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Abstract
Recent research has shown the potential of Model-based Reinforce-

ment Learning (MBRL) to enhance energy efficiency of Heating,

Ventilation, and Air Conditioning (HVAC) systems. However, ex-

isting methods rely on black-box thermal dynamics models and

stochastic optimizers, lacking reliability guarantees and posing

risks to occupant health. In this work, we overcome the reliability

bottleneck by redesigning HVAC controllers using decision trees

extracted from existing thermal dynamics models and historical

data. Our decision tree-based policies are deterministic, verifiable,

interpretable, and more energy-efficient than current MBRL meth-

ods. First, we introduce a novel verification criterion for RL agents

in HVAC control based on domain knowledge. Second, we develop

a policy extraction procedure that produces a verifiable decision

tree policy. We found that the high dimensionality of the thermal

dynamics model input hinders the efficiency of policy extraction.

To tackle the dimensionality challenge, we leverage importance

sampling conditioned on historical data distributions, significantly

improving policy extraction efficiency. Lastly, we present an offline

verification algorithm that guarantees the reliability of a control

policy. Extensive experiments show that our method saves 68.4%

more energy and increases human comfort gain by 14.8% com-

pared to the state-of-the-art method, in addition to an 1127× reduc-

tion in computation overhead. Our code and data are available at

https://github.com/ryeii/Veri_HVAC.
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1Introduction
Efficient control of Heating, Ventilation, and Air Conditioning

(HVAC) systems stands as a critical cornerstone of building op-

erations, exerting a direct influence on energy consumption and

the comfort of occupants [11]. Model-free Reinforcement Learning

(MFRL) has been extensively explored for HVAC control [8, 19],

demonstrating promising performance. Nevertheless, the inherent

data-hungry nature of MFRL, reliant on trial-and-error interactions
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with real-world buildings to learn optimal HVAC control policies,

presents a significant obstacle to practical deployment.

Recent research endeavors have shown the potential of Model-

based Reinforcement Learning (MBRL) [1, 9, 20] for HVAC control,

offering high data efficiency. However, widespread integration of

MBRL in the HVAC industry is hampered by concerns about its

reliability and interoperability [2, 17]. Its black-box thermal dynam-

ics models and stochastic optimization pose significant barriers to

safety and understanding behavior in practice [6, 14].

In response to the above challenge, this paper addresses the re-

liability bottleneck associated with MBRL in HVAC control. We

redesign HVAC controllers by employing policy-extracted decision

trees. The output is a set of policies that are not only verifiable and

interpretable [5], but also surpass current MBRL methods in terms

of performance. This paper introduces a novel and domain-specific

verification criterion for HVAC controllers. We also present a policy

extraction procedure that yields decision tree policies, which are

not only interpretable but also suitable for direct deployment in real-

world building environments. To cope with the high-dimensional

nature of HVAC control problems, we leverage importance sam-

pling conditioned on historical data distributions, a technique that

significantly enhances the efficiency of policy extraction. To specifi-

cally evaluate the reliability of HVAC control policies, we introduce

an offline verification algorithm that employs decision queries and

probabilistic verification techniques to assess the safety and perfor-

mance of the policies under various conditions.

We conduct extensive experiments to validate the effectiveness

of our approach in overcoming the reliability challenge in HVAC

control. Our contributions aim to pave the way for the practical

deployment of learning-based HVAC controllers, offering not only

superior performance but also the crucial assurance of safety and

interpretability in critical building infrastructure systems. In sum-

mary, this paper makes the following significant contributions:

• We address the critical reliability challenge in HVAC control by

introducing a novel and domain-specific verification criterion for

RL agents, ensuring safety and dependability in their operation.

• We develop a policy extraction procedure that produces inter-

pretable decision tree policies, enabling straightforward deploy-

ment in real-world building environments while significantly

outperforming current MBRL methods.

• We present an innovative offline verification algorithm that eval-

uates the reliability of HVAC control policies through decision

queries and probabilistic verification, offering a robust approach

to ensure the safety of RL agents in HVAC systems.

• Extensive experiments show the efficacy of proposed methods.
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2Preliminary and Motivation
2.1MBRL for HVAC Control
We formulate HVAC control problem as a discrete-time Markov

Decision Process (MDP) M : {S,D,A, 𝑟 , 𝑓 , 𝛾}, consisting of the

state space S, the disturbance space D, the action space A, the

reward function 𝑟 : S ×A→ R, the dynamics function 𝑓 (𝑠′ |𝑠, 𝑑, 𝑎)
and discount factor 𝛾 . At each time step 𝑡 , the system is in state

𝑠𝑡 ∈ S, subject to disturbances𝑑𝑡 ∈ D, executes some action 𝑎𝑡 ∈ A,

receives reward 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ), and transitions to the next state 𝑠𝑡+1
according to the dynamics function 𝑠𝑡+1 ∼ 𝑓 (𝑠𝑡 , 𝑑𝑡 , 𝑎𝑡 ). At each
time step, the control agent applies a policy 𝜋 : (S × D) → A

to choose the action that maximizes the discounted sum of future

rewards, given by

∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ), where 𝛾 ∈ [0, 1] is the discount
factor that prioritizes near-term rewards.

MBRL-based control approximates the optimal policy using two

components: the dynamics model and the controller. The dynamics

model is a regression model that learns the discrete-time thermal

dynamics of the building system by training on a set of historical

data {(𝑠𝑡 , 𝑑𝑡 , 𝑎𝑡 , 𝑠𝑡+1)}𝑁 . It predicts 𝑠𝑡+1 based on (𝑠𝑡 , 𝑑𝑡 , 𝑎𝑡 ), and
the predictions are then used by the controller to choose the optimal

action. The controller solves the following optimization problem

using a stochastic optimizer such as Random Shooting (RS) [20]

and Model Predictive Path Integral (MPPI) [1] algorithm:

𝑎[:] = argmax

𝑎[:]

𝐻∑︁
𝑡=1

𝛾𝑡𝑟 ( ˆ𝑓 (𝑠𝑡 , 𝑑𝑡 , 𝑎𝑡 ), 𝑎𝑡−1) (1)

where
ˆ𝑓 is the learned dynamics model. The controller picks the

action sequence of size𝐻 that maximizes the cumulative discounted

rewards of the future 𝐻 time steps. In practice, the controller exe-

cutes only the first action from the sequence and then solves Eq. 1

again in the next time step with the updated state information.

States. The zone state variable is the temperature of the con-

trolled thermal zone, which depends on our control action and is

used to calculate the building system reward. It is used as part of

the input and the only output of the system dynamics model.

Disturbances. The disturbances comprise variables that do

not depend on the control action of the HVAC system, including

weather conditions and occupancy. The variables of the state and

the disturbances are specified in Table 1.

Actions. The action is the temperature setpoint of the controlled

thermal zone. Each zone is associated with a heating setpoint and

a cooling setpoint, resulting in an action dimension of 2. In our

experimental platform, the setpoint for the HVAC system is an

integer in [15◦𝐶, 23◦𝐶] for heating, and [21◦𝐶, 30◦𝐶] for cooling.
Rewards. We adopt the reward function described in [12], rep-

resented by Eq. 2. The comfort zone is defined as [z, 𝑧], which
represents the bounds for the zone temperature. At each time step 𝑡 ,

𝐸𝑡 represents the total energy consumption, which is estimated by

taking the L1 norm of the difference between the setpoint and the

setpoint corresponding to the HVAC being turned off [7]. To bal-

ance the relative importance of comfort and energy consumption,

we used a weight variable𝑤𝑒 ∈ [0, 1].

𝑟 (𝑠𝑡 ) = −𝑤𝑒𝐸𝑡 − (1 −𝑤𝑒 ) ( |𝑠𝑡 − 𝑧 |+ + |𝑠𝑡 − z|+) (2)

State 𝑠𝑡 Zone Air Temperature (
◦𝐶)

Disturbances 𝑑𝑡 Outdoor Air Drybulb Temperature (
◦𝐶)

Outdoor Air Relative Humidity (%)

Site Wind Speed (𝑚/𝑠)
Site Total Radiation Rate Per Area (𝑊 /𝑚2

)

Zone People Occupant Count (𝑁𝑜.)

Table 1: State and disturbance variables.
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Figure 1: Left: the distribution of setpoints over 10 runs on a
fixed set of disturbances of one day. Right: the distribution
of setpoints in the left figure.

We set 𝑤𝑒 = 1𝑒 − 2 during occupied periods and 𝑤𝑒 = 1 dur-

ing unoccupied periods. Comfort zones are [20◦𝐶, 23.5◦𝐶] for the
winter and [23◦𝐶, 26◦𝐶] for the summer.

2.2Motivation Experiments
To understand the decision uncertainty of the state-of-the-art MBRL

method [9], we perform simulations using EnergyPlus for a building

with five zones, detailed in Section 4.1. We implement the method-

ology described in [9] as a conventional MBRL approach.

Experiment results. Fig. 1 shows the heating setpoint behavior
of of existing MBRL method [9] over one day. The left subfigure

shows the mean heating setpoint values as a function of time, from

8:00 to over 22:00. The mean setpoint fluctuates throughout the

day within a range of 15°C to 22°C. The shading around the mean

represents one standard deviation, indicating the variability of the

setpoint selection. We run the experiments 10 times during a simu-

lated day while maintaining fixed disturbances. Over the 10 runs,

we calculated the deviation of each time point. The spread of the

shaded area suggests that there is considerable variability in the

heating setpoint, implying that the method does not consistently

choose the same setpoint, even under the same weather scenario.

The right bar chart displays the probability distribution of the

heating setpoint choices of the existing MBRL method [9]. There

are six bars corresponding to the same time shown in the black line

in the left figure, with the heights representing the probability of

the setpoint being selected. The distribution is relatively even, with

no single setpoint having a dominant probability, which illustrates

the stochastic nature of the existing MBRL method’s behavior.

Challenge: Stochasticity of Black-box MBRL Policy. When

considering the same weather scenario, it becomes evident that

the setpoint decisions made by the existing black-box MBRL policy

exhibit significant stochasticity. The distribution of the existing

method’s setpoints in a one-time step revealed that it has >10%

probability of choosing both the highest setpoint (22
◦𝐶) and the

lowest setpoint (15
◦𝐶). If the true optimal range of setpoints spans

the entire setpoint spectrum, the only plausible explanation would

be that the choice of setpoint does not have a discernible impact.

However, this cannot hold true since different setpoints lead to vary-

ing energy consumption. Consequently, the inherent stochasticity

of the existing method renders it inherently suboptimal.
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Based on the above observations, our primary goal is to address

the limitations associated with the policy stochasticity in existing

MBRL methods. We aim to develop a novel approach characterized

by determinism, where every input corresponds to a decision with

a certainty of 100%. This eliminates safety concerns arising from

the unpredictability of controllers. Furthermore, it enables us to

determine and evaluate its behavior in unseen environments before

deployment, i.e., verification of the underlying policy. This is critical

for identifying and mitigating potential controller faults, ensuring

consistent and accurate operation.

3Proposed Approach
Our proposed procedure is illustrated on the left side of Fig.2. The

procedure starts from the historical data of the building thermal

dynamics, extracts a decision tree policy, verifies the safety of the

policy, and deploys it to the building edge device. The rest of this

section describes our approach in three parts. First, we introduce

verification criteria for HVAC control policies based on the domain

knowledge about HVAC operation safety. Then, we describe our pol-

icy extraction procedure that automatically constructs the decision

tree policy using the learned black-box system dynamics model.

Lastly, we describe two algorithms to formally and probabilistically

verify the extracted policy against the verification criteria.

3.1Verification Criteria For HVAC Control
We focus on the precise air temperature control of a thermal zone

during occupied hours. Hence, we define the set of "safe" states

as 𝑠 ∈ [z, 𝑧], where [z, 𝑧] is the predefined comfort range. Given

the said safety criterion, we aim to construct a set of verification

criteria to check the policy’s output (the setpoint) for an infinite

set of inputs (the building state and disturbances). Ideally, these

criteria should be the tightest boundaries on the policy outputs.

Satisfying the boundaries provides a safety guarantee, while not

interfering with the effective operation of the data-driven policy.

To construct these criteria, we first divide the input building

states into three subsets by domain knowledge, then develop verifi-

cation for each of the input subsets. When the zone temperature

violates the comfort range, it is always desirable for the HVAC

system to provide responsive heating/cooling in an effort to correct

the temperature. The amount of heating/cooling it should provide

is, however, hard to determine. For instance, if the disturbances

rapidly cool the zone, and the zone temperature is only 0.5◦𝐶 too

warm than the comfort range, then blindly setting to the lowest

setpoint for the next time step (15 minutes) without considering

the changing rate of zone temperature can result in the zone tem-

perature dropping below the comfort range. To mitigate the risk of

under/overshooting, we only bound the setpoint to be above the

zone temperature when the zone is too cold, and below the zone

temperature when the zone is too warm while allowing the MBRL

agent to determine the exact setpoint in that range.

When the zone temperature is within the comfort range, we

only need to make sure that the setpoint selected by the policy

keeps the zone temperature within the comfort range in the future.

This is a sequential decision problem that is difficult to manually

solve. It is the reason that MBRL is applied in the first place. In

addition, the stochasticity of the disturbances makes it difficult to

verify all possible combinations of disturbances. Hence, we adopt

probabilistic verification [3, 4], which estimates the probability of

the system reaching the fail states within 𝐻 time steps into the

future. Formally, we construct a forward reachability tube [13] in

Eq.3, i.e., all the possible states reachable within 𝐻 time steps given

the policy 𝜋 . We then estimate the safe probability and compare it

with the probability threshold 𝑙 specified by the building manager.

Finally, we combine all three criteria and define them in Eq. 4.

Note that verification criteria #2 and #3 are stronger than #1 be-

cause they are not probabilistic - satisfying these criteria provides a

100% guarantee on the policy behavior. Thus, our three-component

criteria are stronger than applying probabilistic verification to the

entire input space.

R+ (𝑠0) |𝐻𝜋 =

𝐻⋃
𝑡=0

{𝑠𝑡 ∈ S | 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑑𝑡 , 𝑎𝑡 ),

𝑎𝑡 ∼ 𝜋 (𝑠𝑡 , 𝑑𝑡 ) for 𝑡 ∈ [0, 𝐻 ]} (3)

verified(𝜋) ⇐⇒


#1 : E[𝑧 ≥ 𝑠𝑡 ≥ z] > 𝑙 ∀𝑠𝑡 ∈ R+ (𝑠0) |∞𝜋 ,
#2 : 𝜋 (𝑠𝑡 , 𝑑𝑡 ) < 𝑠𝑡 if 𝑠𝑡 > 𝑧,

#3 : 𝜋 (𝑠𝑡 , 𝑑𝑡 ) > 𝑠𝑡 if 𝑠𝑡 < z

(4)

3.2Policy Extraction using Black-box System
Dynamics Model

We start from the standard MBRL components [1, 9]: historical

dataset T : {(𝑠, 𝑑, 𝑎, 𝑠′)} extracted from the building management

systems (BMS), a system dynamics model
ˆ𝑓 learned from the said

dataset, and a stochastic optimizer 𝑅𝑆 . Our goal is to produce a

decision tree 𝑇 : (S × D) → A which takes the current zone

temperature, current disturbances, and outputs a setpoint which

will be actuated in the next time step. To do that, we employ a two-

stage process. First, we construct a decision dataset Π : {(𝑠, 𝑑, 𝑎)}
consisting of the policy input and the approximated optimal action.

Then, we utilize the CART (Classification and Regression Trees)

algorithm[15] to automatically construct a decision tree to fit the

decision dataset. We now describe both procedures.

3.2.1 Decision Dataset GenerationThe entries of Π are produced

by distilling the stochastic decisions of an MBRL HVAC controller

into deterministic decisions. Given the system dynamics model, the

MBRL controller uses a stochastic optimizer, e.g. random shooting,

to approximate the optimal setpoint [1, 9]. Let 𝑎 = 𝜋 (𝑠, 𝑑) be the
setpoint approximated by the stochastic optimizer, 𝑝 (𝑎) be its distri-
bution obtained by Monte Carlo method. We define 𝑎∗ as the most

frequent 𝑎 in 𝑝 (𝑎) and append (𝑠, 𝑑, 𝑎∗) to the decision dataset.

Ideally, dataset Π contains the optimal decision for all possible

combinations of the inputs, which allows the learned policy to

generalize to unseen states. However, this introduces a unique

challenge. Empirically, the overhead to sample an optimal decision

for one input averages to 500 milliseconds with Intel i9-11900KF

and GeForce RTX 3080Ti. If we tentatively divide each continuous

input variable into 20 bins (which is sparse, considering the outdoor

temperature generally spans 0
◦𝐶 −36◦𝐶) and measure the resulting

density using this sampling strategy, it will take 20
5
samples to

obtain 1 sample per bin on average, which takes around 444 hours.

Fortunately, for HVAC control, we do not need to sample every

possible input. Recent work by An et al. [1] found that each city

has a unique distribution of input states resulting from their unique
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Figure 2: Left: our proposed procedure. Right: an illustration of a DT with two variables (time and temp). The leaf nodes are
classified into three categories based on temperature. The decision path verification algorithm detects and corrects failed nodes.
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weather profiles. In other words, some scenarios occur more fre-

quently than others. Thus, sampling the optimal action of the more

frequent scenarios provides more gain than sampling less frequent

scenarios. One possible approach is to first calculate the bin-wise

density of the historical data, but that costs𝑂 (𝑛5) space complexity,

where 𝑛 is the number of bins for each continuous variable in the

input. Instead, we directly sample the historical data and add an

element-wise Gaussian noise to each sample, formally described in

Eq.5, where 𝑋 denotes the historical data.

𝑝 (𝑥) = 𝑋 +N ©­«0, noise_level ×
√︄∑(𝑥𝑖 − 𝑥)2

|𝑋 |
ª®¬ (5)

Such data augmentation has to balance between two competing

objectives. First, the noise has to be sufficiently large to allow the

resulting policy to generalize to new, unseen inputs. Second, the

noise should not be too large which causes the sampled distribution

to lose resemblance to the original distribution, which decreases

sample efficiency. To determine the appropriate noise level, we

conducted a preliminary experiment in Pittsburgh and New York,

both classified as climate category 4A by ASHRAE [18], ensuring a

fair comparison.We tested different noise levels from 0.01 to 0.5 and

compared the Information Entropy and Jensen-Shannon Distance

(JSD)[16] of the original historical data distribution, distribution

after adding noise, and the distribution of the other city. The result

is shown in Fig. 3. The ideal noise level should result in a JSD lower

than the other city and an entropy as large as possible. Based on

the experiment result, we set the noise level to [0.01, 0.09]. After
obtaining Π using Monte Carlo method on 𝑝 (𝑥), we proceed to

construct the decision tree.

3.2.2 Constructing the Decision Tree.The decision tree policy is an

unweighted directed acyclic graph consisting of decision nodes and

leaf nodes, as illustrated in Fig.2. Each decision node is connected

with two child nodes and contains a threshold value, which is

compared with one element in the input vector. Then, the decision

node calls either of its two child nodes based on the comparison

result (≤ or >). Each leaf node contains a setpoint decision, which

will be returned once called. The tree is constructed from Π using

a two-step process. First, we concatenate the elements of the input

tuple (𝑠, 𝑑) of the decision dataset Π to form a single input vector

𝑥 , each element still represents its original meaning according to

their relative index in the input vector before concatenation. Then,

we fit a classification decision tree𝑇 : X→ A which takes an input

vector, computes the forward propagation, finds the resulting leaf

node, and outputs the setpoint decision of that leaf node. Since each

decision node only compares with one element in the input vector,

the tree is fully interpretable and knowledgeable to human experts.

Now, we can utilize the interpretable property of this decision tree

policy to verify it in the next section.

3.3Verifying the Decision Tree Policy
The verification criteria in Section 3.1 involves two types of ver-

ification. For criteria #2 and #3, we design a formal verification

algorithm, verify the decision tree, and correct the failed cases by

directly editing the decision tree. For criteria #1, we apply proba-

bilistic verification using Monte Carlo method.

3.3.1 Verifying Criteria #2 and #3.When the zone temperature al-

ready violates the comfort range, we expect the controller to always

make an effort to correct the zone temperature. Our goal is to pro-

vide a 100% guarantee on the underlying policy behavior. To do that,

we develop a verification algorithm, shown in Alg.1. The key idea

is that each leaf node has a unique path from the root node. Since

𝑇 is surjective from X to A, each leaf node must deterministically

handle a subset of the input space. Thanks to the interpretability of

decision tree, we can compute the said subset for each leaf node,

identify the leaf nodes that handle the inputs of interest, and ver-

ify the setpoints of these leaf nodes. In words, Algorithm 1 does

the following: 1) it iterates through all leaf node, and compute the

unique path that connects the root node to each leaf node; 2) for

each path, it computes the union of the "boxes" on the values of

the input vectors handled by the decision nodes along the path; 3)

based on the box of the leaf node, it determines if this node will be

called if the input belongs to the set in interest. Finally, we check if

the decision of the leaf node complies with the criteria.

We illustrated a simplified decision tree in Fig.2, where the three

decision nodes provide an instance of the box shrunk by the decision



Go Beyond Black-box Policies: Rethinking the Design of Learning Agent for Interpretable and Verifiable HVAC Control DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Algorithm 1: Decision path verification

1 for each leaf node 𝑇𝑖 do
2 𝑃 = {𝑇0, · · · ,𝑇𝑖 } ← extract path from 𝑇0 to 𝑇𝑖

3 𝐶 = R |X | ⊲ initialize state box boundaries

4 for 𝑇𝑗 ∈ (𝑃 \𝑇𝑖 ) do
5 𝐶 ← 𝐶

⋂ (input box of the rules from 𝑇𝑗 to 𝑇𝑗+1)
6 if 𝐶 ⊆ ((𝑠𝑡 > 𝑧) ∨ (𝑠𝑡 < z))⋃R |X |−1) then
7 check criteria compliance by Eq.4

comparison rules. If a fail case is detected, we correct it by editing

the setpoint in the failed leaf node to themedian of the comfort zone.

Although this disregards the potential under/overshooting issue, it

guarantees that the HVAC system corrects the zone temperature

towards the correct direction, as specified in Section 3.1.

3.3.2 Verifying Criterion #1.This criterion estimates the probability

of failure within 𝐻 time steps starting from a safe state, defined by

the forward reachability tube in Eq. 3 given the policy. Again, we

utilize the augmented input distribution 𝑝 (𝑥) that we developed in

Section 3.2.1 to sample the more frequent scenarios. One possible

procedure to estimate the failure probability is to sample 𝑝 (𝑥) and
run bootstrap predictions to obtain a trajectory of 𝐻 time steps,

then check each step in the trajectory for failure. However, the

bootstrap procedure prohibits parallelism and has low computa-

tional and space efficiency, since it makes 𝐻 predictions for each

time step in a trajectory only to verify one input. Instead of boot-

strapping for 𝐻 time steps, we show that verifying only one time

step ahead is equivalent to the first method with any 𝐻 , and has

higher computational efficiency.

Proof. Let 𝑆 denote the entire input space subject to the #1

criterion. We divide it into two subsets by the true verification

results of its elements, and let 𝐹 be the set of failed inputs and 𝑁 be

𝑆 \ 𝐹 defined by Eq.4. The true verification result of the #1 criterion

is, thusly, 𝑝 =
|𝐹 |
|𝑁 | . Let 𝑅

+ (𝑥) |𝑇 be the forward reachability tube of

𝑥 defined in Eq.3, which contains a trajectory {𝑥, · · · , 𝑥𝐻 }. We use

bootstrap and 𝑥 ∈ 𝑁 ⇐⇒ {𝑥 ′, · · · , 𝑥𝐻 } ∈ 𝑆 .
Now, instead of bootstrapping, we repeatedly sample start state

𝑥 ∼ 𝑆 and check if 𝑥 ′ = ˆ𝑓 (𝑥,𝑇 (𝑥)) ∈ 𝑆 , such that 𝑥 ′ ∈ 𝑆 ⇐⇒
𝑥 ∈ 𝑁 . For any 𝑥 ∈ 𝐹 , there will be two cases: 𝑥 ′ ∈ 𝑆 ∨ 𝑥 ′ ∉ 𝑆 . If

𝑥 ′ ∉ 𝑆 , then 𝑥 is correctly classified to 𝐹 . Otherwise, there must be

another 𝑥 𝑗 ∈ {𝑥 ′, · · · , 𝑥𝐻 } that is not safe. In this case, 𝑥 𝑗−1 will be
classified to 𝐹 , because the immediate next state will be 𝑥 𝑗 , which

is not safe. Since 𝑥 will be classified to 𝑁 and 𝑥 𝑗−1 to 𝐹 , |𝐹 | does
not change. Therefore, it correctly estimates the true

|𝐹 |
|𝑁 | . □

The procedure in the above proof allows more parallelism and

fewer model predictions per input. With higher computational

efficiency, we verify the first criterion using this method.

4Evaluation
We assess our approach with a high-fidelity simulator in an envi-

ronment including weather and layout for a fair evaluation.

4.1Platform and Implementation Details
Softwares. We used EnergyPlus [10] for industrial-level build-

ing simulation, PyTorch 2.0.0 for deep learning tasks, Python 3.9,

scikit-learn 1.3.2 for decision tree modeling, and Sinergym [12]

Pittsburgh Tucson

Total No. of nodes 1199 3291

No. of leaf nodes (unique path) 599 1646

Safe probability estimated by crit. #1 94.6% 95.1%

No. of nodes corrected by crit. #2 0 0

No. of nodes corrected by crit. #3 0 88

Table 2: Verification results for two cities.

for virtual testbed that facilitates interaction with EnergyPlus in

Python. Sinergym sends the selected setpoint to the EnergyPlus

simulation session, which returns the states back through Sinergym.

All software used for our experiment is open source. We used Intel

i9-11900KF and GeForce RTX 3080Ti graphic cards for computing.

Implementation details.Weused consistent experiment hyper-

parameters throughout the experiment. For deep learning, we em-

ployed settings of epochs=150, learning_rate = 1e-3, andweight_decay

= 1e-5. We used MSE (Mean Squared Error) as the loss criterion and

Adam as the optimizer for all training. For decision data genera-

tion, we used noise_level=0.01. For decision tree construction using

CART [15], we left the depth unbounded, and the split threshold

was set to its default value. When employing the RS stochastic op-

timizer, we adopted the optimal hyperparameter configuration as

validated in [9], specifically sample_number=1000 and horizon=20.

Environment selection.We conducted our simulation with a

463𝑚2
building with five different zones [12] in two climate-distinct

cities from January 1st to January 31st. To ensure generalizability,

we selected two cities with distinct climates: Pittsburgh (ASHRAE

4A) and Tucson (ASHRAE 2B), each serving as representatives of

unique climate types [18]. For the simulation, we utilized actual

2021 TMY3 weather data specific to these cities [12].

4.2Results
4.2.1 Building Control.We deploy the policies into the simulated

building, monitor the simulation states, and evaluate their perfor-

mance by energy consumption and violation rate. We select three

benchmarks: the building’s default rule-based controller [12], the

MBRL agent [9], and the current state-of-the-art method CLUE [1].

We fitted a DT policy for each of the cities and verified them

against the proposed criteria. The results are shown in Table 2.

Then, we deploy the policies in the simulated buildings and record

their building control performances, shown in Fig. 4. The lower-

left direction in Fig. 4 represents the direction of improvement.

Compared with the default controller, CLUE [1] saves 129.6 kWh

and 32.5 kWh per month for two cities respectively, while our

method saves 149.6 kWh and 71.8 kWh, seeing a 68.4% increase in

energy savings and a 14.8% increase in human comfort on average.

Compared with the existing controller, we demonstrate our

method’s deterministic behavior in the same environment (Fig.5).

Despite using MBRL’s decisions, our approach is energy-efficient,

addressing MBRL’s stochasticity by selecting the most frequent ac-

tion (Section 3.2.1), confirming its effectiveness in building control.

4.2.2 Data Efficiency.Our proposed DT policy requires an offline

decision data generation procedure described in Section 3.2.1 before

deployment. In this section, we empirically test the amount of deci-

sion data required for our controller to reach optimal performance.

We iterate through different numbers of decision data entries, fit

a DT policy, deploy the policy to a simulated building, and record
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Figure 4: Building control results.
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Figure 5: Our method’s behavior example.
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Figure 7: Size of DT vs. No. of decision data.

its performance. Its performance is measured by the comfort rate

divided by the energy consumption, the resulting ratio is multiplied

by 1000 for easier presentation. The results are shown in Fig.6 and

the corresponding sizes of DT are shown in Fig.7. Fig.6 shows that

our method converged within 100 decision data points for both

cities. Comparing Fig.6 and Fig.7 reveals that the DT sizes of both

cities converge much later than their building control performances

if it converges. This indicates that there is no definitive relationship

between DT sizes and control performance. In terms of overhead,

the computation time to generate each decision data point averages

to 16.8 seconds. This indicates that 28 minutes will be enough to

generate sufficient decision data for an optimal DT policy.

4.2.3 Computation Overhead.We recorded the computation over-

head of our proposed DT policy and the benchmark methods in the

online setting, i.e. assuming that the policy is deployed to a real

building. For every method, we record the computation time of each

default [12] MBRL [9] CLUE [1] DT (ours)

average (ms) 0.0 212.87 326.30 0.1888

std (ms) 0.0 266.89 102.30 0.4423

Table 3: Online computation overhead results.

setpoint selection. For our method, we used the model size listed in

Table 2. We plot and compare the distribution of the recorded times

in Table 3. On average, our method is 1728× and 1127× faster than

the previous state-of-the-art methods. This significantly reduces

the computation burden of the building edge devices, allowing our

method to be deployed to a wider range of buildings.

5Conclusion
This paper addresses the critical issue of reliability in HVAC sys-

tems by introducing innovative approaches rooted in MBRL. By

transitioning from black-box models to interpretable decision tree

policies and employing domain knowledge-based verification cri-

teria, the research significantly enhances energy efficiency and

occupant safety. The utilization of historical data distributions and

an offline verification algorithm further solidify the reliability of the

control policies. Notably, our method outperforms existing MBRL

techniques, offering substantial energy savings, improved comfort,

and reduced computational overhead. This work represents a piv-

otal step toward practical MBRL deployment in the HVAC industry.
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