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Abstract

The healthcare and AI communities have witnessed a growing interest in the de-
velopment of Al-assisted systems for automated diagnosis of Parkinson’s Disease
(PD), one of the most prevalent neurodegenerative disorders. However, the progress
in this area has been significantly impeded by the absence of a unified, publicly
available benchmark, which prevents comprehensive evaluation of existing PD anal-
ysis methods and the development of advanced models. This work overcomes these
challenges by introducing YouTubePD - the first publicly available multimodal
benchmark designed for PD analysis. We crowd-source existing videos featured
with PD from YouTube, exploit multimodal information including in-the-wild
videos, audios, and facial landmarks across 200+ subject videos, and provide dense
and diverse annotations from a clinical expert. Based on our benchmark, we pro-
pose three challenging and complementary tasks encompassing both discriminative
and generative tasks, along with a comprehensive set of corresponding baselines.
Experimental evaluation showcases the potential of modern deep learning and com-
puter vision techniques, in particular the generalizability of the models developed
on our YouTubePD to real-world clinical settings, while revealing their limitations.
We hope that our work paves the way for future research in this direction.

1 Introduction

As one of the most prevalent neurodegenerative disorders, Parkinson’s Disease (PD) affects over
10 million people worldwide, and the number of PD subjects is projected to double within the
next 20 years [2]. Notably, PD is a progressive disease, with symptoms becoming increasingly
pronounced and severe over time. Meanwhile, the diagnostic and treatment costs associated with
PD are substantial, amounting up to $14 billion in the United States alone [2]. Therefore, there is
an urgent need for developing Al-assisted systems for automated PD assessment in the healthcare
and Al communities. Such systems can facilitate the recognition of undiagnosed people with PD,
aid clinicians in their evaluation, and play a crucial role in the continuing care of people with PD by
monitoring disease progression and tracking responses to therapies.

However, the progress in this area has been significantly impeded by the absence of a unified, publicly
available benchmark. For Al-driven applications, the first and foremost endeavor lies in establishing
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Figure 1: We propose YouTubePD, an open-source, multimodal benchmark on Parkinson’s Disease (PD) analysis.
Our dataset contains in-the-wild videos, audios, and facial landmarks. On the right, we show the three tasks
on our benchmark: (a) facial-expression-based PD classification, (b) multimodal PD classification, and (¢) PD
progression synthesis.

a suitable benchmark. Ideally, the benchmark is openly accessible to facilitate methodology devel-
opment, exemplified by the notable ImageNet benchmark that has substantially catalyzed object
recognition performance [12]. In contrast, existing PD datasets are typically constructed in clinical
settings and are thus kept private to protect patient privacy [3, 5, 17, 19, 25, 33, 41, 48]. In addition,
the creation of PD datasets is a costly, time-consuming process, which requires a significant amount
of effort for collecting patient data and curating annotations from qualified clinical experts.

In this paper, we overcome the aforementioned challenges by introducing an open benchmark that
not only enables comparisons of existing PD analysis techniques, but also facilitates the development
of advanced models that leverage state-of-the-art computer vision and deep learning techniques. Our
key insight is that, instead of curating data from clinical settings as is normally the case, we exploit
publicly available online resources and crowd-source existing videos featured with PD from YouTube.

These YouTube videos contain rich examination modalities, making our benchmark inherently
multimodal. This property allows for the investigation of some particularly indicative symptoms
associated with PD. More concretely, PD is often characterized by the manifestation of a motor-
based symptom known as facial bradykinesia — the lessened movement of orofacial muscles and a
reduction in spontaneous emotional expressions [8]. This results in a constant “mask-like” expression
in PD subjects referred to as hypomimia [8], a sensitive biomarker for PD [1]. Following prior
work [3, 5, 19, 25, 48], our benchmark considers hypomimia as a primary indicator for PD diagnosis.
Moreover, our benchmark includes other symptoms experienced by PD patients, including tremors
and speech changes. These additional symptoms are considered alongside hypomimia, providing a
more comprehensive evaluation of the disease and capitalizing towards a multimodal solution.

Our contribution is described as follows:

1. To tackle the lack of a unified, open, and multimodal benchmark in PD analysis, we
introduce YouTubePD. By leveraging YouTube videos of public figures experiencing PD,
we obtain high-quality, in-the-wild data of Parkinson’s symptoms. As shown in Figure 1,
our YouTubePD benchmark consists of multiple modalities, including facial expression
videos, facial landmarks, and audios, across 200+ subject videos containing dense and
diverse annotations from a clinical expert. Our annotations encompass both video-level and
frame-specific information with informative region and textual descriptions. In addition,
our dataset spans a number of years for each subject, providing natural PD progression
information.

2. We define three challenging tasks for our YouTubePD benchmark: Facial-expression-based
PD classification, multimodal PD classification, and PD progression synthesis.

3. We present a comprehensive set of baselines for the three proposed tasks. In contrast to
prior deep learning methodologies presented for PD analysis, our baselines leverage more
recent, state-of-the-art techniques for enhanced video and multimodal understanding. We
demonstrate that these models developed on our benchmark transfer well to real-world
clinical datasets and exhibit strong performance on the PD classification task.

2 Related Work

In this section, we discuss prior work and studies on facial expressivity and hypomimia in PD, as
well as previous vision-based frameworks used to address PD classification.



Dataset #Videos #Images #PD Subjects # Healthy Controls Open Access Modality

Abrami et al. [3] 107 — 68 — X Video
Bandini et al. [5] 306 - 17 17 X Video
Grammatikopoulou et al. [19] — 6236 221 1071 X Image
Jin et al. [25] 176 - 33 31 X Video
Novotny et al. [33] 166 — 91 75 X Video
Suetal. [41] 172 - 47 39 X Video
FacePark-GITA [18] 270 - 30 24 X Video
YouTubePD (Ours) 283 — 16 89 v Video, Audio, Landmark

Table 1: Comparison of statistics between datasets used in prior work and our benchmark. Our YouTubePD is
the first open-access and multimodal benchmark for PD analysis.

Facial expressivity in PD. The connection between PD and facial expressivity has been thoroughly
studied in prior work across a variety of experimental scenarios and controlled variables [9, 37, 40,
44, 47]. Such work explores the role of facial expressivity (both posed and voluntary expressions) and
emotion recognition in patients in relation to their diagnosis of PD, primarily based on the UPDRS-III
scale [16]. Follow-up work [33, 38, 44, 45, 47, 48] expands upon these seminal studies on facial
expressivity in PD, further exploring its relationships with the subjective emotional experience, the
correlation with PD severity, and de-novo conditions.

Video-based PD assessment. Video-based PD assessment techniques are typically categorized into
geometric approaches [5, 19, 25, 33, 41] and appearance-based approaches [3, 17]. The former
type employs low-dimensional, geometric features extracted from facial landmarks and action units
(AUs) [5, 17, 19, 33, 41]. The latter type uses the raw visual information contained within the videos.
Some of these approaches apply convolutional neural networks [3, 17], support vector machines [5],
and long short-term memory (LSTM) models [25].

PD benchmarks. Previous studies commonly use their own (private or semi-private) benchmarks
to evaluate the performance of their methods, lacking a shared benchmark for comparison. Table 1
provides a summary of these datasets, which often exhibit variations in size and distribution (e.g.,
mean age, gender, and disease progression). Consequently, comparing the performance of different
methods becomes challenging, further hindering advancements in PD classification and analysis.
This is a key motivation for our work in establishing a public and common benchmark.

3 Dataset

Our objective is to identify not only the presence but also the severity of Parkinson’s Disease (PD).
With this in mind, we introduce YouTubePD, which stands as the first publicly available benchmark
designed for PD analysis that (i) utilizes multimodal information including in-the-wild videos, audios,
and facial landmarks, and (ii) enables the exploration of various task types including unimodal and
multimodal PD classification, as well as PD progression synthesis. The comparison between our
benchmark and datasets in various previous studies is summarized in Table 1. To further support
comprehensive classification approaches, we offer video-level and region-level clinician annotations
pertaining to PD diagnosis. In the interest of open access and wider research contributions, the basis
of this benchmark is sourced from YouTube interview videos featuring public figures who are openly
sharing their experiences with PD. Our work is among the first endeavors advocating for PD analysis
using multimodal information. This approach aligns with the diagnostic techniques employed by
human clinicians, who utilize a wide range of cues in order to diagnose PD. This convergence of
multimodal information in our model mimics the human approach, thereby enriching the accuracy
and depth of PD analysis. Our dataset collection and annotation pipeline is outlined in Figure 2.

Videos. We manually curate a list of 16 public figures with a confirmed and open PD diagnosis and
collect multiple videos (spanning multiple years) of the individual before and after their diagnosis. We
collect a total of 283 videos from YouTube. Each video is roughly 10 seconds long of an individual
public figure speaking in an interview setting. Our corpus can be divided into three subgroups:
65 videos of public figures after their diagnosis of PD was made public, 68 videos of the same
public figures several years before their diagnosis, and 150 videos of a broader healthy control
group of public figures without PD. We collect and store both video and audio data. The videos are
preprocessed by cropping and resizing with a facial keypoint detection model [29], so that clips are
centered on the subject’s face.
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Figure 2: Our dataset collection and annotation pipeline. First, we compile a list of public figures who have
publicly confirmed their PD diagnosis. We then source their videos from YouTube. From these videos, we
handpick clips that are informative for PD detection. A clinical expert then reviews these clips, providing both
video-level and region-level annotations, detailing the severity of their PD, and highlighting specific symptoms
of the condition.
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(a) An example annotation of a video (b) Examples of annotated frames with corresponding bounding boxes
from our dataset. in increasing severity.

Figure 3: Representative examples for our video annotations and important facial regions.

Annotations. Our annotations (Figure 3) are generated by a clinician. Each video has both (i) an
overall severity label with 6 levels, with 0 denoting the absence of PD and 5 indicating a severe form
of PD; and (ii) a confidence level label ranging from 1 to 10. A label of 1 indicates that the clinician
was not confident in their assessment, while 10 indicates absolute confidence. For selected frames in
each video, facial regions particularly informative for PD are also annotated. We define a set of 14
important facial regions for PD analysis, derived as a combination of facial creases [20] and other
areas of facial movement observed in PD hypomimia. Each region is mapped to a distinct region
index that describes the facial region used for the diagnosis and 10 distinct symptom indices (e.g.,
moving, apart, increasing) that describe the anomaly. In these frames, (i) a polygon bounding box is
drawn around the region, (ii) a text caption is used to summarize the region and anomaly, and similar
to the video-level annotations, (iii) a severity label and (iv) a confidence label are provided for each
region. These annotations and indices are summarized in Section B of the Appendix.

Audios. We provide audios as an additional modality. Each video clip has its associated audio sharing
the same label. The audio clips are preprocessed to account for cases where multiple speakers are
present or significant background noise or music overpowers the intended speaker. We utilize source
separation [42] to clean any segments that have either of these two violations, isolating the desired
subject’s audios from other speakers and background noise. Though the audio modality has a distinct
set of UPDRS standards [16], we do not re-annotate the ground truth label for the audios but use the
holistic severity and confidence annotation based on the videos instead. This aims to ensure the label
consistency between the audios and other modalities to facilitate multimodal PD classification.

Landmarks. Our dataset incorporates facial landmarks extracted from video frames to leverage facial
motion. Using the landmark detection model from Face++ [29], we extract 106 2D point landmarks
from each frame. The landmarks can be grouped into 7 parts: contour, left/right eyebrow, left/right
eye, nose, and mouth.

4 Tasks

We propose three tasks on YouTubePD: facial-expression-based PD classification, multimodal PD
classification with facial expressions, audios, and facial landmarks, and PD progression synthesis.
We describe our tasks, as well as the dataset splits and evaluation metrics for each task.



4.1 Facial-Expression-Based PD Classification

Task description. Following prior work [17, 18] and clinical findings [25], we focus on facial
expression as the primary modality for diagnosing PD. In this task, we aim to analyze the videos of
facial expressions in our dataset and obtain a classification result for either a binary classification of
PD or healthy, or a multiclass classification of PD severity on healthy or 5 severity levels.

Dataset split. Due to the imbalanced distribution between PD-positive and PD-negative videos,
we use a relatively small training set and a relatively large evaluation set. For the training set, we
randomly sample 36 PD-positive and 36 PD-negative videos. We use the remaining 211 videos
for the evaluation set. Due to the small number of annotated PD-positive samples, we use K-fold
cross-validation on the training set for hyperparameter tuning.

Evaluation metrics. The PD classification task on our benchmark is particularly challenging, due to
its strong imbalance and limited number of positive samples. This mirrors the medical application
setting of PD and presents a challenge: a model whose errors consist of mostly false negatives might
still achieve a high accuracy due to the small number of positive samples, but may misdiagnose
a patient with PD. This is a more harmful error than a false positive. Therefore, the conventional
classification accuracy may not be the best choice for our setting. We mainly focus on additional
metrics, in particular, F1 and AUROC. F1-score calculates the harmonic mean of precision and recall.
For multiclass classification, we report the weighted F1-score computed with a one-vs-rest (ovr)
approach. AUROC computes the area under the receiver operating characteristic curve for a set of
decision thresholds and reports a summarized metric through some averaging policy (e.g., macro).

Meanwhile, we classify the severity of PD, which is an ordinal attribute. For example, classifying
severity 4 as 3 is more accurate than classifying it as 2. Therefore we also provide a Mean Squared
Error (MSE) to account for this issue. To summarize, we recommend prioritizing F1-score and
AUROC, while also paying attention to the MSE error.

4.2 Multimodal PD Classification

In this task, we consider the combination of multimodal information for PD classification. The
multimodal inputs in our study include facial expression videos, facial landmarks, and audios. The
task aims to obtain a binary or multiclass severity prediction from the collaboration of all available
modalities as input. We follow the identical data split and evaluation metric as the facial-expression-
based PD classification task. We also directly use the holistic label from the facial expression video
as the ground truth label for each modality derived from that video.

4.3 PD Progression Synthesis

Task description. We further propose a task of PD progression synthesis, which aims to simulate
the symptoms of PD in facial expressions given images of healthy individuals. Previous work on
image translation primarily focuses on texture alterations derived from a reference image or content
modifications from a pretrained conditional model [11, 15, 30, 35, 49, 50]. Our PD progression
synthesis task, however, introduces a more challenging aspect by incorporating more nuanced PD-
specific information for the transfer. Our task naturally makes use of the PD progression information
provided in our dataset, which contains sets of images depicting individuals in both healthy and PD
states across an extended time frame. Note that these image pairs from healthy to PD states are not
strictly aligned, which further increases the task difficulty. Complementary to the discriminative tasks
in Sections 4.1 and 4.2, our synthesis task provides a comprehensive overview of the progression and
manifestation of PD.

Dataset split. We divide the data by individual subjects, allocating 11 for training and 5 for evaluation.
Our experiment validates that this split is sufficient for training and produces reliable evaluation
results.

Evaluation metrics. To establish baselines for our synthesis or “style” transfer task, we employ a
variety of metrics that assess the quality of synthesized facial images. Our evaluation begins with the
Fréchet Inception Distance (FID) score computed between the source and generated images, serving
as an indicator of visual fidelity and consistency. Subsequently, we devise a facial content change
evaluation rooted in the paired healthy and PD states of the same individual, called direction score.
Specifically, we use a pretrained VGGFace [36] model ¢ to extract the instance-level feature from
each image. For each healthy frame V;, we first identify its corresponding frame P; from the same
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Figure 4: Our baseline methods for the facial-expression-based PD classification (left) and multimodal PD
classification (right) tasks.

individual’s PD frame with the highest feature similarity. Then, given the generated image N/, the
direction score is calculated as

1L )
D=7 ; cosine(¢(N]) — ¢(N:), p(P;) — $(IV;)), (1)

where cosine denotes the cosine similarity and M is the number of frames. Finally, we assess a CLS
score based on classification accuracy using a pretrained PD classification model in Section 4.1.

5 Methods

In this section, we propose baseline methods for each of our three tasks. For facial-expression-
based classification, we propose an attention-based architecture that leverages both region and video
annotations for stronger and more interpretable performance. For multimodal PD classification, we
establish a simple fusion pipeline to exploit different modalities and improve performance. Finally,
for PD progression synthesis, we make comparisons of various image translation models. The
experimental results reveal limitations of different methods and the challenging nature of the tasks.
We include illustrations of our baseline methods for the first two tasks in Figure 4.

5.1 Facial-Expression-Based PD Classification

We develop a simple but effective baseline method for this task. Apart from leveraging the most
suitable pretrained representation, we integrate the region-level information explicitly alongside
the holistic video information. Moreover, we apply an attention-based classifier and use a novel
multiclass hierarchy-guided loss to train our baseline model. Our pipeline is in Figure 4.

PD representation learning. Due to the lack of annotated PD data, we find that it is beneficial
to transfer representations learned from related domains to PD classification. To this end, we use
a ResNet50 [22] pretrained on VGGFace [36], a face dataset with a wide range of subjects, as
our frozen feature backbone. Pretraining on the base domain helps the model learn a wide range
of identities across variations in pose, environment, and demographics. We find that for our task,
pretraining on general facial recognition outperforms backbones trained on video action recognition
as well as facial expression recognition, contrary to [18].

PD informative regions. Our PD informative regions are based on areas of the face which experts
typically use to diagnose patients. Our quantitative results show that the use of region features instead
of entire frames not only improves performance, but also reduces the tendency to learn spurious
features. Correspondingly, we use a pretrained facial landmark classification module and RoIAlign
[21] to extract a feature map for each of the 14 PD informative regions from the feature map produced
by the backbone from each video.

Attention with video-level conditioning. Following feature extraction, we process the feature
maps with a learnable positional embedding and a linear projection of the global feature map to the
same dimension as an individual region feature map. Next, we pass our region features through two
multi-headed attention blocks. Following TimeSFormer [7], we use divided spatial-temporal attention,
which we apply on the region feature maps instead of raw pixels. This consists of an attention block
that applies self-attention over the individual regions in each frame (spatial), followed by an attention
block that applies self-attention over successive frames (temporal). We include ablation studies on the
use of region annotations, region information, and attention to verify each component of our method.

Multitask hierarchy-guided loss. In addition to region features, we leverage region annotations to
further improve performance. After attention, we extract the class embedding corresponding to each



Model Top-1 Acc T F1 1 AUROC 1 Recall (Binary) T MSE (Multiclass) |

VGGFace [22]  83.56(£0.84)/78.20(£3.13)  0.56(£0.01)/0.23(£0.02)  0.86(£0.01)/0.68(£0.01)  0.79(&0.01) 2.29(£0.77)
Ours 88.00(+1.88)/77.03(£3.36)  0.59(£0.02)/0.25(£0.01) ~ 0.92(£0.01)/0.74(0.02)  0.85(+0.05) 2.25(+0.45)

Table 2: Binary/multiclass classification results on YouTubePD with facial expression. We observe superior
performance on F1, AUROC, and MSE with our method.

Modality Top-1 Acc T FI1 1 AUROC 1 Recall (Binary) T MSE (Multiclass) |
VGGFace [22] 83.56(£0.84)/78.20(£3.13)  0.56(+0.01)/0.23(+0.02)  0.86(=%0.01)/0.68(40.01) 0.79(£0.01) 2.29(£0.77)
Landmark (Ours) 56.37(%1. 72)/01 69(+£1.94)  0.32(£0. 02)/0 26(£0.02)  0.72(+0.02)/0.68(+0.01) 0.81(40.05) 4.87(40.28)
Audio (Ours) 54.84(+1.63)/47.79(+1.66)  0.27(£0.02)/0.16(£0.01)  0.66(=£0.01)/0.50(=£0.02) 0.70(£0.04) 6.26(£0.39)
Multimodal (Ours) ~ 70.61(£2.13)/82.75(+2.85)  0.61(£0.02)/0.28(+0.02)  0.87(=£0.02)/0.80(+0.03) 0.83(40.04) 1.40(+0.25)

Table 3: Binary/multiclass classification results on YouTubePD in the multimodal setting. Multimodal fusion
further improves the performance over unimodal baselines, even when additional modalities have lower perfor-
mance than the primary modality of facial expression.

region. We add an additional multi-layer perception (MLP) head for each of the 14 regions and add
the corresponding cross-entropy loss to the overall loss objective. We convert the region annotations
to binary annotations, where 1 indicates that the region is indicative of PD and 0 indicates that the
region is normal. We also extract a class embedding corresponding to the entire video, which is
passed through a final MLP head to obtain the video-level class distribution. This is trained with a
hierarchy-guided loss function demonstrated by the weighted cross-entropy loss, which we add to the
region-level loss,

Loss = A lbin(a(gj)a yvid) + (1 - >\) lmulti(e(m)y yvld |R‘ Z lreg xr yreg) 2)
reR

where z is an input image, 0 is the model, y.iq is the video-level annotation, ¥, is the region-level
annotation, lnin and Iy are the cross-entropy losses on binary and multiclass labels respectively, lycg
is the cross-entropy loss on region labels, R is the set of regions, and A is a trade-off hyperparameters.
We use both the original multiclass annotations and binary annotations for the video-level loss. We
freeze the first three stages of the pretrained ResNet50 backbone and train the additional layers, as
well as our attention blocks and MLP heads, end-to-end with this loss.

5.2 Multimodal PD Classification

We provide a baseline multimodal fusion method for PD classification. As shown in Figure 4, we
first obtain predictions from each modality, and then use a logit fusion step to fuse them together
considering their respective confidence.

Single modal prediction. For the facial expression video modality, we utilize the same encoder as in
the facial-expression-based PD classification (Section 5.1), which yields a 2,048-dimensional feature
representation. We obtain the final prediction with a linear classifier. For the landmark modality, we
select 10 frames from the video, extract their facial landmarks, and classify them using an MLP. The
features from all selected frames are concatenated for classification. For the audio modality, we extract
the features using a pretrained masked auto-encoder applied on the spectrogram representations
of the audios [32]. After averaging across all frames to get a 768-dimensional video-level feature
representation, an MLP is trained to obtain the video-level logits.

Fusion strategy. We employ a simple but effective fusion strategy. For the video and landmark
modalities, rather than using concatenation for the classification, we predict each frame independently.
Then we sum the predictions of 10 frames to obtain two logits representing the video modality and
landmark modality. After that, we apply £1 normalization to the logits of each modality. Thus, we
treat the logits for different modalities equally. Then we directly sum them up and determine the final
prediction based on the max fused logits. During training, the same multitask hierarchy-guided loss
is adopted. For the facial expression and audio modules, all the pretrained weights are frozen.

5.3 PD Progression Synthesis

We investigate a wide spectrum of image translation methods, including generation-based generative
adversarial networks (GANSs), translation-based GANs, and recently emerging diffusion models.
Specifically, for generation-based GANs, we adopt [11, 26, 34]. We use their pretrained weight on
FFHQ [27] and finetune it on our positive training data. Then, we project the PD-negative face to the



Metric | Generation-Based GAN | Translation-Based GAN | Diffusion Model

| ADA[26] Few-Shot[34] JoJoGAN [11] | HRFAE [49] ~CycleGAN [50] ~CUT [35] | SD [39]
FID | 87.08 94.60 129.61 37.65 73.82 46.63 72.12
CLS t 34.29 26.67 37.74 11.32 26.42 11.32 66.98
Direction T | 0.2874 0.2912 0.3219 0.2021 0.2832 0.3237 0.0491

Table 4: Quantitative comparisons on PD progression synthesis. Different generative methods exhibit distinct
behaviors under three metrics.

Model Top-1 Acct F11 AUROC 1
VGGFace [22] 79.4 0.24 0.66
Ours 76.4 0.25 0.71

Table 5: We observe similar multiclass classification performance, when conducting a leave-one-subject-out
analysis over three patients.

learned image space using the GAN model. For GANs designed for image translation, we either use
their official pretrained model [49] or directly train from scratch [35, 50]. For the diffusion models,
we finetune Stable Diffusion [39] with LoRA [24] and use SDEdit [30] for image translation.

6 Experiments

In this section, we present the results of our baselines and proposed methods. We find that modern
computer vision methods can be applied on YouTubePD and transfer well to real clinical applications.

Main results: Facial-expression-based PD classification. We report the average results and standard
deviations over 5 different runs. The results are summarized in Table 2. For the baseline, we use a
ResNet50 pretrained with VGGFace and finetuned on our dataset with linear probing. This obtains
relatively strong performance, suggesting the efficacy of facial representations for PD diagnosis.
In both the binary and multiclass settings, our proposed attention-based model outperforms the
pretrained VGGFace baseline on most metrics.

Main results: Multimodal PD classification. We additionally provide baseline results for the other
modalities as described in Section 5. From Table 3, we note that either modality alone ends up
being considerably weaker than our primary modality of facial expression, and the fusion result
achieves better performance in both the multiclass and binary settings. Our results primarily serve to
demonstrate the potential for achieving better performance from the additional modalities in tandem
with facial expressions, despite their weaker performance when used in isolation.

Main results: PD progression synthesis. The synthesis results of various baselines are shown in
Table 4 and Figure 5. FID represents the consistency of the image translation. The CLS score and
direction score focus on the semantic change in different aspects. Generally speaking, generation-
based GANSs often obtain balanced results on CLS and direction metrics. However, they fail to achieve
low FID, since the image needs alignments to pretrained data. Translation-based methods can often
get high consistency, but are easy to focus on other modifications rather than PD progression. The
diffusion models achieve a significantly higher CLS score; however, they tend to overfit the training
data and create faces that are similar to training images but do not retain the facial features of the
test image. Thus, they will largely change the faces in test images, resulting in a low direction score.
Our extensive comparisons reveal the substantial limitations of state-of-the-art generative models in
extracting very fine-grained and subtle information for image translation, further highlighting the
importance of our benchmark.

Analysis: Improvements are robust to different dataset splits. In Table 5, we present the results
when we train the facial expression model on a modified training and test split, where we ensure
there is a PD-positive patient only represented in the test split. We report the average multiclass
results of three such leave-one-subject-out splits. In these new splits, we still observe that our method
outperforms the baseline under the F1 and AUROC metrics. In the leave-one-subject-out setting, the
AUROC of our method improves by 0.05 and F1 improves by 0.01. This improvement is similar to
our original setting (AUROC by 0.06 and F1 by 0.02). Please note that similar to the main results
in Table 2, the Top-1 accuracy is not indicative of model performance, because of the presence of a
large amount of negative samples.
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Figure 5: Qualitative comparisons on PD progression synthesis. The diffusion model yields superior results;
however, it may inadvertently introduce inaccurate alterations to the face.

Model Top-1 Acc 1 F1 1 AUROC 1 Model Binary Acc T Multiclass Acc T
VGGFace [22]  69.31/71.29  0.42/0.45  0.79/0.81 13D [10] 70.60 45.64
Ours 68.31/77.22  0.52/0.61  0.92/0.96 C2D [46] 69.05 40.96
X . X3D-XS [13] 74.17 42.77
Table 6: Binary classification results on real-world SlowFast-8x8 [14] 63.81 44.52
patients in the speech test set and the facial activa- VGGFace 83.56 78.20

tion set [23]. Our method consistently outperforms
baselines on real-world PD data.

Model Top-1 Acct Fl1 AUROC 1
AffectNet-8 [31] 76.00 0.45 0.86
VGGFace 83.56 0.56 0.86

Table 8: Ablation study on facial expression classi-
fication pretraining, in terms of binary classification
with the AffectNet-8 backbone. We observe a de-
crease in performance compared with when using
our facial recognition pretraining.

Table 7: Ablation study on action recognition pre-
training. We observe significantly lower performance
than using our facial recognition pretraining.

Model Top-1 AccT F11 AUROC 1
Video / Temporal Attention 77.14 0.49 0.91
Region / Spatial Attention 82.86 0.56 0.90
Ours 88.00 0.59 0.92

Table 9: Ablation study on binary classification re-
sults using various attention schemes. Our spatial-
temporal attention performs the best.

Generalizability: From YouTube to real patients. From a healthcare perspective, a crucial and
natural question arises: Do the models developed in our YouTubePD benchmark generalize to real-
world PD diagnosis? To answer this question, we train our model on YouTubePD and test it on a
private dataset of clinical PD patients [23]. This dataset consists of two sets of videos, a speech test
of 18 PD-positive and 83 PD-negative patients, and a facial activation test of 19 PD-positive and 85
PD-negative patients. From Table 6, our proposed method has higher F1 and AUROC scores than
the baseline on this dataset. In addition, the t-SNE [43] visualizations in Figure 11 of the Appendix
show that the PD-positive and PD-negative samples are better separated for our approach. These
experimental results validate the efficacy of our benchmark for real-world applications.

Ablations. We conduct ablation studies to investigate the design choices and components of our
proposed facial-expression-based PD classification method. These studies specifically focus on
understanding the benefits of different types of pretraining and attention for PD classification.

Action recognition pretraining. We investigate the transferability of generic video representations to
PD classification. We finetune various action recognition architectures pretrained with Kinetics400
[10] on YouTubePD with linear probing. From Table 7, we observe much lower performance com-
pared with generic facial representations from VGGFace [36], despite using a simpler architecture.

Facial expression classification pretraining. We also investigate the use of a backbone pretrained for
facial expression classification, a more fine-grained task than facial recognition. We use a ResNet50
pretrained on AffectNet-8 [31] as our backone, and finetune it on YouTubePD with linear probing.
From Table 8, we observe lower performance with the AffectNet-8 backbone, suggesting that generic
facial representations transfer more easily to PD classification.

Attention types. We investigate the use of attention over regions and attention over frames. This is
combined in our proposed facial-expression-based method. From Table 9, we observe similar overall
performance for either temporal or spatial attention and improved performance when combined.

7 Discussion

Clinical impact. The long-term goal of our work is to develop a Parkinson’s Disease (PD) early
screening tool to aid primary clinicians in the earlier recognition of persons exhibiting physical signs



that may indicate an evolving Parkinson’s syndrome. Those persons may then undergo additional
neurological evaluation as clinically indicated. This will help patients to be diagnosed and treated
sooner. Many patients with Parkinson’s, in retrospect, exhibited subtle signs of Parkinson’s for
months or even years. The signs were not recognized by the patient, their family, or primary clinicians
and the signs instead were attributed to aging, and diagnosis was delayed. We hope that our effort
could eventually inspire such a PD early screening tool to detect PD symptoms at an early stage, and
the patients could get timely treatments.

Annotation reliability. In the construction of our dataset, we made use of annotation information
beyond what a single annotator provided. Since we did not construct the dataset completely from
scratch but repurposed existing YouTube videos, we explicitly utilized the topic of these YouTube
videos and their meta-information. Therefore, we precisely know which videos are PD-positive and
which ones are negative, and there will very unlikely be mistakes in the annotation of video-level PD
labels. In addition, the longitudinal meta-information associated with the YouTube videos provides
useful prior knowledge about the PD severity. Empirically, models trained on our annotated dataset
generalize to real-world clinical PD data as shown in Table 6. Our method achieves an F1 score that
is 10% and 16% higher than the baseline on two different sets of real patient data, respectively. These
results reflect that our annotation should be reliable.

Limitations and future work. The dataset presented in our benchmark possesses its own caveats,
particularly in relation to its small size and limited diversity due to the constraint of publicly
available videos. While our benchmark serves as a strong first step, there is still a need for further
comprehensive datasets and benchmarks to establish thorough and holistic evaluation of models
developed for PD analysis. In addition, an important question remains regarding the generalizability
of models developed on our benchmark to critical, real-world medical applications across various
settings. Further exploration and analysis of this aspect are necessary to advance towards the actual
deployment of these models in clinical scenarios.

Beyond providing the dataset, our contribution includes the establishment of a crucial protocol for
collecting a PD dataset. This ensures that our dataset can be readily expanded in the future with
more public figures or individuals from additional geographical regions and across different social
media platforms other than YouTube. We hope that our work will inspire efforts to create larger
PD benchmarks with more annotators. We discuss our limitations and future work in more detail in
Section E of the Appendix.

Ethics. Our research involves the analysis of videos featuring public figures with PD. The videos,
derived from YouTube, were publicly shared by figures who had willingly discussed their PD
condition. To ensure ethical considerations, we sought explicit consent from these figures. In
addressing concerns of data privacy, the research protocol was reviewed and approved by the
Institutional Review Board (IRB) at University of Illinois Urbana-Champaign (IRB approval number:
24426). While we acknowledge the potential biases and limitations in solely relying on facial or
audio information for PD diagnosis, our main objective is to inspire tools for early detection using
easily accessible media like webcams. This initiative does not negate the need for comprehensive
medical diagnostics. We stress that our efforts aim to further the understanding of PD and its facial
expression impacts. The collected data are shared with researchers who possess ethical training and
commit to adhering to high standards. All data are hosted on a dedicated and secure platform, and
the code is made available on GitHub. No conflicts of interest exist among the study’s contributors.
More discussion on the ethical aspect of YouTubePD is included in Section F of the Appendix.

8 Conclusion

We introduce YouTubePD, the first publicly available multimodal benchmark for Parkinson’s Disease
(PD) analysis. Within this framework, we propose several important discriminative and generative
tasks along with corresponding baselines, showcasing how a range of modern machine learning and
computer vision techniques is leveraged and extended to advance Al-assisted systems for automated
PD diagnosis. Furthermore, we demonstrate that models trained on YouTubePD perform well on
clinical data, indicating potential for real-world medical applications. Notably, the methodology and
protocol developed in constructing YouTubePD can be adapted to address other healthcare problems,
where a public, standardized benchmark is missing. We encourage further exploration in this direction
and hope that our benchmark will facilitate a more seamless transfer of advancements in machine
learning and computer vision to impactful medical research and clinical applications.
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Appendix

In this appendix, we include (1) discussion regarding our YouTubePD benchmark detail, release,
and licensing, (2) additional analysis of the dataset, (3) additional illustration and details about our
methods, (4) additional experimental results and analysis, (5) more discussion on limitations and
future work, and (6) potential negative societal impact.

A Benchmark Detail, Release, and Licensing

We provide our code and benchmark at https://uiuc-yuxiong-lab.github.io/YouTubePD.
We release our benchmark under the CCO license. Here, we describe how we publicly release our
benchmark:

1. We include all the code used in the process of converting publicly available YouTube videos
into our benchmark.

2. We include all our annotations and extracted landmarks. Note that offensive content is not
included in our dataset, as all the sources are publicly available interviews of public figures
speaking openly about their experiences with Parkinson’s Disease.

Despite that all the videos used in our benchmark are publicly available YouTube videos, we are
also actively taking steps to approach the public figures involved to respect their autonomy and
privacy. This ensures that we uphold the highest standards of ethical data usage. We strive to balance
open access and reproducibility with respect for privacy, all while providing a resource that could
significantly advance the analysis and understanding of Parkinson’s Disease (PD).

B Dataset: Additional Analysis

B.1 Dataset Statistics

Region/Severity 0 1 2 3 4 5
Overall Video 187 15 8 10 17 7
Forehead 187 12 3 4 16 18
Left nasolabial fold 187 9 6 10 20 10
Right nasolabial fold 187 11 7 10 21 8
Right lip crease 187 1 0 3 7 3
Left lip crease 187 1 0 2 10 3
Left outer eye 187 4 2 1 6 17
Right outer eye 187 2 2 2 5 16
Between eyebrows 187 5 1 3 5 3
Right above between eyebrows 187 3 3 4 12 5
Right eye 187 15 4 3 8 6
Left eye 187 16 4 3 8 6
Mouth 187 1 0 1 5 0
Right eyebrow 187 6 5 8 11 12
Left eyebrow 187 6 4 7 10 12
Total Annotations 2808 107 49 71 161 126

Table 10: Distribution of severity labels in YouTubePD for the overall video-level analysis and for all 14 facial
regions, with O denoting the absence of PD and 5 indicating a severe form of PD.

Country Count | Race Count | Gender Count
United States 12 | White/Caucasian 13 | Male 15
United Kingdom 3 | Black/African descent 3 | Female 1
Canada 1

Table 11: Country/race/gender statistics of PD-positive public figures in YouTubePD.
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Country Count | Race Count | Gender Count

South Africa 1 | South African+Swiss-German 1 | Male 68
United States 52 | Black/African Descent+Filipino 1 | Female 23
United Kingdom 12 | Black/African Descent 11
Israel White/Caucasian 63
Russia/Canada Indian 1
Sweden Latinx 4

9

1

Kenya/Mexico Asian

Brazil Black/African Descent+Samoan
Serbia
South Korea
Puerto Rico
Mexico
Japan
Canada
Denmark
Russia
Germany
France

DN = DN = B = = = N = NN — W

Table 12: Country/race/gender statistics of healthy control or PD-negative public figures in YouTubePD.

In Table 10, we summarize the severity label distribution in YouTubePD. This includes severity labels
for the overall subject in each video and severity labels for each of the 14 important facial regions
informative for PD analysis. The number of annotations varies depending on severity levels and
regions.

We also summarize the demographic distribution in YouTubePD, split between PD-positive and
healthy control (HC), or PD-negative, subjects. Table 11 provides the country, race, and gender
statistics of PD-positive subjects in YouTubePD. Similarly, Table 12 provides the country, race, and
gender statistics of HC subjects in YouTubePD.

We would like to provide additional details in our annotation process, particularly regarding how
we denote the severity of PD. Our annotation strategy utilizes a detailed scale, ranging from O to 5,
where 0 signifies a healthy individual, and 5 corresponds to severe PD. We do not apply the Unified
Parkinson’s Disease Rating Scale (UPDRS) [16] for facial expression. This decision is based on
the clinician’s suggestion, since an accurate UPDRS facial expression rating would require more
information (e.g., observing the subject’s facial expression pattern at rest or when not talking) than
facial expression videos contain. This strategy also allows for a finer classification. In addition,
we do not apply UPDRS because facial expression and audio have distinct UPDRS standards. We
instead use the holistic severity and confidence annotation based on the video. Doing so ensures the
label consistency between the audio data and other modalities, thereby facilitating multimodal PD
classification.

In addition, we provide (i) illustrations of our facial landmarks and regions in detail in Figures 6, 7,
and 8; (ii) the longitudinal statistics of our PD videos showing their distribution in time in Figure 9.

B.2 Are Annotated Regions Correlated to PD Severity?

To understand if the annotated regions are informative for PD severity, we investigate the correlation
between the 14 annotated facial regions and a patient’s annotated PD severity level. We accomplish
this by training a linear classifier that takes as input the annotated informative region index and
predicts the severity level. More specifically, for each video, the input is a binary vector which maps
the clinician-annotated facial region indices, while the output is matched to the annotated severity
level of the video. As a control experiment, we instead train on random region-level annotations
as input. We find that the linear model trained on the actual region annotation achieves 70% test
accuracy, while the model trained on random annotations achieves 15% test accuracy. This validates
that the severity level is predictable from the annotated informative regions, but not from random
region annotations. Therefore, the annotated regions and PD severity are correlated. This is also
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Figure 6: Original landmark ex- Figure 7: Interpolated landmarks. Figure 8: Visualized regions from
traction. interpolated landmarks.

@ Parkinsony °
@ Parkinson n ° ° ° °
20201 = - o L] L] o o
[ o ° [ ] (] L] [
° o ° [ ] ° ° °
[ ] o [ L]
L] L] L] [ L] L]
o L]
o L] L] o o L]
L] ° L] L] L] °
° L] o
2010 [ ] ° ° o
[ ] L]
L] ° L] o
L]
[ ]
L]
° °
° o
L] L]
2000 o °
o L] L] [ ]
°
5 ° ° (] L]
©
L] L]
L
L]
L] [
1990 L] ° °
o o L]
L]
°
L] L] L[] °
o o
(]
L]
1980 -
o
o
o
1970 A L]
Average difference: 17.30 years °
Std deviation: 7.02 years

Figure 9: Longitudinal data for the time gap between PD-negative and PD-positive videos. The x-axis represents
public figures, while the y-axis represents the time in years. Red dots denote videos with PD-positive labels, and
blue dots denote videos with PD-negative labels.

consistent with our approach that leverages region-level information for improved PD classification
performance.

Furthermore, we can examine the learned weights and biases of the linear model to understand how
the model has learned to classify. We find that in general, higher severity patients have positive
annotations on a larger number of informative regions (more symptoms), and vice versa. The model
also leverages different facial regions to determine severity at different levels; for example, very
severe cases could be easily distinguished via eyes and lips feature. Figure 3 in the main paper
visualizes the most informative regions at each severity level. Corresponding regions are indicated by
highlighted facial creases in the figure and bounding boxes in the input video frames.

C Methods: Additional Ilustration and Details

C.1 Model Architecture Illustration

We provide an additional illustration of our baseline method for the first task in Figure 10. An input
video is processed through two branches, one for video features and the other for region features.
These features are then aggregated with a spatial-temporal attention classifier to obtain the PD
classification result.
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Figure 10: Illustration of our baseline method for the facial expression-based PD classification. An input video
is processed through two branches, one for video features and the other for region features. These features are
then aggregated with a spatial-temporal attention classifier to obtain the PD classification result.

C.2 Implementation Details

For the facial-expression-based classification method, we use A = 0.9, emphasizing the binary
portion of the loss. We use all 14 regions, i.e., | R| = 14. We use 8 frames from each video and a
batch size of 32. We train our models with the Adam [28] optimizer with a learning rate of 0.001.
More details are provided in the code. All experiments corresponding to this task are conducted on a
single 16GB NVIDIA V100 GPU.

For the audio baseline, we utilize the entire audio and average the representations to obtain a single
768-dimensional audio-level feature vector. Afterwards, we use a batch size of 64 and feed the input
through an MLP with one hidden layer of size 1,024. We train the model using Adam with a learning
rate of 0.0003. Similarly, for the landmark baseline, we use 8 frames to maintain consistency with the
other modalities, and use the same hyperparameters for Adam. For both modalities, we use A = 0.5.
All experiments are conducted on a single NVIDIA 3060 GPU.

For the multimodal fusion baseline, we use 8 frames from each video. The batch size is set as 16 and
trained for 50 epochs. We train the model using Adam with a learning rate of 0.02. All experiments
are conducted on a single NVIDIA 4090 GPU.

For PD progression synthesis, we follow the settings used in the official implementations [11, 26, 34,
35, 39, 49, 50]. In addition, we make modifications to two methods to align with our task setting.
Specifically, we replace the age classifier in HRFAE [49] with our trained PD binary classification
model. As for JoOJoGAN [11], we iteratively sample images during training to utilize all available
images. All experiments are conducted on a single NVIDIA 4090 GPU.

D Experiments: Additional Results and Analysis

D.1 Additional Ablations

Alternative audio representations. We additionally explore alternative feature representations for
audios beyond masked auto-encoders (MAE) [32] presented in the main paper — namely, wave2vec
(W2V) 2.0 [4], a deep feature extractor for audios that also uses self-supervised learning, and MEL-
frequency cepstral coefficients (MFCC) [6], which have demonstrated reasonable success in general
audio processing tasks. We find empirically that MAE features work the best with regards to metrics
and consistency, as shown in Table 13. In general, wav2vec features remain competitive with the
MAE features though trailing slightly, while MFCC performs considerably worse likely due to its
inability to express complex features necessary for the task, given the simplicity of the classification
model. Note that the hand-crafted MFCC achieves a relatively high performance on AUROC, since it
effectively makes random guess among all classes. The other learned features are more biased by the
data imbalance between 0 and all other classes. This is due to the fact that AUROC is computed as an
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unweighted average of one-vs-all calculations, leading to MFCC to incorrectly appear competitive on
that metric.

Audio Feature  Top-1 Acc 1 F11 AUROC 1 MSE |

MAE [32] 47.79(+£1.66) 0.16(+0.01) 0.50(£0.02) 6.26 (£0.39)
W2V [4] 57.90(£7.46) 0.14(£0.02) 0.43(£0.04) 4.50(£0.93)
MEFCC [6] 39.42(4£9.66) 0.11(40.03) 0.49(+0.06) 6.48(+1.80)

Table 13: Ablation study on audio representations for multiclass classification on YouTubePD. ‘MAE’ denotes
masked auto-encoders presented in the main paper; “‘W2V’ denotes wave2vec 2.0; ‘MFCC’ denotes MEL-
frequency cepstral coefficients. We find that MAE provides the most stable and consistent results — we prioritize
F1 and AUROC, as the other metrics are influenced by the data imbalance.

Multimodal fusion strategies. We conduct an ablation study on the multimodal fusion strategy.
Specifically, we explore two different strategies to produce the logits for the facial expression video
and facial landmark modalities. One way is frame concatenation (FC) where we concatenate the
frame features, and the other is frame voting (FV) where we perform voting to aggregate the result of
each frame. Note that FV is used for results in Table 3. For FC, we concatenate frames’ features to
one vector representing the whole video (either image features from ResNet or landmark coordinates).
Then, we train a video-level classifier to obtain the video logits. For FV, we train a frame-level
classifier for each frame and average the predictions as video-level logits. For both strategies, the
video-level logits from different modalities are averaged to get the final prediction. As shown in Table
14, with FC, the multimodal performance is even lower than the single facial expression modality on
F1 and AUROC metrics. By contrast, the FV strategy helps to improve performance.

Audio Feature Top-1 Acc 1 F1 71 AUROC 1 MSE |

VGGFace [22]  78.20(43.13)  0.23(£0.02) 0.68(+0.01) 2.29(£0.77)
Multimodal (FC) ~ 79.23(£1.94)  0.21(40.02)  0.69(£0.01) 1.76(40.18)
Multimodal (FV)  82.75(+2.85) 0.28(+0.02) 0.80(+0.03) 1.40(0.25)

Table 14: Ablation study on multimodal fusion strategies for multiclass classification on YouTubePD. ‘FC’
denotes frame concatenation, and ‘FV’ denotes frame voting. We find that the frame voting strategy improves
the fusion performance, while the frame concatenation strategy even leads to a decrease in performance on F1
and AUROC metrics, compared with the single facial expression modality.

D.2 t-SNE Visualizations

We provide qualitative results for the performance of our facial-expression-based classification model.
We use t-SNE [43] on both YouTubePD and the private clinical dataset [23], shown in Figure 11. Our
approach is able to clearly separate the PD-positive and PD-negative classes on both distributions.

E More Discussion on Limitations and Future Work

Limitations. In the main paper, we have briefly discussed the limitations of our work. Here, we
provide a more in-depth discussion. First, as our dataset is composed of publicly available YouTube
videos of public figures, the subjects and video samples in the dataset may not adequately represent
the wide range of individuals affected by PD. The videos primarily capture interview scenarios, which
may not effectively showcase the indicative symptoms of subjects, compared with the motor tasks
and instructions typically used in medical studies. Furthermore, there is a demographic bias in the
dataset subjects, as they are all public figures (predominantly male) with very few available details
about their treatment course and disease progression. Meanwhile, we are not aware of the treatment
or treatment response experienced by these individuals.

Second, it is necessary to conduct further investigation and analysis of the performance and deploy-
ment of models developed using our benchmark in real-world clinical scenarios. In the main paper,
we have demonstrated that our method developed on the benchmark exhibits promising results on a
clinical dataset. More comprehensive evaluation on additional clinical datasets would validate the
broad generalizability of our benchmark and associated models to practical medical applications.
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(a) t-SNE visualization for YouTubePD. (b) t-SNE visualization for the facial activation set

with clinical patients.

Figure 11: t-SNE visualizations of our learned facial expression representation for healthy (class 0) and
PD-positive (class 1) subjects on YouTubePD and the clinical dataset [23]. Intriguingly, we observe a more
pronounced separation between the PD-positive and PD-negative classes on clinical data, demonstrating the
generalizability of our learned representation from the in-the-wild YouTube videos.

Finally, the size of the dataset is relatively small compared with typical computer vision datasets,
due to the inherent challenges involved in collecting PD data. The small dataset size increases the
difficulty of developing and training larger models from scratch, often necessitating some form of
finetuning to achieve reasonable performance.

Future work. These limitations open up a wide scope of future advancements and progress in
this field. As mentioned previously, while our benchmark represents a strong first step, further
comprehensive datasets and benchmarks are necessary to thoroughly evaluate the performance and
generalizability of methodologies prior to their deployment. Moreover, our findings highlight the
potential of developing multimodal frameworks that leverage various examination modalities and track
complementary symptoms, such as facial expression, speech, posture, and gait for PD classification.
Although PD classification has been the primary focus (as in our first two proposed tasks), we note
that there are interesting unexplored directions in this realm, particularly in generative tasks like
progression synthesis (as in our third proposed task), which can serve as effective augmentation and
learning techniques.

F Ethics Discussion

F.1 Personally Identifiable Information and Informed Consent

YouTubePD may include personally identifiable information (PII) or sensitive personally identifiable
information. The data we collect from YouTube include facial expressions, PD identity, and audios.
However, we would like to highlight that the public figures chose to make their struggles with PD
public and discussed their disease and diagnosis in front of cameras. By willingly revealing their
identifiable faces and voices, the public figures do not intend to keep their PD information fully
private. We believe that the concern regarding a breach of privacy is not a newly raised issue specific
to our work, as the possibility of any misuse of these videos already exists.

The central question we posed to ourselves was whether sharing these videos with our research
community, along with annotations of facial expressions, would amplify the risk of misuse. We are of
the opinion that this action does not escalate the aforementioned risk. To further address this matter,
we took the initiative to contact the public figures involved and requested permission. This step was
taken proactively, particularly in the event that the public figures had regrets about their previous
decision to go public and now wished to make a different choice.
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Regarding PII and sensitive PII, we are fully aware of the sensitive nature of the data we are working
with. In order to safeguard individuals’ privacy, we have sought both guidance from the Institutional
Review Board (IRB) Office and legal guidance from the Legal Department at University of Illinois
Urbana-Champaign to ensure compliance with regulations. Furthermore, in line with ethical norms,
we have made efforts to obtain explicit consent from each public figure featured in the videos. The
consent form clearly includes our intention in using these data and how these data are expected to be
used. We remove videos of public figures who wish not to be part of our dataset. In addition, we
acknowledge the concern about the potential for individuals and their families to feel uncomfortable
with the label of “illness.” While we respect this sensitivity, we emphasize that our intention is to
contribute to a better understanding of PD, its impact on facial expressions, facial landmarks, and
audios, and the potential for technological advancements. We approach this research with the utmost
respect for the individuals involved and strive to contribute positively to the discourse around the
disease.

F.2 Negative Societal Impact

While our work provides promising advancements in Al-assisted analysis and severity evaluation
of PD, we recognize that it may also present potential negative societal impacts that deserve careful
consideration.

The first concern pertains to privacy. The videos we use for our work are publicly available, featuring
public figures who openly discuss their experience with PD. However, widespread use of similar
technology could raise issues of privacy, as individuals may not wish to have their health condition
detected or revealed, even inadvertently, through casual video or audio footage. As healthcare
professionals and researchers, it is critical to respect patient privacy and consent in all facets of care
and study. Second, there is a risk of misuse or over-reliance on our technology. While the goal of
our work is to aid the detection of PD, it should not replace the professional diagnosis of healthcare
providers. Misinterpretation or misuse of this technology may lead to false positives or negatives,
causing unnecessary distress or false reassurance. Lastly, issues of inequity may also arise. Access to
advanced diagnostic tools such as the one we propose may be limited, due to geographic location,
financial constraints, or digital literacy. As such, this technology could inadvertently widen the
healthcare disparity between different socioeconomic groups.

In light of these potential societal impacts, it is essential that proper protocols and measures are put
in place to guide the ethical use of such technologies. This includes clear communication about the
tool’s intended use, rigorous validation processes, and ongoing dialogue about equitable access to
and use of these technological advances.

F.3 Mitigating Bias and Negative Societal Impacts

Some ethical risks exist in the originally publicly available YouTube videos. We are aware that we
cannot mitigate those risks to zero. There will be a rest risk. Again, we emphasize that our intention
is to enhance the better understanding of PD, its effects on facial expressions, facial landmarks, and
audios, as well as explore the potential for technological advancements in this field. We aim to ensure
the highest possible standards of ethical conduct in downstream research.

F.4 Responsibility of AI-Assisted Systems

As mentioned in Section 7 of the main paper, our benchmark aims to inspire a PD early screening
tool based on modern machine learning and computer vision techniques. This tool would assist
primary clinicians in identifying individuals who may be displaying early physical signs indicative
of an evolving Parkinson’s syndrome. These individuals can then undergo further neurological
evaluation as clinically indicated. This proactive approach will expedite diagnosis and treatment,
potentially leading to improved outcomes. On the other hand, while we acknowledge the potential
of facial videos and audios in aiding PD detection, we do not advocate for clinicians to rely solely
on these modalities for diagnosis. Instead, if positive detection results emerge from facial videos
and audios, we recommend that patients seek medical attention at an earlier stage and obtain a more
comprehensive diagnosis using additional assessments, such as Dopamine Transporter Scan (DAT),
Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET).
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