
Offline Imitation from Observation via
Primal Wasserstein State Occupancy Matching

Kai Yan 1 Alexander G. Schwing 1 Yu-Xiong Wang 1

Abstract
In real-world scenarios, arbitrary interactions with
the environment can often be costly, and actions
of expert demonstrations are not always avail-
able. To reduce the need for both, offline Learn-
ing from Observations (LfO) is extensively stud-
ied: the agent learns to solve a task given only
expert states and task-agnostic non-expert state-
action pairs. The state-of-the-art DIstribution
Correction Estimation (DICE) methods, as ex-
emplified by SMODICE, minimize the state oc-
cupancy divergence between the learner’s and
empirical expert policies. However, such meth-
ods are limited to either f -divergences (KL and
�2) or Wasserstein distance with Rubinstein du-
ality, the latter of which constrains the underly-
ing distance metric crucial to the performance of
Wasserstein-based solutions. To enable more flex-
ible distance metrics, we propose Primal Wasser-
stein DICE (PW-DICE). It minimizes the pri-
mal Wasserstein distance between the learner
and expert state occupancies and leverages a con-
trastively learned distance metric. Theoretically,
our framework is a generalization of SMODICE,
and is the first work that unifies f -divergence and
Wasserstein minimization. Empirically, we find
that PW-DICE improves upon several state-of-
the-art methods. The code is available at https:
//github.com/KaiYan289/PW-DICE.

1. Introduction
Recent years have witnessed remarkable advances in of-

fline Reinforcement Learning (RL) (Chen et al., 2021b;
Kostrikov et al., 2022a;b): sequential decision-making prob-
lems are addressed with independently collected interaction

1The Grainger College of Engineering, University of Illinois
Urbana-Champaign, Urbana, Illinois, USA. Correspondence to:
Kai Yan <kaiyan3@illinois.edu>.

Proceedings of the 41 st
International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

data rather than an online interaction which is often costly
to conduct (e.g., autonomous driving (Kiran et al., 2021)).
Even without online interaction, methods achieve high sam-
ple efficiency. Such methods, however, require reward la-
bels that are often missing when data are collected in the
wild (Chang et al., 2020). In addition, an informative reward
is expensive to obtain for many tasks, such as robotic ma-
nipulation, as it requires a carefully hand-crafted design (Yu
et al., 2019). To bypass the need for reward labels, offline
Imitation Learning (IL) has prevailed (Hakhamaneshi et al.,
2022; Ho & Ermon, 2016; Kim et al., 2022a). It enables the
agent to learn from existing demonstrations without reward
labels. However, just like reward labels, expert demonstra-
tions are also expensive and often scarce, as they need to
be recollected repeatedly for every task of interest. Among
different types of expert data shortages, there is one widely
studied type: offline Learning from Observations (LfO). In
LfO, only the expert state, instead of both state and action, is
recorded. This setting is useful when learning from experts
with different embodiment (Ma et al., 2022) or from video
demonstrations (Chen et al., 2021a), where the expert action
is either not applicable or not available.

Many methods have thus been proposed in offline LfO,
including inverse RL (Zolna et al., 2020; Torabi et al.,
2019; Kostrikov et al., 2019), similarity-based reward label-
ing (Sermanet et al., 2017; Chen et al., 2021a), and action
pseudo-labeling (Torabi et al., 2018; Kumar et al., 2019).
The state-of-the-art solution to LfO is the family of DIstri-
bution Correction Estimation (DICE) methods, which are
LobsDICE (Kim et al., 2022b) and SMODICE (Ma et al.,
2022): both methods perform a convex optimization in the
dual space to minimize the f -divergence of the state oc-
cupancy (visitation frequency) between the learner and the
empirical expert policies approximated from the dataset. No-
tably, DICE methods mostly focus on f -divergences (Kim
et al., 2022b; Ma et al., 2022; Kostrikov et al., 2020; Kim
et al., 2022a) (mainly KL-divergence and �2-divergence;
see Appendix B for definition), metrics that ignore some un-
derlying geometric properties of the distributions (Stanczuk
et al., 2021). While there is a DICE variant, SoftDICE (Sun
et al., 2021), that introduces the Wasserstein distance to
DICE methods, it adopts the Kantorovich-Rubinstein du-
ality (Kantorovich & Rubinstein, 1958; Peyré & Cuturi,

1

ar
X

iv
:2

31
1.

01
33

1v
3

 [c
s.L

G
]

9
Ju

n
20

24

https://github.com/KaiYan289/PW-DICE
https://github.com/KaiYan289/PW-DICE

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

2019), which limits the choice of the underlying distance
metric: duality requires the underlying metric to be Eu-
clidean (Stanczuk et al., 2021). This limitation of the dis-
tance metric is not only theoretically infavorable, but also
impacts practical performance. Concretely, we find the dis-
tance metric in Wasserstein-based methods to be crucial for
performance (Sec. 3.1).

To enable more flexible distance metrics, we propose Pri-
mal Wasserstein DICE (PW-DICE), a DICE method that
optimizes the primal form of the Wasserstein distance. PW-
DICE is illustrated in Fig. 1. With an adequate regularizer
for offline pessimism (Jin et al., 2021), the joint minimiza-
tion of the Wasserstein matching variable and the learner
policy can be formulated as a convex optimization over the
Lagrange space. The policy is then retrieved by weighted
behavior cloning with weights determined by the Lagrange
function. Different from SMODICE and LobsDICE, our
underlying distance metric can be chosen arbitrarily, and
different from all prior work, we explore the possibility
of contrastively learning the metric from data. Compared
to existing Wasserstein-based work that either uses Rubin-
stein dual or chooses simple, fixed metrics (e.g., Euclidean
for PWIL (Dadashi et al., 2021) and cosine for OTR (Luo
et al., 2023)), our effort endows PW-DICE with much more
flexibility. Meanwhile, with specifically chosen hyperpa-
rameters, SMODICE can be obtained as a special case of
PW-DICE, which theoretically guarantees our performance.

We summarize our contributions as follows: 1) to our best
knowledge, this is the first work that sheds light on the
practical importance of the underlying distance metric in
LfO; 2) we propose a novel offline LfO method, PW-DICE,
which uses the primal Wasserstein distance for LfO, gain-
ing more flexibility regarding the distance metric than prior
work, while removing the assumption for data coverage; 3)
we theoretically prove that PW-DICE is a generalization
of SMODICE, thus providing the first unified framework

for Wasserstein-based and f -divergence-based DICE meth-
ods; 4) we empirically show that our method achieves bet-
ter results than the state of the art on multiple offline LfO
testbeds.

2. Preliminaries
Markov Decision Process. The Markov Decision Pro-
cess (MDP) is a widely adopted formulation for sequential
decision-making problems. An MDP has five components:
a state space S, an action space A, a transition function T ,
a reward r, and a discount factor �. An MDP evolves in
discrete steps: at step t 2 {0, 1, 2, . . . }, the state st 2 S is
given, and an agent, following its policy ⇡(at|st) 2 �(A)
(where �(A) is the probability simplex over A), chooses
an action at 2 A. After receiving at, the MDP transits to a
new state st+1 2 S according to the transition probability

function T (st+1|st, at), and yields a reward r(st, at) 2 R
as feedback. The agent needs to maximize the discounted
total reward

P
t �

tr(st, at) with discount factor � 2 [0, 1].
A complete run of the MDP is defined as an episode, with
the state(-action) pairs collected along the trajectory ⌧ . The
state occupancy, which is the visitation frequency of states
given policy ⇡, is d⇡s (s) = (1� �)

P
t �

t Pr(st = s). See
Appendix B for more rigorous definitions of the state occu-
pancy and other occupancies.

Offline Imitation Learning from Observations (LfO).
In offline LfO, the agent needs to learn from two sources
of data: 1) the expert dataset E with state-only trajec-
tories ⌧E = {s1, s2, . . . , sn1} that solve the exact tar-
get task, and 2) the task-agnostic non-expert dataset I
consisting of less relevant state-action trajectories ⌧I =
{(s1, a1), (s2, a2), . . . , (sn2 , an2)}. Ideally, the agent
learns the environment dynamics from I , and tries to follow
the expert states in E with information about the MDP in-
ferred from I . The state-of-the-art methods in offline LfO
are SMODICE (Ma et al., 2022) and LobsDICE (Kim et al.,
2022b). The two methods are in spirit similar, with the for-
mer minimizing state occupancy divergence and the latter
optimizing adjacent state-pair occupancy divergence.

Wasserstein Distance. The Wasserstein distance, also
known as Earth Mover’s Distance (EMD) (Kantorovich,
1960), is widely used as the distance between two probabil-
ity distributions. It captures the geometry of the underlying
space better and does not require any intersection between
the support sets. For two distributions p 2 �(S), q 2 �(S)
over state space S, the Wasserstein distance1 with an un-
derlying metric c(x, y) : S ⇥ S ! R can be written
as W(p, q) = inf⇧2S⇥S

R
x2S

R
y2S ⇧(x, y)c(x, y), which

is the primal form of the Wasserstein distance; ⇧ is the
matching variable between p and q. Wasserstein also
has an equivalent Kantorovich-Rubinstein dual form (Kan-
torovich & Rubinstein, 1958), which is W(p, q) =
maxkfkL1 Ex⇠pf(x) � Ey⇠qf(y), where kfkL  1
means that the function f is 1-Lipschitz. While this form
is often adopted by the machine learning community, the
Lipschitz constraint is usually implemented by a gradient
regularizer in practice. As the gradient is defined using a
Euclidean distance, the underlying distance metric for Ru-
binstein duality is also restricted to Euclidean (Stanczuk
et al., 2021), which is often suboptimal.

3. Method
This section is organized as follows: in Sec. 3.1, we first
validate our motivation, i.e., the importance of selecting
an adequate distance metric by comparing metrics using

1Unless otherwise specified, we only consider 1-Wasserstein
distance in this paper.

2

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

(a) Problem Setting (b) Wasserstein Optimization (c) Weighted BC

Figure 1. An illustration of our method, PW-DICE. a) Problem setting: different trajectories are illustrated by different styles of arrows. b)
PW-DICE minimizes regularized 1-Wasserstein distance between the learner’s state occupancy d⇡s (s) and the expert state occupancy
dEs (s). The underlying distance function is contrastively learned to represent the reachability between the states. c) With the matching
result, weights are calculated for downstream weighted Behavior Cloning (BC) to retrieve the policy. High transparency indicates a small
weight for the state and its corresponding action.

Figure 2. Performance comparison between the default (normal-
ized cosine) distance metric and Euclidean distance metric using
OTR (Luo et al., 2023) (first column), and SMODICE (Ma et al.,
2022) (second and third columns). The result shows that the under-
lying distance metric is crucial for the performance of Wasserstein-
based methods.

existing Wasserstein-based solutions; then, we detail our
proposed optimization objective in Sec. 3.2; finally, we
discuss our choice of the distance metric in Sec. 3.3. See
Tab. 2 in Appendix F for a reference of the notation, and
Appendix C for detailed derivations.

3.1. Validation of Motivation

As mentioned in Sec. 1, our goal is to improve the idea of di-
vergence minimization between the learner’s policy and the
expert policy estimated from the expert dataset. For this we
suggest to use the primal Wasserstein distance which allows
flexibly using an arbitrary underlying distance metric. To
show the importance of distance metrics and the advantage
of being able to select them, we study Optimal Transport
Reward (OTR) (Luo et al., 2023), a current Wasserstein-
based IL method that can be applied to our LfO setting.
OTR optimizes the primal Wasserstein distance between
every trajectory in the task-agnostic dataset and the expert

trajectory, and uses the result to assign a reward to each state
in the task-agnostic dataset. Then, offline RL is applied to
retrieve the optimal policy. Fig. 2 shows results of OTR
on the D4RL MuJoCo dataset (see Sec. 4.2 for more) with
testbeds appearing in both SMODICE (Ma et al., 2022) and
OTR. We test both the cosine-similarity-based occupancy
used in Luo et al. (2023) and the Euclidean distance as the
underlying distance metric. The results illustrate that dis-
tance metrics have a significant impact on outcomes. Thus,
selecting a good metric is crucial for the performance of
Wasserstein-based solutions.

This experiment motivates our desire to develop a method
that permits the use of arbitrary distance metrics in
Wasserstein-based formulations. Further, the observed per-
formance difference inspires us to automate the selection
of the metric, going beyond classic metrics such as cosine
and Euclidean. We discuss the formulation of our suggested
method next.

3.2. Optimization Objective

Our goal is to optimize the primal Wasserstein distance be-
tween the model-estimated state occupancy d⇡s (s) induced
by the policy ⇡ and the empirical state occupancy dEs (s)
estimated from expert data. This can be formalized via the
following program:

min
⇧,⇡

X

si2S

X

sj2S

⇧(si, sj)c(si, sj), s.t. d⇡sa � 0,⇧ � 0; (1)

8s 2 S, d⇡s (s) = (1� �)p0(s) + �
X

s̄,ā

d⇡sa(s̄, ā)p(s|s̄, ā);

8si, sj 2 S,
P

k ⇧(sk, sj) = dEs (sj),
P

k ⇧(si, sk) = d⇡s (si).

In Eq. (1), we use ⇧(si, sj) as the matching variable be-
tween the two state occupancy distributions d⇡s (s) and
dEs (s), and c(si, sj) is the distance between states si and

3

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

sj . Further, d⇡sa is the state-action occupancy of our learned
policy ⇡, and p0 2 �(S) is the distribution of the MDP’s
initial states. Note that there are two types of constraints in
Eq. (1): the first row, together with d⇡sa � 0, is the marginal
constraint for the matching variable ⇧. The second row and
⇧ � 0 are the Bellman flow constraints (Ma et al., 2022)
that ensure correspondence between d⇡s and a feasible policy
⇡.

For a tabular MDP, Eq. (1) can be solved by any Linear
Programming (LP) solver, as both the objective and the con-
straints are linear. However, using an LP solver is impracti-
cal for any MDP with continuous state or action spaces. In
these cases, we need to convert the problem into a program
that is easy to optimize. The common way to remove con-
straints is to consider the Lagrangian dual problem. How-
ever, the Lagrangian dual problem of an LP with constraints
is also an LP with constraints. In order to reduce constraints
in the dual program, we smooth the objective by using:

⇧(si, sj)c(si, sj) + ✏1Df (⇧kU) + ✏2Df (d
⇡
sakdIsa).

(2)

In Eq. (2), dIs and dIsa are the empirical state occupancy
and state-action occupancy of the task-agnostic dataset I
respectively. Further, we let U(s, s0) = dEs (s)d

I
s(s

0), i.e.,
U is the product of two independent distributions dEs and
dIs . Moreover, ✏1 > 0, ✏2 > 0 are hyperparameters, and
Df can be any f -divergence (we will focus on the KL-
divergence in this paper). Note, despite the use of an f -
divergence, different from SMODICE (Ma et al., 2022) or
LobsDICE (Kim et al., 2022b), this formulation does not
require data coverage of the task-agnostic data over expert
data. The two regularizers are “pessimistic”: they encourage
the agent to stay within the support set of the dataset which
is common in offline IL/RL (Jin et al., 2021).

Given the smooth objective, we apply Fenchel duality to
derive a robust single-level optimization in the dual space.
See Appendix C.2 for a detailed derivation.

The dual program when letting Df refer to a KL-divergence
(see Appendix E.2 for a discussion on �2-divergence) reads
as follows:

min
�

✏1 logEsi⇠I,sj⇠E exp

✓
�i+|S| + �j+2|S| � c(si, sj)

✏1

◆

+✏2 logE(si,aj)⇠I exp

✓��Esk⇠p(·|si,aj)�k + �i � �i+|S|

✏2

◆

�
⇥
(1� �)Es⇠p0�:|S| + Es⇠E�2|S|:3|S|

⇤
.

(3)
Intuitively, the dual variables � 2 R3|S| in the objective
are divided into three parts, each of size |S|: �i, i 2
{1, 2, . . . , |S|} can be seen as a variance of the value func-

tion, where ��Esk⇠p(·|si,aj)�k + �i � �i+|S| is its Bell-
man residual, or negative TD(0) advantage. �i+|S| and
�i+2|S| are costs attached to a particular state: if we compare

Wasserstein matching to shipping probability mass, �i+|S|
would be the loading cost from states of ⇡ and �i+2|S| would
be the unloading cost to the states of E. Note, by Theo-
rem C.1 (see Appendix C.2 for a detailed derivation), we
have d⇡sa = dIsa · softmax

⇣��Esk⇠p(·|si,aj)
�k+�i��i+|S|

✏2

⌘
at

the optimum, and the denominator of the softmax is sum-
ming over all state-action pairs.

With � optimized, we retrieve the desired policy ⇡ by
weighted behavior cloning, maximizing the following ob-
jective:

E(si,aj)⇠d⇡sa
log ⇡(a|s) = E(si,aj)⇠I

d⇡sa(si, aj)
dIsa(si, aj)

log ⇡(aj |si)

/ E(si,aj)⇠I exp

✓��Esk�k + �i � �i+|S|

✏2

◆
log ⇡(aj |si).

(4)
In practice, we use 1-sample estimation for p(·|si, aj), a
method found to be simple and effective in prior work (Ma
et al., 2022; Kim et al., 2022b). That is, we sample
(si, aj , sk) ⇠ I from the dataset instead of (si, aj), and use
�k corresponding to sk as an estimation for Esk⇠p(·|si,aj)�k.
Since the number of states can be infinite in practice, we use
a 3-head neural network to estimate �s,�s+|S| and �s+2|S|
given state s. See Appendix A for pseudo-code of our algo-
rithm where we iteratively optimize the dual by Eq. (3) and
obtain the policy ⇡ by Eq. (4).

Importantly, note that our formulation can be seen as a
generalization of SMODICE (Ma et al., 2022). It is not
hard to see why and we point this out next. SMODICE’s
objective with KL divergence reads as follows:

min
V

logE(s,a)⇠I

⇥
exp(R(s) + �Es0⇠(s,a) � V (s))

⇤
+

(1� �)Es⇠p0 [V (s)] ,
(5)

where V (s) is a value function and R(s) is the reward as-
signed for states. It is easy to see that �i corresponds to V (s)
in SMODICE, and SMODICE is a special case of PW-DICE
with ✏1 ! 0, ✏2 = 1, and c(s, s0) = �R(s). We highlight
that in the SMODICE setting, the distance c(s, s0) only de-
pends on the first state s. Thus, the total matching cost is
fixed for any matching plan given particular state occupancy
of ⇡, i.e., d⇡s . Meanwhile, the pessimistic regularizer with
large coefficient ✏2 dominates. This generalization property
also holds for other divergences such as �2. See Appendix C
for a more rigorous derivation.

3.3. Underlying Distance Metric

Given Eq. (3) and Eq. (4), it remains to choose the dis-
tance metric c(si, sj). For tabular cases, one could use
the simplest distance, i.e., c(si, sj) = 1 if si 6= sj , and 0
otherwise. However, such a distance only provides “sparse”
information in the continuous case. The distance will mostly

4

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

be 0, and will degrade to all zeros if there is no common
state in the expert dataset E and the task-agnostic dataset
I . To address this, prior work has explored many heuristic
choices, such as cosine similarity (Luo et al., 2023) or a Eu-
clidean (Sun et al., 2021) distance. However, such choices
are often suboptimal for particular environments, as shown
when validating our motivation in Sec. 3.1.

In this work, inspired by both CURL (Laskin et al.,
2020) and SMODICE (Ma et al., 2022), we propose a
weighted sum of R(s) = log dE

s (s)
(1�↵)dI

s(s)+↵dE
s (s) and the

Euclidean distance between an embedding learned by the
InfoNCE (Wan et al., 2021) loss. To be more specific, we
let the distance metric c be

c(si, sj) = R(si) + �kg(si)� g(sj)k22, (6)

where g(si), g(sj) are learned embeddings for the states
si, sj respectively, ↵ is a positive constant close to 0, and
� � 0 is a hyperparameter.

The distance function consists of two parts. The first
part, R(si), is a modified version of the SMODICE re-
ward function log dE

s (s)
dI
s(s)

. Intuitively, high log dE
s (s)
dI
s(s)

indi-
cates that the state s is more frequently visited by the ex-
pert than agents generating the task-agnostic data, which
is probably desirable. Such reward can be obtained by
training a discriminator h(s) that takes expert states from
E as label 1 and non-expert ones as label 0. If h is op-
timal, i.e., h(s) = h⇤(s) = dE

s (s)
dE
s (s)+dI

s(s)
, then we have

dE
s (s)
dI
s(s)

= log h⇤(s)
1�h⇤(s) . Based on this, we change the denomi-

nator dEs (s) to (1�↵)dIs(s)+↵dEs (s) to lift the theoretical
assumption that the task-agnostic dataset I covers the expert
dataset E, i.e., dIs(s) > 0 wherever dEs (s) > 0.

The second part uses the embedding g(s) learned with
InfoNCE (Wan et al., 2021), which is also adopted in
CURL (Laskin et al., 2020) and FIST (Hakhamaneshi et al.,
2022). Different from CURL, where the contrastive learning
is an auxiliary loss in addition to RL for better extraction of
features, and FIST, which tries to find the similarity between
the current state and a state in the dataset, we want g(s) and
g(s0) to be similar if and only if they are reachable along
trajectories in the task-agnostic dataset. For this, we sample
a batch of consecutive state pairs (si, s0i), i 2 {1, 2, . . . },
and use the following loss function:

log
exp

�
g(si)

TWg(s0i)
�

exp (g(si)TWg(s0i)) +
P

j 6=i exp
�
g(si)TWg(s0j)

� . (7)

Here, g(si) can be seen as an anchor in contrastive learn-
ing, W is a learned matrix, g(s0i) is its positive key, and
g(s0j), j 6= i is its negative key. Intuitively, the idea is to
learn a good embedding space where the vicinity of a state
can be assessed by the Euclidean distance between the em-
bedding vectors. We define the vicinity as the “reachability”

between states: if one state can reach the other through a
trajectory in the task-agnostic data, then states should be
close, otherwise they are far from each other. This definition
groups states that lead to success in the embedding space
(see Fig. 6 for a visualization), while being robust to actual
numerical values of the state (see Sec. 4.2 for empirical
evaluations).

4. Experiments
We evaluate PW-DICE across multiple environments. We
strive to answer two main questions: 1) can the Wasserstein
objective indeed lead to a closer match between the learner’s
and the expert policies (Sec. 4.1)?; and 2) can PW-DICE
improve upon f -divergence based methods on more compli-
cated environments, and does a flexible underlying distance
metric indeed help (Sec. 4.2)?

4.1. Primal Wasserstein vs. f -Divergence

Baselines. We compare to the two major state-of-the-art
baselines, SMODICE (Ma et al., 2022) and LobsDICE (Kim
et al., 2022b). We test two variants of our method: 1) Lin-
ear Programming (LP) by directly solving Eq. (1); and
2) Regularized (Reg) which solves Eq. (2). As the en-
vironment is tabular, all methods are implemented with
CVXPY (Agrawal et al., 2019)2 for optimal numerical solu-
tions. The mean and standard deviation are obtained from 10
independent runs with different seeds. We evaluate all meth-
ods with the regret, i.e., the gap between rewards gained
by the learner’s and expert policies (lower is better). To
be consistent with LobsDICE, in Appendix E.1, we also
compare the Total Variation (TV) distance for the state and
state-pair occupancies, i.e., TV(d⇡s kdEs) and TV(d⇡sskdEss).

Environment Setup. Following the random MDP experi-
ment in LobsDICE (Kim et al., 2022b), we randomly gen-
erate an MDP with |S| = 20 states, |A| = 4 actions, and
� = 0.95. The stochasticity of the MDP is controlled by
⌘ 2 [0, 1], where ⌘ = 0 is deterministic and ⌘ = 1 is highly
stochastic. Agents always start from one particular state,
and aim to reach another particular state with reward +1,
which is the only source of reward. We report the regret for
different ⌘, expert dataset sizes, and task-agnostic dataset
sizes. The only difference from LobsDICE is: the expert
policy is deterministic instead of being softmax, as we found
the high connectivity of the MDP states to lead to a near-
uniform value function. Thus, the softmax expert policy is
highly suboptimal and near-uniform. See Appendix D for
explanation and Appendix E.1 for results.

Experimental Setup. As the environment is tabular, as
2In our experiments, CVXPY usually invokes Gurobi (Gurobi

Optimization, LLC, 2023) for linear programming and
MOSEK (ApS, 2019) for other objectives during optimization.

5

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 3. The regret (reward gap between learner and expert) of each method on a tabular environment. We observe our method to work
the best, regardless of the presence of a regularizer; the regularizer is more important in continuous MDPs.

mentioned above, we use CVXPY (Agrawal et al., 2019) to
solve for the optimal policy for each method using the pri-

mal formulation. For example, we directly solve Eq. (1) to
get the learner’s policy ⇡. Following SMODICE, for estimat-
ing transition function and the task-agnostic average policy
⇡I , we simply count the state-action pair and transitions
from the task-agnostic dataset I , i.e., the transition probabil-
ity p(s0|s, a) = #[(s,a,s0)2I]

#[(s,a)2I] , and ⇡I(a|s) = #[(s,a)2I]
#[s2I] (#

stands for “the number of”). Similarly, the expert state oc-
cupancy dEs is estimated by dEs (s) =

#[s2E]
|E| , where |E| is

the size of the expert dataset E. Notably, if the denominator
is 0, the distribution will be estimated as uniform. As the
environment is tabular, we use the simplest distance metric,
described in the beginning of Sec. 3.3, i.e., c(si, sj) = 1 if
si 6= sj and 0 otherwise.

Main Results. Fig. 3 shows the regret of each method.
We observe our method with or without regularizer to per-
form similarly and to achieve the lowest regret across expert
dataset sizes in {10, 100, 1000, 10000}, task-agnostic (non-
expert) dataset sizes in {10, 100, 1000, 10000}, and noise
levels ⌘ 2 {0.01, 0.1, 1}. The gap increases with the task-
agnostic dataset size, which shows that our method works
better when the MDP dynamics are more accurately esti-
mated. LobsDICE struggles in this scenario, albeit being
the best in minimizing the divergence to the softmax expert,
which is more stochastic and suboptimal (see Appendix E.1
for details).

4.2. More Complex Environments

Baselines. We adopt seven baselines in our study: state-of-
the-art DICE methods SMODICE (Ma et al., 2022), Lobs-
DICE (Kim et al., 2022b), and ReCOIL (Sikchi et al., 2024),
non-DICE method ORIL (Zolna et al., 2020), Wasserstein-
based method OTR (Luo et al., 2023), DWBC (Xu et al.,
2022) with extra access to the expert action, and the plain
Behavior Cloning (BC). As we have no access to the Re-
COIL code, we directly report the final numbers from their
paper. Mean and standard deviation are obtained from 3
independent runs with different seeds. We measure the
performance using the average reward (higher is better).

Environment and Experimental Setup. Following
SMODICE (Ma et al., 2022), we test PW-DICE on four stan-
dard OpenAI gym MuJoCo environments: hopper, halfchee-
tah, ant, and walker2d, as well as two more challenging Mu-
JoCo testbeds, antmaze and Franka kitchen. The datasets
that we use are identical to those in SMODICE (see Ap-
pendix D for details). The metric we use is the normalized
average reward, where higher reward indicates better per-
formance3. If the final reward is similar, the algorithm with
fewer gradient step updates is better. We plot the reward
curve, which illustrates the change of the mean and standard
deviation of the reward with the number of gradient steps.
See Appendix D for hyperparameters.

3We use the same normalization standard as D4RL (Fu et al.,
2020b) and SMODICE (Ma et al., 2022).

6

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 4. Performance comparison on the MuJoCo testbed. SMODICE-KL and SMODICE-CHI stand for variants of SMODICE using
different f -divergences (KL or �2). Our method generally works the best (i.e., has the highest normalized reward) among all baselines.

Main Results. Fig. 4 shows the results on the MuJoCo
testbed, where our method achieves performance com-
parable to or better than baselines on all four testbeds.
SMODICE with KL-divergence and LobsDICE work de-
cently well, while the other methods struggle.

Note, OTR (Luo et al., 2023) struggles on most environ-
ments despite using the primal Wasserstein distance, which
is probably because the assigned reward calculated by the
Wasserstein distance is not always reasonable. See Fig. 5
for examples.

Is our design of distance metric useful? We illustrate the
importance and effectiveness of our distance metric design
through qualitative and quantitative studies. For a qualitative
evaluation, we draw 4 different trajectories from the D4RL
dataset of the MuJoCo hopper environment, and compare
the t-SNE (Van der Maaten & Hinton, 2008) visualization
result (for better readability, we only plot 150 steps of the
trajectory). The result in Fig. 6 shows that our embedding
successfully learns the topology of reachability between the
states, which separates different trajectories and connects
states in the same trajectory irrespective of their distance.

For a quantitative evaluation, we conduct an ablation study
on the distance metric used in PW-DICE. Specifically,
we test the result of PW-DICE with c(s, s0) = R(s),

(a) hopper (success) (b) halfcheetah (failure)

Figure 5. An illustration of successful (coherent with the OTR pa-
per) and failing reward assignment in OTR (Luo et al., 2023). OTR
performs Wasserstein matching between uniform distributions over
the states of each trajectory in the task-agnostic dataset and the
expert dataset, instead of between policy distributions. The reward
is calculated from the matching result. Such a solution may fail to
differentiate good and bad trajectories by giving similar rewards,
as shown in the failure case b).

c(s, s0) = ks � s0k22 (Euclidean), c(s, s0) = 1 � sT s0

|s||s0|
(cosine similarity), c(s, s0) from contrastive learning and
their combinations. The result is illustrated in Fig. 7. The
result shows that both our design of distance and the com-
bination of cosine similarity and R(s) works well, while
distance metrics with a single component fail (including

7

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

(a) State (b) Contrastive Embedding

Figure 6. The t-SNE visualization of a) the states and b) their
corresponding contrastive embeddings. Different colors stand for
different trajectories. Note that the trajectories in the embedding
space are separated despite their proximity in the original state
space, and states along the same trajectory are connected despite
being separated in the original state space.

Euclidean distance implied by Rubinstein duality).

Ablations on ✏1 and ✏2. In order to show the robustness of
PW-DICE to the choice of ✏1 and ✏2, we conduct an ablation
study on the MuJoCo environment. Specifically, we test
✏1 2 {0.1, 0.5, 1}⇥ ✏2 2 {0.1, 0.5, 1}. The result is shown
in Fig. 8. While some choice of hyperparameters leads to
failure, PW-DICE is generally robust to the selection of
✏1 and ✏2. Generally, ✏1 should be small to maintain good
performance. See more ablations in Appendix E.

Robustness against distorted state representations. One
important motivation for using a learned distance metric
is that a fixed distance metric might be limited to the state
representation. For example, the Euclidean distance could
perform well when learning navigation for a point-mass,
where coordinates are given as states. However, the Eu-
clidean distance will no longer be accurate when some of
the dimensions undergo scaling (e.g., due to metric changes
from inches to meters). While scaling each dimension inde-
pendently could be alleviated by state normalization, in this
experiment we consider a more complicated distortion to
the state representations.

More specifically, for state s 2 R1⇥n, we randomly gen-
erate a distortion matrix D = 0.1I + D0 2 Rn⇥n, where
each element of D0 is independently and randomly sampled
from N (0, 42). The new state exposed to the agent (both in
the dataset and evaluation) is calculated as s0 = D0s. We
compare our method against SMODICE on several MuJoCo
environments. Results are shown in Fig. 9. We observe that
our method is generally more robust to poor state represen-
tations than SMODICE.

Figure 7. Ablations on the choice of distance metrics. Our choice
of c(s, s0), which combines a contrastively learned distance and
the discriminator-based component R, performs the best. The
Euclidean distance fails in our scenario, which further proves the
importance of using the primal form instead of the Rubinstein dual
form.

5. Related Work
Wasserstein Distance for Imitation Learning. As a metric
which is capable of leveraging geometric properties of dis-
tributions and which yields gradients for distributions with
different support sets, the Wasserstein distance (also known
as Optimal Transport) (Kantorovich, 1960) is a popular
choice when studying distribution divergence minimization.
It is widely used in IL/RL (Agarwal et al., 2021; Fickinger
et al., 2022; Xiao et al., 2019; Dadashi et al., 2021; Garg
et al., 2021). Among them, SoftDICE (Sun et al., 2021) is
the most similar work to our PW-DICE, which also opti-
mizes the Wasserstein distance under the DICE framework.
However, SoftDICE and most Wasserstein-based IL algo-
rithms (Sun et al., 2021; Xiao et al., 2019; Zhang et al.,
2020; Liu et al., 2020) use Rubinstein-Kantorovich dual-
ity (Kantorovich & Rubinstein, 1958; Peyré & Cuturi, 2019),
which limits the underlying distance metric to be Euclidean.
There are a few methods optimizing the primal Wasserstein
distance. For example, OTR (Luo et al., 2023) computes the
primal Wasserstein distance between two trajectories and
assigns rewards accordingly for offline RL. PWIL (Dadashi
et al., 2021) uses greedy coupling to simplify the compu-
tation of the Wasserstein distance. However, the former
struggles in our experimental settings, and the latter only
optimizes an upper bound of the Wasserstein distance. More-
over, both methods only use fixed heuristic distance metrics,
such as Euclidean (Dadashi et al., 2021) and cosine (Luo
et al., 2023). Our PW-DICE addresses these issues.

Offline Imitation Learning from Observation. Offline
Learning from Observation (LfO) aims to learn from ex-
pert observations with no labeled action, which is useful in
robotics where the expert action is either not available (e.g.,

8

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 8. Ablation of ✏1 and ✏2 on the MuJoCo testbed: ✏1 = 0.1
is marked in green, ✏1 = 0.5 is marked in red, and ✏1 = 1.0 is
marked in blue. The deeper the color is, the larger ✏2 is. Our
method is generally robust to hyperparameter changes, though
some choice results in failure. Generally, large ✏1 leads to worse
performance.

Figure 9. Performance comparison between our proposed method,
PW-DICE, and SMODICE under distorted state representations.
Our method generally outperforms SMODICE.

in videos (Pari et al., 2022)) or not applicable (e.g., from a
different embodiment (Sermanet et al., 2017)). Three major
directions are present in this area: 1) offline planning or RL
with assigned, similarity-based reward (Torabi et al., 2018;
Kumar et al., 2019); 2) occupancy divergence minimization,
which includes iterative inverse-RL methods (Zolna et al.,
2020; Xu & Denil, 2019; Torabi et al., 2019) and DICE (Ma
et al., 2022; Kim et al., 2022a;b; Lee et al., 2021; Zhu
et al., 2020); 3) action pseudo-labeling, where the missing
actions are predicted with an inverse dynamic model (Ser-
manet et al., 2017; Chen et al., 2019; Wu et al., 2019). Our
PW-DICE falls in the second category but generalizes over
SMODICE, unifies f -divergence and Wasserstein, and em-
pirically improves upon existing methods.

Contrastive Learning for State Representations. Con-
trastive learning methods, such as InfoNCE (Wan et al.,
2021) and SIMCLR (Chen et al., 2020), aim to find a good
representation that satisfies similarity and dissimilarity con-
straints between particular pairs of data points. Contrastive
learning is widely used in reinforcement learning, especially

with visual input (Laskin et al., 2020; Pari et al., 2022; Ser-
manet et al., 2017) and for meta RL (Fu et al., 2020a) to im-
prove the generalizability of agents and mitigate the curse of
dimensionality. In these methods, similarity constraints can
come from different augmentations of the same state (Laskin
et al., 2020; Pari et al., 2022), multiview alignment (Ser-
manet et al., 2017), consistency after reconstruction (Zhu
et al., 2023), or task context (Fu et al., 2020a). Different
from prior work, PW-DICE uses contrastive learning to iden-
tify a good distance metric considering state reachability,
while still adopting the reward from the DICE work.

6. Conclusion
In this paper, we propose PW-DICE, a DICE method that
uses the primal form of the Wasserstein distance and a con-
trastively learned distance metric. By adding adequate pes-
simistic regularizers, we formulate an unconstrained convex
optimization and retrieve the policy using weighted behav-
ior cloning. Our method is a generalization of SMODICE,
unifying f -divergence and Wasserstein minimization in im-
itation learning. This generalization enables better perfor-
mance than multiple baselines, such as SMODICE (Ma
et al., 2022) and LobsDICE (Kim et al., 2022b).

Limitations and Future Directions. In order to obtain an
unconstrained optimization formulation, we add KL terms
to the objective. This introduces a logsumexp into the final
objective. Some studies argue that logsumexp adds insta-
bility to the optimization, due to the use of minibatches:
minibatch gradient estimates for logarithms and exponen-
tials of expectations are biased (Sun et al., 2021). Although
we did not observe this and it has been found to be tolera-
ble in prior work (Ma et al., 2022), this may be a potential
shortcoming for PW-DICE in even more challenging en-
vironments. Thus, one next step is to find a more robust
formulation while maintaining the beneficial properties of
PW-DICE.

Acknowledgements
This work was supported in part by NSF under Grants
2008387, 2045586, 2106825, MRI 1725729, NIFA
award 2020-67021-32799, the Jump ARCHES endowment
through the Health Care Engineering Systems Center at
Illinois and the OSF Foundation, and the IBM-Illinois Dis-
covery Accelerator Institute.

Impact Statement
Our work automates decision-making processes by utilizing
expert observations as well as past experience data. While
our effort improves the efficiency of automated task-solving,
it could also lead to negative societal impacts in several
aspects. For example, since our work is mostly tested on

9

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

locomotion tasks, there exists a potential risk of harmful ap-
plications (e.g., military) of our proposed decision-making
techniques. Also, the improvement of automated decision-
making may potentially result in a reduction of job opportu-
nities.

References
Agarwal, R., Machado, M. C., Castro, P. S., and Bellemare,

M. G. Contrastive behavioral similarity embeddings for
generalization in reinforcement learning. In ICLR, 2021.

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,
S., and Kolter, J. Z. Differentiable convex optimization
layers. In NeurIPS, 2019.

ApS, M. The MOSEK optimization toolbox for CVXPY

manual., 2019. URL https://docs.mosek.com/
9.0/faq/index.html.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge University Press, 2004.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI gym,
2016.

Chang, M., Gupta, A., and Gupta, S. Semantic visual navi-
gation by watching YouTube videos. In NeurIPS, 2020.

Chen, A. S., Nair, S., and Finn, C. Learning generaliz-
able robotic reward functions from “in-the-wild” human
videos. In RSS, 2021a.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, 2021b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In NeurIPS, 2020.

Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., and Song, L. Gen-
erative adversarial user model for reinforcement learning
based recommendation system. In ICML, 2019.

Dadashi, R., Hussenot, L., Geist, M., and Pietquin, O. Pri-
mal wasserstein imitation learning. In ICLR, 2021.

Dai, B., He, N., Pan, Y., Boots, B., and Song, L. Learning
from conditional distributions via dual embeddings. In
AISTATS, 2017.

Fickinger, A., Cohen, S., Russell, S., and Amos, B. Cross-
domain imitation learning via optimal transport. In ICLR,
2022.

Fu, H., Tang, H., Hao, J., Chen, C., Feng, X., Li, D., and
Liu, W. Towards effective context for meta-reinforcement
learning: An approach based on contrastive learning. In
AAAI, 2020a.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4RL: Datasets for deep data-driven reinforcement
learning. ArXiv:2004.07219, 2020b.

Garg, D., Chakraborty, S., Cundy, C., Song, J., and Ermon,
S. IQ-Learn: Inverse soft-Q learning for imitation. In
NeurIPS, 2021.

Ghasemipour, S., Zemel, R., and Gu, S. A divergence
minimization perspective on imitation learning methods.
In CoRL, 2019.

Gurobi Optimization, LLC. Gurobi optimizer reference
manual, 2023. URL https://www.gurobi.com.

Hakhamaneshi, K., Zhao, R., Zhan, A., Abbeel, P., and
Laskin, M. Hierarchical few-shot imitation with skill
transition models. In ICLR, 2022.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In NIPS, 2016.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline RL? In ICML, 2021.

Kantorovich, L. and Rubinstein, G. S. On a space of totally
additive functions. Vestnik Leningradskogo Universiteta,
1958.

Kantorovich, L. V. Mathematical methods of organizing
and planning production. Management science, 1960.

Kim, G., Seo, S., Lee, J., Jeon, W., Hwang, H., Yang, H., and
Kim, K. DemoDICE: Offline imitation learning with sup-
plementary imperfect demonstrations. In ICLR, 2022a.

Kim, G.-H., Lee, J., Jang, Y., Yang, H., and Kim, K. Lob-
sDICE: Offline learning from observation via stationary
distribution correction estimation. In NeurIPS, 2022b.

Kiran, B., Sobh, I., Talpaert, V., Mannion, P., Sallab, A.,
Yogamani, S., and Perez, P. Deep reinforcement learning
for autonomous driving: A survey. IEEE Transactions on

Intelligent Transportation Systems, 2021.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and
Tompson, J. Discriminator-actor-critic: Addressing sam-
ple inefficiency and reward bias in adversarial imitation
learning. In ICLR, 2019.

Kostrikov, I., Nachum, O., and Tompson, J. Imitation learn-
ing via off-policy distribution matching. In ICLR, 2020.

10

https://docs.mosek.com/9.0/faq/index.html
https://docs.mosek.com/9.0/faq/index.html
https://www.gurobi.com

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Kostrikov, I., Nair, A., and Levine, S. Conservative Q-
learning for offline reinforcement learning. In ICLR,
2022a.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement
learning with implicit Q-learning. In ICLR, 2022b.

Kumar, A., Gupta, S., and Malik, J. Learning navigation
subroutines from egocentric videos. In CoRL, 2019.

Laskin, M., Srinivas, A., and Abbeel, P. CURL: Contrastive
unsupervised representations for reinforcement learning.
In ICML, 2020.

Lee, J., Jeon, W., Lee, B.-J., Pineau, J., and Kim, K.-E.
OptiDICE: Offline policy optimization via stationary dis-
tribution correction estimation. In ICML, 2021.

Liu, F., Ling, Z., Mu, T., and Su, H. State alignment-based
imitation learning. In ICLR, 2020.

Luo, Y., Jiang, Z., Cohen, S., Grefenstette, E., and Deisen-
roth, M. P. Optimal transport for offline imitation learning.
In ICLR, 2023.

Ma, Y. J., Shen, A., Jayaraman, D., and Bastani, O. Smodice:
Versatile offline imitation learning via state occupancy
matching. In ICML, 2022.

Nachum, O., Chow, Y., Dai, B., and Li, L. DualDICE:
Behavior-agnostic estimation of discounted stationary
distribution corrections. In NeurIPS, 2019.

Pari, J., Shafiullah, N. M. M., Arunachalam, S. P., and Pinto,
L. The surprising effectiveness of representation learning
for visual imitation. In RSS, 2022.

Peyré, G. and Cuturi, M. Computational optimal transport.
Foundations and Trends in Machine Learning, 2019.

Polyanskiy, Y. f -divergences, 2020. URL
https://people.lids.mit.edu/yp/
homepage/data/LN_fdiv.pdf.

Sermanet, P., Lynch, C., Hsu, J., and Levine, S. Time-
contrastive networks: Self-supervised learning from
multi-view observation. In CVPRW, 2017.

Sikchi, H. S., Zhang, A., and Niekum, S. Imitation from
arbitrary experience: A dual unification of reinforcement
and imitation learning methods. In ICLR, 2024.

Stanczuk, J., Etmann, C., Kreusser, L., and Schonlieb, C.-B.
Wasserstein GANs work because they fail (to approxi-
mate the wasserstein distance). ArXiv:2103.01678, 2021.

Sun, M., Mahajan, A., Hofmann, K., and Whiteson, S. Soft-
DICE for imitation learning: Rethinking off-policy distri-
bution matching. ArXiv:2106.03155, 2021.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning
from observation. In IJCAI, 2018.

Torabi, F., Warnell, G., and Stone, P. Generative adversar-
ial imitation from observation. In ICML Workshop on

Imitation, Intent, and Interaction, 2019.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-SNE. JMLR, 2008.

Wan, C., Zhang, T., Xiong, Z., and Ye, H. Representation
learning for fault diagnosis with contrastive predictive
coding. In CAA Symposium on Fault Detection, Super-

vision, and Safety for Technical Processes (SAFEPRO-

CESS), 2021.

Wu, A., Piergiovanni, A., and Ryoo, M. S. Model-based
behavioral cloning with future image similarity learning.
In CoRL, 2019.

Xiao, H., Herman, M., Wagner, J., Ziesche, S., Etesami, J.,
and Linh, T. H. Wasserstein adversarial imitation learning.
arXiv preprint arXiv:1906.08113, 2019.

Xu, D. and Denil, M. Positive-unlabeled reward learning.
In CoRL, 2019.

Xu, H., Zhan, X., Yin, H., and Qin, H. Discriminator-
weighted offline imitation learning from suboptimal
demonstrations. In NeurIPS, 2022.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C.,
and Levine, S. Meta-World: A benchmark and evaluation
for multi-task and meta reinforcement learning. In CoRL,
2019.

Zhang, M., Wang, Y., Ma, X., Xia, L., Yang, J., Li, Z., and
Li, X. Wasserstein distance guided adversarial imitation
learning with reward shape exploration. In Data Driven

Control and Learning Systems (DDCLS), 2020.

Zhu, J., Xia, Y., Wu, L., Deng, J., Zhou, W., Qin, T., Liu, T.-
Y., and Li, H. Masked contrastive representation learning
for reinforcement learning. IEEE TPAMI, 2023.

Zhu, Z., Lin, K., Dai, B., and Zhou, J. Off-policy imitation
learning from observations. In NeurIPS, 2020.

Zolna, K., Novikov, A., Konyushkova, K., Gulcehre, C.,
Wang, Z., Aytar, Y., Denil, M., de Freitas, N., and Reed,
S. E. Offline learning from demonstrations and unlabeled
experience. In NeurIPS Workshop on Offline Reinforce-

ment Learning, 2020.

11

https://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
https://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Algorithm 1 PW-DICE
Input: Expert state-only dataset E, task-agnostic state-action dataset I , distance metric c : |S|⇥ |S|! R
Input: Triple head network for dual variable �✓1(s, h) : |S| ⇥ {0, 1, 2} ! R parameterized by ✓1, actor ⇡✓2(a|s)
parameterized by ✓2, the number of epoches N , batch size B, learning rate ⌘.
Initialize initial state dataset Iini = {}.
for ⌧ 2 I do

Add first state of ⌧ to Iini
end for
for epoch = 1 to N do

for (s, a, s0) 2 I do
Sample state sI from I , state sE from E
l1 1

✏1
(�✓1(s

I , 1) + �✓1(s
E , 2)� c(sI , sE))� logB

l2 1
✏2
(���✓1(s

0, 0) + �✓1(s, 0)� �✓1(s, 1))� logB
Sample initial states sini from Iini
l3 � 1

B [(1� �)�✓1(sini, 0) + �✓1(s
E , 2)]

l logsumexp(l1) + logsumexp(l2) + l3
✓1 ✓1 � ⌘ @l

@✓1
end for
for (s, a, s0) 2 I do
v 1

✏2
(���✓1(s

0, 0) + �✓1(s, 0)� �✓1(s, 1))
l exp(v) log ⇡✓2(a|s)
✓2 ✓2 � ⌘ @l

@✓2
end for

end for

Appendix: Offline Imitation from Observation via Primal Wasserstein State Occupancy
Matching
The appendix is organized as follows. We first present the pseudo-code of PW-DICE in Sec. A. Then, we rigorously
introduce the most important mathematical concepts of our work in Sec. B, which include state, state-action, and state-pair
occupancy, as well as f -divergences and Fenchel conjugate. After that, in Sec. C, we provide detailed derivations omitted
in the main paper, as well as the corresponding proofs. In Sec. D, we provide a detailed description of our experiments.
In Sec. E, we provide additional experimental results, including auxiliary metrics, experimental results using an identical
softmax expert (which is actually suboptimal, see Sec. E.1.2) as LobsDICE (Kim et al., 2022b) in the tabular experiment,
and ablations in MuJoCo environments. In Sec. F, we summarize our notation. Finally, in Sec. G, we list the computational
resource that we use during the training process.

A. Pseudo-code
Alg. 1 details the training process of our main algorithm. Upon implementation, we normalize coefficient v over the whole
task-agnostic dataset I for better stability. See Sec. D.2 for the implementation detail of contrastive learning for the distance
metric.

B. Mathematical Concepts
In this section, we introduce three important concepts used in the paper, which are state/state-action/state-pair occupancy,
f -divergence, and Fenchel conjugate. The first one is the key concept used throughout this work, the second is used in our
motivations, and the last is used in Sec. C.2.

B.1. State, State-Action, and State-Pair Occupancy

Consider an MDP (S,A, T, r, �) with initial state distribution p0 and infinite horizon; at the t-th timestep, we denote
the current state as st and the action as at. Then, with a fixed policy ⇡, the probability of Pr(st = s) and Pr(at = a)

12

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

for any s, a are determined. Based on this, the state occupancy, which is the state visitation frequency under policy
⇡, is defined as d⇡s (s) = (1 � �)

P1
t=0 �

t Pr(st = s). Similarly, we define the state-action occupancy as d⇡sa(s, a) =
(1 � �)

P1
t=0 �

t Pr(st = s, at = a). Some work such as LobsDICE also uses state-pair occupancy, which is defined
as d⇡ss(s, s

0) = (1 � �)
P1

t=0 �
t Pr(st = s, st+1 = s0). In this work, we denote the average policy that generates the

task-agnostic dataset I as ⇡I with state occupancy dIs and state-action occupancy dIsa, and the expert policy that generates
the expert dataset E as ⇡E with state occupancy dEs .

B.2. f -divergence

The f -divergence is a measure of distance between probability distributions p, q and is widely used in the machine learning
community (Ghasemipour et al., 2019). For two probability distributions p, q on domain X based on any continuous and
convex function f , the f -divergence between p and q is defined as

Df (pkq) = Ex⇠q


f

✓
p(x)

q(x)

◆�
. (8)

For instance, when f(x) = x log x, we have Df (pkq) = Ex⇠q
p(x)
q(x) log

p(x)
q(x) = Ex⇠p log

p(x)
q(x) , which induces the KL-

divergence. When f(x) = (x� 1)2, we have Df (pkq) = Ex⇠q((
p(x)�q(x)

q(x))2), which induces the �2-divergence.

B.3. Fenchel Conjugate

Fenchel conjugate is widely used in DICE methods for either debiasing estimations (Nachum et al., 2019) or solving
formulations with stronger constraints to get numerically more stable objectives (Ma et al., 2022). PW-DICE uses the
Fenchel conjugate for the latter. For a vector space ⌦ and a convex, differentiable function f : ⌦! R, the Fenchel conjugate
of f(x) is defined as

f⇤(y) = max
x2⌦
hx, yi � f(x), (9)

where h·, ·i is the inner product over ⌦.

C. Mathematical Derivations
In this section, we provide the detailed derivations omitted in the main paper due to the page limit. In Sec. C.1, we briefly
introduce SMODICE to clarify the motivation of using Wasserstein distance and how SMODICE is related to our proposed
PW-DICE. In Sec. C.2, we provide a detailed derivation of our objective, omitted in Sec. 3.2. Sec. C.3 and Sec. C.4 are
complements to Sec. C.2: in Sec. C.3, we provide a detailed derivation on the elements of condensed representation of
constraints, A and b, and in Sec. C.4, we explain why additional constraints are applied during one step of the derivation
process while the optimal solution remains the same. Finally, in Sec. C.5, we provide a detailed proof for the claim that our
method is a generalization of SMODICE in Sec. 3.2.

C.1. SMODICE

SMODICE (Ma et al., 2022) is a state-of-the-art offline LfO method. It minimizes the f -divergence between the state
occupancy of the learner’s policy ⇡ and the expert policy ⇡E , i.e., the objective is

min
⇡

Df (d
⇡
s (s)kdEs (s)), s.t. ⇡ is feasible. (10)

Here, the feasibility of ⇡ is the same as the Bellman flow constraint (the second row of constraints in Eq. (1)) in the main
paper. To take the only information source of environment dynamics, which is the task-agnostic dataset I , into account, the
objective is relaxed to

max
⇡

Es⇠d⇡ log
dEs (s)

dIs(s)
�Df (d

⇡
sa(s, a)kdIsa(s, a)), s.t. ⇡ is a feasible policy. (11)

13

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Here, Df can be any divergence that is not smaller than KL-divergence (SMODICE mainly studies �2-divergence). The
first term, log dE

s (s)
dI
s(s)

indicates the relative importance of the state. The more often the expert visits a particular state s than
non-expert policies, the more possible that s is a desirable state. Reliance on such a ratio introduces a theoretical limitation:
the assumption that dIs(s) > 0 wherever dEs (s) > 0 must be made, which does not necessarily hold in a high-dimensional
space. Thus, we introduce a hyperpamater of ↵ to mix the distribution in the denominator in our reward design.

By transforming the constrained problem into an unconstrained problem in the Lagrange dual space, SMODICE optimizes
the following objective (assuming the use of KL-divergence):

min
V

(1� �)Es⇠p0 [V (s)] + logE(s,a,s0)⇠I exp


log

dEs (s)

dIs(s)
+ �V (s0)� V (s)

�
, (12)

where p0 is the initial state distribution and � is the discount factor. As stated in Sec. 3.2, this objective is a special case
of PW-DICE with c(s, s0) = log dE

s (s)
dI
s(s)

, ✏2 = 1, ✏1 ! 0. LobsDICE (Kim et al., 2022b) is similar in spirit; however, it
minimizes the state-pair divergence KL(d⇡sskdEss) instead.

C.2. Detailed Derivation of Our Objective

As mentioned in Eq. (1) in Sec. 3.2, our primal objective is

min
⇧,⇡

X

si2S

X

sj2S

⇧(si, sj)c(si, sj), s.t. d⇡sa � 0,⇧ � 0;

8s 2 S, d⇡s (s) = (1� �)p0(s) + �
X

s̄,ā

d⇡sa(s̄, ā)p(s|s̄, ā);

8si, sj 2 S,
X

k

⇧(sk, sj) = dEs (sj),
X

k

⇧(si, sk) = d⇡s (si).

(13)

Before smoothing our objective, for readability, we rewrite our main objective in Eq. (13) as an LP problem over a

single vector x =


⇧
d⇡sa

�
2 R|S|⇥(|S|+|A|), where ⇧ 2 R|S|⇥|S| and d⇡sa 2 R|S|⇥|A| are flattened in a row-first manner.

Correspondingly, we extend the distance c between states to c0 : (|S|(|S|+ |A|))⇥ (|S|(|S|+ |A|))! R, such that c0 = c
on the original domain of c and c0 = 0 otherwise. Further, we summarize all linear equality constraints in Ax = b. Eq. (1) is
then equivalent to

min
x�0

(c0)Tx s.t. Ax = b, x � 0. (14)

It is easy to see that the Lagrange dual form of Eq. (14) is also a constrained optimization. In order to convert the optimization
to an unconstrained one, we modify the objective as follows (same as Eq. (2) in the main paper):

min
x

(c0)Tx+ ✏1Df (⇧kU) + ✏2Df (d
⇡
sakdIsa),

s.t. Ax = b, x � 0,
(15)

where U(s, s0) = dEs (s)d
I
s(s

0), i.e., U is the product of two independent distributions dEs and dIs . ✏1 > 0, ✏2 > 0 are
hyperparameters, and Df can be any f -divergence. Note, although an f -divergence is used, unlike SMODICE (Ma et al.,
2022) or LobsDICE (Kim et al., 2022b), such formulation does not require data coverage of the task-agnostic data over the
expert data. The two regularizers are “pessimistic,” which encourages the agents to stay within the support set of the dataset.
This has been used in offline IL/RL (Jin et al., 2021).

With the regularized objective in Eq. (2), we now consider its Lagrange dual problem:

max
�

min
x�0

L(�, x), where L(�, x) = (c0)Tx+ ✏1Df (⇧kU) + ✏2Df (d
⇡
sakdIsa)� �T (Ax� b). (16)

While Eq. (16) only has the non-negativity constraint, its domain is the non-negative numbers. Thus the objective can be
optimized as being unconstrained. To obtain a practical and stable solution, a single-level optimization is preferred. To do

14

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

so, one could consider using the KKT condition (Boyd & Vandenberghe, 2004), and set the derivative of the inner-level
optimization to 0. However, such an approach will lead to an exp function in the objective (Polyanskiy, 2020; Kim et al.,
2022b), which is numerically unstable (Kim et al., 2022b). To avoid this, we first rewrite Eq. (16) with negated L(�, x) to
separate ⇧ and d⇡sa in x:

min
�

max
x�0
�L(�, x)

min
�

(
✏1 max

⇧2�(S2)

"
(AT

1 �� c)

✏1

T

⇧�Df (⇡kU)

#
+ ✏2 max

d⇡
sa2�(S·A)

"
(AT

2 �)

✏2

T

d⇡sa �Df (d
⇡
sakdIsa)

#
� bT�

)
.

(17)

In Eq. (17), we have A =


A1

A2

�
, where A1 2 R(|S|⇥|S|)⇥M , A2 2 R(|S|⇥|A|)⇥M , and M = 3|S| is the number of equality

constraints in the primal form. See Sec. C.3 for elements in A,A1, A2, and b. Two points are worth noting in Eq. (17).

First, we append two extra constraints, which are ⇧ 2 �, d⇡sa 2 �. These constraints do not affect the final result for the
following fact:

Lemma 1. For any MDP and feasible expert policy ⇡E
, the inequality constraints in Eq. (1) with ⇧ � 0, d⇡sa � 0 and

⇧ 2 �, d⇡sa 2 � are equivalent.

The detailed proof of Lemma 1 is given in Appendix C.4. In a word, the optimal solution of Eq. (16), as long as it satisfies
all constraints in the primal form, must have ⇧ 2 �, d⇡sa 2 �.

Second, we decompose the max operator into two independent maximizations, as the equality constraints that correlate ⇧
and d⇡sa are all relaxed in the dual. With Eq. (17), we now apply the following theorem from SMODICE (Ma et al., 2022):

Theorem C.1. With mild assumptions (Dai et al., 2017), for any f -divergence Df , probability distribution p, q on domain

X and function y : X ! R, we have

max
p2�(X)

Ex⇠p[y(x)]�Df (pkq) = Ex⇠q[f⇤(y(x))]. (18)

For maximizer p⇤(x) = argmaxp2�(X) Ex⇠q[f⇤(y(x))], we have p⇤(x) = q(x)f 0
⇤(y(x)), where f⇤(·) is the Fenchel

conjugate of f , and f 0
⇤ is its derivative.

A complete proof can be found at theorem 7.14⇤ in Polyanskiy (2020). The rigorous definition of f -divergence and Fenchel
conjugate are in Appendix B. For this work, we mainly consider KL-divergence as Df , which corresponds to f(x) = x log x,
and f⇤(x) = logsumexp(x) to be the Fenchel dual function with x 2 � (Boyd & Vandenberghe, 2004)4. With Thm. C.1,
we set p = ⇧, x = �, y(x) = AT

1 ��c
✏1

for the first max operator, and set p = d⇡sa, x = �, y(x) = AT
2 �
✏2

for the second max
operator. Then, we get the following single-level convex objective:

min
�

✏1 logEsi⇠I,sj⇠E exp

✓
(AT

1 �� c)T

✏1

◆
+ ✏2 logE(si,aj)⇠I exp

✓
AT

2 �

✏2

◆
� bT�, (19)

with which, by considering the components of A1, A2 and b in Appendix C.3, we have our final objective stated in Eq. (3)
and maximizer stated in Sec. 3.2.

C.3. Components of A, b in Eq. (14)

In this subsection, we discuss in detail the entries of A, b in Eq. (14). In Eq. (14), we summarize all equality constraints in

Eq. (1) as Ax = b, x =


⇧
d⇡sa

�
, where ⇧, d⇡sa are flattened in a row-first manner. Thus, we have x:i|S|+j = ⇧(si, sj), and

x|S|2+i|A|+j = d⇡sa(si, aj).

4�2-divergence does not work as well as KL-divergence in MuJoCo environments. See Appendix E.2 for details.

15

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

We further assume that in A and b, the first |S| rows are the Bellman flow constraints

8s,
X

a

d⇡sa(s, a)� �
X

s̄,ā

p(s|s̄, ā)d⇡sa(s̄, ā) = (1� �)p0(s). (20)

The second |S| rows are the
P

j ⇧(si, sj) = d⇡s (si) marginal constraints

8s,
X

s0

⇧(s, s0) =
X

a

d⇡sa(s, a). (21)

The third |S| rows are the
P

i ⇧(si, sj) = dEs (sj) constraints

8s,
X

s0

⇧(s0, s) =
X

a

dEsa(s, a). (22)

Thus, we have Ai,|S|2+j|A|+k = ��p(si|sj , ak) for i 2 {1, 2, . . . , |S|}, Ai,|S|2+i|A|:|S|2+(i+1)|A| = 1 for i 2
{1, 2, . . . , |S|} (Eq. (20)), Ai+|S|,i|S|+j = 1 for i 2 {1, 2, . . . , |S|}, Ai+|S|,|S|2+i|A|+j = �1 (Eq. (21)), and
Ai+2|S|,j|S|+i = 1 (Eq. (22)). Other entries of A are 0. A1 in Eq. (17) are the first |S| ⇥ |S| rows of A, and A2 are
the last |S|⇥ |A| rows of A.

For vector b, we have

b =

2

4
(1� �)p0

0
dEs

3

5 . (23)

C.4. Lemma 1

In this section, we provide a proof of Lemma 1 used in Appendix C.2. The Lemma reads as follows:

Lemma 1. For any MDP and feasible expert policy ⇡E
, the inequality constraints in Eq. (1) with ⇧ � 0, d⇡sa � 0 and

⇧ 2 �, d⇡sa 2 � are equivalent.

Proof. According to the equality constraint,
P

s ⇧(s, s0) = dEs (s
0) for any s0. Thus, we have

P
s0
P

s ⇧(s, s0) =P
s0 d

E
s (s

0) = 1 by the definition of state occupancy. Thus ⇧ � 0 is equivalent to ⇧ � �. Similarly, by summing
over both sides of the Bellman flow equality constraint, we have

X

s

d⇡s (s) =
X

s

(1� �)p0(s) +
X

s

�
X

s̄,ā

d⇡sa(s̄, ā)p(s|s̄, ā)

X

s,a

d⇡sa(s, a) = (1� �) + �
X

s

X

s̄,ā

d⇡sa(s̄, ā)p(s|s̄, ā)

X

s,a

d⇡sa(s, a) = (1� �) + �
X

s0

X

s,a

d⇡sa(s, a)p(s
0|s, a)

X

s,a

d⇡sa(s, a)(1� �
X

s0

p(s0|s, a)) = 1� �

X

s,a

d⇡sa(s, a) = 1

(24)

given that p0 and the transition function are legal. Thus, d⇡sa � 0 is equivalent to d⇡sa 2 �.

Intuitively, by adding the extra constraints, we can assume that redundant equality constraints exist in Eq. (1), and they are
not relaxed in the Lagrange dual. By imposing more strict constraints over the dual form, the Fenchel conjugate yields a
numerically more stable formulation.

16

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

C.5. Proof of Generalization over SMODICE

In Sec. 3.2, we claim that our proposed method, PW-DICE, is a generalization over SMODICE. More specifically, we have
the following claim and corollary:

Claim 1. If c(si, sj) = � log dE
s (si)
dI
s(si)

, ✏2 = 1, then as ✏1 ! 0, Eq. (3) is equivalent to the SMODICE objective with KL

divergence.

Corollary C.2. If c(si, sj) = � log dE
s (si)
dI
s(si)

, ✏2 = 1, then as ✏1 ! 0, Eq. (17) is equivalent to SMODICE with any

f -divergence.

We first provide a simple proof from the primal perspective:

Proof. (Primal Perspective) According to Eq. (11) and Eq. (1), the SMODICE and PW-DICE primal objectives are as
follows:

min
x

(c0)Tx+ ✏1Df (⇧kU) + ✏2Df (d
⇡
sakdIsa), s.t. Ax = b, x � 0; (PW-DICE)

max
⇡

Es⇠d⇡ log
dEs (s)

dIs(s)
�Df (d

⇡
sa(s, a)kdIsa(s, a)), s.t. ⇡ is a feasible policy. (SMODICE) (25)

Here, x =


d⇡s
⇧

�
. Note: 1) Ax = b, x � 0 contains three equality constraints: the Bellman flow equation (which is the same

as “⇡ is a feasible policy”),
P

s0 ⇧(s, s0) = d⇡s (s), and
P

s ⇧(s, s0) = dE(s0); 2) (c0)Tx =
P

s,s0 c(s, s
0)⇧(s, s0). Thus,

we have
X

s

X

s0

c(s, s0)⇧(s, s0) =
X

s

log
dEs (s)

dIs(s)

X

s0

⇧(s, s0) = �Es⇠d⇡
s
log

dEs (s)

dIs(s)
. (26)

Therefore, when ✏1 = 0, ✏2 = 1, c0(s, s0) = c(s, s0) = � log dE
s (s)
dI
s(s)

, the objective of PW-DICE and SMODICE are negated
version of each other (with one maximizing and the other minimizing), and the constraints on d⇡sa are identical. Since ⇧ is
also solvable (one apparent solution is ⇧ = d⇡s ⌦ dEs), the two objectives are identical, and thus the objectives in Eq. (25)
are equivalent. Both the Claim and the Corollary are proved, since we do not specify Df .

However, this claim is unintuitive in its dual form: as we always have ✏1 > 0, ✏2 > 0 in the dual form, the behavior of
lim✏1!0 ✏1 logEsi⇠I,sj⇠E exp

⇣
�i+|S|+�j+2|S|�c(si,sj)

✏1

⌘
in Eq. (3) is non-trivial. Thus, here we give another proof for

Claim 1 directly from the dual perspective for KL-divergence as Df in the continuous space:

Proof. (Dual Perspective, KL-divergence, continuous space) First, we prove by contradiction that

lim
✏1!0

✏1 logEs⇠I,s0⇠E exp

✓
�s+|S| + �s0+2|S| � c(s, s0)

✏1

◆
(27)

is not the max operator, because at the optimum we have �s+|S| + �s0+2|S| � c(s, s0) to be equal for every dIs(s) >
0, dEs (s

0) > 0. Otherwise, assume the state pair (s, s0) has the largest �s+|S| + �s0+2|S| � c(s0, s00); because ✏1 can be
arbitrarily close to 0, there exists ✏1 small enough such that there exists s 6= s0 or s0 6= s00 that makes the infinitesimal
increment of �s or �0

s worthy (i.e., partial derivative with respect to �s or �0
s greater than 0).

Then, we have

lim
✏1!0

✏1 logEs⇠I,s0⇠E exp

✓
�s+|S| + �s0+2|S| � c(s, s0)

✏1

◆

=Es⇠I,s0⇠E

�
�s+|S| + �s0+2|S| � c(s, s0)

�

=Es⇠I


�s+|S| + log

dEs (s)

dIs(s)

�
+ Es0⇠E�s0+2|S|.

(28)

17

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Note that �s0+2|S| in Eq. (28) is cancelled out with the linear term �Es0⇠E�s0+2|S| in the objective (see Eq. (3)) later, so
the value of �s0+2|S| does not matter anymore. That means, for any �s0+2|S|, there exists an optimal solution. Therefore,
without loss of generality, we let �s0+2|S| = 0. The objective then becomes

✏1 logEs⇠I exp

0

@
�s+|S| + log dE

s (s)
dI
s(s)

✏1

1

A+

✏2 logE(s,a,s0)⇠I exp

✓���s0 + �s � �s+|S|

✏2

◆
� (1� �)Es⇠p0�s.

(29)

Then, we can use the same trick on ✏1 ! 0 and infer that �s+|S| = � log dE
s (s)
dI
s(s)

+Q, where Q is some constant. Then, we
have our optimization objective to be

L(�) = Q+ ✏2 logE(s,a,s0)⇠I exp

0

@
���s0 + �s + log dE

s (s)
dI
s(s)
�Q

✏2

1

A� (1� �)Es⇠p0�s. (30)

Note that Q is cancelled out again, which means that the value of Q does not matter. Without loss of generality, we set
Q = 0, and then we obtain the SMODICE objective with KL-divergence.

D. Experimental Details
D.1. Tabular MDP

Experimental Settings. We adopt the tabular MDP experiment from LobsDICE (Kim et al., 2022b). For the tabu-
lar experiment, there are 20 states in the MDP and 4 actions for each state s; each action a leads to four uniformly
chosen states s01, s

0
2, s

0
3, s

0
4. The vector of probability distribution over the four following states is determined by

the formula (p(s01|s, a), p(s02|s, a)), p(s03|s, a), p(s04|s, a) = (1 � ⌘)X + ⌘Y , where X ⇠ Categorical(14 ,
1
4 ,

1
4 ,

1
4), and

Y ⇠ Dirichlet(1, 1, 1, 1). ⌘ 2 [0, 1] controls the randomness of the transition: ⌘ = 0 means deterministic, and ⌘ = 1 means
highly stochastic. The agent always starts from state s0, and can only get a reward of +1 by reaching a particular state sx. x
is chosen such that the optimal value function V ⇤(s0) is minimized. The discount factor � is set to 0.95.

Dataset Settings. For each MDP, the expert dataset is generated using a deterministic optimal policy with infinite horizon,
and the task-agnostic dataset is generated similarly but with a uniform policy. Note that we use a different expert policy
from the softmax policy of LobsDICE, because we found the value function for each state to be quite close due to the high
connectivity of the MDP. Thus, the “expert” softmax policy is actually near-uniform and severely suboptimal.

Selection of Hyperparameters. There is no hyperparameter selection for SMODICE. For LobsDICE, we follow the settings
in their paper, which is ↵ = 0.1. For our method, we use ✏1 = ✏2 = 0.01 for the version with regularizer, and ✏1 = ✏2 = 0
for the version with Linear Programming (LP).

D.2. MuJoCo Environment

Experimental Settings. Following SMODICE (Ma et al., 2022), we test four widely adopted MuJoCo locomotion
environments: hopper, halfcheetah, ant, and walker2d, and two more challenging locomotion environments, antmaze and
kitchen. Below is the detailed description for each environment. See Fig. 10 for an illustration.

1. Hopper. Hopper is a 2D environment where the agent controls a single-legged robot to jump forward. The state is
11-dimensional, which includes the angle and velocity for each joint of the robot; the action is 3-dimensional, each of
which controls the torque applied on a particular joint.

2. Halfcheetah. In Halfcheetah, the agent controls a cheetah-like robot to run forward. Similar to Hopper, the environment
is also 2D, with 17-dimensional state space describing the coordinate and velocity and 6-dimensional action space
controlling torques on its joints.

18

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

(a) Hopper

(b) Halfcheetah

(c) Ant

(d) Walker2d

(e) Antmaze

(f) Kitchen

Figure 10. Illustration of environments tested in Sec. 4.2 based on OpenAI Gym (Brockman et al., 2016) and D4RL (Fu et al., 2020b).

3. Ant. Ant is a 3D environment where the agent controls a quadrupedal robotic ant to move forward. The 111-dimensional
state space includes the coordinate and velocity of each joint. The action space is 8-dimensional.

4. Walker2d. Walker2d, as its name suggests, is a 2D environment where the agent controls a two-legged robot to walk
forward. The state space is 27-dimensional and the action space is 8-dimensional.

5. Antmaze. In this work, we consider the U-maze task, where the agent needs to manipulate a 8-DoF robotic ant with
29-dimensional state to crawl from one end of the maze to another, as illustrated in Fig. 10.

6. Kitchen. Franka Kitchen in D4RL is a challenging environment, where the agent manipulates a 9-DoF robotic arm and
tries to complete 4 sequential subtasks. Subtask candidates include moving the kettle, opening the microwave, turning
on the bottom or top burner, opening the left or right cabinet, and turning on the lights. The state space describes the
status of the robot and the goal and current location of the target items. The state is 60-dimensional.

Dataset Settings. We adopt the same settings as SMODICE (Ma et al., 2022). SMODICE uses a single trajectory (1000
states) from the “expert-v2” dataset in D4RL (Fu et al., 2020b) as the expert dataset E. For the task-agnostic dataset I ,
SMODICE uses the concatenation of 200 trajectories (200K state-action pairs) from “expert-v2” and the whole “random-v2”
dataset (1M state-action pairs).

Selection of Hyperparameters. Tab. 1 summarizes our hyperparameters, which are also the hyperpameters of plain Behavior
Cloning if applicable. For baselines (SMODICE, LobsDICE, ORIL, OTR, and DWBC), we use the hyperparameters reported
in their paper (unless the hyperparameter values in the paper and the code differ, in which case we report the values from the
code).

19

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Type Hyperparameter Value Note
Disc. Network Size [256, 256]

Activation Function Tanh
Learning Rate 0.0003

Training Length 40K steps
Batch Size 512
Optimizer Adam

Actor Network Size [256, 256]
Activation Function ReLU

Learning Rate 0.001
Weight Decay 10�5

Training length 1M steps
Batch Size 1024
Optimizer Adam

Tanh-Squashed Yes
Critic Network Size [256, 256]

Activation Function ReLU
Learning Rate 0.0003

Training Length 1M steps
Batch Size 1024
Optimizer Adam

✏1 kitchen 0.01, others 0.5 coefficient for the KL regularizer
✏2 kitchen 2, others 0.5 coefficient for the KL regularizer
↵ 0.01 mixing coefficient to the denominator of R(s)
� 5 coefficient for combination of distance metric
� 0.998 discount factor in our formulation

Table 1. Our selection of hyperparameters. We use the same network architecture and optimizer as SMODICE (Ma et al., 2022).

Implementation of Contrastively Learned Distance. We build our contrastive learning module on the implementation
of FIST (Hakhamaneshi et al., 2022). The contrastive learning embedding framework is trained for 200 epochs over the
task-agnostic dataset. In each epoch, we use a batch size of 4096, where each data point consists of a consecutive state
pair (si, s0i), i 2 {1, 2, . . . , 4096}, and the states are n-dimensional. An encoding layer g(s) : Rn ! RM⇥1 with M = 32
embedding dimensions is first applied on each si and s0i. Then, the score matrix L 2 R4096⇥4096 is calculated, such that
Li,j = g(si)TWg(s0j). W 2 RM⇥M = softplus(W0)softplus(WT

0) is a learnable matrix, and it is structured for better
stability. Finally, each row of L is viewed as the score for a 4096-way classification. The label is the identity matrix. Such
training paradigm gives us the loss also provided in Eq. (7):

Lc = log
exp

�
qTWk+

�

exp (qTWk+) +
P

k�
exp (qTWk�)

. (31)

Here, q = g(si) is the query (anchor), W is the weight matrix, k+ = g(s0i) is a positive key, and k� 2 {g(s0j)|j 6= i} are
negative keys. This objective essentially amounts to a 4096-way classification task, where for the i-th sample the correct
label is i.

E. Additional Experimental Results
E.1. Supplementary Results for Tabular Environment

E.1.1. STATE AND STATE-PAIR TOTAL VARIATION (TV) DISTANCE

In this section, we show the Total Variation (TV) divergence between the state occupancies of the learner and the expert
and the state-pair occupancies between the learner and the expert, i.e., TV(d⇡s kdEs) and TV(d⇡sskdEss). Fig. 11 shows the
result of the state occupancy distance between the learner’s and the expert policies. Fig. 12 shows the distance between the
state-pair occupancies. We observe our method to work better than SMODICE and LobsDICE.

E.1.2. TABULAR EXPERIMENT WITH SOFTMAX EXPERT

To be consistent with LobsDICE (Kim et al., 2022b), we also report experimental results using exactly the same setting of
LobsDICE, which uses a highly sub-optimal expert. Fig. 13, Fig. 14, and Fig. 15 show the regret, state occupancy divergence
TV(d⇡s kdEs), and state-pair occupancy divergence TV(d⇡sskdEss) of each method in this setting respectively. The result
shows that our method does not perform well in minimizing occupancy divergence, as the coefficient of the f -divergence
regularizer in our PW-DICE is much smaller or 0, which means that our obtained policy is more deterministic and thus
different from the highly stochastic “expert” policy. It is worth noting that our method, with accurate estimation of MDP

20

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 11. TV distance TV(d⇡s kdEs) of each method on tabular environments. Our method, both with and without regularizer, works
comparably well as the baselines for a small task-agnostic dataset, and prevails with larger task-agnostic dataset (more accurate estimated
dynamics).

Figure 12. State-pair occupancy TV distance between the learner and expert (TV(d⇡sskdEss)) on tabular environments. Similar to TV
distance between state-occupancies and regret, our method works the best, especially with larger task-agnostic dataset.

21

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 13. Regret of each method for tabular experiments with softmax expert. Our method with regularizer generally achieves the lower
regret. Also, our method is the only one that achieves negative regret (i.e., better than the highly suboptimal “expert”).

dynamics (i.e., large size of the task-agnostic/non-expert dataset), is the only method that achieves negative regret, i.e., our
method is even better than the “expert” policy. Also, our method with regularizer generally achieves lower regret.

E.2. PW-DICE with �2-divergence on MuJoCo Environment

In the main paper, we mainly considered PW-DICE with KL-divergence. However, as Corollary C.2 suggests, the Df

regularizer in PW-DICE can also be �2-divergence. Suppose we use half �2-divergence as SMODICE (Ma et al., 2022)
does, i.e., f(x) = 1

2 (x � 1)2, f⇤(x) = 1
2 (x + 1)2, and f 0(x) = x + 1. With such a divergence, the final optimization

objective of PW-DICE reads as follows:

min
�

✏1
2
Esi⇠I,sj⇠E

✓
�i+|S| + �j+2|S| � c(si, sj)

✏1
+ 1

◆2

+
✏2
2
E(si,aj ,sk)⇠I

✓���k + �i � �i+|S|

✏2
+ 1

◆2

�
⇥
(1� �)Es⇠p0�:|S| + Es⇠E�2|S|:3|S|

⇤
,

(32)

and the policy loss is

E(s,a)⇠I max

✓
0,
��Esk⇠p(·|si,aj)�k + �i � �i+|S|

✏2

◆
. (33)

However, similar to SMODICE, we found that the �2-divergence regularizer does not work well under MuJoCo environments,
as the weight ratio between good and bad actions in the task-agnostic dataset is only proportional (instead of exponential) to
���k + �i � �i+|S|, and thus is not discriminative enough. As a result, the retrieved policy is highly stochastic. Fig. 16
shows the result of �2-divergence, which is much worse than the KL-divergence result.

22

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 14. State occupancy TV distance TV(d⇡s kdEs) of each method for tabular experiments with softmax expert. Our method does not
work well because the expert policy is highly stochastic.

E.3. Learning from Expert with Mismatched Dynamics

In order to show that our method is robust with respect to different dynamics, we adopt the mismatched dynamics setting
from SMODICE (Ma et al., 2022), where the agent needs to learn from the same task-agnostic dataset as that in the main
results of Sec. 4.2, but with the expert dataset generated by an expert with very different dynamics; for example, one of
the legs of the expert is amputated in the ant environment, and the torso of the expert is much shorter in the halfcheetah
environment. We use exactly the same setting as SMODICE; Fig. 17 shows the result, which illustrates that our method is
generally more robust to embodiment differences than SMODICE, LobsDICE, and ORIL.

F. Notations Table
Tab. 2 lists the symbols that appear in the paper.

G. Computational Resources
All experiments are carried out with a single NVIDIA RTX 2080Ti GPU on an Ubuntu 18.04 server with 72 Intel Xeon Gold
6254 CPUs @ 3.10GHz. Given these resources, our method needs about 5� 5.5 hours to finish training in the MuJoCo
environments (during which the training of the distance metric, including R(s) and contrastive learning, takes 20 � 40
minutes), while ORIL, SMODICE, and LobsDICE require about 2.5� 3 hours. As the actor network is identical across all
methods, the inference speed is similar and is not a bottleneck.

23

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Figure 15. State-pair occupancy TV distance TV(d⇡sskdEss) of each method for tabular experiments with softmax expert. Our method does
not work well because the expert policy is highly stochastic.

Figure 16. Performance comparison between �2-divergence (blue) and KL-divergence (red) in PW-DICE. �2-divergence does not work
as well as KL-divergence.

Figure 17. Performance comparison on expert with mismatched dynamics; it is shown that our method is generally more robust than
SMODICE, LobsDICE, and ORIL on the two environments.

24

Offline Imitation from Observation via Primal Wasserstein State Occupancy Matching

Name Meaning Note
S State space |S| is the size of state space
A Action space |A| is the size of state space
� Discount factor � 2 (0, 1)
r Reward function r(s, a) for single state-action pair
T Transition function
p Transition (single entry) p(s0|s, a) 2 �(S)
p0 Initial distribution p0 2 �(S)
s State s 2 S
a Action a 2 A
s̄ Past state
ā Past action
⌧ Trajectories State-only or state-action; depend on context
E Expert dataset state-only expert trajectories
I Task-agnostic dataset state-action trajectories of unknown optimality
⇡ Learner policy
⇡E Expert policy abstracted from E
⇡I Task-agnostic policy abstracted from I
d⇡sa State-action occupancy of ⇡
d⇡s State occupancy of ⇡ 1) 8s 2 S,

P
a d

⇡
sa(s, a) = d⇡s (s). This equation also applies

similarly between dEsa and dEs , as well as dIsa and dIs .
2) d⇡s (s) = (1 � �)

P1
i=0 �

i Pr(si = s), where si is the i-th
state in a trajectory. This holds similarly for dI(s) and dE(s).
3) d⇡sa(s, a) = d⇡s (s)⇡(a|s). This holds similarly for dEsa,⇡E

and dIsa,⇡I .
d⇡ss State-pair occupancy of ⇡
dEs State occupancy of ⇡E

dEss State-pair occupancy of ⇡E

dIsa State-action occupancy of ⇡I

dIs State occupancy of ⇡I

� Dual variable
Df f -divergence
f⇤(·) Fenchel conjugate of f
c Matching cost for Wasserstein distance
c0 Matching cost for Wasserstein distance With extended domain
⇧ Wasserstein matching variable

P
s2S ⇧(s, s0) = dEs (s

0),
P

s02S ⇧(s, s0) = d⇡s (s)
A Equality constraint matrix
x unified self-variable concatenation of flattened ⇧ and d⇡sa (row first)
b Equality constraint vector Ax = b
U Distribution as regularizer product of dIs and dEs
W Wasserstein distance
h(·) state discriminator
W Weight matrix of contrastive learning W 2 R32⇥32

g(·) embedding to be learned
L score matrix L 2 R4096⇥4096

n number of dimensions for state
M number of dimensions for embedding M = 32
� coefficient for learned embedding in distance metric

Table 2. Complete list of notations used in the paper. The first part is for offline LfO settings, the second part lists notations specific to
PW-DICE, and the third part is for notations used in contrastive learning (Appendix D.2).

25

