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ABSTRACT

Recent years have seen an emerging interest in the trustworthiness of machine
learning-based agents in the wild, especially in robotics, to provide safety assur-
ance for the industry. Obtaining behavioral guarantees for these agents remains
an important problem. In this work, we focus on guaranteeing a model-based
planning agent reaches a goal state within a specific future time step. We show
that there exists a lower bound for the reward at the goal state, such that if the
said reward is below that bound, it is impossible to obtain such a guarantee. By
extension, we show how to enforce preferences over multiple goals.

1 INTRODUCTION & PRELIMINARIES

We have witnessed a rapid integration of machine learning-driven agents in our lives, such as in-
dustrial robots and autonomous driving vehicles. However, research on the trustworthiness of these
agents lags behind [Landers & Doryab (2023); Borg et al| (2018). Behavioral Guarantee, an impor-
tant technique to improve the reliability of autonomous agents, has been explored in this context
Kress-Gazit et al! (2018). While it is relatively straightforward to guarantee an agent’s behavior to
avoid imminent fault (for instance, adding distance sensors to prevent a robot’s collision with peo-
ple), it is more challenging to guarantee the same for faults that are over-the-horizon (for instance,
guaranteeing an autonomous vehicle’s behavior in traffic scenarios several seconds into the future).
In this work, we study the problem of guaranteeing a model-based planning agent reaches a goal
state within a future time step from a reward function-design perspective.

Environment Formulation. We consider problems formulated by a discrete-time Markov Decision
Process (MDP) M : {S, A, r, P} with state space S, action space A, reward functionr : S — R,
dynamics function P(s’|s, a). At time step ¢, the agent is in state s; € S, take some action a; € A,
transitions to the next state s;y1 ~ P(s¢, at) and receives reward r, = r(sy;4+1). The goal is to
maximize ) _,o, r(s;). For the sake of simplicity, we assume r is non-negative.

Agent Definition. Model-based Reinforcement Learning (MBRL) [Wang et all (2019) is widely
used to solve MDP in system control |An et all (2023), robotics IMendonca et al| (2023), etc. It
approximates the optimal policy using two components: a dynamics model and an optimizer.
The dynamics model P learns the discrete-time dynamics of the environment from historical data
{(st,a¢,5041)}n. Then, P is used by the optimizer to select an appropriate action by solving
al:] = argmax,[, Zio ~ir(P(se, ar)), where af:] = [ag,- -+ ,ag—_1] and v € [0,1] is a discount
factor. The agent then takes the first action in the sequence, a[0], and re-plan in the next time
step. To solve for this action sequence, an optimizer usually generates a[:] according to some rule,
predicts the state trajectory s[:] = Uatea[;] P(st, at), and evaluates the total reward of trajectories

Zflzo r(st), st € s[:] Botev et all (2013);Rac (2009); Jorge & Stephen (2006).

Problem Definition. Assuming the agent is currently in sg, we consider the problem of guaranteeing
the agent reaches a goal state s, within the next J steps with a probability of 1.
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2 MAIN RESULT

Note that if the underlying MDP is not deterministic, such a guarantee is impossible. For the sake

of the analysis, we assume that the underlying MDP is deterministic and the agent’s model P re-
sembles the true dynamics f with sufficient accuracy to not change the evaluation of rewards, i.e.,
r(P(se,as)) = 7(P(s¢,ay)) for any s;,a;. We propose two necessary conditions to obtain such
a guarantee. First, the agent must have enough time to transition to the goal state. Formally, we
construct the bootstrapped forward reachable set [Liu et al! (2021)) of the agent from sg, shown in
Eq.[Il The first necessary condition is that s, € R(so, J).

R 80, U {St+1|8t+1 (St, at);Va S .A} (1)

Second, the trajectories containing the goal must have a total reward larger than any other trajec-
tories. This condition is necessary for the trajectories containing the goal to be selected by the
optimizer, thus leading the agent to transition towards the goal. Formally, let the set of trajectories
starting from so and containing the goal be {g[:]}, it is necessary for Eq. 2lto be true.

39LL D Ar(se) > D Afr(se) Vsl € {s[]]s[0] = s0, s[]U{sg} =0} (@)

st€gli] st€s[:]

Lemma 1 Given that the underlying MDP is deterministic and the model is accurate, if Eq. Qlis
false, then the probability of the agent reaching sg within J steps is strictly less than 1.

The proof of Lemma[Ilis postponed to Appendix [Al If the agent is deterministic and is able to
fully explore the entire forward reachable set to find the max-reward trajectory, then the above two
conditions are the sufficient conditions for behavioral guarantee. Now, we consider two application
scenarios of these conditions: single goal state, and multiple goal states with preference order.

2.1 SINGLE GOAL STATE

In this case, the agent is expected to reach a single s4. This is often the final state of a task, and the
agent stops after reaching this state. In practice, r(s4) is usually set to an arbitrary large number,
such as 9999. This approach is prone to fault, e.g. When other states are assigned a similarly large
number, which will misguide the agent to reach other states instead. We show that:

vr(sg) > D A'r(s) Vsl] € {s[] ] s[0] = s0, s[] U {sy} = 0} ©)
st€sl:]
is sufficient to guarantee the agent reaches the goal. The proof is postponed to Appendix[A.2l

2.2 MULTIPLE GOAL STATES WITH PREFERENCE ORDER

In this scenario, we have multiple goal states ordered by our preference s - 52 g sf]V If the
forward reachable set contains multiple goal states, the reward function should guarantee that the
agent reaches the goal state with highest preference, ignoring other goal states.

Lemma 2 Given that the underlying MDP is deterministic and the model is accurate, if the least
preferred goal sf]\[ satisfies Eq. Bland all other goals satisfy'

sé»sé(z)wr Zwr “4)
, then the agent reaches the highest preference goal in a forward reachable set with probability 1.
The proof is postponed to Appendix[A.3l
3 CONCLUSION
We proposed necessary and sufficient conditions to guarantee a model-based planning agent’s suc-

cess in reaching a goal within a future time step. By extension, we showed that the proposed condi-
tions can be applied to enforce preferences over multiple goals.
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A APPENDIX

A.1 PROOF OoF LEMMA[I]

Assume the agent is deterministic and is able to explore the entire forward reachable set. Eq. [2lis
false indicates that there exists some s[:] such that

PIREICIEID DI EICANR D ®)
si€s[}] se€gl[:]

In the best case, we have >0 ) Yir(sy) = > secgl] vtr(s¢), and there is only one such s[:] and

many g[:]. If there are many trajectories with equal total rewards, the optimizer chooses one of these
trajectories at random, and the probability of eventually selecting all actions that actuates trajectory
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s[:] is larger than 0. In other cases, there will be a trajectory s[:] whose total reward is larger than
any g[:]. Thus g[:] has a 0 probability to be selected.

Otherwise, if the agent employs stochastic optimization (e.g. random shooting Rad (2009)), the
statement in the subject is automatically true. g

A.2 PROOF OF SECTION[2.1]

The first condition holds trivially. Since r is non-negative and s, € g[:],

se€gl:]
> 77 (sg)
> Z 7 r st (6)
st€s:]
2. T > Y (s
s¢€gl:] st€s[:]

forVs[:] € {s[:] | s[0] = so, s[:]U{sy} = 0}, which satisfies Eq. 2land hence the second condition.
O

A.3 PROOF OF LEMMA[Z]

First, we check that a trajectory that contains any goal state will be selected over trajectories without
goal state. To simplify the notation, we use g*[:] to denote the trajectory that contains goal sq and
does not contain any goal with higher preference.

By the definition of Lemmal2] we have s satisfies Eq. Bl Hence:

J-1
YoTrlsy) = Y0 Ar(s) > D Atr(si) Vsl € {s[] | s[0] = s0, s[JU{sg} =0} (7)
k=0

st€g™ [} st€sl:]

which shows that trajectories containing s will be selected over trajectories without goal state. By
Eq. 4

Do Arls) = ATr(sy) > Y A'r(se) Vsl € {s[]]s[0] = so, sE]U{sg} =0} (®)
st€gi[:] st€s[:]
for any ¢ where sg > sév . Since sév has the least preference, Eq. [8]is true for all goal states other

than sév . Therefore, trajectories containing any goal state will be selected over trajectories without

goal state.

Next, we check that trajectories containing the highest preference goals will be selected over other
trajectories. By Eq. [l for any 4, j where Sg = 8%,

Z yir(se) > y7r( Zy r(s Z vir(se)

st€g°[:] st€97[:]

S atrs) > Y Atr(s)

st€9°[:] st€97[:]

©)

Which proves that the total reward of the trajectory that contains higher preference goals will be
strictly greater than the trajectories that contains lower preference goals. Hence, the agent will
always select the trajectory with higher preference goals. g
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