξ))|L(H1,H2) ≤ b` := ‖m‖L∞
H1,H2

2`(d+1)

(6.11)
uniformly in n1, n2. We combine the two estimates (6.7), (6.8) and (6.11)
and using (6.6) we get

‖T `‖Lp
H1
→Lp

H2
. (1 + `)

| 1
p
− 1

2
|
a` + a◦,`.



MULTI-SCALE SPARSE DOMINATION 57

The Lq estimates are similar. For m(ξ) ∈ L(H1,H2) denote by m∗(ξ) ∈
L(H∗2,H

∗
1) the adjoint. Note that

‖[ϕm∗(t·)] ∗ Ψ̂`‖L∞
H∗2 ,H

∗
1

= ‖[ϕm(t·)] ∗ Ψ̂`‖L∞
H1,H2

≤ a◦,`.

Since q′ ≤ p′ the previous calculation gives

‖T `‖Lq
H1
→Lq

H2
= ‖(T `)∗‖

Lq
′

H∗2
→Lq

′
H∗1

. (1 + `)
| 1
q′−

1
2
|
2`d(1/q′−1/p′) sup

t>0
‖[ϕm∗(t·)]∗Ψ̂`‖Mq′,p′

H∗2 ,H
∗
1

+ a◦,`

. (1 + `)
| 1
q
− 1

2
|
2`d(1/p−1/q) sup

t>0
‖[ϕm(t·)]∗Ψ̂`‖Mp,q

H1,H2
+ a◦,`

= (1 + `)
| 1
q
− 1

2
|
a` + a◦,`.

To summarize,∥∥∥∑
j

T `j

∥∥∥
Lp→Lp

+
∥∥∥∑

j

T `j

∥∥∥
Lq→Lq

≤ a◦,` + a`((1 + `)
| 1
p
− 1

2
|
+ (1 + `)

| 1
q
− 1

2
|
). (6.12)

To verify the single scale (p, q) condition (1.8) we next examine the LpH1
→

LqH2
-norms of the convolution operators Dil2jT

`
j with convolution kernels

2jdK`
`+1−j(2

j ·). We have

‖Dil2jT
`
j ‖Lp

H1
→Lq

H2
= ‖K̂`

`+1−j(2
−j ·)‖Mp,q

H1,H2

and

K̂`
`+1−j(2

−jξ) = θ̂(2−`−1ξ)[ϕm(2`+1−j ·)] ∗ Ψ̂`(2
−`−1ξ),

and we get

‖K̂`
`+1−j(2

−j ·)‖Mp,q
H1,H2

≤ ‖θ‖12(`+1)d(1/p−1/q)‖[ϕm(2`+1−j ·)] ∗ Ψ̂`‖Mp,q
H1,H2

.

Hence
sup
j
‖Dil2jT

`
j ‖Lp→Lq . a` (6.13)

Next we turn to the ε-regularity conditions (1.9a) and (1.9b). By trans-
lation invariance of the operators T `j it suffices to verify (1.9a). Using the

above formulas for the Fourier transform of 2jdK`
`+1−j(2

j ·) we get

‖(Dil2jT
`
j ) ◦∆h‖Lp

H1
→Lq

H2

= ‖θ̂(2−`−1·)[(ϕm(2`+1−j ·)) ∗ Ψ̂`](2
−`−1·)(ei〈·,h〉 − 1)‖Mp,q

H1,H2

≤ 2(`+1)d(1/p−1/q)
∥∥θ̂[ei〈2`·,h〉 − 1]

∥∥
Mp

∥∥[ϕm(2`+1−j ·)] ∗ Ψ̂`

∥∥
Mp,q

H1,H2

.

Observe that for 0 < ε < 1,

|h|−ε
∥∥θ̂[ei〈2`·,h〉 − 1]

∥∥
Mp . 2`ε
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and hence we get

sup
|h|≤1

|h|−ε sup
j
‖(Dil2jT

`
j ) ◦∆h‖Lp

H1
→Lq

H2
. 2`εa` (6.14)

In view of (6.12), (6.13) and (6.14) we can now apply Theorem 1.1 and
obtain

‖T `‖Sp(p,q) . sup
t>0
‖[ϕm(t·)] ∗ Ψ̂`‖L∞

H1,H2
+(

(1 + `)
| 1
p
− 1

2
|
+ (1 + `)

| 1
q
− 1

2
|
+ (1 + `)

)
2
`d( 1

p
− 1
q

)
sup
t>0
‖[ϕm(t·)] ∗ Ψ̂`‖Mp,q

H1,H2
.

The desired conclusionthen follows from summing in ` ≥ 0.

Finally, to remove the assumption of m being compactly supported we
observe that by Lemma A.1 it suffices to prove the sparse bound∫

Rd
F−1[mf̂1](x)f2(x)dx ≤ C

(
B◦[m] + B[m]

)
Λ∗p1,p2(f1, f2) (6.15)

for fi in the dense class S0(Rd,Hi) of functions whose Fourier transform is

compactly supported in R̂d\{0}. But for those functions we have F−1[mf̂1] =

F−1[mn1,n2 f̂1], where

mn1,n2 =

n2∑
k=n1

θ̂(2−kξ)ϕ(2−kξ)m(ξ)

with suitable n1, n2 ∈ Z (depending on f1). By invariance under multipli-
cation by smooth symbols (see Lemma C.3) we have

sup
n1,n2

B[mn1,n2 ] . B[m]

and an analogous inequality involving B◦[m]. We then get (6.15) for fi ∈
S0(Rd,Hi), i = 1, 2. A second application of Lemma A.1 yields (6.15) for

all f ∈ LpH1
and all f2 ∈ Lp

′

H∗2
. �

7. Sample applications

In this section we give a number of specific examples of operators to which
Theorem 1.1 and its consequences can be applied. Some of the resulting
sparse bounds are well-known and others appear to be new.

7.1. Operators generated by compactly supported distributions. In
what follows let σ be a distribution which is compactly supported and let
σt ≡ Dil1/tσ denote the t-dilate t−dσ(t−1·) given by

〈σt, f〉 = 〈σ, f(t·)〉.
Without loss of generality we may assume that the support of σ is contained
in {x : |x| ≤ 1}, otherwise argue with a rescaling.

Let
Atf(x) = f ∗ σt(x) (7.1)
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which is well defined on Schwartz functions as a continous function of (x, t).
Many interesting operators in harmonic analysis are generated by dilations
of such a single compactly supported distribution (often a measure) and we
shall be interested in the corresponding maximal and variational operators.
The domain of the dilation parameter t will be either (0,∞) or [1, 2] or a
more general subset E of (0,∞).

7.1.1. Maximal functions. We are interested in sparse domination results
for the maximal functions, as defined in (1.15),

Mσ
Ef(x) = sup

t∈E
|Atf(x)|

where E ⊂ (0,∞).

If we assume that f is a Schwartz function then Mσ
E is well defined as a

measurable function, but for general Lp functions the measurability of Mσ
E

is a priori not clear unless we assume that E is countable. In our statements
we will restrict ourselves to a priori estimates, but note that in many appli-
cations the proof of Lp bounds shows also a priori estimates for the function
t 7→ σt ∗ f(x) in suitable subspaces of C(R), for almost all x ∈ Rd. This
observation then ensures the measurability of the maximal functions for f in
the relevant Lp classes. In the general case, let Ik,n = [k2−n, (k+1)2−n) and
pick, for each (k, n) such that E ∩ Ik,n 6= ∅, a representative tk,n ∈ E ∩ Ik,n
and let Ẽ consist of these picked tk,n. Then Ẽ is countable and we have

Mσ
Ef(x) = Mσ

Ẽ
f(x) for all x ∈ Rd and all Schwartz functions f . Thus one

can assume that E is countable without loss of generality.

We shall now discuss sparse domination inequalities for the operator Mσ
E .

Recall the local variants Mσ
Ej

, with the rescaled sets Ej ⊂ [1, 2] as in (1.16).

In what follows recall that

ΛS
p,q′(f, ω) =

∑
Q∈S
|Q|〈f〉Q,p〈ω〉Q,q′ ,

with Λ∗p,q′(f, ω) the supremum of all ΛS
p,q′(f, ω) over all γ-sparse families S.

Proposition 7.1. (i) Let 1 < p ≤ q < ∞. Let σ be a compactly supported
distribution such that

‖Mσ
E‖Lp→Lp,∞ + ‖Mσ

E‖Lq,1→Lq <∞, (7.2)

sup
j∈Z
‖Mσ

Ej‖Lp→Lq <∞, (7.3)

and assume that there is an ε > 0 so that for all λ ≥ 2,

‖Mσ
Ejf‖q ≤ Cλ

−ε‖f‖p, f ∈ Eann(λ). (7.4)

Then for all f ∈ Lp and all simple non-negative functions ω, we have the
sparse domination inequality

〈Mσ
Ef, ω〉 . Λ∗p,q′(f, ω). (7.5)
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(ii) Conversely, if σ has compact support in Rd \ {0} then the sparse bound
(7.5) for p < q implies that conditions (7.2) and (7.3) hold.

Proof. We will apply Theorem 5.1 with r =∞, B2 = `∞(E′), where E′ is a
finite subset of E, and

Tjf(x, t) =

{
σt ∗ f(x) if t ∈ E′ ∩ [2j , 2j+1)

0 otherwise.
(7.6)

Note that

S∞Tf(x) ≡ sup
j∈Z
|Tjf(x)|B2 = Mσ

E′f(x), (7.7a)

and, with E′j = 2−jE′ ∩ [1, 2],

|Dil2jTjf(x)|B2 = Mσ
E′j
f(x), j ∈ Z. (7.7b)

As σ is supported in {x : |x| ≤ 1}, the operators Tj satisfy the support
condition (1.6). Moreover, (7.2) and (7.7a) guarantee (5.3) with r =∞, and
similarly (7.3) and (7.7b) guarantee the single scale (p, q) condition (1.8).
It remains to verify the single scale ε−regularity conditions (1.9) for the
operators Tj . But this follows from (7.4) and (7.3) via Lemma 3.6 and the
fact that for translation-invariant operators Tj , the conditions (1.9a) and
(1.9b) are equivalent (alternatively, one can apply Theorem 5.5 for maximal
functions). All hypotheses in the first part of Theorem 5.1 are then satisfied
and we thus obtain a sparse bound for the maximal operator Mσ

E′ . An
application of the monotone convergence theorem then yields the desired
sparse bound for Mσ

E and concludes the proof of part (i).

For part (ii) note that the assumption that σ is supported away from the
origin corresponds to the strengthened support condition (1.14). Thus we
can deduce part (ii) directly from part (ii) of Theorem 5.1. �

Proof of Theorem 1.4. Because of the Lp → Lq condition on the operators
Mσ
Ej

in (1.17) and the ε-regularity assumption (1.18), it follows by interpo-

lation that the condition (7.4) is satisfied for all (1/p, 1/q) in the interior
of L(σ,E). Thus Proposition 7.1 establishes the sufficiency of the condi-
tions, that is, (1.20). The converse follows immediately from part (ii) of
Proposition 7.1. �

Prototypical examples for Proposition 7.1 are the spherical maximal func-
tions where σ is the surface measure on the sphere (for Lp bounds see the
classical results by Stein [105] and Bourgain [19], and for Lp → Lq bounds
see [95, 96]). The proposition covers the results by Lacey [66] for the lacu-
nary and full spherical maximal functions and also the extension to spherical
maximal operators with suitable assumptions about various fractal dimen-
sions of E, see [101, 3, 93]. In this context we note that in [5, 45], Lacey’s
approach was used to establish sparse domination results for two versions
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of lacunary spherical maximal functions on the Heisenberg group, defined
via the automorphic dilations, and essentially optimal results for the prob-
lem considered in [5] can be obtained by combining the sparse technique
developed in that paper with recent Lp → Lq bounds in [94].

One can also cover more singular measures with Fourier conditions (as in
[39], [40]) and this leads to questions about the precise range of Lp improving
estimates for the local variants of the maximal functions. As an example
consider a curve s 7→ γ(s) in R3 with nonvanishing curvature and torsion,
and the measures µt given by

〈f, µt〉 =

∫
f(tγ(s))χ(s)ds

with compactly supported χ. A result in [92], applied in combination with
decoupling results in [111, 20] yields that the maximal operators ME are
bounded on Lp(R3) for p > 4. The optimal result for p > 3 was recently
obtained in [12] and in [62]. Moreover, the analysis in these papers yield,
for the local analogues of these maximal functions (i.e. E = [1, 2]), certain
Lp → Lq bounds for some q > p. It would be very interesting to find precise
ranges of Lp → Lq boundedness of ME depending on E, and corresponding
sparse bounds for related global maximal functions. Similar questions can
be considered in higher dimensions but the optimal bounds are currently
unknown (for partial results see [13], [63]).

7.1.2. Variational operators. Given 1 ≤ r ≤ ∞ and a set E ⊂ (0,∞) we
define the r-variation seminorm | · |vr(E) and the r-variation norm | · |V r(E)

of a function a : E → C by

|a|vr(E) = sup
M∈N

sup
t1<···<tM
ti∈E

(M−1∑
i=1

|a(ti+1)− a(ti)|r
)1/r

|a|V r(E) = sup
M∈N

sup
t1<···<tM
ti∈E

{
|a(t1)|+

(M−1∑
i=1

|a(ti+1)− a(ti)|r
)1/r}

.

Define the r-variation operators vrEA, VrEA for the family of operators of
convolution with σt by taking the r-variation norm in t,

vrEAf(x) := |{σt ∗ f(x)}|vr(E), VrEAf(x) := |{σt ∗ f(x)}|V r(E). (7.8)

This that the above definition of variation is analogous to the definition
in (5.7) where we considered the r-variation for functions integers. The
results in §5 mostly apply to the situation where the current E is a subset
of {2j : j ∈ Z}. For general sets E ⊂ (0,∞), we will deduce results directly
from Corollary 1.2 and Theorem 1.3.

As before we may assume that E is countable (as this does not affect
priori estimates). Let Ej ⊂ [1, 2] be the rescaled sets as in (1.16).
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Proposition 7.2. (i) Let 1 < p ≤ q < ∞. Let σ be a compactly supported
distribution such that

‖VrEA‖Lp→Lp,∞ + ‖VrEA‖Lq,1→Lq <∞, (7.9)

sup
j∈Z
‖VrEjA‖Lp→Lq <∞ (7.10)

and assume that there is an ε > 0 so that for all λ ≥ 2,

‖VrEjf‖q ≤ Cλ
−ε‖f‖p, f ∈ Eann(λ). (7.11)

Then for all f ∈ Lp and all simple nonnegative functions ω, we have the
sparse domination inequality

〈VrEf, ω〉 . Λ∗p,q′(f, ω). (7.12)

(ii) Conversely, if σ has compact support in Rd \ {0} then the sparse bound
(7.12) for p < q implies that conditions (7.9) and (7.10) hold.

Proof. We are aiming to apply Corollary 1.2 with B2 = V r(E′) for any finite
E′ ⊂ E. With Tjf(x, t) as in (7.6) and E′(N1, N2) = E′ ∩ [2N1 , 2N2+1], we
get ∣∣∣ N2∑

j=N1

Tjf(x)
∣∣∣
V r
E′

= VrE′(N1,N2)Af(x) (7.13a)

and

|Dil2jTjf(x)|V r
E′

= Vr2−jE′∩[1,2]Af(x). (7.13b)

We need to check the assumptions of Corollary 1.2 (i.e. the assumptions of
Theorem 1.1). Conditions (1.7a), (1.7b) hold by (7.9) and (7.13a), condition
(1.8) holds by (7.10) and (7.13b) and condition (1.9a) follows from (7.10),
(7.11), and Lemma 3.6. Condition (1.9a) is equivalent with (1.9b) in the
current translation invariant setting.

For the necessity, observe that the assumption that σ is supported away
from the origin which corresponds to the strengthened support condition in
Theorem 1.3. A sparse bound for V r

EA implies via (7.13a) a sparse bound

for
∑N2

j=N1
Tj for any pair of integers N1 ≤ N2. We apply Theorem 1.3 and

obtain via (7.13a) and (7.13b) that

‖VrE′(N1,N2)A‖Lp→Lp,∞ + ‖VrE′(N1,N2)A‖Lq,1→Lq ≤ C,
sup

N1≤j≤N2

‖Vr2−jE′∩[1,2]A‖Lp→Lq ≤ C,

with the constant C independent of N1, N2 and the particular finite subset
E′ of E. Applications of the monotone convergence theorem then yield the
asserted necessary conditions for VrEA, that is, (7.9) and (7.10). �

Proposition 7.2 can be applied to obtain a sparse domination inequality
for the r-variation operator associated with the spherical means in Rd. For
the necessary global Lp → Lp bounds see [59] and for Lp → Lq bounds for
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the local variation operators we refer to the recent paper [14]. This addresses
a question posed in [66] and [1].

Remark 7.3. In verifying Lp → Lp,∞ and Lq,1 → Lq assumptions for the
variation operators it is (as shown in [58, 59]) often advantageous to write
V r
EAf(x) ≤ V r

dyadAf(x) + V r
E,shAf(x) where

V r
dyadAf(x) := Vr

2(Z)Af(x)

is the standard variation norm over 2(Z) := {2j : j ∈ Z}, labeled the dyadic
or long variation operator and where

V r
E,shAf(x) :=

(∑
j∈Z
|vrE∩[2j ,2j+1]Af(x)|r

)1/r
,

is the so-called short variation operator which uses only variation seminorms
over E within dyadic intervals. The Lp-boundedness of the long variation
operators is usually reduced to Lepingle’s theorem [73] (which requires r >
2) while the short variation operator is often estimated using a Sobolev
embedding inequality (see [58], [59]). We note that it is possible to prove
results analogous to Proposition 7.2 for the long variation operator and the
short variation operators individually as direct consequences of Theorems
5.2 and 5.1 respectively; the details are left to the reader.

7.1.3. Lacunary maximal functions for convolutions associated with the wave
equation. In this section we consider a maximal function generated by con-
volutions with dilates of a tempered distribution, which is not compactly
supported (but still concentrated on a compact set). This class is associated
with Lp regularity results for solutions of the wave equation. For both sim-
plicity and definiteness of results we shall only consider a lacunary version,
but the argument to deduce the sparse bound extends to other sets of dila-
tions and also to variational variants (for which Lemma A.3 would be useful
to treat nonlocal error terms).

For β > 0 define

mβ(ξ) =
cos |ξ|

(1 + |ξ|2)β/2

and let

Mβ
lacf(x) = sup

k∈Z
|mβ(2kD)f(x)|.

It was shown by Peral in [90] and Miyachi in [87] that mβ(D) is bounded on
Lp for β ≥ (d− 1)|1/p− 1/2|, 1 < p <∞. Lp → Lq results for mβ go back
to [108, 83, 21]; it is known that mβ(D) : Lp → Lq is bounded if either

(W) 1 < p ≤ 2, p ≤ q ≤ p′, β ≥ (d− 1)
(

1
p −

1
2) + 1

p −
1
q , or

(W′) 1 < p <∞, max{p, p′} ≤ q <∞, β ≥ (d− 1)
(

1
2 −

1
q ) + 1

p −
1
q .

Note that (W′) follows from (W) by duality. Moreover it can be shown

that Mβ
lac is bounded on Lp for β > (d − 1)|1/p − 1/2| via a single scale
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analysis, and either Littlewood–Paley theory for p ≥ 2 or the result stated
in §6.2 for 1 < p < 2.

We have the following sparse bound for Mβ
lac in the non-endpoint case.

Proposition 7.4. Suppose 1 < p ≤ q < ∞ and that one of the following
two conditions holds.

(W∗) 1 < p ≤ 2, p ≤ q ≤ p′, β > (d− 1)
(

1
p −

1
2) + 1

p −
1
q .

(W′
∗) 1 < p <∞, max{p, p′} ≤ q <∞, β > (d− 1)

(
1
2 −

1
q ) + 1

p −
1
q .

Then Mβ
lac ∈ Sp(p, q′).

Proof. Let K = F−1[mβ(2·)] so that the singular support of K is {x : |x| =
1/2}. Let K`,0 = K ∗ η` = F−1[mβ η̂`], with η` defined as in (3.9), and split
K`,0 ∗ f = A`f +R`f where the convolution kernel R` of R` is supported in

{x : |x| ≥ 1}. The maximal function associated to R` is dominated by 2−`N

times the Hardy–Littlewood maximal function of f , similarly the maximal
functions associated to A` are controlled by the Hardy–Littlewood maximal
function for small ` and therefore satisfy a (p, q′) sparse bound by §A.2. We
use the notation A`,0, R`,0 for the convolution kernels of A` and R`. Set

K`,k = 2−kdK`,0(2−k·), and similarly define the kernels A`,k and R`,k.

By the Lp → Lp result for mβ(D) together with the multiplier result
mentioned in §6.2 one can easily derive for ` > 0 and any ε > 0∥∥∥(∑

k∈Z
|K`,k ∗ f |2

)1/2∥∥∥
p
. 2

`((d−1)| 1
p
− 1

2
|+ε−β)‖f‖p

for all 1 < p <∞ which of course implies∥∥ sup
k∈Z
|K`,k ∗ f |

∥∥
p
. 2

`((d−1)| 1
p
− 1

2
|+ε−β)‖f‖p.

We also have the single scale results

2`β‖K`,0 ∗ f‖q . 2
`((d−1)( 1

p
− 1

2
)+ 1

p
− 1
q

)‖f‖p (7.14)

if 1 < p ≤ 2, p ≤ q ≤ p′, and

2`β‖K`,0 ∗ f‖q . 2
`((d−1)( 1

2
− 1
q

)+ 1
p
− 1
q

)‖f‖p (7.15)

if 1 < p ≤ 2, p′ < q <∞ or 2 ≤ p <∞, p ≤ q <∞.

By the above mentioned bounds for the operator R` and the lacunary
maximal operator generated by it we can replace K`,k and K`,0 by A`,k and
A`,0, respectively,

Note that the exponents for Lp-boundedness and for Lq boundedness, i.e.
(d − 1)|1/p − 1/2|, (d − 1)|1/q − 1/2| are not larger than the exponents in
the displayed inequalities (7.14) and (7.15) in their respective ranges. An
application of Proposition 7.1 gives the desired sparse results for the maxi-
mal function generated by the A`,k and then also for the maximal function
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generated by convolution with K`,k. Summing in ` we can complete the
proof of the proposition. �

Remark. The multiplier mβ can be replaced by other variants such as

mβ,1(ξ) =
sin |ξ|
|ξ|

1

(1 + |ξ|2)(β−1)/2
, mβ,2(ξ) =

Jβ−1/2(|ξ|)
|ξ|β−1/2

.

7.2. General classes of multipliers. It is well known that the classical
Mikhlin–Hörmander multiplier theorem [53, 103] can be interpolated with
the L2-estimate for multiplier transformations m(D) with bounded multi-
pliers [81, 82]. In particular one gets for 1 < p ≤ 2,

‖m‖Mp . sup
t>0
‖φm(t·)‖Lrα , 1/r = 1/p− 1/2, α > d/r , (7.16)

where ‖g‖Lrα = ‖(1 + |D|2)α/2g‖r and φ is a nontrivial radial function sup-
ported with compact support away from the origin.

We give a sparse bound for this class of multipliers.

Proposition 7.5. Let 1 < p ≤ 2, 1/r = 1/p− 1/2 and let m satisfy

sup
t>0
‖φm(t·)‖Lrα ≤ A. (7.17)

Suppose one of the following holds:

(i) 1 < p ≤ q ≤ 2, and α > d(1/p− 1/2).
(ii) 2 ≤ q <∞ and α > d(1/p− 1/q).

Then
‖m(D)‖Spγ(p,q′) .p,r,q,α,γ A.

Proof. We deduce this result from Theorem 1.6. Observe the inequality

‖g‖Mp,2 ≤ ‖g‖Lr , 1/r = 1/p− 1/2,

valid for 1 ≤ p ≤ 2 which follows by interpolation from the standard cases
p = 1 and p = 2. In view of the embedding B0

r,1 ↪→ Lr (see [110] for the

definition and properties of Besov spaces) we get, for 1 ≤ p ≤ 2,

‖g‖Mp,2 . ‖g‖B0
r,1
, 1/r = 1/p− 1/2. (7.18)

Interpolating Bernstein’s theorem B
d/2
2,1 ↪→ L̂1 (which follows from the Cauchy–

Schwarz inequality and Plancherel’s theorem) with the embedding B0
∞,1 ↪→ L∞,

we also have for 1 ≤ p ≤ 2,

‖g‖Mp,p . ‖g‖
B
d/r
r,1

, 1/r = 1/p− 1/2. (7.19)

A further interpolation of (7.18) and (7.19) yields for 1 ≤p ≤ q ≤ 2

‖g‖Mp,q . ‖g‖
B
d( 1q−

1
2 )

r,1

, 1/r = 1/p− 1/2.

Finally, we have for M ≥ s, the well-known inequality

‖∆M
h g‖Bβr,1 . |h|

s‖g‖
Bs+βr,1
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which we shall use for β = d(1/q − 1/2) and which can be deduced from
standard L1-convolution inequalities.

Now let r = 2p/(2 − p), i.e. 1/r = 1/p − 1/2. Applying the above
inequalities to g = φm(t·) we get for M ≥ s,

sup
|h|≤1

|h|−s‖∆M
h [φm(t·)]‖Mp,q . ‖φm(t·)‖

B
d( 1q−

1
2 )+s

r,1

Now since α > d(1/p− 1/2) we can find s > d(1/p− 1/q) such that

α > d(1/q − 1/2) + s > d(1/p− 1/2).

Thus if α is as in the display, then Lrα ↪→ B
d(1/q−1/2)+s
r,1 and an application

of Theorem 1.6 yields the sparse bound stated in part (i).

For part (ii) let 2 ≤ q<∞ and observe that

‖g‖Mp,q .K ‖g‖Mp,2 if supp(g) ⊂ K, K compact. (7.20)

To see this take a Schwartz function υ whose Fourier transform equals 1 on
K and observe that by Young’s inequality convolution with υ maps L2 into
Lq. We see from (7.20) and (7.18) that for such compactly supported g and
M > s,

|h|−s‖∆M
h g‖Mp,q . |h|−s‖∆M

h g‖B0
r,1
. ‖g‖Bsr,1 .

This we use for g = φm(t·) and α >s > d(1/p− 1/q). Then part (ii) follows
by the embedding Lrα ↪→ Bs

r,1 and an application of Theorem 1.6. �

Remark 7.6. The assumption p ≤ 2 is not a significant restriction. In-
deed observe that by definition of the sparse operator classes we have T ∈
Sp(p1, p2) if and only if T ∗ ∈ Sp(p2, p1). For multiplier transformations we
have m(D)∗ = m(−D) and m(−D)f(−x) = m(D)[f(−·)](x) which implies
that m(D) ∈ Sp(p1, p2) if and only if m(D) ∈ Sp(p2, p1).

We can draw two conclusions from this duality argument. First, the range
1 ≤ p ≤ 2, q ≥ p′ in Proposition 7.5 could be deduced from the result in
the range 1 ≤ p ≤ 2, 2 ≤ q ≤ p′. Second, the result in Proposition 7.5
also implies a result in the range 2 ≤ p ≤ q < ∞. Namely, in this case, if
1/r = 1/2−1/q and α > d(1/2−1/q) then one gets m(D) ∈ Sp(p, q′) under
the assumption (7.17).

7.2.1. Miyachi classes and subdyadic Hörmander conditions. We now dis-
cuss some consequences for multiplier classes considered by Miyachi [88]
and their corresponding versions under a subdyadic Hörmander-type formu-
lation [10]. Given a > 0, b ∈ R, let Miy(a, b) denote the class of smooth
functions m : Rd → C supported on {ξ : |ξ| ≥ 1} and satisfying the differ-
ential inequalities

|∂ιm(ξ)| .ι |ξ|−b+|ι|(a−1) (7.21)

for all |ξ| ≥ 1 and all multiindices ι ∈ Nd0 satisfying |ι| ≤ bd/2c + 1. The
oscillatory multipliers ma,b defined below in (7.26) are considered model
cases, at least in regards to the Lp → Lp boundedness properties. It is
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known that multipliers in Miy(a, b) belong to Mp whenever b ≥ ad|1/p−1/2|
and 1 < p <∞, see [43, 88]. It has also been observed that these endpoint
results are special cases of Hörmander-type multiplier theorems involving
certain endpoint Besov spaces, see [4, 99]. Sparse bounds for multipliers
in Miy(a, b) in the non-endpoint range b > ad|1/p − 1/2| were obtained by
Cladek and the first author in [11] via a single scale analysis, under the
additional assumption that (7.21) hold for all multiindices ι ∈ Nd0. We note
that in the range 0 < a < 1 they also extended these results to larger closely
related classes of pseudo-differential operators, cf. [41, 11].

The subdyadic Hörmander-type classes, also extending the class Miy(a, b)
are obtained by replacing the pointwise condition (7.21) by

sup
B

dist(B, 0)b+(1−a)|ι|
( 1

|B|

∫
B
|Dιm(ξ)|2dξ

)1/2
<∞ (7.22)

for all ι ∈ Nd0 with |ι| ≤ bd/2c + 1. Here the supremum is taken over all
euclidean balls B in Rd with dist(B, 0) ≥ 1 such that r(B) ∼ dist(B, 0)1−a,
where r(B) denotes the radius of B. This class was considered in [10] which
contains sharp weighted inequalities of Fefferman–Stein type that can be
used to recover the sharp Lp estimates. In [11, §3] the question was raised
whether the results on sparse bounds for multiplier transformations in the
Miyachi class can be extended to multipliers satisfying a subdyadic condition
above, in the sense that it is sufficient to assume that (7.21) or (7.22) hold
for all |ι| ≤ bd/2c + 1 rather than for all ι ∈ Nd0. We shall see that this is
the case, and that such and more general multi-scale results can be obtained
from Proposition 7.5. The following simple observation will be helpful; note
that condition (7.22) (and therefore (7.21)) implies (7.23).

Lemma 7.7. Let a > 0, 2 ≤ r < ∞, b > ad/r. Suppose mk are supported
in {ξ : |ξ| ≥ 1} and suppose that there is a constant C such that

sup
t>1

tb−a|ı|
(
t−d
∫
t/2≤|ξ|≤2t

[
|ξ||ı|∂ımk(ξ)|

]r
dξ
)1/r

≤ C (7.23)

for all multiindices ı with |ı| ≤ bd/rc+ 1 and for all k ∈ Z. Then the family
{mk} satisfies condition

sup
k∈Z

sup
t>0

tb−aα‖φmk(t·)‖Lrα <∞. (7.24)

Proof. A change of variable shows that the condition (7.23) is equivalent to∥∥∂ı[φmk(s·)]
∥∥
r
. sa|ı|−b

for all multiindices ı with |ı| ≤ bd/rc + 1. Pick α ∈ (d/r, bd/rc + 1) such
that αa < b. Then the condition implies

sup
s
‖φmk(s·)‖Lrαs

b−aα <∞,

which implies (7.24) in view of the assumption on the supports since α >
d/r. �
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We shall now formulate a result for families of multipliers satisfying con-
dition (7.24). For simplicity of our statements, we consider only the case
p ≤ 2 and argue by duality for p > 2 (see Remark 7.6).

Proposition 7.8. Let 1 < p ≤ 2, r = 2p
2−p (i.e. 1

r = 1
p −

1
2), and let, for

k ∈ Z, mk be supported in {ξ : |ξ| ≥ 1}. Let a, b ≥ 0 such that b > ad(1
p −

1
2)

and suppose that either

(i) 1 <p ≤ q ≤ 2 and b > ad(1
p −

1
2), or

(ii) 2 ≤ q<∞ and b > ad(1
p −

1
q ).

Let α > d(1
p −

1
2) and assume supk∈Z supt>0 t

b−aα‖φmk(t·)‖Lrα <∞.
Then m :=

∑
k∈Zmk(2

k·) ∈Mp and m(D) ∈ Sp(p, q′)

Proof. We split, by a dyadic decomposition mk(ξ) =
∑∞

n=1mk,n(ξ) where
mk,n is supported in an annulus {ξ : |ξ| ≈ 2n}, for all k ∈ Z; in fact we can
set mk,n(ξ) = mk(ξ)η̂n(ξ) with η̂n as in (3.10). Observe that mkη̂0 = 0 by

the support properties of mk and η̂0. Now form mn(ξ) =
∑

k∈Zmk,n(2kξ).
We wish to apply Proposition 7.5 to mn, for every n ≥ 0.

Fix any t > 0 and use the assumption to compute

‖φmn(t·)‖Lrα .
∑
k∈Z:

c12n≤2kt≤C12n

‖φmk,n(2kt·)‖Lrα . 2−n(b−aα).

By (7.16) we obtain ‖mn‖Mp . 2−n(b−aα) and similarly, by Proposition

7.5 we obtain ‖mn(D)‖Spγ(p,q′) . 2−n(b−aα). The desired bounds follow by

summing in n as α < b/a. �

As a consequence we can obtain a sparse bound for the lacunary maximal
function supk |m(2kD)f | and indeed a square function that dominates it.

Corollary 7.9. Let p, r, q, a, b as in Proposition 7.8. Let m be supported
in {ξ : |ξ| ≥ 1} satisfying supt>0 t

b−aα‖φm(t·)‖Lrα < ∞. Then we have the
(p, q′)-sparse bound∫

Rd

(∑
k∈Z
|m(2kD)f(x)|2

)1/2
ω(x)dx . Λ∗p,q′(f, ω).

Proof. Consider the multiplier mv(ξ) =
∑

k∈Z rk(v)m(2kξ) where (rk)k∈N
denotes the sequence of Rademacher functions defined on the unit interval.
Then by Proposition 7.8 applied to mk(ξ) = rk(v)m(ξ) we obtain∣∣∣ ∫

Rd
mv(D)f1(x)f2(x)dx

∣∣∣ . Λ∗p,q′(f1, f2), (7.25)
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with the implicit constant independent of v. Let uv(x) = mv(D)f(x)
|mv(D)f(x)| so that

uv is unimodular, and we also get by (7.25) with f2 = ωuv∫
Rd
|mv(D)f |ω(x)dx =

∫
Rd
mv(D)f(x)ω(x)uv(x)dx

. Λ∗p,q′(f, uvω) = Λ∗p,q′(f, ω).

Integrating in v and using Fubini’s theorem and Khinchine’s inequality, one
obtains∫

Rd

(∑
k∈Z
|mk(2

kD)f |2
)1/2

ω(x)dx .
∫
Rd

∫ 1

0
|mv(D)f(x)| dv ω(x) dx

=

∫ 1

0

∫
Rd
|mv(D)f(x)|ω(x) dx dv . Λ∗p,q′(f, ω)

and the proof is complete. �

Remark. Similar results can be obtained for versions of the previous mul-
tiplier classes if a < 0 and m is supported in {ξ : |ξ| ≤ 1}. We omit the
statements.

7.2.2. Multiscale variants of oscillatory multipliers. Given a > 0, a 6= 1,
b ∈ R, consider the oscillatory Fourier multipliers

ma,b(ξ) = χ∞(ξ)|ξ|−bei|ξ|a , (7.26)

where χ∞ ∈ C∞(Rd) is such that χ(ξ) = 0 for |ξ| ≤ 1 and χ∞(ξ) = 1
for |ξ| ≥ 2. As already mentioned the operators ma,b(D) are sometimes
considered model cases of the class Miy(a, b), known to be bounded on Lp if
and only if b ≥ ad|1/p−1/2| and 1 < p <∞; see [104], [43], [88]. This result
is sharp when a 6= 1; the case a = 1 forms an exceptional case corresponding
to the wave multipliers considered in §7.1.3; we exclude it in this section.

Given a sequence (ck)k∈Z with |ck| ≤ 1 we form the multiscale variant

m(ξ) =
∑
k∈Z

ckma,b(2
kξ) (7.27)

which is bounded on Lp for b > ad|1/p − 1/2|. Proposition 7.8 shows that
for 1 < p ≤ 2 we have m(D) ∈ Sp(p, 2) for q ≤ 2, but in order to get a
Sp(p, q′) bound for q > 2 we had to impose the more restrictive condition b >
ad(1/p− 1/q). We show that this estimate can be improved, in particular
an additional restriction is not necessary for q ≤ p′ and in this range we
can upgrade the Sp(p, 2) bound to an Sp(p, p) bound for the multipliers in
(7.27) (see Figure 2).

This improvement relies on special features of the multipliers ma,b which
are not shared by a general multiplier in the class Miy(a, b). Unlike in the
proof of Proposition 7.8 we can no longer rely on analyzing the problem
on the multiplier side. Instead we have to analyze Schwartz kernels and
employ stationary phase estimates, taking advantage of the fact that the



70 D. BELTRAN J. ROOS A. SEEGER

1
p

1
q′

1
2

1
2

1
2 + b

ad

1
2 + b

2ad

1
p

1
q′

1
2

1
2

1
2 + b

ad

Figure 2. Sparse bounds for a general multiplier in
Miy(a, b) (left) and for the oscillatory multipliers ma,b (right)
for given a, b > 0. The condition (ii) in Proposition 7.8 can
be relaxed for the specific ma,b (Proposition 7.10).

Hessian of the phase function ξ 7→ |ξ|a is nondegenerate when a 6= 1, a > 0.
Incidentally, this also reveals that the ma,b satisfy better Lp → Lq mapping
properties than a general multiplier in Miy(a, b) when 1 < p ≤ 2, 2 < q ≤ p′.
It is therefore more natural to base the proof directly on Theorem 6.1 rather
than on the formulation in Theorem 1.6.

Proposition 7.10. Let 1 < p ≤ 2, a ∈ (0,∞) \ {1}, and m as in (7.27),
with supk |ck| ≤ 1. Let b > ad(1/p− 1/2). Then m(D) ∈ Sp(p, p).

Proof. We decompose as in the proof of Proposition 7.8. Recall that η̂0 is
supported in {|ξ| < 1} and ma,b in {|ξ| > 1}, hence η̂0ma,b = 0, and we can
write m =

∑∞
n=1m

n where

mn(ξ) =
∑
k∈Z

ckma,b(2
kξ)η̂n(2kξ).

We shall show that

‖mn(D)‖Spγ(p,p) . 2−nε(p) (7.28)

with ε(p) > 0 and then sum in n.

To verify the claim (7.28) we use Theorem 6.1. For this we have to
analyze, for radial φ ∈ C∞c supported in {ξ : 1/2 < |ξ| < 2}, the expression

‖[φmn(t·)] ∗ Ψ̂`‖Mp,p′ ≤
∑
k∈Z

2n−3≤2kt≤2n+1

‖[φma,b(2
kt·)η̂n(2kt·)] ∗ Ψ̂`‖Mp,p′

and show that for some ε > 0∑
`≥0

sup
t>0
‖[φmn(t·)] ∗ Ψ̂`‖Mp,p′2

`(d(1/p−1/p′)+ε) . 2−nε(p). (7.29)
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To this end, fix k, t with 2n−3 ≤ 2kt ≤ 2n+1 and analyze the Fourier
inverse of φma,b(2

kt·)η̂n(2kt·), i.e.

Kn(x) = (2π)−d
∫
φ(ξ)η̂n(2ktξ)χ∞(2ktξ)(2kt|ξ|)−bei〈x,ξ〉+i(2kt)a|ξ|adξ.

The phase function 〈x, ξ〉+ (2kt)a|ξ|a becomes stationary on the support of
φ only when |x| ≈ (2kt)a ≈ 2na and the Hessian of |ξ|a is nondegenerate
there. Thus by integration by parts we see that there are constants c1 < 1,
C1 > 1 such that

|Kn(x)| ≤

{
CN2−n(b+N) for |x| ≤ c12na

CN2−nb|x|−N for |x| ≥ C12na

and by the method of stationary phase

|Kn(x)| . 2−n(b+ad/2), for c12na ≤ |x| ≤ C12na.

This implies for 2n−3 ≤ 2kt ≤ 2n+1 and suitable C, independently of k, t,

‖[φmn(2kt·)] ∗ Ψ̂`‖M1,∞

.

{
2−n(b+ad/2) for |`− na| ≤ C
min{CN2−n(b+N), CN2−nb2−`N} for |`− na| > C.

(7.30)

We also have the M2,2 bound

‖[φmn(2kt·)] ∗ Ψ̂`‖∞

.

{
2−nb for |`− na| ≤ C
min{CN2−n(b+N−d), CN 2−nb2−`(N−d)} for |`− na| > C.

(7.31)

Interpolating (7.30) and (7.31) we get

‖[φmn(2kt·)] ∗ Ψ̂`‖Mp,p′ .

{
2−n(b+ad(1/p−1/2)) for |`− na| ≤ C
2−nbCN min{2−nN , 2−`N} for |`− na| > C.

Only the five terms with 2n−3 ≤ 2kt ≤ 2n+1 make a contribution. We sum
those terms, then take a supremum in t (observing that the displayed bound
above is independent of t) and then sum in ` ≥ 0. We obtain∑

`≥0

sup
t>0
‖[φmn(t·)] ∗ Ψ̂`‖Mp,p′2

`(d( 1
p
− 1
p′ )+ε)

.ε 2
−n(b+ad( 1

p
− 1

2
))

2
na(d( 1

p
− 1
p′ )+ε) . 2

−n(b−ad( 1
p
− 1

2
−ε))

.

Since we assume b > ad(1/p−1/2) this leads to (7.29) and then to the claim
(7.28) via Theorem 6.1. �

Given Proposition 7.10, we can now derive an improved sparse bound for
a lacunary maximal function and a corresponding square function associated
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with the multipliers ma,b; thus for these examples we improve on Corollary
7.9.

Corollary 7.11. Let 1 < p ≤ 2, a > 0, b > ad(1/p− 1/2). Then∫
Rd

(∑
k∈Z
|ma,b(2

kD)f(x)|2
)1/2

ω(x)dx . Λ∗p,p(f, ω).

Proof. Choose ck = ±1 in (7.26). Then Proposition 7.10 together with a
randomization argument exactly as in the proof of Corollary 7.9 yields the
assertion. �

7.3. Prototypical versions of singular Radon transforms. Let σ be a
bounded Borel measure supported in {x : |x| ≤ 1} and satisfying∫

dσ = 0 and sup
ξ∈R̂d

(1 + |ξ|)b|σ̂(ξ)| <∞ for some b > 0. (7.32)

Let {aj}j∈Z satisfy

|aj | ≤ 1 (7.33)

and define

SN1,N2f(x) =

N2∑
j=N1

aj2
−jdσ(2−j ·) ∗ f(x)

and

Sf(x) = lim
N2→∞
N1→−∞

SN1,N2f(x). (7.34)

This is the “prototypical” singular Radon transform considered by R. Ober-
lin [89], see also Duoandikoetxea and Rubio de Francia [39]. It is easy to see
using the cancellation of the kernel that the limit exists pointwise for C∞c
functions.

In addition, we assume that σ is Lp0 improving, i.e.

‖σ ∗ f‖q ≤ A‖f‖p0 (7.35)

for some q with p0 < q <∞. The following result is due to R. Oberlin.

Proposition 7.12 ([89]). Let σ be as in (7.32), and {aj}j∈Z, S be as in
(7.33), (7.34). Let 1 < p0 < p < q <∞ and assume that (7.35) holds. Then
S satisfies the (p, q′)-sparse bound

|〈Sf, ω〉| . Λ∗p,q′(f, ω).

The same sparse bound holds for the operators SN1,N2, uniformly in N1, N2.

We emphasize that Oberlin also proved certain endpoint estimates for
p = p0, working with local Orlicz norms in the definition of sparse forms.
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One can extend Proposition 7.12 to cover associated maximal truncation
and variational truncation operators defined by

S∗f(x) = sup
N1<N2

∣∣∣ N2∑
j=N1

aj2
−jdσ(2−j ·) ∗ f(x)

∣∣∣,
Vr∗Sf(x) = sup

M∈N
sup

n1<···<nM

(M−1∑
i=1

∣∣ ni+1∑
j=ni+1

aj2
−jdσ(2−j ·) ∗ f(x)

∣∣r)1/r
.

Proposition 7.13. Let 1 < p0 < p < q < ∞, r > 2 and σ, {aj} be as in
(7.32), (7.33), (7.35). Then S∗ and Vr∗S satisfy the sparse bounds

|〈S∗f, ω〉|+ |〈Vr∗Sf, ω〉| . Λ∗p,q′(f, ω).

Proof. We apply Theorems 5.3 and 5.4. To verify the assumptions (5.11a),
(5.11b) see [39, Theorem E]. To verify assumptions (5.12a), (5.12b) see [59,
Theorem 1.2]. Interpolation arguments using the Fourier decay assumption
in (7.32), and Lemma 3.6 can be used to establish the additional Hölder
condition in (1.9). �

The setup above is also similar in spirit to the theorems on truncations
of rough singular integrals with bounded kernels [37]. We have been delib-
erately short in our presentation as the results in this section are essentially
known. For a more detailed exposition the reader may consult §7.4 below,
in which a singular Radon transform built on spherical integrals, and other
versions of maximal functions associated to singular Radon transforms, are
considered.

7.3.1. An approach via Fourier multipliers. In order to understand the scope
of our multiplier theorems, it is instructive to deduce the sparse bounds
for the prototypical singular Radon transform S in Proposition 7.12 from
Theorem 6.1 (or Theorem 1.6). Since σ is a finite Borel measure we have
‖φσ̂(2jt·)‖Mq,q = O(1) for 1 ≤ q ≤ ∞. By (7.32) and interpolation with
L2 → L2 bounds we have for some ε0(q) > 0

‖φσ̂(2jt·)‖Mq,q . Cq min{(2jt)ε0(q), (2jt)−ε0(q)}, 1 < q <∞, (7.36)

using either cancellation or decay, and by Young’s inequality we get the
same bound for ‖φσ̂(2jt·)‖Mp,q when 1 ≤ p ≤ q, 1 < q <∞. This takes care
of the term ` = 0 in the condition (6.2a). To verify the remaining hypothesis
of Theorem 6.1 it suffices to check that for ` > 0 the condition

sup
t>0

∑
j∈Z
‖[φσ̂(2jt·)] ∗ Ψ̂`‖Mp,q . 2−`(d(1/p−1/q)+ε) (7.37)

is satisfied, as the condition (6.2b) trivially follows by the assumption (7.32).

Since σ̂ is smooth we have for 2jt ≤ 1

‖[φσ̂(2jt·)] ∗ Ψ̂`‖Mr,s . CN2−`N , 2jt ≤ 1,
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for 1 ≤ r ≤ s ≤ ∞ and therefore by interpolation with (7.36) and taking
geometric means we see that there is an ε1(r, s) such that ε1(r, s) > 0 if
1 < r ≤ s <∞ and

‖[φσ̂(2jt·)] ∗ Ψ̂`‖Mr,s . CN2−`d(2jt)ε1(r,s), 2jt ≤ 1. (7.38)

The contributions for 2jt ≥ 1 are more interesting. Since σ is supported
in {x : |x| ≤ 1} we have the kernel estimate

|F−1[φσ̂(2jt·)](x)| .N |x|−N for |x| ≥ 2j+1t

and hence

‖[φσ̂(2jt·)] ∗ Ψ̂`‖Mp,q . 2−`N for 2` ≥ 2j+4t ≥ 1. (7.39)

For 2` ≤ 2j+4t we do a rescaling argument to estimate

‖[φσ̂(2jt·)] ∗ Ψ̂`‖Mp0,q . ‖σ̂(2jt·)‖Mp0,q = (2jt)−d(1/p0−1/q)‖σ̂‖Mp0,q

and by assumption σ̂ ∈ Mp0,q. Interpolating with the M q,q estimate in
(7.36) we get for p0 < p ≤ q

‖[φσ̂(2jt·)] ∗ Ψ̂`‖Mp,q . (2jt)−d(1/p−1/q)−ε(p,q) for 2j+4t ≥ 2`. (7.40)

Combining (7.38), (7.39) and (7.40) and summing in j we get (7.37) for a
suitable ε = ε(p, q) > 0.

7.4. Densities on spheres: Maximal singular integrals. As discussed
in §7.3 the Corollary 1.2 covers classes of singular Radon transforms and
also associated maximal operators for truncations. Here we will consider
a natural singular integral variant of the spherical maximal function, and
obtain a sparse domination inequality analogous to the one for spherical
maximal functions with specific dilation sets in [3, 93]. Let σ be the surface
measure on the unit sphere {x : |x| = 1} in Rd for d ≥ 2 and µ = χσ with a
choice of smooth χ such that ∫

dµ = 0.

For every t ∈ [1, 2] we consider, for fixed t ∈ [1, 2], the prototypical singular
Radon transform as in the previous section

SN1,N2
t f =

N2∑
j=N1

µ2jt ∗ f, Stf = lim
N2→∞,
N1→−∞

SN1,N2
t f (7.41)

and then form, for E ⊂ [1, 2], the maximal function

SEf(x) = sup
t∈E
|Stf(x)|. (7.42)
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For 0 ≤ β ≤ α ≤ 1 define R(β, α) ⊂ [0, 1]2 as the union of the interior of
the convex hull of the points

Q1 = (0, 0), Q2,β = ( d−1
d−1+β ,

d−1
d−1+β ),

Q3,β = ( d−β
d−β+1 ,

1
d−β+1), Q4,α = ( d(d−1)

d2+2α−1
, d−1
d2+2α−1

)

with the open segment connecting Q1 and Q2,β .

1
q

1
p

Q1

Q2,β

Q3,β

Q4,α

Figure 3. The region R(β, α) with β = 0.75, α = 0.9, d = 3.

For E ⊂ [1, 2] denote by dimME the upper Minkowski dimension of E
and by dimqAE the quasi-Assouad dimension of E (see [93] for definitions
and background, and for a discussion of classes of sets E for which the
single-scaled Lp → Lq results described above are sharp).

Proposition 7.14. Let d ≥ 2, E ⊂ [1, 2] and (1/p, 1/q) ∈ R(β, α) with
β = dimME, α = dimqAE. Then there is the (p, q′)-sparse domination
inequality

|〈SEf, ω〉| ≤ CΛ∗p,q′(f, ω).

The two-dimensional version of our operator models a maximal operator
associated to a family of Hilbert transforms on curves considered in [49, 50]
where nonisotropic dilations are used (see also the previous papers [86, 48]
for related problems). In this nonisotropic case one could also consider more
general situations, i.e. when E is not a subset of [1, 2] (see also the prior work
[86] on maximal functions) but this involves multi-parameter structures for
which sparse domination result are difficult and in some cases are proved to
not hold [7].

Proof of Proposition 7.14. Using the density Lemma A.1 we may assume
that f ∈ C∞c . It is then easy to see that for any bounded set U ∈ Rn
we have µ2jt ∗ f(x) = 0 for all x ∈ U , t ∈ [1, 2] and sufficiently large j.
Moreover using the cancellation of µ and the smoothness of f we see that
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µ2jt ∗ f(x) = O(2j) as j → −∞. Thus we see that for f ∈ C∞c the function
Stf is well defined and

lim
N2→∞,
N1→−∞

sup
t∈[1,2]

|Stf − SN1,N2
t f | = 0,

where the limit is uniform on compact sets. It is therefore sufficient to prove

a sparse bound for the maximal function supt∈E |S
N1,N2
t f | which is uniform

in N1, N2. In what follows we will drop the superscript in SN1,N2
t but assume

that we still working with a truncated sum depending on N1, N2.

To verify conditions (1.8), (1.9) in Corollary 1.2 we first note that for
(1
p ,

1
q ) ∈ R(β, α) there is ε(p, q) > 0 such that for λ > 2

‖ sup
t∈E
|µt ∗ f |‖q .p,q λ−ε(p,q)‖f‖p, f ∈ Eann(λ). (7.43)

This is coupled with an elementary Lp → Lq estimate with constant O(1)
estimate for functions with frequency support near the origin to yield (1.9a)
via Lemma 3.6; this also settles (1.9a) by translation invariance. For in-
equality (7.43) we may refer to [93, Cor. 2.2].

It remains to verify (1.7a) and (1.7b) which follow by verifying the Lp

boundedness of SE for (1
p ,

1
p) on the open interval (Q1Q2,β). To accomplish

this we make a further decomposition on the frequency side. Let η` be as
in (3.9), (3.10), and set η`,j = 2−jdη`(2

−j ·), so that η̂0,j is supported where

|ξ| . 2−j and η̂`,j is supported where |ξ| ≈ 2`−j . Setting

S`Ef(x) = sup
t∈E

∣∣∣ N2∑
j=N1

µ2jt ∗ η`,j ∗ f(x)
∣∣∣

it then suffices to show

‖S`Ef‖p .p 2−`δ(p)‖f‖p (7.44)

with δ(p) > 0 for (1
p ,

1
p) ∈ (Q1Q2,β). The estimate for ` = 0 reduces to

standard singular integral theory; this uses the cancellation of µ. Thus from
now on we assume ` > 0.

We shall first discuss the case when either d ≥ 3 or d = 2, β < 1 where
we use arguments as in [101]. Because of |µ̂(ξ)| . min{|ξ|, |ξ|−(d−1)/2} we
get

sup
ξ∈R̂d

∣∣∣ N2∑
j=N1

µ̂2jt(ξ)η̂`,j(ξ)
∣∣∣ . 2−`(d−1)/2,

which implies an L2 boundedness result for the operators S`t with constant
O(2−`(d−1)/2), uniformly in t ∈ [1, 2].

We also have the Lp boundedness result∥∥∥ N2∑
j=N1

µ2jt ∗ η`,j ∗ f
∥∥∥
p
. Cp‖f‖p, 1 < p <∞
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which is a consequence of results on isotropic singular Radon transforms as,
say, in [39]. By interpolation we get for all ε > 0∥∥∥ N2∑
j=N1

µ2jt∗η`,j∗f
∥∥∥
p
. Cε,p2

`ε(1−1/p) min(2
−` d−1

p , 2
−` d−1

p′ )‖f‖p, 1 < p <∞.

The same estimate with µ2jt ∗ η`,j replaced by 2−`2−jd[ ddtµt ∗ η`](2
−j ·) also

holds. We cover the set E with O(2`(β+ε)) intervals of length 2−` and argue
as in [101, p.119] to obtain

‖S`Ef‖p .ε 2
`(β
p

+ε)
min(2

−` d−1
p , 2

−` d−1
p′ )‖f‖p.

This gives (7.44), provided that d ≥ 3 or d = 2, β < 1.

For the case d = 2, β = 1, we need to show Lp boundedness for p > 2.
By a Sobolev embedding argument this follows from the inequality(∫ 2

1

∥∥∥ N2∑
j=N1

µ2jt ∗η`,j ∗f
∥∥∥p
p
dt
)1/p

+2−`
(∫ 2

1

∥∥∥ ∂
∂t

N2∑
j=N1

µ2jt ∗η`,j ∗f
∥∥∥p
p
dt
)1/p

. 2−`/p−`a(p)‖f‖p (7.45)

where a(p) > 0 for 2 < p <∞. By Littlewood–Paley theory we see that the
bound for the first term in (7.45) reduces to(∫ 2

1

∥∥∥( N2∑
j=N1

|µ2jt ∗ η`,j ∗ fj |2
)1/2∥∥∥p

p
dt
)1/p

. 2−`/p−`a(p)
∥∥∥(∑

j

|fj |2
)1/2∥∥∥

p

(7.46)
for 2 < p <∞. (7.46) is established by a local smoothing argument as in [49]
(see in particular an isotropic version of Corollary 3.6 of that paper). We
thus have established the bound for the first term in (7.45), and the argument
for the second term is analogous. Finally from (7.45) we obtain (7.44) by
another application of Littlewood–Paley theory (applying the inequality to

functions fj with f̂j supported where |ξ| ≈ 2`−j). �

7.5. On radial Fourier multipliers. We consider radial Fourier multipli-

ers on R̂d with d ≥ 2, of the form m(ξ) = h(|ξ|) where h satisfies the con-
dition supt>0 ‖βh(t·)‖L2

α
< ∞ for suitable α; here L2

α is the usual Sobolev
space on the real line and β is any nontrivial C∞c function with compact
support in (0,∞). By duality we only need to consider the range p ≤ 2.

The inequality

‖h(| · |)‖Mp,q . sup
t>0

t
d( 1
p
− 1
q

)‖βh(t·)‖L2
α
, α > d(1/q − 1/2) (7.47)

is known to hold for 1 < p < 2(d+1)
d+3 , p ≤ q ≤ 2 and one may conjecture that it

holds for 2(d+1)
d+3 < p ≤ 2d

d+1 and p ≤ q < d−1
d+1p

′. Indeed, as a straightforward
consequence of the Stein–Tomas restriction theorem and Littlewood–Paley
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theory one gets for the endpoint p = 2(d+1)
d+3 , q = 2, α = 0, a complete

characterization of radial Fourier multipliers in Mp,2; namely

‖h(| · |)‖Mp,2 ≈ sup
t>0

t
d( 1
p
− 1

2
)
(∫ 2t

t
|h(s)|2ds

s

)1/2
,

see e.g. [46]. The case p = q = 2d
d−1 has been settled only in two dimensions

in [22, 25], but remains open in three and higher dimensions. Note that as
a special case one has the Bochner–Riesz conjecture when h(s) = (1− s2)λ+.
For partial Lp → Lp results in higher dimensions (via the connection [25]
with Stein’s square function) we refer to [27, 97, 70, 69], cf. §7.6.2 below.

We formulate sparse bounds for the multipliers satisfying (7.47); in fact
our hypotheses will involve the single scale variant

‖g(| · |)‖Mp,q ≤ C(α)‖g‖L2
α
, α > d(1/q − 1/2), supp(g) ⊂ [1/2, 2]. (7.48)

Typically, the assumption (7.48) will be applied to g of the form βh(t·).
Theorem 6.1 leads to the following result.

Proposition 7.15. Let 1 < p ≤ q ≤ 2 and let Th be the convolution operator
with multiplier h(| · |). Then

(i) Assume (7.48) holds for a specific exponent pair (p, q) with 1 < p ≤
2d
d+1 , p ≤ q ≤ min{d−1

d+1p
′, 2}, and all α > d(1/q − 1/2). Then

‖Th‖Spγ(p,q′) ≤ Cb sup
t>0
‖βh(t·)‖L2

b
, b > d(1/p− 1/2). (7.49)

(ii) In particular, (7.49) holds true for 1 < p ≤ 2(d+1)
d+3 , p ≤ q ≤ 2.

Proof. We need to verify the assumptions of Theorem 6.1. This amounts to
veryfing the finiteness of the condition (6.2a). Setting g = βh(t·) and fixing
b > d(1/p− 1/2) this follows from proving that for ` ≥ 1 we have

‖g(| · |) ∗ Ψ̂`‖Mp,q . 2
−`( d

p
− d
q

+ε(b))‖g‖L2
b

(7.50)

for some ε(b) > 0.

Let υ0 be supported in {s ∈ R : |s| < 1/2} such that
∫
υ0(s)ds = 1. For

n ≥ 1 let υn(s) = υ0(2ns) − υ0(2n−1s), and define gn(s) = g ∗ υn(s). By
assumption (7.48), we have ‖gn(| · |)‖Mp,q . ‖gn‖L2

α
for any α > d(1/q−1/2)

and hence also

‖gn(| · |) ∗ Ψ̂`‖Mp,q . ‖gn(| · |)‖Mp,q . ‖gn‖L2
α
. 2−n(b−α)‖g‖L2

b
. (7.51)

For our fixed choice of b > d(1/p− 1/2), we choose b1 < b such that d(1/p−
1/2) < b1 < b, so that (7.51) holds for the choice α = b1 − d(1/p − 1/q) >
d(1/q − 1/2).

We let ε = (b− b1)(2d)−1 and use (7.51) for n ≥ `(1 + ε)−1. Since

d(1
p −

1
q ) + b− b1
1 + ε

− d(
1

p
− 1

q
) =

b− b1 − εd(1
p −

1
q )

1 + ε
≤ b− b1

1 + ε
:= ε(b) > 0
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we get∑
n≥ `

1+ε

‖gn(| · |) ∗ Ψ̂`‖Mp,q . 2
− `

1+ε
( d
p
− d
q

+b−b1)‖g‖L2
b
. 2

−`( d
p
− d
q

+ε(b))‖g‖L2
b

For n ≤ `/(1 + ε) we observe that any derivative of order k of gn(| · |) is
O(2kn‖g‖1) and an N -fold integration by parts gives |F−1[gn(| · |)](x)| ≤
CN2(n−`)N for |x| ≈ 2`, for all N ∈ N. We use this with N := 10d1+ε

ε . By
Young’s inequality∑
n≤ `

1+ε1

‖F−1[gn(| · |) ∗ Ψ̂`]‖Mp,q . CN`2
`(d−d( 1

p
− 1
q

))
2−`(

ε
1+ε

N) . C(ε)2−8d`

and (7.50) is verified. �

As an example in the above class of multiplier transformations we consider
a multi-scale version of Bochner–Riesz operators. The Bochner–Riesz means
of the Fourier integral are defined by

Ŝλt f(ξ) = (1− |ξ|2/t2)λ+f̂(ξ) (7.52)

and are conjectured to be bounded from Lp → Lq if λ > d(1/q− 1/2)− 1/2

and 1 ≤ p ≤ q ≤ min{d−1
d+1p

′, 2}, with operator norm O(td(1/p−1/q)). One

may reduce to t = 1 by scaling, and if hλ(s) = (1 − s2)λ+ then hλ ∈ L2
ν for

λ > ν + 1/2. Therefore, Proposition 7.15 immediate leads to sparse bounds
for operators such as

∑∞
k=−∞±

(
Sλ

2k
− Sλ

2k+1

)
. with uniform bounds in the

choice of the sequence of signs. After a standard averaging argument using
Rademacher functions this implies sparse bounds for lacunary square func-
tions The vector-valued version of Theorem 6.1 leads to sparse domination
for the lacunary square-function(∑

k∈Z
|Sλ2kf − S

λ
2k+1f |2

)1/2

and consequently to sparse bounds for lacunary Bochner–Riesz maximal
functions Mλf = supk∈Z |Sλ2kf |. These results can be viewed as a natural
multi-scale generalization of the sparse domination results for Bochner–Riesz
means in [16, 68]. In this context, we remark that there are sharper endpoint
sparse domination result for Bochner–Riesz means [61] which yield back
some of the known weak type (p, p) endpoint bounds for

λ = d(1/p− 1/2)− 1/2.

However, currently there is no sparse bound for analogous endpoints which
involve multiple frequency scales. We intend to return to this question in
the future.
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7.6. Stein’s square function. In [102] Stein introduced the square func-
tion defined via Bochner–Riesz means by,

Gαf(x) =
(∫ ∞

0

∣∣∣∂Sαt f(x)

∂t

∣∣∣2t dt)1/2

= cα

(∫ ∞
0
|Sα−1
t f(x)− Sαt f(x)|2dt

t

)1/2

in order to establish pointwise convergence and strong summability results.
Another important connection was established in [25], namely that an Lp-
boundedness result for Gα implies that the condition supt>0 ‖βh(t·)‖L2

α
<∞

is sufficient for h(| · |) ∈Mp. Moreover, Gα also controls maximal operators
associated to radial Fourier multipliers [23].

The expression Gαf(x) is almost everywhere equivalent to many alterna-
tive square functions, which can be obtained via versions of Plancherel’s the-
orem with respect to the t-variable; see the paper by Kaneko and Sunouchi
[60]. We distinguish the cases 1 < p ≤ 2, in which by a result of Sunouchi
[109] we have Lp boundedness for α > d(1/p − 1/2) + 1/2, and the more
subtle case 2 ≤ p <∞, where Lp(Rd) boundedness for d ≥ 2 is conjectured
for p > 2d

d−1 and α > d(1/2− 1/p), and known if d = 2 [22]. Lp boundedness
in the latter problem is closely related to the multiplier problem discussed in
§7.5; see [27, 97, 70, 69] for partial results and [71, 72] for certain endpoint
and weighted bounds.

We recall some basic decompositions of the Bochner–Riesz means. One
splits

(1− |ξ|2)α−1
+ − (1− |ξ|2)α+ =

∑
n≥0

2−n(α−1)un(|ξ|),

where u0(0) = 0, the un are smooth, and for n ≥ 1 we have

supp(un) ⊂ (1− 2−n+1, 1− 2−n−1)

and | dj
dsj
un(s)| ≤ Cj2nj for j ∈ N0. Let Kn = F−1[un(| · |)], Kn,s = sdKn(s·)

and

Gnf(x) =
(∫ ∞

0
|Kn,s ∗ f(x)|2ds

s

)1/2
,

so that

Gαf(x) .
∞∑
n=0

2−n(α−1)Gnf(x).

We shall rely on the standard pointwise estimates obtained by stationary
phase calculations,

|Kn(x)| .N (1 + |x|)−
d+1
2 (1 + 2−n|x|)−N . (7.53)
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7.6.1. The case 1 < p ≤ 2. A pointwise sparse domination result for α >
(d + 1)/2 was proved by Carro and Domingo-Salazar [26]. For 1/2 < α ≤
(d + 1)/2 we have Lp boundedness (p ≤ 2) only in the restricted range

2d
2α+2d−1 < p ≤ 2 by Sunouchi’s result which is sharp. Thus in this range we

are seeking sparse domination results for the forms 〈Gαf1, f2〉. Theorem 6.1
yields the following.

Proposition 7.16. Let d ≥ 2, 1
2 < α ≤ d+1

2 . Then for 2d
2α+2d−1 < p ≤ 2 we

have the (p, p)-sparse domination inequality

|〈Gαf, ω〉| ≤ CΛ∗p,p(f, ω).

Proof. The operators Gn are defined through smooth kernels and therefore
the result in [26] yields pointwise sparse bounds, with norms depending on
n. This settles the case of small values of n. For large values of n, given
ε > 0 we have to show

|〈Gnf, ω〉| .ε 2
n( d
p
− d

2
− 1

2
+ε)

Λγ,∗p,p(f, ω) (7.54)

since in the assumed range of p we have α−1 > d/p−d/2−1/2 and therefore
we can sum in n to obtain the result for Gα. Let H be the Hilbert space
L2(R+, dss ). By the linearization argument in §4.3, the inequality (7.54)
follows, for a scalar function f1 and an H-valued function f2 = {f2,s}, from∣∣∣ ∫∫ Kn,s ∗ f1(x)f2,s(x)

ds

s
dx
∣∣∣ .ε 2

n( d
p
− d

2
− 1

2
+ε)

Λγ,∗p,C,p,H∗(f1, f2).

By Theorem 6.1 this follows from

sup
t>0

∥∥[β(| · |)un(t| · |)] ∗ Ψ̂`

∥∥
Mp,p′

C,H∗
2
`( d
p
− d
p′+ε1) .ε 2

n( d
p
− d

2
− 1

2
+ε)

(7.55)

for some ε1 > 0. To verify (7.55) we argue by interpolation and reduce to the
cases p = 2 and p = 1. It will be helpful to observe that for 1/8 ≤ t/s ≤ 8
we can replace the kernel Kn on the left hand side of the inequality in (7.53)
by F−1[β(| · |)un( ts | · |)]. Thus(∫

|F−1[β(|·|)un( ts |·|)](x)|2 dss
)1/2

.N (1+|x|)−
d+1
2 (1+2−n|x|)−N . (7.56)

Here we used that given t the integrand is zero unless s ∈ [t/2, 2t]. Hence
for any ε2 > 0 (which we choose � min{ε, ε1}) we get

sup
t>0

∥∥[β(| · |)un(t| · |)] ∗ Ψ̂`

∥∥
Mp,q

C,H∗
.ε2,N 2−`N if ` > n(1 + ε2). (7.57)

If p = 2 we have also have, for ` ≤ n(1 + ε2),∥∥[β(| · |)un(t| · |)] ∗ Ψ̂`

∥∥
M2,2

C,H∗
2`ε1 . 2`ε1 sup

ξ

(∫
|β(|ξ|)un( ts |ξ|)|

2 ds
s

)1/2

(7.58)

. 2`ε12−n/2 . 2nε1(1+ε2)2−n/2.
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Furthermore, for p = 1 and ` ≤ n(1 + ε2) we use (7.56) to see that∥∥[β(| · |)un(t| · |)] ∗ Ψ̂`

∥∥
M1,∞

C,H∗
2`(d+ε1) (7.59)

. 2`(d+ε1)2−n(d+1)/2 . 2n(1+ε2)(d+ε1)−(d+1)/2 . 2n(d−1)/2+ε.

Combining (7.58), (7.59) with (7.57) we obtain the cases of (7.55) for p = 1
and p = 2 and (7.55) follows by interpolation for 1 ≤ p ≤ 2. �

7.6.2. The case 2 < p <∞. The reduction to sparse bounds will be similar
as in the case p ≤ 2, but the input information is more subtle. Instead of
the pointwise bounds (7.53) we now use that∥∥∥(∫ 8

1/8
|Kn,s ∗ f |2 dss

)1/2∥∥∥
p
. 2n( d

2
− d
r
−1)‖f‖r, (7.60)

for 2 ≤ r ≤ p, p ≥ 2(d+1)
d−1 , which was proved using the Stein–Tomas restric-

tion theorem [27, 97, 71]. We then obtain a satisfactory result for α ≥ d
d+1 .

Proposition 7.17. Let d ≥ 2, d
d+1 ≤ α ≤ d

2 . Then for 2d
d−2α < p < ∞ we

have the (2, p)-sparse domination inequality

|〈Gαf, ω〉| ≤ CΛ∗2,p(f, ω).

Proof. Note that in the given p-range, p > 2(d+1)
d−1 when α ≥ d

d+1 . We use

the notation in the proof of the preceding proposition. By linearization (see
the argument in §4.3) it suffices to prove∣∣∣ ∫∫ Kn,s ∗ f1(x)f2,s(x)

ds

s
dx
∣∣∣ .ε 2

n( d
2
− d
p
−1+ε)

Λγ,∗2,C,p,H∗(f1, f2)

and by Theorem 6.1 this follows, given ε > 0 from∥∥[β(| · |)un(t| · |)] ∗ Ψ̂`

∥∥
M2,p

C,H∗
2
`( d

2
− d
p

+ε1) .ε 2
n( d

2
− d
p
−1+ε)

(7.61)

for some ε1 > 0, uniformly in t > 0. For ` < n(1 + ε2) the left hand side is
bounded by

2
n(1+ε2)( d

2
− d
p

+ε1)∥∥β(| · |)un(t| · |)
∥∥
M2,p

C,H∗
. (7.62)

Using (7.60) for r = 2 we get∥∥∥(∫ 8t

t/8
|F−1[β(| · |)un( ts | · |)f̂ ]|2 dss

)1/2∥∥∥
p
. 2−n‖f‖2

and thus the expression in (7.62) is O(2
n(1+ε2)( d

2
− d
p

+ε1)−n
). Finally, we choose

ε1, ε2 � ε and combine this with the error estimates (7.57). This completes
the verification of (7.61). �

Appendix A. Facts about sparse domination

For completeness, we collect a number of auxiliary results, some of them
well-known, about sparse domination.
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A.1. Replacing simple functions. It is often convenient to replace the
spaces SB1 and SB∗2 in the definition of the Spγ(p1, B1, p2, B

∗
2) norms by other

suitable test function classes such as the spaces of compactly supported C∞

functions or Schwartz functions. This is justified by the following Lemma.

Lemma A.1. Suppose 1 ≤ p1 < p′2 and p1 < p < p′2 and let T ∈ Spγ(p1, p2).

Let V1 be a dense subspace of LpB1
and V2 be a dense subspace of Lp

′

B∗2
. Then

‖T‖Spγ(p1,B1,p2,B∗2 ) = sup
{ |〈Tf1, f2〉|

Λ∗p1,B1,p2,B∗2
(f1, f2)

: fi ∈ Vi, fi 6= 0, i = 1, 2
}
.

(A.1)

Proof. We first assume that V1 = LpB1
and V2 = Lp

′

B∗2
. In what follows

we omit the reference to B1, B∗2 . The right-hand side of (A.1) dominates
‖T‖Spγ(p1,p2), defined in (1.5). In order to verify the reverse inequality we

have to show that given ε > 0 and given f1 ∈ Lp, f2 ∈ Lp
′

we have the
inequality

|〈Tf1, f2〉| ≤ (‖T‖Spγ(p1,p2) + ε) Λ∗p1,p2(f1, f2). (A.2)

This is clear if one of the fi is zero almost everywhere. We may thus assume
that ‖f1‖p > 0, ‖f2‖p′ > 0. For any ε1 > 0 choose g1 ∈ SB1 , g2 ∈ SB∗2 so that
‖f1− g1‖p ≤ ε1, ‖f2− g2‖p′ ≤ ε1, and also ‖g1‖p ≤ 2‖f1‖p , ‖g2‖p′ ≤ 2‖f2‖p′
and estimate, using the definition of ‖T‖Spγ(p1,p2),

|〈Tf1, f2〉| ≤ |〈T [f1 − g1], f2〉|+ |〈Tf1, f2 − g2〉|+ |〈Tg1, g2〉|
≤ ‖T‖p−p

(
‖f1 − g1‖p‖f2‖p′ + ‖f1‖p‖f2 − g2‖p′

)
+ ‖T‖Spγ(p1,p2)Λ

∗
p1,p2(g1, g2)

≤ ‖T‖p−p
(
ε1‖f2‖p′ + ‖f1‖pε1

)
+ ‖T‖Spγ(p1,p2)Λ

∗
p1,p2(g1, g2).

Moreover, for p1 < p < p′2, one has using (ii) in Lemma A.2. that

Λ∗p1,p2(g1, g2) ≤ Λ∗p1,p2(g1 − f1, g2) + Λ∗p1,p2(f1, g2 − f2) + Λ∗p1,p2(f1, f2)

≤ C1(p, p1, p2)(‖g1 − f1‖p‖g2‖p′ + ‖f1‖p‖g2 − f2‖p′) + Λ∗p1,p2(f1, f2)

≤ C1(p, p1, p2)(2‖f2‖p′ε1 + ‖f1‖pε1) + Λ∗p1,p2(f1, f2)

and thus

|〈Tf1, f2〉| ≤ ‖T‖Spγ(p1,p2) Λ∗p1,p2(f1, f2) + E ,

with E ≤ C(f1, f2, p, p1, p2, T )ε1. Choosing a suitable ε1 depending on ε we
obtain the assertion (A.2), for the case V1 = Lp, V2 = Lp.

In the general case we replace the couple of pairs (SB1 , SB∗2 ) and (Lp, Lp
′
)

by the couple of pairs (V1,V2) and (Lp, Lp
′
) and see that a repetition of the

above arguments settles this case as well. �
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A.2. The Hardy–Littlewood maximal function. It is a well-known fact
that the Hardy–Littlewood maximal operator, denoted by M, satisfies a
sparse domination inequality. We have not been able to identify the original
reference for this fact and refer to Lerner’s expository lecture [74] instead.
This constitutes a first nontrivial example for sparse domination and we
include a standard proof for completeness.

Lemma A.2. Let f ∈ L1
loc(Rd). Then there exist γ-sparse families Si(f),

i = 1, . . . , 3d, such that

Mf(x) ≤ 2d(1− γ)−1
3d∑
i=1

∑
Q∈Si(f)

〈f〉Q,11Q(x).

Proof. Let D be a dyadic lattice and let MD denote the dyadic maximal
function associated to D, that is, MDf(x) := supQ3x

Q∈D
〈f〉Q. Fix a ∈ R a

constant to be determined later, and for each k ∈ Z, define the sets

Ωk := {x ∈ Rd :MDf(x) > ak} =
⋃

Qjk∈D

Qjk

where {Qjk}j ⊆ D are the maximal disjoint dyadic cubes for Ωk, that is,

ak ≤ 〈f〉
Qjk
≤ ak2d. (A.3)

Define the sets Ejk := Qjk\Ωk+1, and note that the family of sets {Ejk}k,j is

pairwise disjoint and |Ejk| > (1− 2d

a )|Qjk|; for the last claim, note that

|Qjk ∩ Ωk+1| =
∑
i

|Qjk ∩Qk+1,i| =
∑

i :Qik+1⊂Q
j
k

|Qik+1|

<
∑

i :Qik+1⊂Q
j
k

1

ak+1

∫
Qik+1

|f | ≤ 1

ak+1

∫
Qjk

|f | ≤ 2d

a
|Qjk|,

using the disjointness of the cubes Qik+1 and (A.3) for Qik+1 and Qjk. Thus,

choosing a = 2d(1−γ)−1, S(f) := {Qjk}k,j is a γ-sparse family, and moreover

MDf(x) =
∑
k∈Z
MDf(x)1Ωk\Ωk+1

(x) ≤
∑
k∈Z

∑
Qkj

ak+1
1
Ejk

(x)

≤ a
∑
k,j

〈f〉
Qjk
1
Qjk

(x) = a
∑

Q∈S(f)

〈f〉Q1Q(x)

by (A.3). Finally, the result for the maximal function M follows from the
3d-trick (see [79, Theorem 3.1]), which ensures that there exist 3d dyadic
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lattices Di, i = 1, . . . , 3d such that

Mf(x) ≤
3d∑
i=1

MDif(x). �

Remark. If f has values in a Banach space B, the same argument applies
to f 7→ M(|f |B). However, there are more interesting vector-valued exten-
sions such as in the Fefferman–Stein theorem [42], and corresponding general
sparse domination results with additional hypotheses on the Banach space
are discussed in a paper by Hänninen and Lorist [52].

A.3. Operators associated with dilates of Schwartz functions. It is
convenient in many applications to observe that maximal functions and vari-
ation operators generated by convolution operators with Schwarz functions
satisfy sparse bounds. We choose to deduce the variational statements as a
consequence of our Theorems in §5, but it could also be based e.g. on [37].
For the definition of the dyadic and short variation operators we refer to
Remark 7.3; here V r

sh is understood with E = (0,∞).

Lemma A.3. Let K ∈ C2(Rd) be a convolution kernel satisfying, for all
multiindices α ∈ Nd0 with

∑
i |αi| ≤ 2,

|∂αK(x)| ≤ (1 + |x|)−d−2.

Let Kt(x) = t−dK(t−1x) and let Ktf = Kt ∗ f(x). Then for 1 < p ≤ q <∞
|〈sup
t>0
|Ktf |, ω〉| . Λ∗p,q′(f, ω)

|〈V r
dyadKf, ω〉| . Λ∗p,q′(f, ω), 2 < r <∞,

|〈V r
shKf, ω〉| . Λ∗p,q′(f, ω), 2 ≤ r <∞.

Proof. Since supt>0 |Kt ∗f | is pointwise dominated by the Hardy-Littlewood
maximal function the sparse bound for 〈supt>0 |Ktf |, ω〉 can be directly de-
duced from the sparse bound for the Hardy–Littlewood maximal function
M in §A.2.

For the variation norm inequalities we decompose K =
∑∞

n=0Kn where
Kn denotes convolution with Kn := KΨn (here Ψn is supported where
|x| ≈ 2n when n > 0, see (6.1)). We can form the long and short variation
operators with respect to the family of operators {Knt }t>0 where Knt denotes
convolution with Kn

t := t−dKn(t−1·). Using the pointwise bound on ∇K
and results in [58] or [59] we have

‖V r
dyadKnf‖p .p 2−n‖f‖p, 1 < p ≤ ∞, r > 2,

‖V r
shKnf‖p .p 2−n‖f‖p, 1 < p ≤ ∞, r ≥ 2.

The kernel Kn
t is supported in {x : |x| ≤ 2n−1t} and from our assumptions

it is easy to see that the rescaled estimate∥∥V r
[1,2]{2

ndKn
t (2n·) ∗ f}

∥∥
q
. 2−n‖f‖p, 1 ≤ p ≤ q ≤ ∞, 1 ≤ r ≤ ∞,
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holds. Moreover, using the bound for ∇K and ∇2K we also get∥∥V r
[1,2]{2

ndKn
t (2n·) ∗∆hf}

∥∥
q
. 2n(1/r−1)|h|1/r‖f‖p

for 1 ≤ p ≤ q ≤ ∞, 1 < r ≤ ∞. Applications of Theorem 5.2 and Theorem
5.1 (for `r-sums and with the choice of B2 a subspace of V r

[1,2] of large finite

dimension) together with the monotone convergence theorem yield

|〈V r
dyadKnf, ω〉| . 2−nΛ∗p,q′(f, ω), r > 2,

|〈V r
shKnf, ω〉| . 2−n(1−1/r)Λ∗p,q′(f, ω), r ≥ 2.

The proof is completed by summation in n. �

Appendix B. Sparse domination: Cases where p = 1 or q =∞

Here we describe analogues of our main result Theorem 1.1 which cover
cases where p = 1 or q =∞; we refer to Remark (iv) following the statement
of Theorem 1.1 for an explanation of why these cases need to be treated
separately. We formulate three different results, one for p = 1, q < ∞,
one for q = ∞, p > 1, and one for p = 1, q = ∞. This allows us to
recover the classical case of Calderón–Zygmund operators, although we do
not claim universality of sparse-domination results here: for example, we do
not recover the sparse domination for Carleson-type operators from [38, 9, 8],
neither the works for p = 1 by Conde-Alonso, Culiuc, Di Plinio and Ou [29]
and by Lerner [78] which also treat results on rough singular integrals, nor
the works for q = ∞ which can often be upgraded to stronger pointwise
sparse domination results of the type (1.1) (see in particular [77], [80], [85]).

We will sketch the proofs of our results, indicating only what modifications
need to be made compared to the proof of Theorem 1.1. Theorems B.1, B.2
and B.3 below have applications to maximal operators, square functions and
long variation operators (as formulated in §5) similar to those of Theorem
1.1. We leave the details to the interested reader.

B.1. The case p = 1, q <∞. If p = 1, one can drop the condition of weak
type (1, 1). Our variant of Theorem 1.1 is then as follows.

Theorem B.1. Let 1 ≤ q < ∞. Let {Tj}j∈Z be a family of operators in
OpB1,B2

such that

◦ the support condition (1.6) holds,
◦ the restricted strong type (q, q) condition (1.7b) holds,
◦ the single scale (1, q) condition (1.8) holds,
◦ the single scale ε-regularity conditions (1.9a), (1.9b) hold with p = 1.

Define

C = A(q) +A◦(1, q) log
(
2 + B

A◦(1,q)

)
.
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Then, for all integers N1, N2 with N1 ≤ N2,

∥∥∥ N2∑
j=N1

Tj

∥∥∥
Spγ(1,B1,q′,B∗2 )

.q,ε,γ,d C.

Proof. We argue as in the proof of Theorem 1.1, with the decomposition
(4.13) and the bound (4.14). The terms (4.15a), (4.15b) are handled exactly
as in the proof of Theorem 1.1. Consider the splitting of III as in (4.19).
The terms (4.19c) and (4.19d) are estimated as in the proof of Theorem 1.1.
We are thus only left with estimating the term

III1 + III2 =
∑

N1≤j≤N2

∑
W∈W
L(W )<j

〈Tjb1,W , g2〉.

The argument in the proof of Theorem 1.1 does no longer work; recall that
for p > 1 these terms were bounded immediately via the weak type (p, p)

condition (1.7a) and the duality of Lp,∞B∗∗2
and Lp

′,1
B∗2

. Instead, here we will

bound III1 + III2 using (1.8) and the regularity condition (1.9a), close in
spirit to the bounds of the terms IV1 and IV2 (defined in (4.25)) in the proof
of Theorem 1.1.

We let 0 < ε′ < min{1/q′, ε} and ` > 0 be as in (4.24), that is,

2` <
100

ε′
(
2 +

B

A◦(1, q)

)
≤ 2`+1.

Let Rj be the collection of dyadic subcubes of Q0 of side length 2j . We tile
Q0 into such cubes and write

III1 + III2 =
∑
s

ĨIIs,

where

ĨIIs =
∑

N1≤j≤N2

∑
R∈Rj

〈 ∑
W⊂R

L(W )=j−s

Tjb1,W , g213R

〉
. (B.1)

We first note

‖Tj‖L1
B1
→LqB2

. A◦(1, q)2
−jd(1− 1

q
)
, (B.2a)

‖Tj(I− Es−j)‖L1
B1
→LqB2

.ε B2
−jd(1− 1

q
)
2−ε

′s. (B.2b)

where (B.2a) follows from the single scale (1, q) condition (1.8) and (B.2b)
follows from the single scale ε-regularity condition (1.9a) and Corollary 3.5.
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For L(W ) = j − s, we have b1,W = (I − Es−j)f1,W . Let R ∈ Rj . By
(B.2a) we get∣∣∣〈 ∑

W⊂R
L(W )=j−s

Tjb1,W , g213R

〉∣∣∣
≤
∥∥∥Tj ∑

W⊂R
L(W )=j−s

b1,W

∥∥∥
LqB2

∥∥g213R

∥∥
Lq
′
B∗2

. A◦(1, q)|R|−(1− 1
q

)
∑
W⊂R

L(W )=j−s

‖b1,W ‖L1
B1
|R|1/q′〈f2〉3Q0,q′

. A◦(1, q)
∑
W⊂R

L(W )=j−s

|W |〈f1〉Q0,1
〈f2〉3Q0,q′

, (B.3a)

and by (B.2b),∣∣∣〈 ∑
W⊂R

L(W )=j−s

Tjb1,W , g213R

〉∣∣∣
≤
∥∥∥Tj(I − Es−j)

∑
W⊂R

L(W )=j−s

f1,W

∥∥∥
LqB2

∥∥g213R

∥∥
Lq
′
B∗2

.ε B2−ε
′s|R|−(1− 1

q
)

∑
W⊂R

L(W )=j−s

‖f1,W ‖L1
B1
|R|1/q′〈f2〉3Q0,q′

. B2−ε
′s

∑
W⊂R

L(W )=j−s

|W |〈f1〉Q0,1
〈f2〉3Q0,q′

. (B.3b)

Note that in obtaining the above bounds we have used (4.9a) and (4.10).

In the above definition (B.1) for ĨIIs we write j = sn+ i with i = 1, . . . , s
so that

|ĨIIs| .ε min{A◦(1, q), B2−ε
′s}

s∑
i=1

∑
n∈Z

sn+i∈[N1,N2]

∑
R∈Rsn+i

∑
W⊂R

L(W )=sn+i−s

|W |〈f1〉Q0,p
〈f2〉3Q0,q′

.

Now interchange the order of summation; here consider for fixed W ∈ W
the set of all triples (R,n, i) such that L(W ) = s(n− 1) + i, R ∈ Rsn+i and
W ⊂ 3R, and observe that the cardinality of this set is 1. Combining this
with the above estimates and summing over the disjoint cubes W ∈ W we
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obtain the bound

|III1 + III2| .d,γ,ε 〈f1〉Q0,1
〈f2〉3Q0,q′

∑
W∈W

|W |
∞∑
s=1

min{A◦(1, q), B2−ε
′s}

. A◦(1, q) log
(
2 +

B

A◦(1, q)

)
|Q0|〈f1〉Q0,1

〈f2〉3Q0,q′
,

as desired. �

In the spirit of Section 2, it is possible to deduce that the sparse bound in
Theorem B.1 implies that the multi-scale sums

∑N2
j=N1

Tj are of weak-type

(1, 1). The proof of this fact is slightly different than the one given in Section
2 for p > 1, as it cannot rely on the duality between Lp,∞ and Lp,1. We
refer to the reader to [29, Appendix B] for details.

B.2. The case p > 1, q =∞. If q =∞ one can drop the restricted strong
type (q, q) condition (1.7b). Our variant of Theorem 1.1 is then as follows.

Theorem B.2. Let 1 < p ≤ ∞. Let {Tj}j∈Z be a family of operators in
OpB1,B2

such that

◦ the support condition (1.6) holds,
◦ the weak type (p, p) condition (1.7a) holds,
◦ the single scale (p,∞) condition (1.8) holds,
◦ the single scale ε-regularity conditions (1.9a), (1.9b) hold with q =
∞.

Define
C = A(p) +A◦(p,∞) log

(
2 + B

A◦(p,∞)

)
.

Then, for all integers N1, N2 with N1 ≤ N2,∥∥∥ N2∑
j=N1

Tj

∥∥∥
Spγ(p,B1,1,B∗2 )

.p,ε,γ,d C.

Proof. Again we argue as in the proof of Theorem 1.1 and describe the main
induction step. Using the previous notations we now decompose

〈Sf1, f2〉 = I + II + III + IV (B.4)

where

I =
∑
W∈W

〈SW f1, f2〉

II = 〈(S −
∑
W∈W

SW )f1, g2〉

III = 〈(S −
∑
W∈W

SW )g1, b2〉

IV = 〈(S −
∑
W∈W

SW )b1, b2〉.
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Note that the numbering here is slightly different from the one in the proof
of Theorem 1.1. We deal with the term I using the induction hypothesis as
in the proof of Theorem 1.1 and, using the argument therein, it suffices to
show that the terms II, III and IV are bounded by c C|Q0|〈f1〉Q0,p

〈f2〉3Q0,1
.

We first consider II = II1 − II2 where

II1 = 〈Sf1, g2〉, II2 =
∑
W

〈SW f1, g2〉.

Here we use the weak type (p, p) assumption (1.7a) for p > 1 and (4.11) for
r2 = p′ <∞ to get

〈Sf1, g2〉 ≤ ‖Sf1‖Lp,∞
B∗∗2
‖g213Q0‖Lp′,1

B∗2

. A(p)‖f1‖p〈f2〉3Q0,1
|Q0|1−1/p

. A(p)|Q0|〈f1〉p,Q0
〈f2〉3Q0,1

and ∑
W∈W

〈SW f1, g2〉 ≤
∑
W

‖SW [f11W ]‖Lp,∞
B∗∗2
‖g2‖L∞

B∗2
‖13W ‖Lp′,1

B∗2

. A(p)
∑
W∈W

‖f11W ‖p〈f2〉3Q0,1
|W |1−1/p

. A(p)
∑
W∈W

|W |〈f1〉Q0,p
〈f2〉3Q0,1

and hence, by the disjointness of the cubes W ∈ W ,

|II| ≤ |II1|+ |II2| . A(p)|Q0|〈f1〉p,Q0
〈f2〉3Q0,1

. (B.5)

The last term IV corresponds exactly to the sum III3 + III4 in the proof
of Theorem 1.1, defined in (4.19c), (4.19d), and it is therefore treated in the
same way; here the weak type and restricted strong type assumptions are
not used. In particular, we obtain

|IV| . A◦(p,∞) log
(
2 +

B

A◦(p,∞)

)
|Q0|〈f1〉p,Q0

〈f2〉3Q0,1
. (B.6)

It remains to bound the term III. By the definition of g1 and SW we have∑
W∈W

SW g1 =
∑
W∈W

L(W )∑
j=N1

Tj [avW [f1]1W ] =

N2∑
j=N1

∑
W∈W
j≤L(W )

Tj [avW [f1]1W ]

and thus we may split III = III1 + III2 where

III1 = 〈S[g11Ω{ ], b2〉

III2 =

N2∑
j=N1

∑
W∈W
L(W )<j

〈Tj [avW [f1]1W ], b2〉.
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Let Rj be the collection of dyadic subcubes of Q0 of side length 2j . We tile
Q0 into such cubes and write

III1 =

N2∑
j=N1

∑
R∈Rj

〈Tj [g11Ω{∩R], b2〉 =

N2∑
j=N1

∑
R∈Rj

〈Tj [g11Ω{∩R],
∑
W ′∈W

b2,W ′13R〉.

Next, note that in order to have 〈Tj [g11Ω{∩R],
∑

W ′∈W b2,W ′13R〉 6= 0 we

must have that Ω{∩R 6= ∅ and W ′∩3R 6= ∅. As W ′ ∈ W , the above implies

5 diam(W ′) ≤ dist(W ′,Ω{) ≤ 3 diam(R)

and therefore L(W ′) < j. Thus,

III1 =

N2∑
j=N1

∑
R∈Rj

〈Tj [g11Ω{∩R],
∑
W ′∈W
L(W ′)<j

b2,W ′13R〉. (B.7)

We next decompose III2 = III2,1 + III2,2, where

III2,1 :=

N2∑
j=N1

〈
Tj
[ ∑
W∈W
L(W )<j

avW [f1]1W
]
,
∑
W ′∈W
L(W ′)≥j

b2,W ′
〉
, (B.8a)

III2,2 :=

N2∑
j=N1

∑
W∈W
L(W )<j

〈
Tj [avW [f1]1W ],

∑
W ′∈W
L(W ′)<j

b2,W ′
〉
. (B.8b)

The term III2,1 can be treated as in the estimation of the term III3 in
the proof of Theorem 1.1, defined in (4.19c), as cancellation does not play
a role in this argument. The geometry expressed in (4.20) is crucial, i.e. we
have likewise

〈Tj [avW f11W ], b2,W ′〉 6= 0

L(W ) < j ≤ L(W ′)

}
=⇒ j ≤ L(W ′) ≤ L(W ) + 2 ≤ j + 2.

(B.9)
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This implies

|III2,1| ≤
∑

N1≤j≤N2

∑
W ′∈W:

j≤L(W ′)≤j+2

∑
W∈W:

L(W ′)−2≤L(W )≤j
W⊂3W ′

|〈Tj [avW [f1]1W ], b2,W ′〉|

≤ A◦(p,∞)
∑

N1≤j≤N2

2−jd/p
∑

W,W ′∈W:W⊂3W ′

j≤L(W ′)≤j+2
L(W ′)−2≤L(W )≤j

‖avW [f1]1W ‖LpB1
‖b2,W ′‖L1

B∗2

. A◦(p,∞)〈f1〉Q0,p
〈f2〉3Q0,1

×
∑

N1≤j≤N2

∑
W,W ′:W⊂3W ′

j≤L(W ′)≤j+2
L(W ′)−2≤L(W )≤j

2−jd/p|W |1/p|W ′|

. A◦(p,∞)〈f1〉Q0,p
〈f2〉3Q0,1

∑
W ′∈W

|W ′| . A◦(p,∞)|Q0|〈f1〉Q0,p
〈f2〉3Q0,1

.

The terms III1 and III2,2 can be treated in a similar way as in the estima-
tion of the terms IV1, IV3 (defined in (4.25)) in the proof of Theorem 1.1.
Let 0 < ε′ < min{1/p, ε} and ` > 0 be as in (4.24). Then we split

III1 = IIIlg
1 + IIIsm

1 , III2,2 = IIIlg
2,2 + IIIsm

2,2

where

IIIlg
1 =

N2∑
j=N1

∑
R∈Rj

∑̀
s=1

〈
Tj [g11Ω{∩R],

∑
W ′∈W

L(W ′)=j−s

b2,W ′13R

〉

IIIsm
1 =

N2∑
j=N1

∑
R∈Rj

∞∑
s=`+1

〈
g11Ω{∩R, T

∗
j

[ ∑
W ′∈W

L(W ′)=j−s

b2,W ′13R

]〉
and

IIIlg
2,2 =

N2∑
j=N1

∑
R∈Rj

∑̀
s=1

〈
∑
W⊂R
L(W )<j

Tj [avW [f1]1W ],
∑
W ′∈W

L(W ′)=j−s

b2,W ′13R〉,

IIIsm
2,2 =

N2∑
j=N1

∑
R∈Rj

∞∑
s=`+1

〈
∑
W⊂R
L(W )<j

avW [f1]1W , T
∗
j

[ ∑
W ′∈W

L(W ′)=j−s

b2,W ′13R

]
〉.

Observe that the terms IIIsm
1 , IIIsm

2,2 involve very small cubes W ′ for which

the cancellation of b2,W ′ can be most effectively used. The terms IIIlg
1 , IIIlg

2,2

involve larger cubes; for these terms it is more effective to use the single
scale (p, q) conditions (1.8).



MULTI-SCALE SPARSE DOMINATION 93

We note that the terms IIIlg
1 and IIIlg

2,2 behave very similarly, and also the
terms IIIsm

1 and IIIsm
2,2.

Indeed, if hR, h̃R denote either of the first functions on the bilinear form,

hR(x) = g1(x)1Ω{∩R, h̃R(x) =
∑
W⊂R
L(W )<j

avW [f1]1W (x),

then it follows from the definition of Ω{ and the disjointness of the W ∈ W
that hR, h̃R share the relevant property

‖hR‖LrB1
, ‖h̃R‖LrB1

≤ |R|1/r〈f1〉Q0,p
, 1 ≤ r ≤ ∞,

which we will use with r = p.

By the above considerations, the hypothesis (1.8) and (4.9a) we have

IIIlg
1 =

N2∑
j=N1

∑
R∈Rj

∑̀
s=1

〈TjhR,
∑
W ′∈W

L(W ′)=j−s2

b2,W ′13R〉

.
∑̀
s=1

N2∑
j=N1

∑
R∈Rj

A◦(p,∞)2−jd/p‖hR‖LpB1

∥∥∥ ∑
W ′∈W

L(W ′)=j−s

b2,W ′13R

∥∥∥
L1
B∗2

.
∑̀
s=1

A◦(p,∞)〈f1〉Q0,p

N2∑
j=N1

∑
R∈Rj

∑
W ′⊂3R

L(W ′)=j−s

‖b2,W ′‖L1
B∗2

. A◦(p,∞)〈f1〉Q0,p
〈f2〉3Q0,1

∑̀
s=1

N2∑
j=N1

∑
W ′∈W

L(W ′)=j−s

|W ′|

. `A◦(p,∞)|Q0|〈f1〉Q0,p
〈f2〉3Q0,1

and hence, by the definition of `,

IIIlg
1 . A◦(p,∞) log(2 +

B

A◦(p,∞)
)|Q0|〈f1〉Q0,p

〈f2〉3Q0,1
.

Similarly we show (after replacing hR with h̃R in the above calculation)

IIIlg
2,2 . A◦(p,∞) log(2 +

B

A◦(p,∞)
)|Q0|〈f1〉Q0,p

〈f2〉3Q0,1
.

For the estimation of IIIsm
1 , IIIsm

2,2 we use the ε-regularity property (1.9b)
and Corollary 3.5 to get

‖T ∗j (I− Es−j)‖L1
B1
→Lp

′
B2

.ε B2−jd/p2−εs. (B.10)
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Moreover we use the formula b2,W ′ = (I−Es−j)f2,W ′ , valid for L(W ′) = j−s.
Thus, via Hölder’s inequality

N2∑
j=N1

∑
R∈Rj

∞∑
s=`+1

〈hR, T ∗j
[ ∑

W ′∈W
L(W ′)=j−s

b2,W ′13R

]
〉

.
N2∑
j=N1

∑
s=`+1

‖hR‖LpB1
‖T ∗j (I − Es−j)‖L1

B∗2
→Lp

′
B1

∥∥∥ ∑
W ′∈W

L(W ′)=j−s

f2,W ′13R

∥∥∥
L1
B∗2

.
N2∑
j=N1

∑
R∈Rj

∞∑
s=`+1

|R|1/p〈f1〉Q0,p
B2−ε

′s2−jd/p
∥∥∥ ∑

W ′∈W
L(W ′)=j−s2

f2,W ′13R

∥∥∥
L1
B∗2

.
N2∑
j=N1

∞∑
s=`+1

B2−ε
′s〈f1〉Q0,p

∑
R∈Rj

∑
W ′⊆3R

L(W ′)=j−s

‖f2,W ′‖L1
B∗2

.
N2∑
j=N1

∞∑
s=`+1

B2−ε
′s〈f1〉Q0,p

〈f2〉3Q0,1

∑
R∈Rj

∑
W ′⊆3R

L(W ′)=j−s

|W ′|.

We sum in W ′ and then use
∑∞

s=`+1B2−ε
′s . A◦(p,∞) to obtain

|IIIsm
1 | . A◦(p,∞)|Q0|〈f1〉Q0,p

〈f2〉3Q0,1
.

In exactly the same way (replacing hR by h̃R) we obtain

|IIIsm
2,2| . A◦(p,∞)|Q0|〈f1〉Q0,p

〈f2〉3Q0,1
.

This concludes the proof. �

B.3. The case p = 1 and q = ∞. In this case we can get rid of both the
weak (p, p) and restricted strong type (q, q) hypotheses, but we shall still
assume either a weak-type estimate (r, r) or restricted strong type (r, r) for
some 1 < r <∞.

Theorem B.3. Let {Tj}j∈Z be a family of operators in OpB1,B2
such that

◦ the support condition (1.6) holds,
◦ there exists r ∈ (1,∞) so that either the weak type (r, r) condition

(1.7a) holds or the restricted strong type (r, r) condition (1.7b) holds,
◦ the single scale (1,∞) condition (1.8) holds,
◦ the single scale ε-regularity conditions (1.9a), (1.9b) hold with p = 1

and q =∞.

Define

C = A(r) +A◦(1,∞) log
(
2 + B

A◦(1,∞)

)
.



MULTI-SCALE SPARSE DOMINATION 95

Then, for all integers N1, N2 with N1 ≤ N2,∥∥∥ N2∑
j=N1

Tj

∥∥∥
Spγ(1,B1,1,B∗2 )

.r,ε,γ,d C.

Sketch of proof. We use the terminology in the proofs of Theorems B.1 and
B.2. An examination of the proofs reveals that it only remains to establish
the inequality

|〈(S −
∑
W∈W

SW )g1, g2〉| . A(r)|Q0|〈f1〉Q0,1
〈f2〉3Q0,1

, (B.11)

either under the restricted strong type (r, r) assumption (1.7b), or under
the weak type (r, r) assumption (1.7a). Here we will strongly use (4.10) for
both g1 and g2.

We first verify (B.11) assuming (1.7b). By Hölder’s inequality,

|〈Sg1, g2〉| . ‖Sg1‖LrB1
‖g2‖Lr′

B∗2

. A(r)‖g1‖Lr,1B1

|Q0|1/r
′‖g2‖L∞

B∗2

. A(r)|Q0|〈f1〉Q0,p
〈f2〉3Q0,1

.

Moreover for each W ∈ W

|〈SW g1, g2〉| = |〈SW [g11W ], g213W 〉| ≤ ‖SW [g11W ]‖LrB1
‖g213W ‖Lr′

B∗2

. A(r)‖g11W ‖Lr,1B1

|W |1/r′‖g213W ‖L∞
B∗2
. A(r)|W |〈f1〉Q0,p

〈f2〉3Q0,1
,

and by summing over the disjoint cubes W ∈ W we obtain∑
W∈W

∣∣〈SW g1, g2〉
∣∣ . A(r)|Q0|〈f1〉Q0,p

〈f2〉3Q0,1
.

Combining the two bounds yields (B.11) (under the assumption (1.7b)).

We now verify (B.11) assuming (1.7a). First, by Hölder’s inequality for
Lorentz spaces,

|〈Sg1, g2〉| . ‖Sg1‖Lr,∞B1
‖g2‖Lr′,1

B∗2

. A(r)‖g1‖LrB1
|Q0|1/r

′‖g2‖L∞
B∗2

. |Q0|〈f1〉Q0,p
〈f2〉3Q0,1

.

Similarly, for all W ∈ W ,

|〈SW g1, g2〉| . |W |〈f1〉Q0,p
〈f2〉3Q0,1

and then after summation∑
W∈W

∣∣〈SW g1, g2〉| . |Q0|〈f1〉Q0,p
〈f2〉3Q0,1

.

This yields (B.11) (under the assumption (1.7a)). �
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Appendix C. Facts about Fourier multipliers

For completeness, we provide proofs of the facts stated in the remark after
the definition of the B[m]. The proofs will be given for scalar multipliers
but they carry over to the setting with L(H1,H2)-valued multipliers. We
start with the following simple observations.

Lemma C.1. Let Ψ ∈ C∞c (Rd) be supported in {x ∈ Rd : 1/2 < |x| < 2}.
Let Φ ∈ C∞c (Rd) be supported in {x ∈ Rd : |x| < 2}. Let N > d and κ be
such that

sup
x∈Rd

(1 + |x|)N |κ(x)| ≤ 1.

Then the following holds.

(i) Let 1 ≤ ρ ≤ R/8. Then∥∥[κ̂(m ∗RdΨ̂(R·))
]
∗ ρdΦ̂(ρ·)

∥∥
Mp,q . R

d−N∥∥m ∗RdΨ̂(R·)
∥∥
Mp,q

(ii) Let 1 ≤ ρ ≤ R/8. Then∥∥[κ̂(m ∗ ρdΦ̂(ρ·))
]
∗RdΨ̂(R·)

∥∥
Mp,q . R

d−N∥∥m ∗ ρdΦ̂(ρ·)
∥∥
Mp,q

Proof. Let K = F−1[m] and set ‖K‖cv(p,q) := ‖K̂‖Mp,q . The expression in
(i) is equal to∥∥∥Φ(ρ−1·)

∫
κ(y)K(· − y)Ψ(R−1(· − y)) dy

∥∥∥
cv(p,q)

.

Observe that by the support properties of Φ, Ψ the integral in y is extended
over R/2 − 2ρ ≤ |y| ≤ 2R + 2ρ, hence |y| ∈ (R/4, 4R). Thus the displayed
quantity is bounded by∫

R/4≤|y|≤4R
|κ(y)|‖K(· − y)Ψ(R−1(· − y))‖cv(p,q) dy

≤
∫
R/4≤|y|≤4R

|κ(y)| dy ‖m ∗RdΨ̂(R·)‖Mp,q

and the desired bound follows from the hypothesis on κ. Part (ii) is proved
in the same way. �

Lemma C.2. Let Ψn, n ≥ 0, be as in §6.1. Let N > d and let χ be such

that ‖∂αξ χ‖1 ≤ A for all α ∈ N0 such that |α| ≤ N . Let h ∈ L1(R̂d) be

supported in {ξ ∈ R̂d : 1/2 ≤ |ξ| ≤ 2}. Then

‖(hχ) ∗ Ψ̂`‖Mp,q . A
∞∑
n=0

CN−d(n, `)‖h ∗ Ψ̂n‖Mp,q

for any ` ≥ 0, where

CN1(n, `) :=


1 if `− 5 ≤ n ≤ `+ 5,

2−`N1 if 0 ≤ n < `− 5,

2−nN1 if `+ 5 < n.

(C.1)
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Proof. We write (hχ)∗Ψ̂` =
∑∞

n=0[(h∗Ψ̂n)χ]∗Ψ̂`. The result then follows by
noting that |F−1[χ](x)| . (1+ |x|)−N and an application of Lemma C.1. �

C.1. Multiplication by smooth symbols. The above observations can
be applied to show that the space defined by the finiteness of B[m] in (6.2a) is
invariant under multiplication with multipliers satisfying a standard symbol
of order 0 assumption. There is of course also a corresponding similar and
immediate statement for B◦[m].

Lemma C.3. Let a ∈ C∞(R̂d). Then

B[am] . B[m]
∑

|α|≤2d+1

sup
ξ∈R̂d
|ξ||α||∂αa(ξ)|,

where α ∈ N0. Consequently, if |∂αa(ξ)| .α (1 + |ξ|)−|α| for all ξ ∈ R̂d and
all α ∈ Nd0, we have B[am] . B[m].

Proof. Let φ̃ ∈ C∞c (R̂d) be supported in {ξ ∈ R̂d : 1/4 ≤ |ξ| ≤ 4} and such

that φ̃(ξ) = 1 for 1/2 ≤ |ξ| ≤ 2. Let at(ξ) = φ̃(ξ)a(tξ).

[ϕa(t·)m(t·)] ∗ Ψ̂` =
∞∑
n=0

[(
[ϕm(t·)] ∗ Ψ̂n

)
at
]
∗ Ψ̂`.

We have
∑
|α|≤2d+1 |∂αat(ξ)| . 1, uniformly in t. By Lemma C.2 with

N1 = 2d+ 1,

∞∑
`=0

(1 + `)2`d(1/p−1/q)‖[φa(t·)m(t·)] ∗ Ψ̂`‖Mp,q

.
∞∑
`=0

∞∑
n=0

Cd+1(n, `)(1 + `)2`d(1/p−1/q)‖[φm(t·)] ∗ Ψ̂n‖Mp,q

.
∞∑
n=0

(1 + n)2nd(1/p−1/q)‖[ϕm(t·)] ∗ Ψ̂n‖Mp,q

where in the last line we used that

sup
n≥0

∞∑
`=0

1 + `

1 + n
2

(`−n)d( 1
p
− 1
q

)
Cd+1(n, `) <∞. �

C.2. Independence of φ,Ψ in the finiteness of B[m]. The previous
argument in Lemma C.3 can also be used to show that the space defined by
the finiteness of B[m], B◦[m] is independent of the specific choices of φ, Ψ
in §6.1. We only give the argument for B[m] and a similar reasoning applies
to B◦[m].
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Lemma C.4. Denote the left hand side of (6.2a) by B[m,φ,Ψ]. Given two

choices of (φ,Ψ) and (φ̃, Ψ̃) with the specifications in the first paragraph of
§6.1, there is a constant C = C(φ,Ψ) > 1 such that

C−1B[m,φ,Ψ] ≤ B[m, φ̃, Ψ̃] ≤ CB[m,φ,Ψ].

Proof. We show the second inequality. Note that
∫∞

0 |φ(sξ)|2 dss ≥ c > 0 for
ξ 6= 0. Let βs be defined by

β̂s(ξ) =
φ̃(s−1ξ)φ(ξ)∫∞

0 |φ(σs−1ξ)|2 dσσ
.

We then have, in view of the support conditions on φ and φ̃,

φ̃(ξ) =

∫ 4

1/4
β̂s(sξ)φ(sξ)

ds

s

and hence∥∥φ̃m(t·) ∗ ̂̃Ψ`

∥∥
Mp,q ≤

∫ 4

1/4

∥∥[β̂s(s·)φ(s·)m(t·)] ∗ ̂̃Ψ`

∥∥
Mp,q

ds

s

=

∫ 4

1/4
s
d( 1
p
− 1
q

)∥∥[β̂sφ(·)m(ts−1·)] ∗ s−d ̂̃Ψ`(s
−1·)

∥∥
Mp,q

ds

s

.
∞∑
n=0

∫ 4

1/4

∥∥(β̂s([φ(·)m(ts−1·)] ∗ Ψ̂n

))
∗ s−d ̂̃Ψ`(s

−1·)
∥∥
Mp,q

ds

s
.

By Lemma C.2 this is dominated by

CN−d(n, `)

∫ 4

1/4

∥∥[φ(·)m(ts−1·)] ∗ Ψ̂n

∥∥
Mp,q

ds

s
,

where CN−d(n, `) is as in (C.1). It is now easy to see that for N ≥ 2d+ 1∑
`≥0

2
`d( 1

p
− 1
q

)
(1 + `)

∥∥φ̃m(t·) ∗ ̂̃Ψ`

∥∥
Mp,q

.
∫ 4

1/4

∑
`≥0

∑
n≥0

CN−d(n, `)2
`d( 1

p
− 1
q

)
(1 + `)

∥∥[φ(·)m(ts−1·)] ∗ Ψ̂n

∥∥
Mp,q

ds

s

. sup
τ

∞∑
n=0

2
nd( 1

p
− 1
q

)∥∥[φ(·)m(τ ·)] ∗ Ψ̂n

∥∥
Mp,q .

This establishes the inequality B[m, φ̃, Ψ̃] ≤ CB[m,ϕ,Ψ] and the converse

follows by interchanging the roles of (φ,Ψ) and (φ̃, Ψ̃). �
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[92] Malabika Pramanik and Andreas Seeger, Lp regularity of averages over curves and
bounds for associated maximal operators, Amer. J. Math. 129 (2007), no. 1, 61–103.
MR 2288738

[93] Joris Roos and Andreas Seeger, Spherical maximal functions and fractal dimensions
of dilation sets, Amer. J. Math. 145 (2023), 1077-1110. MR 4621382

[94] Joris Roos, Andreas Seeger, and Rajula Srivastava, Lebesgue space estimates for
spherical maximal functions on Heisenberg groups, Int. Math. Res. Notices IMRN 24
(2022), 19222–19257. MR 4523247 arXiv 2103.09734 (2021). To appear in IMRN.

[95] Wilhelm Schlag, A generalization of Bourgain’s circular maximal theorem, J. Amer.
Math. Soc. 10 (1997), no. 1, 103–122. MR 1388870

[96] Wilhelm Schlag and Christopher D. Sogge, Local smoothing estimates related to the
circular maximal theorem, Math. Res. Lett. 4 (1997), no. 1, 1–15. MR 1432805

[97] Andreas Seeger, On quasiradial Fourier multipliers and their maximal functions, J.
Reine Angew. Math. 370 (1986), 61–73. MR 852510

[98] , Some inequalities for singular convolution operators in Lp-spaces, Trans.
Amer. Math. Soc. 308 (1988), no. 1, 259–272. MR 955772

[99] , Remarks on singular convolution operators, Studia Math. 97 (1990), no. 2,
91–114. MR 1083340

[100] Andreas Seeger and Terence Tao, Sharp Lorentz space estimates for rough operators,
Math. Ann. 320 (2001), no. 2, 381–415. MR 1839769

[101] Andreas Seeger, Stephen Wainger, and James Wright, Pointwise convergence of
spherical means, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 1, 115–124.
MR 1329463

[102] Elias M. Stein, Localization and summability of multiple Fourier series, Acta Math.
100 (1958), 93–147. MR 105592

[103] , Singular integrals and differentiability properties of functions, Princeton
Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970.
MR 0290095 (44 #7280)

[104] , Lp boundedness of certain convolution operators, Bull. Amer. Math. Soc.
77 (1971), 404–405. MR 276757

[105] , Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73
(1976), no. 7, 2174–2175. MR 420116

[106] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean
spaces, Princeton University Press, Princeton, N.J., 1971, Princeton Mathematical
Series, No. 32. MR 0304972

[107] Elias M. Stein and Antoni Zygmund, Boundedness of translation invariant operators
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