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Figure 1: Our ViCA-NeRF is the first work that achieves multi-view consistent 3D editing with
text instructions, applicable across a broad range of scenes and instructions. Moreover, ViCA-NeRF
exhibits controllability, allowing for early control of final results by editing key views. Notably,
ViCA-NeRF is also efficient, surpassing state-of-the-art Instruct-NeRF2NeRF by being 3 times faster.

Abstract

We introduce ViCA-NeRF, the first view-consistency-aware method for 3D editing
with text instructions. In addition to the implicit neural radiance field (NeRF)
modeling, our key insight is to exploit two sources of regularization that explicitly

propagate the editing information across different views, thus ensuring multi-view
consistency. For geometric regularization, we leverage the depth information
derived from NeRF to establish image correspondences between different views.
For learned regularization, we align the latent codes in the 2D diffusion model
between edited and unedited images, enabling us to edit key views and propagate
the update throughout the entire scene. Incorporating these two strategies, our
ViCA-NeRF operates in two stages. In the initial stage, we blend edits from
different views to create a preliminary 3D edit. This is followed by a second stage of
NeRF training, dedicated to further refining the scene’s appearance. Experimental
results demonstrate that ViCA-NeRF provides more flexible, efficient (3 times
faster) editing with higher levels of consistency and details, compared with the state
of the art. Our code is available at: https://github.com/Dongjiahua/VICA-NeRF.

1 Introduction

The recent advancements in 3D reconstruction technology, exemplified by the neural radiance field
(NeRF) [1] and its variants, have significantly improved the convenience of collecting real-world
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3D data. Such progress has opened up new opportunities for the development of various 3D-based
applications. By capturing RGB data from multiple views and obtaining corresponding camera
parameters, NeRF enables efficient 3D representation and rendering from any viewpoint. As the
availability of diverse 3D data increases, so does the demand for 3D editing capabilities.

However, performing 3D editing on NeRF is not straightforward. The implicit representation of
NeRF makes it challenging to directly modify the 3D scene. On the other hand, since NeRF is
trained on RGB images, it can effectively leverage a wealth of existing 2D models. Motivated by
this, state-of-the-art methods, such as Instruct-NeRF2NeRF [2], apply 2D editing on individual
images via a text-instructed diffusion model (e.g., Instruct-Pix2Pix [3]), and then rely exclusively on
NeRF to learn from the updated dataset with edited images and propagate the editing information
across different views. Despite yielding encouraging results, this indirect 3D editing strategy is
time-consuming, because of its iterative process that requires cyclically updating the image dataset
while progressively fine-tuning NeRF parameters. And more seriously, due to the lack of inherent 3D
structure, the editing results from the 2D diffusion model often exhibit significant variations across
different views. This raises a critical concern regarding 3D inconsistency when employing such a
strategy, particularly in cases where the editing operation is aggressive, e.g., “Add some flowers” and

“Turn him into iron man” as illustrated in Figure 1.

To overcome these limitations, in this work we introduce ViCA-NeRF, a View-Consistency-Aware
NeRF editing method. Our key insight is to exploit two additional sources of regularization that
explicitly connect the editing status across different views and correspondingly propagate the editing
information from edited to unedited views, thus ensuring their multi-view consistency. The first
one is geometric regularization. Given that depth information can be obtained from NeRF for free,
we leverage it as a guidance to establish image correspondences between different views and then
project edited pixels in the edited image to the corresponding pixels in other views, thereby enhancing
consistency. This approach allows us to complete preliminary data modifications before fine-tuning
NeRF, as well as enabling users to determine 3D content by selecting the editing results from key 2D
views. Moreover, as our method allows for direct and consistent edits, it is more efficient by avoiding
the need for iterative use of the diffusion model.

The second one is learned regularization. The depth information derived from NeRF can often be
noisy, yielding certain incorrect correspondences. To this end, we further align the latent codes in
the 2D diffusion model (e.g., Instruct-Pix2Pix) between edited and unedited images via a blending
refinement model. Doing so updates the dataset with more view-consistent and homogeneous images,
thereby facilitating NeRF optimization.

Our ViCA-NeRF framework then operates in two stages, with these two crucial regularization
strategies integrated in the first stage. Here, we edit key views and blend such information into every
viewpoint. To achieve this, we employ the diffusion model for blending after a simple projection
mixup. Afterward, the edited images can be used directly for training. An efficient warm-up strategy
is also proposed to adjust the editing scale. In the second stage, which is the NeRF training phase, we
further adjust the dataset. Our method is evaluated on various scenes and text prompts, ranging from
faces to outdoor scenes. We also ablate different components in our method and compare them with
previous work [2]. Experimental results show that ViCA-NeRF achieves higher levels of consistency
and detail, compared with the state of the art.

Our contributions are three-fold. (1) We propose ViCA-NeRF, the first work that explicitly enforces
multi-view consistency in 3D editing tasks. (2) We introduce geometric and learned regularization,
making 3D editing more flexible and controllable by editing key views. (3) Our method significantly
improves the efficiency of 3D editing, achieving a speed 3 times faster than the state of the art.

2 Related Work

Text-to-Image Diffusion Models for 2D Editing. Diffusion models have recently demonstrated
significant capabilities in text-to-image editing tasks [3–8]. Earlier studies have leveraged pre-trained
text-to-image diffusion models for image editing. For instance, SDEdit [8] introduces noise into an
input image and subsequently denoises it through a diffusion model. Despite achieving reasonable
results, this approach tends to lose some of the original image information. Other studies have
concentrated on local inpainting using provided masks [4, 5], enabling the generation of corresponding
content within the masked area with text guidance. More recently, Instruct-Pix2Pix [3] proposes an
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Figure 2: Overview of our ViCA-NeRF. Our proposed method decouples NeRF editing into two
stages. In the first stage, we sample several key views and edit them through Instruct-Pix2Pix. Then,
we use the depth map and camera poses to project edited keyframes to other views and obtain a mixup
dataset. These images are further refined through our blending model. In the second stage, the edited
dataset is directly used to train the NeRF model. Optionally, we can conduct refinement to the dataset
according to the updated NeRF.

approach to editing images based on text instructions. Instruct-Pix2Pix accepts original images and
text prompts as conditions. Trained on datasets of editing instructions and image descriptions, this
approach can effectively capture consistent information from the original image while adhering to
detailed instructions.

In this paper, we adopt Instruct-Pix2Pix as our editing model. Importantly, we further explore the
potential of Instruct-Pix2Pix by extending its application to editing, blending, and refinement tasks in
more challenging 3D editing scenarios.

Implicit 3D Representation. Recently, neural radiance field (NeRF) and its variants have demon-
strated significant potential in the field of 3D modeling [1, 9–14]. Unlike explicit 3D representations
such as point clouds or voxels, NeRF uses an implicit representation to capture highly detailed scene
geometry and appearance. While training a conventional NeRF model can be time-consuming, Instant-
NGP [10] accelerates this process by training a multi-layer perceptron (MLP) with multi-resolution
hash input encoding. Notably, NeRFStudio [9] offers a comprehensive framework that can handle
various types of data. It modularizes each component of NeRF, thereby supporting a broad range of
data. These efforts bridge the gap between image data and 3D representation, making it possible to
guide 3D generation from 2D models. Our work uses the ‘nerfacto’ model from NeRFStudio to fit
real scenes. We also leverage the depth estimated from the model to maintain consistency.

3D Generation. Inspired by the success of 2D diffusion models [15, 16], 3D generation has drawn
great attention in recent years [17–21]. Dream Fusion first proposes to use a score distillation
sampling (SDS) loss as the training target. Later, Magic3D [20] generates higher resolution results
by a coarse-to-fine procedure. Various scenarios have been explored, including generating a detailed
mesh from text prompts [21] and generating novel objects based on images from a few views [18].

Rather than generating new content, our work focuses on editing the 3D representation with text
prompts. By explicitly leveraging 2D editing, we provide a more direct approach to control the final
3D result.

NeRF Editing. Because of the implicit representation of NeRF [1], editing NeRF remains a challenge.
Early attempts [22–32] perform simple editing on shape and color, by using the guidance from
segmentation masks, text prompts, etc. NeuralEditor [33] proposes to exploit a point cloud for
editing and obtain the corresponding NeRF representation. Another line of work tries to modify the
content through text prompts directly. NeRF-Art [34] uses a pre-trained CLIP [35] model to serve
as an additional stylized target for the NeRF model. More recently, Instruct-NeRF2NeRF [2] and
Instrcut-3D-to-3D [36] leverage Instruct-Pix2Pix [3] for editing. They can edit the content of NeRF
with language instructions. However, both require using the diffusion model iteratively in the NeRF
training process, making them less efficient. More importantly, though it shows promising results
on real-world data, Instruct-NeRF2NeRF can only work when the 2D diffusion model produces
consistent results in 3D. Thus, it is unable to generate a detailed result where 2D edits tend to be
different, and it also suffers from making diverse results from the same text prompt.
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Figure 3: Illustration of mixup procedure and blending model. We first mix up the image with
the edited key views. Then, we introduce a blending model to further refine it. The blending model
utilizes two modified Instruct-Pix2Pix (‘Inp2p’) processes. In each process, we generate multiple
results and take their average on the latent code to decode a single final result.

In our work, we propose to use depth guidance for detailed 3D editing. Our ViCA-NeRF only needs
to update the dataset at the start of training and further refine it once, making it significantly more
efficient. In addition, our method results in more detailed and diverse edit results compared with
Instruct-NeRF2NeRF. As several key views guide the whole 3D scene, we allow users to personalize
the final effect on NeRF by choosing 2D edit results.

3 Method

Our ViCA-NeRF framework is shown in Figure 2. The main idea is to use key views to guide
the editing of other views, ensuring better consistency and detail. Given the source NeRF, we first
extract each view’s depth from it and sample a set of key views. Then, we edit these key views
using Instruct-Pix2Pix [3] and propagate the edit result to other views. To address the problem of
incorrect depth estimation from NeRF, we perform mixup on each image and then refine it through
our blending model. The obtained data can be used directly for NeRF training. Optionally, we can
perform post-refinement to the dataset after obtaining more consistent rendering results from NeRF.

3.1 Preliminary

We first elaborate on NeRF, including how we obtain rendered RGB images and coarse depth from
the NeRF model. Subsequently, we present Instruct-NeRF2NeRF, a diffusion model for 2D editing.
With this model, we can perform 2D editing using text and then further enable 3D editing.

Neural Radiance Field. NeRF [1] and its variants [9, 10] are proposed for 3D scene representation.
The approach models a 3D scene as a 5D continuous function, mapping spatial coordinate (x, y, z)
and viewing direction (✓,�) to volume density � and emitted radiance c. For a given set of 2D
images, NeRF is trained to reproduce the observed images. This is achieved by volume rendering,
where rays are traced through the scene and colors are accumulated along each ray to form the final
rendered image. While NeRF does not explicitly predict depth, one common approach is to compute
a weighted average of the distance values along each ray, where the weights are the predicted volume
densities. This process can be conceptualized as approximating the depth along the ray.

Instruct-Pix2Pix. Instruct-Pix2Pix [3] is a 2D diffusion model for image editing. It takes a text
prompt cT and a guidance image cI as conditions. Given an image z0, it first adds noise to the image
to create zt, where t is the timestep to start denoising. With denoising U-Net ✏✓, the predicted noise
can be calculated as

e✏ = ✏✓(zt, t, cI , cT ). (1)

When a predicted noise is calculated, Instruct-Pix2Pix follows the standard denoising process to
update the image zt step by step and obtain the final result z0, which is an edited image consistent
with the initial image and text instruction.
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“Turn the bear into a grizzly bear” “Make it surrounded by flowers” 
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“Turn the bear into a robot bear” “Make it Cyberpunk Style” 
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Figure 4: Qualitative comparison with Instruct-NeRF2NeRF. Our ViCA-NeRF provides more
details compared with Instruct-NeRF2NeRF. In addition, our ViCA-NeRF can handle challenging
prompts, such as “Turn him into a robot,” whereas Instruct-NeRF2NeRF fails in such cases.

3.2 Depth-Guided Sequential Editing

In our approach, we choose to reflect the user’s 2D edits in 3D. Thus, we propose a sequential editing
strategy. By defining certain key views, we sequentially edit them by projecting the previous edits
to the next key view. This is the geometric regularization that explicitly enforces the consistency
between different views.

Sequential Editing with Mixup. The overall procedure of editing is simple yet effective, which
consists of editing key views and projecting to other views. First, we select a sequence of key views
starting from a random view. Then, we sequentially use Instruct-Pix2Pix to edit each view and
project the modification to the following views. At the same time, non-key views are also modified
by projection. After editing all key views, the entire dataset is edited.

Given that we project several key views onto other views when they are edited, each view could be
modified multiple times. Only pixels that have not yet been modified are altered to prevent inadvertent
overwriting. Therefore, modifications from key views are mixed up with each view.

Consequently, our method yields a final result that aligns closely with the modified views, facilitating
a controllable editing process. Since previously modified pixels are not changed until blending
refinement (explained in Section 3.3), the edits of the first few views can dominate the final result.

Key View Selection. We employ key views to make the editing process consistent. This strategy
allows the entire scene to be constrained by a handful of edited views. To ensure the edited views
maintain consistency and bear similar content, we define the modified ratio ⇢ for each view as the
fraction of modified pixels. Then, we use the following equation to select the view with the largest

5



weight w as the next key view:

w =

⇢
⇢ ⇢ < �

�� (⇢� �) ⇢ � �, (2)

where � signifies the maximum desired ratio, which is set to � = 0.3 in all experiments. Intuitively,
each time the next selected key view will have a suitable overlap with the edited region from each of
the previous key views. The key view selection ends when all views’ minimum ⇢ exceeds a certain
threshold.

Depth-Guided Projection. Modern NeRF models are capable of generating depth maps directly,
thereby making it possible to construct geometric relationships between different views. We illustrate
an example of projecting from edited view j to view i as below.

Given an RGB image Ii and its corresponding estimated depth map Di, the 3D point cloud associated
with view i can be calculated as:

pi = P�1(Di,Ki, ⇠i). (3)

Here, Ki denotes the intrinsic parameters, ⇠i represents the extrinsic parameters, and P�1 is a
function mapping 2D coordinates to a 3D point cloud.

To find the corresponding pixels on another view, we project this point cloud to view j as follows:
Ii,j = P (Ij ,Kj , ⇠j , pi), (4)

where Ii,j signifies the color of the pixels projected from Ij onto Ii. In practice, to ensure the correct
correspondence and mitigate the effects of occlusion, we compute the reprojection error to filter out
invalid pairs. By using this correspondence, we can project pixels from view j to view i.

3.3 Blending Refinement Model

The depth information derived from NeRF [1] can often be quite noisy, resulting in noticeable
outliers, so only applying the geometric regularization is insufficient. Specifically, while we can
filter out incorrect correspondences, the remaining pixels and projections from varying lighting
conditions may still introduce artifacts. Furthermore, a reasonable 2D edit in a single view may
appear strange when considered within the overall 3D shape. To address these challenges, we
introduce a blending refinement model that employs two Instruct-Pix2Pix [3] processes, acting as the
learned regularization to improve the overall quality.

Details about the model are shown in Figure 3, where each diffusion process serves unique functions.
During the first pass, we use the mixup image as input and the original image as a condition. This
procedure aims to purify the noisy mixup image by preserving the structural integrity of the original
image. The resulting image appears dissimilar to the consistent mixup image but without any noise.
Thus during the second pass, we use the resulting image from the first pass as input and the mixup
image as the condition. Given the shared semantic information between these two images, the
outcome strives to closely align with the mixup image’s detailed characteristics. Doing so allows
us to swiftly generate a clean, stylized result, bypassing the need for iterative updates to the dataset
during training.

An essential component of our refinement model involves using an average latent code for each
of the two processes. We discovered that the diffusion model tends to generate diverse results,
making it challenging to closely align with the target structure or content. However, this effect can be
substantially mitigated by averaging multiple runs. Specifically, we introduce nr noised latent codes
and update them independently. Finally, we compute the average of the latent codes and decode it
back into the image. This method provides a more stable and consistent output, enhancing the overall
quality of the editing process.

3.4 Warm-Up and Post-Refinement Strategies

To make the editing more efficient and further improve the quality, we propose a warm-up strategy
along with a post-refinement strategy.

Warm-Up. When editing via instruct-Pix2Pix, the extent of editing changes can be modulated
through hyperparameters, such as the guidance scale [15]. However, achieving the desired overall
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Figure 5: Comparison on NeRF-Art. We compare the editing results based on NeRF-Art’s [34]
sequences and edits. Our ViCA-NeRF produces more detailed information and achieves more
substantial changes to the content.

style remains a problem. Although Instruct-NeRF2NeRF ensures consistent stylization, it necessitates
iterative updates, which could inefficiently involve a large number of iterations.

To overcome these limitations, we introduce a strategy to efficiently warm up the editing process by
blending edits directly. This approach is performed before the entire editing process. Specifically, we
randomly select a view to edit, and then project the edited view onto all other views. For a given view
i and an edited view j, an update is calculated as follows:

I 0i = �Ii �mw + (1� �)Ii,j �mw + Ii � (1�mw). (5)

Here, mw denotes the binary mask for the projected area, and � is a hyperparameter employed to
control the ratio preserved from the original pixel value. This efficient warm-up strategy accelerates
the editing process while preserving a high degree of consistency in the stylization.

Post-Refinement. To further enhance the consistency of the edited results, we employ a post-
refinement strategy once the NeRF has been trained on our updated data. We still utilize the modified
Instruct-Pix2Pix with averaging architecture to generate a more accurate target for each view. Unlike
the first stage, this time we employ the rendered image as input while continuing to use the mixup
image as a condition. This post-refinement strategy further refines the consistency and quality of the
final output, contributing to a more cohesive and visually appealing result.

4 Experiments

We conduct experiments on various scenes and text prompts. All our experiments are based on real
scenes with NeRFStudio [9]. We first show some qualitative results and comparisons between our
method and Instruct-NeRF2NeRF [2]. For artistic stylization, we test our method with the cases from
NeRF-Art [34]. Experiments show that we achieve more detailed edits. Based on these scenes, we
further conduct ablation studies on our method, including the effects of different components in the
framework, the warm-up strategy, failure cases, and representative hyperparameters. We also conduct
quantitative evaluation of the results, testing the textual alignment, consistency, and efficiency of our
method.

4.1 Implementation Details

For a fair comparison, our method employs a configuration similar to that of Instruct-NeRF2NeRF.
We utilize the ‘nerfacto’ model from NeRFStudio and Instruct-Pix2Pix [3] as our 2D editing model.
For the diffusion model, we apply distinct hyperparameters for different components. During the
editing of key views, the input timestep t is set within the range [0.5, 0.9]. We employ 10 diffusion
steps for this phase. In the blending refinement model, we set t to 0.6 and nr to 5, and use only
3 diffusion steps. The reduced number of steps enables the model to operate more quickly, since
encoding and decoding are executed only once. The diffusion model provides additional adjustable
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“Turn him into Link from Zelda” 

Figure 6: Different 2D edits and corresponding 3D edits. Our ViCA-NeRF achieves high corre-
spondences between 2D edits and 3D edits, thus enabling users to control the final edits. On the other
hand, our method exhibits high diversity with different random seeds.

Origin Image Mixup Post-Refined RenderedBlended
Improving Consistency

Figure 7: Image update through our ViCA-NeRF. Our blending model effectively eliminates
artifacts and boundaries caused by mixup. The post-refinement step further improves the consistency
with the mixup image and the 3D content.

hyperparameters, such as the image guidance scale SI and the text guidance scale ST . We adopt the
default values of SI = 1.5 and ST = 7.5 from the model without manual adjustment.

For training the NeRF, we use an L1 and LPIPS (Learned Perceptual Image Patch Similarity) loss
throughout the process. Initially, we pre-train the model for 30,000 iterations following the ‘nerfacto’
configuration. Subsequently, we continue to train the model using our proposed method. The optional
post-refinement process occurs at 35,000 iterations. We obtain the final results at 40,000 iterations.

4.2 Qualitative Evaluation

Our qualitative results, illustrated in Figure 4 and Figure 5, demonstrate the effectiveness of our
method in editing scenes through multiple views. We present results on three scenes with varying
complexity, from human figures to large outdoor scenes. We also evaluate the stylization capabilities
of NeRF-Art [34] and compare our results with the previous state of the art.

For comparison with Instruct-NeRF2NeRF, we replicate some cases from their work and assess
several more challenging cases. For simpler tasks such as “turn the bear into a grizzly bear” or “make
it look like it has snowed,” our method achieves results similar to those of Instruct-NeRF2NeRF. This
may be due to the inherent consistency of diffusion models in handling such scenarios. For more
complex tasks that require additional detail, like transforming an object into a robot or adding flowers,
our method shows significant improvements. A notable example is the “Spiderman cas,” where
Instruct-NeRF2NeRF struggles with differentiating lines on the mask, while our method renders a
clear appearance.

When compared on NeRF-Art, our method clearly outperforms the previous techniques by exhibiting
more details and adhering more closely to the desired style. Although we use the same 2D editing
model as Instruct-NeRF2NeRF, we are able to produce more vivid colors and details, which are not
achievable with iterative updates.

Moreover, a significant advantage of our method is that the final 3D edits can be directed through
several key views. This allows us to achieve consistent edits not only across different 3D views but
also between the 2D edits and the 3D renders, as shown in Figure 6.

4.3 Ablation Study

In our ablation study, we first evaluate the individual effects of mixup, blending, and post-refinement
on the quality of editing. Further investigation includes the impact of warm-up iterations and NeRF
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Origin Image warmup=0 warmup=10

Figure 8: Edit distribution with different warm-up configurations. When we use warm-up, the edit
distribution becomes closer to the target distribution.

depth estimation accuracy. We also explore the influence of the parameter � on key view selection for
efficient editing. Each of these components is crucial for understanding the nuances of our method’s
performance.

Model Component Ablation. As shown in Figure 7, the mixup image may initially appear very
noisy and contain artifacts. When we apply our blending model to refine it, the boundary from
copy-pasting and artifacts is removed. However, while maintaining almost all the original content, the
appearance of the image still changes slightly. Finally, when we apply our post-refinement strategy to
update it, the result improves and becomes similar to the rendered result. Notice that the result after
blending is sufficiently good, making further refinement an optional step.

Warm-Up Iteration Ablation. Considering that Instruct-Pix2Pix relies heavily on the input image,
modifications to the input can significantly affect the output distribution. Therefore, to validate our
warm-up procedure, which is designed to alter the scale of editing, we adjust this parameter from 0
(no warm-up) to 30. As Figure 8 illustrates, our findings indicate that while preserving the primary
geometry, our warm-up procedure can effectively act as a controller for adjusting the scale of editing,
introducing only minor computational costs.

Ablation for Depth Estimation Errors. The projection procedure is critical in our framework;
therefore, inferior depth estimation may affect the final result. We conduct an ablation study focusing
on two prevalent scenarios: glossy surfaces and sparser views. As Figure 9a demonstrates, our
model can accurately make modifications to the bookshelf. If the reprojection check is omitted, more
extensive changes are possible, albeit at the cost of losing original details. With sparser views, as
depicted in Figure 9b, our model is capable of editing provided that the NeRF is successfully trained.

Ablation on Key Views. We perform experiments based on the hyperparameter �. Specifically, we
test the results with � set to 0, 0.3, and 1, as illustrated in Figure 10. When � = 0, the view with the
least overlap is selected, resulting in a clear boundary (highlighted in the red box). In other cases, this
issue is mitigated. However, when � = 1, nearly all views are designated as key views, which leads
to reduced efficiency.

4.4 Local Editing

Existing methods often induce simultaneous changes in both background and foreground during
editing, which contradicts specific user intentions that typically focus on altering distinct objects.
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(b) Ablation study on input views

Figure 9: Ablation study with incorrect depth. We study both glossy surfaces and sparser views,
where the results demonstrate that as long as NeRF is built successfully, our model can manage
incorrect depth estimation.
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� = 1
“Turn him into spider man”

� = 0.3� = 0

Figure 10: Ablation study on � in keyframe selection. Our keyframe selection successfully avoids
the boundary problem and achieves efficiency.

propogate

(a) Local mask propagation

w/o local edit w/ local edit
“Turn his face in to a skull”

trained NeRF

(b) Local editing

Figure 11: Application for local editing. Our ViCA-NeRF can be applied with local editing. The
edits can be done for the targeted object without changing the background (e.g., wall).

To address this discrepancy, we introduce a straightforward, user-friendly local editing technique
within our framework. Initially, we employ Segment Anything Thing (SAM) [37] to derive masks
encompassing all components within each image. Subsequently, users pinpoint the target instance
with a single point to isolate it. Following this, we utilize the depth information to project the
identified mask across different views progressively. This process continues as long as the projected
mask sufficiently overlaps with the corresponding mask in the current view. Then, we integrate the
wrapped segmentation mask with the segmented masks in the current view.

Figure 11 exemplifies the process, resulting in a multi-view consistent segmentation that permits
exclusive modification of the human figure, leaving the background intact.

4.5 Discussion

For quantitative evaluation, we adopt the directional score metric utilized in Instruct-Pix2Pix [3] and
the temporal consistency loss employed in Instruct-NeRF2NeRF [2]. Due to the undisclosed split and
text prompts from Instruct-NeRF2NeRF, we establish various difficulty levels to assess performance.
Results and comprehensive details are provided in the supplementary material.

A further benefit of our approach is the decoupling of the NeRF training from the dataset update
process. This separation significantly reduces the computational burden typically imposed by the
diffusion model at each iteration. The only computational expense arises from the warm-up, blending,
and post-refinement stages. We analyze the time cost of the “Face” scene and compare it with
Instruct-NeRF2NeRF on an RTX 4090 GPU. Both methods undergo 10,000 iterations; however,
Instruct-NeRF2NeRF requires approximately 45 minutes, whereas our ViCA-NeRF only needs 15
minutes.

Limitations. Our method’s efficacy is contingent upon the depth map accuracy derived from NeRF,
which underscores our reliance on the quality of NeRF-generated results. Although our blending
refinement can mitigate the impact of incorrect correspondences to some extent, the quality of the
results deteriorates with inaccurate depth information. We also note that akin to Instruct-NeRF2NeRF,
the edited outcomes tend to exhibit increased blurriness relative to the original NeRF. We investigate
this phenomenon further and provide a detailed analysis in the supplementary material.

5 Conclusion

In this paper, we have proposed ViCA-NeRF, a view-consistency-aware 3D editing framework for
text-guided NeRF editing. Given a text instruction, we can edit the NeRF with high efficiency. In
addition to simple tasks like human stylization and weather changes, we support context-related
operations such as “add some flowers” and editing highly detailed textures. Our method outperforms
several baselines on a wide spectrum of scenes and text prompts. In the future, we will continue to
improve the controllability and realism of 3D editing.
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