2403.00172v1 [eess.SY] 29 Feb 2024

.
.

arxiv

Go Beyond Black-box Policies: Rethinking the Design of Learning
Agent for Interpretable and Verifiable HVAC Control

Zhiyu An
University of California, Merced
zan7@ucmerced.edu

Abstract

Recent research has shown the potential of Model-based Reinforce-
ment Learning (MBRL) to enhance energy efficiency of Heating,
Ventilation, and Air Conditioning (HVAC) systems. However, ex-
isting methods rely on black-box thermal dynamics models and
stochastic optimizers, lacking reliability guarantees and posing
risks to occupant health. In this work, we overcome the reliability
bottleneck by redesigning HVAC controllers using decision trees
extracted from existing thermal dynamics models and historical
data. Our decision tree-based policies are deterministic, verifiable,
interpretable, and more energy-efficient than current MBRL meth-
ods. First, we introduce a novel verification criterion for RL agents
in HVAC control based on domain knowledge. Second, we develop
a policy extraction procedure that produces a verifiable decision
tree policy. We found that the high dimensionality of the thermal
dynamics model input hinders the efficiency of policy extraction.
To tackle the dimensionality challenge, we leverage importance
sampling conditioned on historical data distributions, significantly
improving policy extraction efficiency. Lastly, we present an offline
verification algorithm that guarantees the reliability of a control
policy. Extensive experiments show that our method saves 68.4%
more energy and increases human comfort gain by 14.8% com-
pared to the state-of-the-art method, in addition to an 1127x reduc-
tion in computation overhead. Our code and data are available at
https://github.com/ryeii/Veri_ HVAC.

ACM Reference Format:

Zhiyu An, Xianzhong Ding, and Wan Du. 2024. Go Beyond Black-box
Policies: Rethinking the Design of Learning Agent for Interpretable and
Verifiable HVAC Control. In Proceedings of the 61st ACM/IEEE Design Au-
tomation Conference (DAC °24). ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1Introduction

Efficient control of Heating, Ventilation, and Air Conditioning
(HVAC) systems stands as a critical cornerstone of building op-
erations, exerting a direct influence on energy consumption and
the comfort of occupants [11]. Model-free Reinforcement Learning
(MFRL) has been extensively explored for HVAC control [8, 19],
demonstrating promising performance. Nevertheless, the inherent
data-hungry nature of MFRL, reliant on trial-and-error interactions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Xianzhong Ding
University of California, Merced
xding5@ucmerced.edu

Wan Du
University of California, Merced
wdu3@ucmerced.edu

with real-world buildings to learn optimal HVAC control policies,

presents a significant obstacle to practical deployment.

Recent research endeavors have shown the potential of Model-
based Reinforcement Learning (MBRL) [1, 9, 20] for HVAC control,
offering high data efficiency. However, widespread integration of
MBRL in the HVAC industry is hampered by concerns about its
reliability and interoperability [2, 17]. Its black-box thermal dynam-
ics models and stochastic optimization pose significant barriers to
safety and understanding behavior in practice [6, 14].

In response to the above challenge, this paper addresses the re-
liability bottleneck associated with MBRL in HVAC control. We
redesign HVAC controllers by employing policy-extracted decision
trees. The output is a set of policies that are not only verifiable and
interpretable [5], but also surpass current MBRL methods in terms
of performance. This paper introduces a novel and domain-specific
verification criterion for HVAC controllers. We also present a policy
extraction procedure that yields decision tree policies, which are
not only interpretable but also suitable for direct deployment in real-
world building environments. To cope with the high-dimensional
nature of HVAC control problems, we leverage importance sam-
pling conditioned on historical data distributions, a technique that
significantly enhances the efficiency of policy extraction. To specifi-
cally evaluate the reliability of HVAC control policies, we introduce
an offline verification algorithm that employs decision queries and
probabilistic verification techniques to assess the safety and perfor-
mance of the policies under various conditions.

We conduct extensive experiments to validate the effectiveness
of our approach in overcoming the reliability challenge in HVAC
control. Our contributions aim to pave the way for the practical
deployment of learning-based HVAC controllers, offering not only
superior performance but also the crucial assurance of safety and
interpretability in critical building infrastructure systems. In sum-
mary, this paper makes the following significant contributions:

e We address the critical reliability challenge in HVAC control by
introducing a novel and domain-specific verification criterion for
RL agents, ensuring safety and dependability in their operation.

e We develop a policy extraction procedure that produces inter-
pretable decision tree policies, enabling straightforward deploy-
ment in real-world building environments while significantly
outperforming current MBRL methods.

e We present an innovative offline verification algorithm that eval-
uates the reliability of HVAC control policies through decision
queries and probabilistic verification, offering a robust approach
to ensure the safety of RL agents in HVAC systems.

o Extensive experiments show the efficacy of proposed methods.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DAC 24, June 23-27, 2024, San Francisco, CA, USA

2Preliminary and Motivation
2.1MBRL for HVAC Control

We formulate HVAC control problem as a discrete-time Markov
Decision Process (MDP) M : {8,D, A,r, f,y}, consisting of the
state space 8, the disturbance space D, the action space A, the
reward function r : 8 X A — R, the dynamics function f(s’|s, d, a)
and discount factor y. At each time step ¢, the system is in state
st € 8, subject to disturbances d; € D, executes some action a; € A,
receives reward r; = r(s, a;), and transitions to the next state sy4+1
according to the dynamics function s;4+1 ~ f (st dr, ar). At each
time step, the control agent applies a policy 7 : (§ X D) — A
to choose the action that maximizes the discounted sum of future
rewards, given by Z‘;‘;O ytr(s;, a;), where y € [0, 1] is the discount
factor that prioritizes near-term rewards.

MBRL-based control approximates the optimal policy using two
components: the dynamics model and the controller. The dynamics
model is a regression model that learns the discrete-time thermal
dynamics of the building system by training on a set of historical
data {(st, d;, ar, sp+1) }N- It predicts s;41 based on (s, dy, ar), and
the predictions are then used by the controller to choose the optimal
action. The controller solves the following optimization problem
using a stochastic optimizer such as Random Shooting (RS) [20]
and Model Predictive Path Integral (MPPI) [1] algorithm:

H
alil = argmax) y'r(f(sr.dr.ar). ar-1) (1)
o=l

where f is the learned dynamics model. The controller picks the
action sequence of size H that maximizes the cumulative discounted
rewards of the future H time steps. In practice, the controller exe-
cutes only the first action from the sequence and then solves Eq. 1
again in the next time step with the updated state information.

States. The zone state variable is the temperature of the con-
trolled thermal zone, which depends on our control action and is
used to calculate the building system reward. It is used as part of
the input and the only output of the system dynamics model.

Disturbances. The disturbances comprise variables that do
not depend on the control action of the HVAC system, including
weather conditions and occupancy. The variables of the state and
the disturbances are specified in Table 1.

Actions. The action is the temperature setpoint of the controlled
thermal zone. Each zone is associated with a heating setpoint and
a cooling setpoint, resulting in an action dimension of 2. In our
experimental platform, the setpoint for the HVAC system is an
integer in [15°C, 23°C] for heating, and [21°C, 30°C] for cooling.

Rewards. We adopt the reward function described in [12], rep-
resented by Eq. 2. The comfort zone is defined as [z, z], which
represents the bounds for the zone temperature. At each time step ¢,
E; represents the total energy consumption, which is estimated by
taking the L1 norm of the difference between the setpoint and the
setpoint corresponding to the HVAC being turned off [7]. To bal-
ance the relative importance of comfort and energy consumption,
we used a weight variable we € [0, 1].

r(st) = =weEr — (1 = we)(Ist — z|+ + st — zl+) (2)

An et al.

State s; | Zone Air Temperature (°C)
Disturbances d; | Outdoor Air Drybulb Temperature (°C)
Outdoor Air Relative Humidity (%)
Site Wind Speed (m/s)
Site Total Radiation Rate Per Area (W /m?)
Zone People Occupant Count (No.)
Table 1: State and disturbance variables.

Existing method's behavior

22 0.3
_% 21 e rrlean
220 1*std EO.Z
& 19 3
218 3
517 o1
216
15
8:00 12:00 16:00 20:00 0.05 20

Figure 1: Left: the distribution of setpoints over 10 runs on a
fixed set of disturbances of one day. Right: the distribution
of setpoints in the left figure.

We set we = le — 2 during occupied periods and w, = 1 dur-
ing unoccupied periods. Comfort zones are [20°C, 23.5°C] for the
winter and [23°C, 26°C] for the summer.

2.2Motivation Experiments
To understand the decision uncertainty of the state-of-the-art MBRL
method [9], we perform simulations using EnergyPlus for a building
with five zones, detailed in Section 4.1. We implement the method-
ology described in [9] as a conventional MBRL approach.
Experiment results. Fig. 1 shows the heating setpoint behavior
of of existing MBRL method [9] over one day. The left subfigure
shows the mean heating setpoint values as a function of time, from
8:00 to over 22:00. The mean setpoint fluctuates throughout the
day within a range of 15°C to 22°C. The shading around the mean
represents one standard deviation, indicating the variability of the
setpoint selection. We run the experiments 10 times during a simu-
lated day while maintaining fixed disturbances. Over the 10 runs,
we calculated the deviation of each time point. The spread of the
shaded area suggests that there is considerable variability in the
heating setpoint, implying that the method does not consistently
choose the same setpoint, even under the same weather scenario.
The right bar chart displays the probability distribution of the
heating setpoint choices of the existing MBRL method [9]. There
are six bars corresponding to the same time shown in the black line
in the left figure, with the heights representing the probability of
the setpoint being selected. The distribution is relatively even, with
no single setpoint having a dominant probability, which illustrates
the stochastic nature of the existing MBRL method’s behavior.
Challenge: Stochasticity of Black-box MBRL Policy. When
considering the same weather scenario, it becomes evident that
the setpoint decisions made by the existing black-box MBRL policy
exhibit significant stochasticity. The distribution of the existing
method’s setpoints in a one-time step revealed that it has >10%
probability of choosing both the highest setpoint (22°C) and the
lowest setpoint (15°C). If the true optimal range of setpoints spans
the entire setpoint spectrum, the only plausible explanation would
be that the choice of setpoint does not have a discernible impact.
However, this cannot hold true since different setpoints lead to vary-
ing energy consumption. Consequently, the inherent stochasticity
of the existing method renders it inherently suboptimal.

Go Beyond Black-box Policies: Rethinking the Design of Learning Agent for Interpretable and Verifiable HVAC Control

Based on the above observations, our primary goal is to address
the limitations associated with the policy stochasticity in existing
MBRL methods. We aim to develop a novel approach characterized
by determinism, where every input corresponds to a decision with
a certainty of 100%. This eliminates safety concerns arising from
the unpredictability of controllers. Furthermore, it enables us to
determine and evaluate its behavior in unseen environments before
deployment, i.e., verification of the underlying policy. This is critical
for identifying and mitigating potential controller faults, ensuring
consistent and accurate operation.

3Proposed Approach

Our proposed procedure is illustrated on the left side of Fig.2. The
procedure starts from the historical data of the building thermal
dynamics, extracts a decision tree policy, verifies the safety of the
policy, and deploys it to the building edge device. The rest of this
section describes our approach in three parts. First, we introduce
verification criteria for HVAC control policies based on the domain
knowledge about HVAC operation safety. Then, we describe our pol-
icy extraction procedure that automatically constructs the decision
tree policy using the learned black-box system dynamics model.
Lastly, we describe two algorithms to formally and probabilistically
verify the extracted policy against the verification criteria.

3.1Verification Criteria For HVAC Control

We focus on the precise air temperature control of a thermal zone
during occupied hours. Hence, we define the set of "safe" states
as s € [z z], where [z Z] is the predefined comfort range. Given
the said safety criterion, we aim to construct a set of verification
criteria to check the policy’s output (the setpoint) for an infinite
set of inputs (the building state and disturbances). Ideally, these
criteria should be the tightest boundaries on the policy outputs.
Satisfying the boundaries provides a safety guarantee, while not
interfering with the effective operation of the data-driven policy.

To construct these criteria, we first divide the input building
states into three subsets by domain knowledge, then develop verifi-
cation for each of the input subsets. When the zone temperature
violates the comfort range, it is always desirable for the HVAC
system to provide responsive heating/cooling in an effort to correct
the temperature. The amount of heating/cooling it should provide
is, however, hard to determine. For instance, if the disturbances
rapidly cool the zone, and the zone temperature is only 0.5°C too
warm than the comfort range, then blindly setting to the lowest
setpoint for the next time step (15 minutes) without considering
the changing rate of zone temperature can result in the zone tem-
perature dropping below the comfort range. To mitigate the risk of
under/overshooting, we only bound the setpoint to be above the
zone temperature when the zone is too cold, and below the zone
temperature when the zone is too warm while allowing the MBRL
agent to determine the exact setpoint in that range.

When the zone temperature is within the comfort range, we
only need to make sure that the setpoint selected by the policy
keeps the zone temperature within the comfort range in the future.
This is a sequential decision problem that is difficult to manually
solve. It is the reason that MBRL is applied in the first place. In
addition, the stochasticity of the disturbances makes it difficult to
verify all possible combinations of disturbances. Hence, we adopt
probabilistic verification [3, 4], which estimates the probability of

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

the system reaching the fail states within H time steps into the
future. Formally, we construct a forward reachability tube [13] in
Eq.3, ie., all the possible states reachable within H time steps given
the policy 7. We then estimate the safe probability and compare it
with the probability threshold I specified by the building manager.
Finally, we combine all three criteria and define them in Eq. 4.

Note that verification criteria #2 and #3 are stronger than #1 be-
cause they are not probabilistic - satisfying these criteria provides a
100% guarantee on the policy behavior. Thus, our three-component
criteria are stronger than applying probabilistic verification to the
entire input space.

H
R (so)lif = |] {51 € S | ses1 = f(st.dr,ar),
t=0
ar ~ (s, dp) fort € [0,H]} (3)

#1: E[z>s >22z] >1 Vs € RM(s0)|S,
verified(nr) & (#2: 7w(st,d;) < s¢
#3: H(St,dt) > S

if s; >z,
ifs; <z

4)
3.2Policy Extraction using Black-box System

Dynamics Model

We start from the standard MBRL components [1, 9]: historical
dataset T : {(s,d, a,s")} extracted from the building management
systems (BMS), a system dynamics model f learned from the said
dataset, and a stochastic optimizer RS. Our goal is to produce a
decision tree T : (8 x D) — A which takes the current zone
temperature, current disturbances, and outputs a setpoint which
will be actuated in the next time step. To do that, we employ a two-
stage process. First, we construct a decision dataset IT : {(s,d, a)}
consisting of the policy input and the approximated optimal action.
Then, we utilize the CART (Classification and Regression Trees)
algorithm[15] to automatically construct a decision tree to fit the
decision dataset. We now describe both procedures.
3.2.1 Decision Dataset GenerationThe entries of II are produced
by distilling the stochastic decisions of an MBRL HVAC controller
into deterministic decisions. Given the system dynamics model, the
MBRL controller uses a stochastic optimizer, e.g. random shooting,
to approximate the optimal setpoint [1, 9]. Let @ = 7 (s, d) be the
setpoint approximated by the stochastic optimizer, p(d) be its distri-
bution obtained by Monte Carlo method. We define a* as the most
frequent a in p(a) and append (s, d, a*) to the decision dataset.

Ideally, dataset IT contains the optimal decision for all possible
combinations of the inputs, which allows the learned policy to
generalize to unseen states. However, this introduces a unique
challenge. Empirically, the overhead to sample an optimal decision
for one input averages to 500 milliseconds with Intel i9-11900KF
and GeForce RTX 3080Ti. If we tentatively divide each continuous
input variable into 20 bins (which is sparse, considering the outdoor
temperature generally spans 0°C —36°C) and measure the resulting
density using this sampling strategy, it will take 20° samples to
obtain 1 sample per bin on average, which takes around 444 hours.

Fortunately, for HVAC control, we do not need to sample every
possible input. Recent work by An et al. [1] found that each city
has a unique distribution of input states resulting from their unique

DAC 24, June 23-27, 2024, San Francisco, CA, USA

Stochastic optimizer

(I, _ _—
Dynamics RS controller
model

historical
data

fail node detected.
correction:
set setpoint to 15

Safety verification

decision tree
2. Criteria #2 : formal < .

3. Correct any failed leaf nodes
during formal verification

b
]
]
]
]
]
]
]
]
]
]]
] 1
] '
] '
- - Generate H i
1. Criterion #1 : probabilistic tree ' 1
] 1
| I
H 1
| 1
| 1
] 1
] 1

%J

int — 23
I
I

e

Figure 2: Left: our proposed procedure. Right: an illustration of a DT with two variables (time and temp). The leaf nodes are
classified into three categories based on temperature. The decision path verification algorithm detects and corrects failed nodes.

[
] — .
€04 — o.rlgklnal + noise /
7 8.69 ------ similar city
o ——=original
0.3 i 9
< ,/ similar distance as to és . /
i : o
=P / a difference city £ . .
o / S data with Gaussian noise
%] 8.2 has higher entropy
501 —— original -> original + noise
) L .]

g —————— original -> similar city 8.0 [
900

0.0 01 02 03 0.4 05 0.0 01 02 03 0.4 05

noise level (*std) noise level (*std)
Figure 3: Preliminary experiment to determine the appropri-

ate noise level.

weather profiles. In other words, some scenarios occur more fre-
quently than others. Thus, sampling the optimal action of the more
frequent scenarios provides more gain than sampling less frequent
scenarios. One possible approach is to first calculate the bin-wise
density of the historical data, but that costs O(n>) space complexity,
where n is the number of bins for each continuous variable in the
input. Instead, we directly sample the historical data and add an
element-wise Gaussian noise to each sample, formally described in
Eq.5, where X denotes the historical data.

Y (x; - %)?

p’(;) =X + N0, noise_level x X]

(©)
Such data augmentation has to balance between two competing
objectives. First, the noise has to be sufficiently large to allow the
resulting policy to generalize to new, unseen inputs. Second, the
noise should not be too large which causes the sampled distribution
to lose resemblance to the original distribution, which decreases
sample efficiency. To determine the appropriate noise level, we
conducted a preliminary experiment in Pittsburgh and New York,
both classified as climate category 4A by ASHRAE [18], ensuring a
fair comparison. We tested different noise levels from 0.01 to 0.5 and
compared the Information Entropy and Jensen-Shannon Distance
(JSD)[16] of the original historical data distribution, distribution
after adding noise, and the distribution of the other city. The result
is shown in Fig. 3. The ideal noise level should result in a JSD lower
than the other city and an entropy as large as possible. Based on
the experiment result, we set the noise level to [0.01,0.09]. After
obtaining IT using Monte Carlo method on p’(;), we proceed to
construct the decision tree.

3.22 Constructing the Decision Tree.The decision tree policy is an
unweighted directed acyclic graph consisting of decision nodes and
leaf nodes, as illustrated in Fig.2. Each decision node is connected

with two child nodes and contains a threshold value, which is
compared with one element in the input vector. Then, the decision
node calls either of its two child nodes based on the comparison
result (< or >). Each leaf node contains a setpoint decision, which
will be returned once called. The tree is constructed from IT using
a two-step process. First, we concatenate the elements of the input
tuple (s, d) of the decision dataset IT to form a single input vector
x, each element still represents its original meaning according to
their relative index in the input vector before concatenation. Then,
we fit a classification decision tree T : X — A which takes an input
vector, computes the forward propagation, finds the resulting leaf
node, and outputs the setpoint decision of that leaf node. Since each
decision node only compares with one element in the input vector,
the tree is fully interpretable and knowledgeable to human experts.
Now, we can utilize the interpretable property of this decision tree
policy to verify it in the next section.

3.3Verifying the Decision Tree Policy
The verification criteria in Section 3.1 involves two types of ver-
ification. For criteria #2 and #3, we design a formal verification
algorithm, verify the decision tree, and correct the failed cases by
directly editing the decision tree. For criteria #1, we apply proba-
bilistic verification using Monte Carlo method.
3.3.1 Verifying Criteria #2 and #3.When the zone temperature al-
ready violates the comfort range, we expect the controller to always
make an effort to correct the zone temperature. Our goal is to pro-
vide a 100% guarantee on the underlying policy behavior. To do that,
we develop a verification algorithm, shown in Alg.1. The key idea
is that each leaf node has a unique path from the root node. Since
T is surjective from X to A, each leaf node must deterministically
handle a subset of the input space. Thanks to the interpretability of
decision tree, we can compute the said subset for each leaf node,
identify the leaf nodes that handle the inputs of interest, and ver-
ify the setpoints of these leaf nodes. In words, Algorithm 1 does
the following: 1) it iterates through all leaf node, and compute the
unique path that connects the root node to each leaf node; 2) for
each path, it computes the union of the "boxes" on the values of
the input vectors handled by the decision nodes along the path; 3)
based on the box of the leaf node, it determines if this node will be
called if the input belongs to the set in interest. Finally, we check if
the decision of the leaf node complies with the criteria.

We illustrated a simplified decision tree in Fig.2, where the three
decision nodes provide an instance of the box shrunk by the decision

Go Beyond Black-box Policies: Rethinking the Design of Learning Agent for Interpretable and Verifiable HVAC Control

Algorithm 1: Decision path verification

1 for each leaf node T; do

2 P ={Ty,---,T;} « extract path from Ty to T;
s | c=RX

4 for T; € (P\ T;) do
5 L C < C((input box of the rules from Tj to Tj+1)
6 | ifCC((st>2) V (st <2)URIXI"T) then

7 L check criteria compliance by Eq.4

> initialize state box boundaries

comparison rules. If a fail case is detected, we correct it by editing
the setpoint in the failed leaf node to the median of the comfort zone.
Although this disregards the potential under/overshooting issue, it
guarantees that the HVAC system corrects the zone temperature
towards the correct direction, as specified in Section 3.1.

3.3.2 Verifying Criterion #1.This criterion estimates the probability
of failure within H time steps starting from a safe state, defined by
the forward reachability tube in Eq. 3 given the policy. Again, we
utilize the augmented input distribution IR;) that we developed in
Section 3.2.1 to sample the more frequent scenarios. One possible
procedure to estimate the failure probability is to sample ij) and
run bootstrap predictions to obtain a trajectory of H time steps,
then check each step in the trajectory for failure. However, the
bootstrap procedure prohibits parallelism and has low computa-
tional and space efficiency, since it makes H predictions for each
time step in a trajectory only to verify one input. Instead of boot-
strapping for H time steps, we show that verifying only one time
step ahead is equivalent to the first method with any H, and has
higher computational efficiency.

Proor. Let S denote the entire input space subject to the #1
criterion. We divide it into two subsets by the true verification
results of its elements, and let F be the set of failed inputs and N be
S\ F defined by Eq.4. The true verification result of the #1 criterion

is, thusly, p = % Let R*(x)|7 be the forward reachability tube of
x defined in Eq.3, which contains a trajectory {x, - -- ,xp}. We use
bootstrapand x e N & {x/,---,xg} € S.

Now, instead of bootstrapping, we repeatedly sample start state
x ~ S and check if x” = f(x, T(x)) € S,suchthatx’ € § <
x € N.For any x € F, there will be two cases: x’ € SV x’ ¢ S. If
x” ¢ S, then x is correctly classified to F. Otherwise, there must be
another x; € {x’, -, xg} that is not safe. In this case, x;_1 will be
classified to F, because the immediate next state will be x;, which
is not safe. Since x will be classified to N and x;_1 to F, |F| does
not change. Therefore, it correctly estimates the true % O

The procedure in the above proof allows more parallelism and
fewer model predictions per input. With higher computational

efficiency, we verify the first criterion using this method.
4Evaluation

We assess our approach with a high-fidelity simulator in an envi-
ronment including weather and layout for a fair evaluation.
4.1Platform and Implementation Details
Softwares. We used EnergyPlus [10] for industrial-level build-
ing simulation, PyTorch 2.0.0 for deep learning tasks, Python 3.9,
scikit-learn 1.3.2 for decision tree modeling, and Sinergym [12]

DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Pittsburgh | Tucson
Total No. of nodes 1199 3291
No. of leaf nodes (unique path) 599 1646
Safe probability estimated by crit. #1 94.6% 95.1%
No. of nodes corrected by crit. #2 0 0
No. of nodes corrected by crit. #3 0 88

Table 2: Verification results for two cities.

for virtual testbed that facilitates interaction with EnergyPlus in
Python. Sinergym sends the selected setpoint to the EnergyPlus
simulation session, which returns the states back through Sinergym.
All software used for our experiment is open source. We used Intel
19-11900KF and GeForce RTX 3080Ti graphic cards for computing.

Implementation details. We used consistent experiment hyper-
parameters throughout the experiment. For deep learning, we em-
ployed settings of epochs=150, learning_rate = 1e-3, and weight_decay
= le-5. We used MSE (Mean Squared Error) as the loss criterion and
Adam as the optimizer for all training. For decision data genera-
tion, we used noise_level=0.01. For decision tree construction using
CART [15], we left the depth unbounded, and the split threshold
was set to its default value. When employing the RS stochastic op-
timizer, we adopted the optimal hyperparameter configuration as
validated in [9], specifically sample_number=1000 and horizon=20.

Environment selection. We conducted our simulation with a
463m? building with five different zones [12] in two climate-distinct
cities from January 1st to January 31st. To ensure generalizability,
we selected two cities with distinct climates: Pittsburgh (ASHRAE
4A) and Tucson (ASHRAE 2B), each serving as representatives of
unique climate types [18]. For the simulation, we utilized actual
2021 TMY3 weather data specific to these cities [12].

4.2Results

4.2.1 Building Control. We deploy the policies into the simulated
building, monitor the simulation states, and evaluate their perfor-
mance by energy consumption and violation rate. We select three
benchmarks: the building’s default rule-based controller [12], the
MBRL agent [9], and the current state-of-the-art method CLUE [1].

We fitted a DT policy for each of the cities and verified them
against the proposed criteria. The results are shown in Table 2.
Then, we deploy the policies in the simulated buildings and record
their building control performances, shown in Fig. 4. The lower-
left direction in Fig. 4 represents the direction of improvement.
Compared with the default controller, CLUE [1] saves 129.6 kWh
and 32.5 kWh per month for two cities respectively, while our
method saves 149.6 kWh and 71.8 kWh, seeing a 68.4% increase in
energy savings and a 14.8% increase in human comfort on average.

Compared with the existing controller, we demonstrate our
method’s deterministic behavior in the same environment (Fig.5).
Despite using MBRL’s decisions, our approach is energy-efficient,
addressing MBRL's stochasticity by selecting the most frequent ac-
tion (Section 3.2.1), confirming its effectiveness in building control.
4.2.2 Data Efficiency.Our proposed DT policy requires an offline
decision data generation procedure described in Section 3.2.1 before
deployment. In this section, we empirically test the amount of deci-
sion data required for our controller to reach optimal performance.
We iterate through different numbers of decision data entries, fit
a DT policy, deploy the policy to a simulated building, and record

DAC 24, June 23-27, 2024, San Francisco, CA, USA

An et al.

_ Pittsburgh Tucson default [12] | MBRL [9] | CLUE [1] | DT (ours)
< 12604 @/ 4704 i average (ms) 0.0 212.87 326.30 0.1888
ic‘ 12401 4601 std (ms) 0.0 266.89 102.30 0.4423
-%_ 1220+ jisi Table 3: Online computation overhead results.

g 12001 4301 " setpoint selection. For our method, we used the model size listed in
g ﬁzz 4201 Table 2. We plot and compare the distribution of the recorded times
L; 11401 410 in Table 3. On average, our method is 1728x and 1127X faster than
g | u 400 {4 the previous state-of-the-art methods. This significantly reduces
s 1 the computation burden of the building edge devices, allowing our
i} p g edg > g

0.3050.3100.3150.3200.3250.330
Violation Rate

< DT_agent (ours)

0.085 0090 0.095 0.100
Violation Rate

@ default_agent MBRL_agent B CLUE

Figure 4: Building control results.

Improved behavior (ours)

222
521 ‘
220
819 ‘ \
218
Y AN |
{7
I 15 |

8:00 12100 16:00 20:00 0-075 20
Time Heating setpoint

Figure 5: Our method’s behavior example.

Iy
o

Probability
o
v

Pittsburgh Tucson
> 1.8 L8 M A L TV
2
] 1.6 1.6 1
O 4 4
E 1.4 1.4
- 1.24 1.24
2104 1.01
u‘i 0.8 */— 0.8 1
0 560 10‘00 1560 2600 25‘00 3000 0 560 1060 15‘00 2600 25‘00 3000
No. of decision data No. of decision data
Figure 6: Data efficiency results.
Pittsburgh Tucson

1200 1
v 1000
S
g 800 4
« 600
o
g 400+
Z 2001

o]

: : ; T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
No. of decision data No. of decision data
—— Nodes Leaf nodes —:— Corrected leaf nodes

Figure 7: Size of DT vs. No. of decision data.

its performance. Its performance is measured by the comfort rate
divided by the energy consumption, the resulting ratio is multiplied
by 1000 for easier presentation. The results are shown in Fig.6 and
the corresponding sizes of DT are shown in Fig.7. Fig.6 shows that
our method converged within 100 decision data points for both
cities. Comparing Fig.6 and Fig.7 reveals that the DT sizes of both
cities converge much later than their building control performances
if it converges. This indicates that there is no definitive relationship
between DT sizes and control performance. In terms of overhead,
the computation time to generate each decision data point averages
to 16.8 seconds. This indicates that 28 minutes will be enough to
generate sufficient decision data for an optimal DT policy.

4.2.3 Computation Overhead. We recorded the computation over-
head of our proposed DT policy and the benchmark methods in the
online setting, i.e. assuming that the policy is deployed to a real
building. For every method, we record the computation time of each

method to be deployed to a wider range of buildings.

5Conclusion
This paper addresses the critical issue of reliability in HVAC sys-
tems by introducing innovative approaches rooted in MBRL. By
transitioning from black-box models to interpretable decision tree
policies and employing domain knowledge-based verification cri-
teria, the research significantly enhances energy efficiency and
occupant safety. The utilization of historical data distributions and
an offline verification algorithm further solidify the reliability of the
control policies. Notably, our method outperforms existing MBRL
techniques, offering substantial energy savings, improved comfort,
and reduced computational overhead. This work represents a piv-
otal step toward practical MBRL deployment in the HVAC industry.
Acknowledgements. This work was supported in part by NSF
Grant #2239458 and UC National Laboratory Fees Research Program
Grant #69763. Any opinions, findings, and conclusions expressed in
this material are those of the authors and do not necessarily reflect
the views of the funding agencies.

References

[1] Zhiyu An et al. 2023. CLUE: Safe Model-Based RL HVAC Control Using Epistemic
Uncertainty Estimation. In ACM BuildSys.
[2] Zhiyu An et al. 2024. Reward Bound for Behavioral Guarantee of Model-based
Planning Agents. arXiv preprint arXiv:2402.13419 (2024).
[3] Edoardo Bacci. 2022. Formal verification of deep reinforcement learning agents.
Ph. D. Dissertation. University of Birmingham.
[4] Edoardo Bacci and David Parker. 2022. Verified probabilistic policies for deep
reinforcement learning. In NASA Formal Methods Symposium. Springer, 193-212.
[5] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. 2018. Verifiable rein-
forcement learning via policy extraction. NIPS (2018).
[6] Lukas Brunke et al. 2022. Safe learning in robotics: From learning-based control
to safe reinforcement learning. Annu. Rev. Control Robot. Auton. Syst. (2022).
[7] Bingqing Chen et al. 2019. Gnu-rl: A precocial reinforcement learning solution
for building hvac control using a differentiable mpc policy. In ACM BuildSys.
[8] Xianzhong Ding, Wan Du, and Alberto Cerpa. 2019. OCTOPUS: Deep reinforce-
ment learning for holistic smart building control. In ACM BuildSys. 326-335.
[9] Xianzhong Ding, Wan Du, and Alberto E Cerpa. 2020. Mb2c: Model-based deep
reinforcement learning for multi-zone building control. In ACM BuildSys. 50-59.
[10] DoE. 2010. EnergyPlus Input output reference. US Department of Energy (2010).
[11]US. DoE. [n.d.]. Buildings energy data book.
[12] Javier Jiménez-Raboso et al. 2021. Sinergym: a building simulation and control
framework for training reinforcement learning agents. In ACM BuildSys. 319-323.
[13] Matthew Landers and Afsaneh Doryab. 2023. Deep Reinforcement Learning
Verification: A Survey. Comput. Surveys (2023).
[14] Bo Li et al. 2023. Trustworthy AI: From principles to practices. Comput. Surveys
(2023).
[15] Wei-Yin Loh. 2011. Classification and regression trees. Wiley interdisciplinary
reviews: data mining and knowledge discovery 1, 1 (2011), 14-23.
[16] Frank Nielsen. 2019. On the Jensen-Shannon symmetrization of distances relying
on abstract means. Entropy 21, 5 (2019), 485.
[17] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D Lawrence. 2022. Challenges in
deploying machine learning: a survey of case studies. Comput. Surveys (2022).
ASHRAE STANDARD. 2020. ANSI/ASHRAE Addendum a to ANSI/ASHRAE
Standard 169-2020. ASHRAE Standing Standard Project Committee (2020).
Tianshu Wei, Yanzhi Wang, and Qi Zhu. 2017. Deep reinforcement learning for
building HVAC control. In Proceedings of the 54th DAC.
[20] Chi Zhang et al. 2019. Building HVAC scheduling using reinforcement learning
via neural network based model approximation. In ACM BuildSys. 287-296.

[18

[19

	Abstract
	1 Introduction
	2 Preliminary and Motivation
	2.1 MBRL for HVAC Control
	2.2 Motivation Experiments

	3 Proposed Approach
	3.1 Verification Criteria For HVAC Control
	3.2 Policy Extraction using Black-box System Dynamics Model
	3.3 Verifying the Decision Tree Policy

	4 Evaluation
	4.1 Platform and Implementation Details
	4.2 Results

	5 Conclusion
	References

