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Abstract
While language models (LMs) have shown po-
tential across a range of decision-making tasks,
their reliance on simple acting processes limits
their broad deployment as autonomous agents. In
this paper, we introduce Language Agent Tree
Search (LATS) – the first general framework that
synergizes the capabilities of LMs in reasoning,
acting, and planning. By leveraging the in-context
learning ability of LMs, we integrate Monte Carlo
Tree Search into LATS to enable LMs as agents,
along with LM-powered value functions and
self-reflections for proficient exploration and en-
hanced decision-making. A key feature of our ap-
proach is the incorporation of an environment for
external feedback, which offers a more deliberate
and adaptive problem-solving mechanism that sur-
passes the constraints of existing techniques. Our
experimental evaluation across diverse domains,
including programming, interactive question-
answering (QA), web navigation, and math, val-
idates the effectiveness and generality of LATS
in decision-making while maintaining compet-
itive or improved reasoning performance. No-
tably, LATS achieves state-of-the-art pass@1 ac-
curacy (92.7%) for programming on HumanEval
with GPT-4 and demonstrates gradient-free per-
formance (average score of 75.9) comparable to
gradient-based fine-tuning for web navigation on
WebShop with GPT-3.5. Code can be found
at https://github.com/lapisrocks/
LanguageAgentTreeSearch.

1. Introduction
General autonomous agents capable of reasoning and
decision-making in a variety of environments (Wooldridge
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Figure 1. Overview of LATS. Serving as a unified framework,
LATS leverages an external environment and an MCTS-based
search algorithm to improve reasoning and decision-making.

and Jennings, 1995) have been of longstanding interest in
the field of artificial intelligence. While this has tradition-
ally been studied in reinforcement learning, the recent rise
of language models (LMs) (Brown et al., 2020; Chowdh-
ery et al., 2023; Touvron et al., 2023; OpenAI, 2023) with
strong reasoning and general adaptability offers an alter-
native paradigm. Not only have LMs excelled in standard
natural language processing (NLP) tasks such as summariza-
tion (Nallapati et al., 2016) and language inference (Bow-
man et al., 2015), but they have also been adapted to an
increasingly diverse set of tasks that often require advanced
common-sense reasoning or quantitative skills (Cobbe et al.,
2021; Saparov and He, 2023). In addition, LMs are capable
of performing in complex environments that involve knowl-
edge and reasoning, such as web navigation (Yao et al.,
2022; Deng et al., 2023), tool-use (Schick et al., 2023), and
open-ended games (Fan et al., 2022).

Reasoning and acting abilities have been further improved
by prompting techniques that augment LMs with feedback
or observations from an external environment, as exempli-
fied by ReAct (Yao et al., 2023b) and other work (Gao et al.,
2023; Shinn et al., 2023). This eliminates the need to rely en-
tirely on the base abilities of LMs, enhancing them through
external tools or semantic feedback. Despite such strengths,
these methods are reflexive and fall short of humans’ deliber-
ate and thoughtful decision-making characteristics to solve
problems (Sloman, 1996; Evans, 2010). In particular, they
fail to consider multiple reasoning paths or to plan ahead.
Recent search-guided LM work (Xie et al., 2023; Yao et al.,
2023a; Hao et al., 2023) addresses this issue by searching
over multiple reasoning chains. While enabling planning,
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such methods operate in isolation, lacking the incorporation
of external feedback that can improve reasoning.

To overcome these challenges, we propose Language Agent
Tree Search (LATS) – a unified framework for decision-
making and reasoning with language models. As illustrated
in Fig. 1, LATS synergizes LM reasoning, acting, and plan-

ning strategies by expanding ReAct (Yao et al., 2023b) into a
search over a combinatorial space of possible reasoning and
acting steps. This effort is nontrivial – adapting search algo-
rithms to language agents and shifting from non-interactive
tasks to interactive ones requires a substantial novel design
on nodes, prompts, and search algorithms. In particular,
nodes and prompts must effectively store and retrieve ex-
ternal feedback, with the search algorithm incorporating
this information into useful heuristics for value assignment.
Indeed, our empirical evaluation, as demonstrated on Hot-
PotQA (Yang et al., 2018) in Sec. 5.1, reveals that a simple
combination of existing methods is inadequate, even failing
to surpass internal reasoning performance, despite having
access to the ground truth answer from the environment.

Our key insight underpinning LATS is adapting Monte Carlo
Tree Search (MCTS), inspired by its success in model-based
reinforcement learning (Silver et al., 2017) and the obser-

vation that many LM tasks allow reverting to earlier steps,
to language agents, repurposing pretrained LMs as agents
with LM-powered value functions and self-reflections for
cleverer exploration. Leveraging the general capabilities
and in-context learning abilities of modern LMs, we use
language as an interface between each component, allowing
LATS to adapt planning to environmental conditions with-

out additional training. To the best of our knowledge, LATS
is the first framework that incorporates reasoning, acting,
and planning to enhance LM performance. Notably, LATS
doubles the performance of ReAct (Yao et al., 2023b) on
HotPotQA (Yang et al., 2018) and raises the average score
by 22.1 on WebShop (Yao et al., 2022) with GPT-3.5. When
used with GPT-4, LATS achieves a 92.7 Pass@1 rate on
HumanEval (Chen et al., 2021), setting the state of the art.

Our contributions are the following: 1) We introduce LATS,
a framework based on Monte Carlo Tree Search to construct
the best trajectory from sampled actions, enabling more flex-
ible and adaptive problem-solving compared with reflexive
prompting methods. 2) We propose a novel value function
that guides the search process and incorporates successful
heuristics such as self-refinement and self-consistency. 3)
By integrating external feedback and self-reflection, LATS
enhances model sensibility and enables agents to learn from
experience, surpassing reasoning-based search methods.
Through experiments across diverse domains, including pro-
gramming, interactive question-answering (QA), web navi-
gation, and math, we demonstrate the versatility of LATS
for enhancing autonomous reasoning and decision-making.

2. Related Work
LMs for reasoning. For LMs, reasoning involves decom-
posing complex inputs into sequential intermediate steps
towards a final answer (Cobbe et al., 2021), demonstrated
with chain-of-thought (CoT) prompting (Wei et al., 2022)
and its variants (Wei et al., 2022; Kojima et al., 2022; Wang
et al., 2022). However, these methods, which create chains
autoregressively in a single step, often suffer from error
propagation as the number of steps increases (Guo et al.,
2018; Chen et al., 2023b), due to compound errors. Various
advancements aim to mitigate this issue; some approaches,
such as self-consistency (Wang et al., 2022), employ ma-
jority voting over sampled chains, while others focus on
multi-step decomposition, such as least-to-most prompt-
ing (Zhou et al., 2022). Recently, CoT has been improved
with search algorithms (Yao et al., 2023a; Hao et al., 2023;
Besta et al., 2023) that can sample trajectories more effec-
tively. Tree-of-thought (ToT) prompting (Yao et al., 2023a)
uses DFS or BFS-based (depth/breadth-first) search guided
by an LM-generated heuristic, while reasoning via planning
(RAP) (Hao et al., 2023) uses MCTS with rollouts simu-
lated by LMs. However, they rely solely on LM internal
knowledge and cannot adapt to useful external feedback.

LMs for acting. The strong reasoning and common-sense
abilities of LMs have been further adapted for decision-
making or acting tasks as a policy model in interactive
environments. In robotics, LMs have been employed as
high-level controllers of control policies (Ahn et al., 2022;
Huang et al., 2022; Driess et al., 2023). Similar work (Baker
et al., 2022; Wang et al., 2023) has also adapted LM agents
to complex multimodal games such as Minecraft (Guss et al.,
2019; Fan et al., 2022). LMs are particularly useful in text-
based environments (Liu et al., 2018; Shridhar et al., 2020;
Liu et al., 2024), where acting-based prompting techniques
such as ReAct (Yao et al., 2023b) have seen success. Sim-
ilar to CoT, ReAct is limited by its simplicity and cannot
effectively adapt to environment conditions. Many exten-
sions have been proposed to address this issue, including
self-refine (Madaan et al., 2023) and Reflexion (Shinn et al.,
2023), which use self-improvement to enhance reasoning
and decision-making, and AdaPlanner (Sun et al., 2023),
which incorporates both positive and negative feedback.
However, these methods focus on refining an individual tra-
jectory and do not consider alternative choices at each step.
In addition, recent work (Huang et al., 2024) has suggested
that LMs cannot self-correct their internal reasoning, mak-
ing it critical to use external feedback. Alternatively, to pure
decision-making environments, the reasoning and practical
abilities of LMs have been enhanced by providing access
to external tools, such as APIs, search engines, calculators,
and other models (Schick et al., 2023; Shen et al., 2023;
Surı́s et al., 2023). We summarize prior work in Tab. 1.

Tree-based search. Tree-based search, where multiple
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Approach Reasoning Acting Planning Self- External
Reflection Memory

CoT (Wei et al., 2022) X ⇥ ⇥ ⇥ ⇥
ReAct (Yao et al., 2023b) X X ⇥ ⇥ ⇥
ToT (Yao et al., 2023a) X ⇥ X X X
RAP (Hao et al., 2023) X ⇥ X ⇥ X
Self-Refine (Madaan et al., 2023) X ⇥ ⇥ X ⇥
Beam Search (Xie et al., 2023) X ⇥ ⇥ X ⇥
Reflexion (Shinn et al., 2023) X X ⇥ X X
LATS (Ours) X X X X X

Table 1. Summary of related work on reasoning, acting, and planning. LATS is the first work incorporating designs from all three domains,
allowing broad applicability in all corresponding tasks. We refer to reasoning as LM internal reasoning, acting as external decision-making,
planning as the use of a search algorithm, self-reflection as the use of LM-generated feedback, and external memory as storing past text
context for future updates of the solution.

branches of outcomes are explored during search, is widely
used in many planning algorithms (Swiechowski et al., 2021;
LaValle, 1998) and reinforcement learning (RL) (Hafner
et al., 2019; Du et al., 2023; Wu et al., 2023) algorithms for
its good exploration-exploitation trade-off. Note that though
tree-based search necessitates an environment model that
can expand from an arbitrary state (Vodopivec et al., 2017),
often requiring extra training in RL (Hafner et al., 2023),
such a problem does not exist for most LM tasks. This is
because we can conveniently revert to any state by setting
the input to be the context and the corresponding previous
output from the LM for many tasks. Thus, we operate on the
tree-based framework and use MCTS (Swiechowski et al.,
2021) to fully unlock the potential of LMs. In addition, we
avoid the cost of training a value function over language
descriptions by leveraging the in-context learning (Brown
et al., 2020) abilities of LMs. Concurrent work (Liu et al.,
2023) also explores combining search algorithms with LM
agents but uses an off-the-shelf search algorithm, which
may not be optimal for LMs. Finally, following Yao et al.
(2023a) and Hao et al. (2023), we note that we use planning

and search algorithms interchangeably in this paper.

3. Preliminaries
3.1. Problem Setting and Prompting

We first define our problem and outline a few established
methods that leverage language models for reasoning or

decision-making. In LM reasoning or decision making,
we are given an input x in natural language and a pre-
trained language model p✓(x) parameterized by ✓; our goal
is to generate a final output y ⇠ p✓(x) that corresponds
to the answer (reasoning) or completes the task (decision-
making). Both x and y are language sequences, which are
comprised of a list of tokens (the basic elements of natural
language, often words), denoted as x = (x[1], . . . , x[lx])
and y = (y[1], . . . , y[ly]) where lx and ly are the length.

The LM decodes text autoregressively, i.e., without other
inputs, the probability for an LM to generate a sequence y

is given by p✓(x) =
Qlx

i=1
p✓(x[i]|x[1 . . . i � 1]). Usually,

to improve reasoning, prompts are provided along with the
input x, which are specific instructions or few-shot input-
output examples. We denote the generic process where an
input promptIO(x) is transformed into an output y by LM:
y ⇠ p✓(promptIO(x)).

Chain-of-thought (CoT) prompting (Wei et al., 2022)
caters to scenarios where the direct mapping from x to y is
intricate, e.g., when x is from a mathematical query or chal-
lenging question. It hinges on creating thoughts z1, . . . , zl

that act as stepping stones between x and y; each thought zi
is a language sequence. To employ CoT prompting, thoughts
are extracted sequentially as zi ⇠ p

CoT

✓ (x, z1···i�1), with
the final output being y ⇠ p

CoT

✓ (x, z1···l).

Tree-of-thought (ToT) prompting (Yao et al., 2023a) ex-
tends CoT prompting by exploring multiple reasoning paths
over thoughts. It frames problems as a search over a tree,
where each node s = [x, z1·i] represents a partial solution
state comprising the original input x and the thought se-
quence z1···i. Thoughts zi are generated by proposal or
sampling with CoT zi ⇠ p

CoT

✓ (x, z1···i�1). Search algo-
rithms like depth-first (DFS) or breadth-first (BFS) search
are used to systematically explore the tree, guided by heuris-
tics based on LM evaluations V (s) of each state.

ReAct (Yao et al., 2023b) extends language models to
tasks where the mapping from x to y is enhanced by or
requires interactions with an external environment, such
as a game or API. This technique constructs an action
space Â = A [ Z that adds permissible actions a 2 A

to the reasoning traces z 2 Z from CoT. Observations o

from the environment are used to improve both reasoning
and acting. To solve problems with ReAct, after each ob-
servation, actions are generated from p✓ sequentially as
ai ⇠ p

ReAct

✓ (x, o1···i�1, a1···i�1), with the final output be-
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ing y ⇠ p
ReAct

✓ (x, o1···l, a1···l). In this paper, consistent
with other LM agent methods such as ReAct and Reflexion
(Shinn et al., 2023), we focus on decision-making tasks
where reverting between iterations is feasible.

While the previously described prompting techniques im-
prove LM performance on reasoning tasks, they falter on
difficult tasks that involve multifaceted decision-making
due to several shortcomings: 1) Flexibility: Base prompting
designs (CoT or ReAct) autoregressively sample from the
LM, neglecting potential alternative continuations from spe-
cific states. 2) Sensibility: Reasoning-based methods (CoT,
RAP (Hao et al., 2023), or ToT) rely solely on the inter-
nal representations of the LM and cannot consider external
observations. This dependency risks fact hallucination and
error propagation while setting a performance ceiling. 3)
Adaptability: Current planning strategies (RAP or ToT) use
simple search algorithms such as BFS or cannot leverage
environmental feedback to improve planning. Additionally,
the agent is static and cannot reuse previous experience or
learn from trial and error. While RAP also adopts MCTS, it
is constrained to tasks where the LM can become a world
model and accurately predict states. These shortcomings
limit the ability of LMs to be deployed as general problem-
solving agents and form the motivation for LATS.

3.2. Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS) is a heuristic search al-
gorithm that is proved successful on many decision-making
environments, such as Atari (Ye et al., 2021) and Go (Silver
et al., 2016). MCTS builds a decision tree where every node
in the tree is a state and edge is an action. MCTS runs for k
episodes; for each episode, it starts from the root (i.e., initial
state) and iteratively conducts two steps to expand the tree:
1) Expansion, where multiple children states s are explored
from the current parent state p by sampling n actions, and 2)
Selection, where the children with the highest UCT (Upper

Confidence bounds applied to Trees) (Kocsis and Szepesvári,
2006) value is selected for expansion by the next iteration.
The UCT of a child state s is calculated as follows:

UCT (s) = V (s) + w

s
lnN(p)
N(s)

, (1)

where N(s) is the number of visits to a node s, V (s) is the
value function (expected return) from the subtree of s, w is
the exploration weight, and p is the parent node of s. When
the end of an episode is reached, a backpropagation is car-
ried out: the return r is used for updating every V (s) along
the path with the formula V (s) = Vold(s)(N(s)�1)+r

N(s) , where
Vold(s) is the old value function. Normally, the major short-
coming of MCTS is that it requires an environment model to
undo previous steps and form a searching tree, which could
be a strong assumption. However, this limitation does not

exist for many LM tasks, as we can conveniently reset to

any step by simply copy-pasting historical text input. Such
a special property is the key motivation of our work.

4. Unifying Reasoning, Acting, and Planning
4.1. LM Agent

Depending on the base prompting framework design, LATS
supports sequential reasoning or decision-making tasks. At
time step t, an agent receives an observation ot 2 O from
the environment and takes an action at 2 A following some
policy ⇡(at|x, o1···t�1, a1···t�1). We initialize the agent
with p✓ to leverage the useful language representations of
an LM as a base decision-maker. We follow the ReAct in-
stantiation, in which the action space Â = A [ Z consists
of both the space of permissible actions A and the language
space of reasoning traces Z. Actions directly affect the envi-
ronment and result in observation, while thoughts are used
to formalize decisions by organizing information, planning
future actions, or injecting internal knowledge. The exact
instantiation of the action space depends on the particular
environment – for decision-making tasks actions might con-
sist of commands on a website, while for reasoning tasks
the action space might be limited to a few external tools or
APIs. In environments without feedback, such as reasoning
tasks, we use CoT as the base prompting framework.

Instead of greedily decoding one trajectory or solution, we
sample n actions from p✓ using the current state. This is
based on the intuition that for complex decision-making
tasks, there is likely to be a range of potential trajectories or
reasoning paths that are correct (Evans, 2010). Sampling a
diverse set of candidates at each step mitigates the stochastic
nature of LM text generation and enables greater exploration
in both the decision-making and reasoning space. We wrap
p✓ within our proposed search algorithm to deliberately
construct the best trajectory from sampled actions.

4.2. LATS

The main component of LATS is a search algorithm that
controls the problem-solving process with planning. To find
the most promising trajectory and systemically balance ex-
ploration with exploitation, we adopt a variant of MCTS that
frames decision-making as a tree search, in which each node
s = [x, a1···i, o1···i] represents a state comprising the origi-
nal input x, action sequence a1·i, and observation sequence
o1·i, where i is a token in the text sequence.

Our main technical contribution is adapting MCTS to lan-

guage agents. LATS repurposes p✓ as an agent, state evalua-
tor, and feedback generator, leveraging the useful language
representations of modern LMs to facilitate planning. While
standard MCTS and RAP (Hao et al., 2023) rely on internal
dynamics models to facilitate simulation, LATS uses envi-
ronment interaction and does not require a world model. As
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Figure 2. Overview of the six operations in LATS. A node is selected, expanded, evaluated, then simulated until a terminal node is reached,
and then the resulting value is backpropagated. If the trajectory fails, a reflection is generated and used as additional context for future
trials. These operations are performed in succession until the budget is reached or the task is successful.

depicted in Fig. 2, LATS consists of a series of operations
– selection, expansion, evaluation, simulation, backpropa-

gation, and reflection – performed in succession until the
task is successfully completed or a computational limit is
reached after sampling k trajectories. The full pseudocode
of LATS can be found in Sec. A in the Appendix.

Selection. In the first operation, the algorithm identifies
a segment of the current tree most suitable for subsequent
expansion. Starting from the root node, denoted as the initial
state s0, a child node is selected at each tree level until a leaf
node is reached. To balance exploration and exploitation,
we use the UCT algorithm as shown in Eq. 1.

Expansion. After selecting a node, the second operation
expands the tree by sampling n actions from p✓, as described
in the prior section. The environment receives each action
and returns corresponding feedback as an observation. This
results in n new child nodes added to the tree. This tree is
stored in an external long-term memory structure.

Evaluation. The third operation assigns a scalar value to
each new child node for selection and backpropagation.
This value effectively quantifies the agent’s progress in task
completion, serving as a heuristic to steer the search algo-
rithm towards the most promising regions of the tree. As
LATS does not involve training, we propose a novel value
function for this setting based on two components: (1) a
self-generated LM score and (2) a self-consistency score.

Inspired by ToT, we repurpose p✓ into a value function by
prompting it to reason about a given state. To obtain a scalar
value, we instruct p✓ to end its reasoning trace with a score
indicating the correctness of the trajectory. Our key distinc-
tion from ToT is that we obtain this value after obtaining
the environmental feedback, improving value assignment.
This also enables scaling to more challenging environments,

as it is difficult for LMs to improve their responses with-
out external feedback (Huang et al., 2024). Additionally,
to further improve value assignment, we introduce an ad-
ditional heuristic based on self-consistency (Wang et al.,
2022), in which actions sampled multiple times at the same
state tend to be more accurate. This results in the overall
value function:

V (s) = � ⇤ LM(s) + (1� �) ⇤ SC(s), (2)

where � is a hyperparameter. Notably, our method offers
enhanced flexibility over programmed heuristics (Campbell
et al., 2002) and greater efficiency than learned heuristics
(Silver et al., 2017).

Simulation. The fourth operation expands the currently se-
lected node until a terminal state is reached. At each depth
level, we sample and evaluate nodes with the same opera-
tions but prioritize nodes of the highest value. Reaching a
terminal state provides objective feedback on the correct-
ness of a trajectory. If the task is completed successfully,
then LATS terminates the search. If the solution is partially
successful or unsuccessful, then we perform two additional
operations as described below. The success of a trajectory is
determined by the design of the specific environment, such
as finalizing a purchase in web navigation environments.

Backpropagation. This operation updates the values of the
tree based on the outcome of a trajectory. For each node
s0, s1, . . . , sl in the trajectory from root (initial state s0)
of the searching tree to leaf (terminal state sl), its value is
updated to reflect the outcome of the simulation by N(si) =

N(si�1)+1 and V (si) =
V (si�1)N(si�1)+r

N(si)
, where r is the

reward. These updated values are used in the UCT formula
(Eq. 1) to guide the selection of the next node.

Reflection. In addition to the environmental feedback, we
leverage self-reflection to further refine the decision-making
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Prompt Method HotpotQA (EM) "
Base LM 0.32
CoT (Wei et al., 2022) 0.34
CoT - SC (Wang et al., 2022) 0.38
ToT (Yao et al., 2023a) 0.55
RAP (Hao et al., 2023) 0.60
RAP (n = 10) 0.60
LATS (CoT) 0.62

Table 2. GPT-3.5 reasoning-based prompting results on HotpotQA.
LATS achieves the highest exact match (EM) for reasoning. We
sample n = 5 nodes during expansion and k = 50 trajectories.

process (Shinn et al., 2023; Madaan et al., 2023). Upon
encountering an unsuccessful terminal node, p✓ is prompted
with the trajectory and final reward to provide a verbal self-
reflection that summarizes the errors in the reasoning or
acting process and proposes superior alternatives. We store
both failed trajectories and corresponding reflections in the
memory. In subsequent iterations, these are integrated as
additional context to the agent and value function, refining
both through in-context learning. This imparts a semantic
gradient signal more useful than a scalar value, enabling
the agent to learn from trial and error without the cost of
expensive optimization such as reinforcement learning.

Discussion. Conceptually, LATS has several notable advan-
tages as a general framework for reasoning and decision-
making with LM agents. (1) Generality: LATS supports
both reasoning and decision-making tasks by defining a
shared space of thoughts and actions. (2) Deliberation:
Leveraging MCTS and LM value function in LATS en-
sures a principled search that selects options with high value
while exploring promising alternatives. (3) Adaptability:
Incorporating external feedback through observations and
self-reflection in LATS enables greater adaptation during
problem-solving. (4) Flexibility: LATS can accommodate
different scenarios, environments, and resource stipulations
by modifying state design and tree dimensions. (5) Modu-

larity: The base LM agent, reflection generator, and value
function can be independently altered and adapted to indi-
vidual LM properties.

5. Experiments
To demonstrate the general applicability of LATS, we eval-
uate our method on a variety of domains that require rea-
soning and acting: programming (Chen et al., 2021; Austin
et al., 2022), HotPotQA (Yang et al., 2018), WebShop (Yao
et al., 2022), and Game of 24 (Yao et al., 2023a).

Prompt Method HotpotQA (EM) "
ReAct (Yao et al., 2023b) 0.32
ReAct (best of k) 0.38
Reflexion (Shinn et al., 2023) 0.51
ToT (ReAct) 0.39
RAP (ReAct) 0.54
LATS (ReAct) 0.63
LATS (n = 3) 0.58
LATS (n = 10) 0.65
LATS (CoT + ReAct) 0.71

Table 3. GPT-3.5 acting-based prompting results on HotpotQA.
LATS achieves the highest exact match (EM) for acting. We
sample n = 5 nodes and use k = 50 trajectories. We also evaluate
sampling ReAct k times and using both CoT and ReAct base
prompting designs for LATS, which achieves the best performance.
Note that LATS outperforms ToT and RAP with ReAct prompting,
which are the simple adaptations of search algorithms to decision-
making.

5.1. HotPotQA

For a task that can be approached with both reasoning-based
and acting-based strategies, we consider HotPotQA (Yang
et al., 2018), a multi-hop question-answering benchmark
that requires retrieval over two or more Wikipedia passages.
For the action space, in addition to LM thoughts, we follow
the setup from Yao et al. (2023b), which provides the agent
with API calls to search and retrieve information. The output
of these API calls and self-generated reflections form the
observation space. Note that consistent with previous work
(Yao et al., 2023b; Shinn et al., 2023), we use an oracle
setup for HotPotQA, in which the environment provides
feedback about the answer’s correctness upon receiving an
answer. This enables a fair comparison between our method
and baselines in scenarios where the quality of feedback is
high, allowing us to focus our evaluation on how well the
agent incorporates external feedback. We use a subset of
100 questions and three few-shot examples for each method.
For ToT, we use DFS as the base search algorithm. For all
methods that involve sampling, including LATS, we sample
k = 50 trajectories. More details are in Appendix Sec. D.

We evaluate internal reasoning strategies by removing ac-
tions and observations from the context, corresponding to
CoT (Wei et al., 2022) and its variants, CoT-SC (Wang et al.,
2022), ToT (Yao et al., 2023a), and RAP (Hao et al., 2023).
These methods rely solely on the agent’s existing knowledge
to answer the question. We further consider acting-based
methods ReAct, Reflexion, and LATS, which augment the
agent with the interactive API environment and primarily
evaluate its information retrieval abilities. We also design
a simple integration of search algorithms with LM agents,
extending ToT and RAP with ReAct prompting to handle
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Prompt Method Model Pass@1 "
CoT (Wei et al., 2022) GPT-3.5 46.9
ReAct (Yao et al., 2023b) GPT-3.5 56.9
Reflexion (Shinn et al., 2023) GPT-3.5 68.1
ToT (Yao et al., 2023a) GPT-3.5 54.4
RAP (Hao et al., 2023) GPT-3.5 63.1
LATS (ReAct) GPT-3.5 83.8
Base LM GPT-4 80.1
Reflexion GPT-4 91.0
LATS (ReAct) GPT-4 92.7

Table 4. GPT-3.5 and GPT-4 Pass@1 accuracy on HumanEval.
Prompting with LATS achieves the best performance. We sample
5 solutions during expansion for 8 iterations.

external observations. In addition, while LATS is designed
for scenarios where external feedback can enhance reason-
ing, we also implement a reasoning-only version with CoT
as the base prompting framework. Moreover, we combine
internal and external reasoning in LATS by first prompting
with a CoT-based prompt and then switching to a ReAct-
based prompt upon failure. This is closer to how humans
might approach this task by using tools to retrieve additional
information only when the answer is not already known.

Results. We observe in Tab. 2 and Tab. 3 that both in-
ternal reasoning and external retrieval strategies perform
well on HotPotQA. Due to their large-scale training corpus,
modern LMs already encode factual knowledge and can
often directly answer the question correctly. While CoT can
slightly enhance performance on questions requiring rea-
soning, larger gains are observed with search methods ToT
and RAP (Tab. 2, Row 4, 5), which can sample and explore
more outputs. We observe similar results for acting-based
methods. LATS surpasses ReAct, even when sampling the
same number of trajectories, by expanding more nodes with
principled search. This is demonstrated when modifying
n, the number of nodes expanded during each iteration. In-
creasing n can consistently improve performance, although
at greater computational and inference costs. LATS also
outperforms RAP on internal reasoning, but has higher per-
formance on the decision-making setting of HotPotQA than
the reasoning setting. Contrary to LATS, the ReAct versions
of ToT and RAP (Tab. 3, Row 4, 5) perform even worse than

the reasoning-only setting of HotPotQA, which indicates
that the acting-based setting is more challenging and adap-

tation of search algorithms to decision-making scenarios

is non-trivial. Combining internal and external reasoning
in LATS results in the highest performance, indicating the
importance of external feedback in augmenting reasoning
even in tasks where the base LM can already perform.

Prompt Method Pass@1 "
CoT (Wei et al., 2022) 54.9
ReAct (Wei et al., 2022) 67.0
Reflexion (Shinn et al., 2023) 70.0
ToT (Yao et al., 2023a) 65.8
RAP (Hao et al., 2023) 71.4
LATS (ReAct) 81.1

Table 5. GPT-3.5 Pass@1 accuracy on MBPP. Prompting with
LATS achieves the highest performance. We sample 5 solutions
during expansion for 8 iterations.

5.2. Programming

To demonstrate the importance of external observations
for complex reasoning tasks, we evaluate the baselines
and LATS on programming with HumanEval (Chen et al.,
2021)1 and MBPP (Austin et al., 2022). Both datasets mea-
sure the correctness of synthesized programs in Python from
natural language docstrings. We use individual solutions
as the action space and test suite and compiler feedback as
the external observation. We follow Chen et al. (2023a) and
use an LM to generate a synthetic test suite of syntactically
valid “assert” statements for each question. For each step,
the solution is evaluated on this test suite, and the results,
including successful and failed tests and compiler output,
are added to the context as an observation.

For this task, the reasoning and acting baselines share an
action space, but acting methods are able to incorporate
observations as additional context. For LATS, since each
action corresponds to a complete solution, we skip the sim-
ulation step of LATS and directly use the percentage of
passed tests as the backpropagated reward. We use k = 8
iterations, set the number of generated tests at 4, and sam-
ple n = 5 solutions during expansion. After the search is
completed, we select the solution with the highest value and
evaluate it on the real test suite for the pass@1 accuracy
evaluation. More details can be found in Appendix Sec. D.

Results. Tab. 4 and Tab. 5 show that both search and seman-
tic feedback are crucial for better performance. Despite not
using observations, ToT and RAP are competitive with Re-
flexion. LATS has the highest performance on both datasets.
RAP uses a search algorithm similar to LATS, which reveals
the importance of external feedback for difficult reasoning
tasks such as programming. With GPT-4, using LATS sets
the state of the art for HumanEval, validating that LATS can
be used with more advanced LMs for higher performance.

1Some baselines use 161 questions from HumanEval. We
use all 164 questions for LATS and find minimal performance
differences, so we report baselines for both settings.
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Method Score " SR "
ReAct (Yao et al., 2023b) 53.8 28.0

ReAct (best of k) 59.1 32.0
Reflexion (Shinn et al., 2023) 64.2 35.0

LATS (ReAct) 75.9 38.0
IL (Yao et al., 2022) 59.9 29.1

IL+RL (Yao et al., 2022) 62.4 28.7
Fine-tuning (Furuta et al., 2024) 67.5 45.0

Expert 82.1 59.6

Table 6. Score and success rate (SR) on WebShop. Results are
organized into prompting, RL-based training, and human perfor-
mance. For the same number of iterations, LATS improves both
score and SR and surpasses RL-based training.

5.3. WebShop

For a complex decision-making environment with practi-
cal applications, we consider WebShop (Yao et al., 2022),
an online shopping environment composed of a website
with 1.18M real-world products and 12k human instructions.
Agents must navigate a website through a variety of com-
mands to purchase an item matching a user specification.
We use the preconstructed action space of search and click
commands and browser feedback and reflections for the
observation. The performance is gauged using two metrics:
an average score, reflecting the percentage of user-specified
attributes met by the selected product, and a success rate,
indicating the frequency with which the chosen product ful-
fills all given conditions. We compare against acting-based
prompting methods and RL-based approaches. We evaluate
on 50 instructions, expand n = 5 children for LATS, and set
k = 30 for LATS, ReAct (best of k), and Reflexion. More
details and prompts are in Appendix Sec. D and Sec. G.

Results. We find in Tab. 6 that GPT-3.5 with ReAct is
competitive to imitation learning (IL) and can exceed re-
inforcement learning techniques with stronger prompting
strategies. Sampling k = 30 trajectories with ReAct and
Reflexion results in a similar performance, suggesting the se-
mantic feedback is not as helpful in complex environments
like WebShop. Similar to Shinn et al. (2023), we find that
generated reflections are often generic and do not provide
useful feedback, resulting in a tendency for the agent to
become stuck in local minima. However, using LATS in-
deed results in a noticeable improvement, indicating a more
effective exploration for the same number of iterations.

5.4. Ablation Study and Additional Analysis

We further test the reasoning ability of LATS on Game of 24,
and also conduct additional experiments on HotPotQA to
demonstrate the effect of each component of LATS (results

Prompt Method Game of 24 (Success Rate) "
CoT (Wei et al., 2022) 0.08
Reflexion (Shinn et al., 2023) 0.12
ToT (Yao et al., 2023a) 0.20
RAP (Hao et al., 2023) 0.40
LATS (CoT) 0.44

Table 7. Results on Game of 24 with GPT-3.5. We sample n = 5
nodes and k = 30 trajectories.

Prompt Method HotPotQA (EM) "
ToT (ReAct) 0.39
RAP (ReAct) 0.54
LATS (No LM Heuristic) 0.37
LATS (DFS) 0.42
LATS (No Reflection) 0.58
LATS (ReAct) 0.63

Table 8. Ablation results on LATS and baseline variants in Hot-
PotQA. We use ReAct as the base prompt and sample n = 5
children and k = 50 trajectories. LATS requires every component
and operation for optimal performance.

shown in Tab. 8). More ablations for token consumption on
HotPotQA are in Tab. 9 in Appendix Sec. C.

Reasoning on Game of 24. To show how LATS can be
applied to purely internal reasoning tasks, we additionally
evaluate on Game of 24 (Yao et al., 2023a), a mathematical
reasoning task where the agent must construct 24 out of a
set of numbers and basic operations. We use CoT as the
base prompting design and employ the same operations as
in other settings. We find in Tab. 7 that LATS outperforms
previous methods proposed specifically for reasoning. This
is due to our proposed value function, which incorporates
self-consistency as an additional heuristic.

Self-reflection. LATS uses self-reflection to provide addi-
tional semantic signals for the agent. In Tab. 8 (Row 5, 6),
we observe a 0.05 performance drop when self-reflection
is removed from LATS, validating its usefulness. This is a
smaller gain than the 0.19 gain that Reflexion has over Re-
Act as shown in Tab. 3, suggesting overlap between the ques-
tions where an answer can be improved by self-reflection
and search. This variant outperforms RAP (ReAct), reflect-
ing our improvements to MCTS.

Search algorithm. MCTS is a more principled search algo-
rithm than variants like A* (Zhuang et al., 2023) or DFS and
is the basis for observed performance gains. We observe
the effects of using DFS, and incorporate the LM-based
heuristic used in ToT in which branches with low values are
pruned. This removes the selection and backpropagation
operations, and we observe a 0.21 drop in performance in

8
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Method Performance " Sample complexity # Token Consumption #
ReAct (Best k = 250) 0.42 O(k) -

CoT-SC (n = 1, k = 250) 0.40 O(k) -
LATS (n = 1, k = 50) 0.48 O(k) -

ToT (ReAct, n = 5, k = 50) 0.49 O(kn) 210, 215
RAP (ReAct, n = 5, k = 50) 0.54 O(kn) 176, 500

LATS (n = 5, k = 50) 0.63 O(kn) 173, 290

Table 9. Performance, sample complexity of different methods, average number of nodes expanded, and token consumption upon success
by methods with tree-based search. n is the number of children nodes expanded at every step and k is the number of trajectories. LATS
has the same sample complexity as other methods with tree-based search and expands less nodes upon success, which indicates lower
token cost.

Method k HotPotQA " # of Nodes #
ToT 10 0.34 33.97
RAP 10 0.44 31.53
LATS 10 0.44 28.42

ToT 30 0.39 47.54
RAP 30 0.50 37.71
LATS 30 0.52 34.12

ToT 50 0.49 84.05
RAP 50 0.54 70.60
LATS 50 0.61 66.65

Table 10. Comparison of the cost of different methods on Hot-
PotQA. LATS achieves the highest accuracy and the lowest av-
erage number of nodes/states required for success at various k

trajectories sampled.

Tab. 8 (Row 4) when sampling the same number of nodes
but outperforms ToT (ReAct). Despite also benefiting from
ground-truth feedback, LATS uses it better than ToT and
RAP and can outperform these methods. We also find in
Tab. 8 (Row 3) that LM scoring, the main component of our
value function, is crucial for leveraging external feedback
and strong performance.

Sample complexity and token consumption. One pos-
sible concern of LATS is that the tree-structured search
might consume much more tokens than existing methods.
To further study the computational cost of LATS compared
to prior methods, we examine the sample complexity (i.e.,
asymptotic token cost) of all methods considered in this
paper and count the average number of nodes expanded
by our method and other tree-structured methods (ToT and
RAP) upon successful search on HotPotQA. We present the
results in Tab. 9 and Tab. 10, which show that our method
has the same sample complexity as other tree-based search
methods and requires fewer overall tokens and states. The
token cost gap will be even larger when taking failed trajec-
tories into account, since our method has a higher success
rate and reaches the computational budget limit less often.
This is also true when sampling a smaller number of trajec-
tories; on average, LATS requires 3.55 fewer nodes than

RAP and 12.12 fewer nodes than ToT. These findings un-
derscore our improvements to MCTS and adaptation to LM
agents, resulting in a more principled and efficient search
mechanism.

6. Conclusion

This work introduces Language Agent Tree Search (LATS),
the first framework to unify reasoning, acting, and plan-
ning for enhanced LM problem-solving. LATS addresses
key limitations of prior prompting techniques by deliber-
ately constructing trajectories with search algorithms, in-
corporating external feedback, and enabling agents to learn
from experience. Our evaluation demonstrates the ability
of LATS to harness LM capabilities for various decision-
making tasks while maintaining its reasoning ability without

additional training. The proposed synergies between search,
interaction, and reflection offer a versatile approach to au-
tonomous decision-making, highlighting the potential of
LMs as generalist agents.

Limitations and future directions. LATS has two main
limitations that should be considered before its application.
First, it has a higher computational cost compared to simpler
prompting methods like ReAct or Reflexion, which may
limit its practicality in certain situations. Second, LATS
assumes the ability to revert to earlier states in decision-
making environments, which may not be universally ap-
plicable in all possible environments. Despite these limi-
tations, it is worth noting that LATS still achieves better
performance and efficiency compared to similar methods,
and the number of nodes expanded at each step provides a
trade-off between performance and efficiency. Additionally,
we expect inference-time compute costs to decrease over
time, thereby increasing the usefulness of LATS and other
“System-2” LM approaches. Finally, the reversion prop-
erty is feasible in many real-world applications, opening up
new opportunities in the LM decision-making community.
Future directions include scaling LATS to more complex
environments or multi-agent frameworks and improving ef-
ficiency to reduce costs. A more detailed discussion about
the limitations of LATS can be found in Appendix Sec. B.
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Impact Statement
LATS is a framework that enhances LM performance
through interactions with an environment. This improve-
ment in autonomous decision-making may facilitate harm-
ful uses of LMs. On the other hand, LATS enhances in-
terpretability and the potential for greater alignment, as it
involves high-level linguistic reasoning and actions through
several rounds of decision-making and reflection rather than
relying on autoregressive generation. Finally, enhancing the
capabilities of LM agents may raise security risks, such as
executing malware. We encourage further research to fully
understand and mitigate the risks of LMs.
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Appendix of LATS
The appendix is organized as follows. First in Sec. A, we
show the pseudocode of our proposed algorithm, LATS. In
Sec. B, we provide further discussion of the limitations of
our method. In Sec. C, we present additional experimental
results. In Sec. D, we specify the environment details in our
experiments. Finally, we list our prompts used for the three
environments in Sec. E (HotPotQA), Sec. F (Programming),
and Sec. G (WebShop), respectively.

A. LATS Pseudocode
Alg. 1 shows the pseudocode of our algorithm LATS. Nodes
are stored explicitly in the memory. Unless otherwise speci-
fied, in all experiments, we set the number of sampled nodes
to n = 5 and the exploration weight to w = 1. We use
a self-consistency weight of � = 0.5 for HotPotQA and
Game of 24, and � = 0.8 for Programming and WebShop.

B. More Discussion on Limitations
As stated in Sec. 6, LATS has two main limitations:

Computational cost. Although LATS can improve rea-
soning and decision-making, this arrives at a higher com-
putational cost relative to simpler prompting methods like
ReAct or Reflexion. However, the following facts serve as
mitigations to this issue:

• Asymptotically, our method has the same sample com-
plexity as ToT (Yao et al., 2023a) and RAP (Hao et al.,
2023), but achieves better performance, expands fewer
nodes, and uses fewer tokens on average upon success.
This suggests that our method is not only stronger
in problem-solving but also has higher efficiency. A
full analysis of the cost can be found in Tab. 9 in Ap-
pendix C.

• The number of nodes n expanded at every step provides
a natural trade-off between performance and efficiency.
In fact, setting n = 1 makes the method as efficient
as ReAct (Yao et al., 2023b) with multiple trials or
CoT-SC (Wang et al., 2022).

In general, we recommend using LATS for difficult tasks
like programming or for situations where performance is
prioritized over efficiency in practice. We hope that contin-
ued advancements in LMs will reduce costs and increase
the applicability of LATS.

Additionally, there exists a minor cost from querying the en-
vironment, which we find to be trivial for the environments
we study. Most LM-based environments involve API-based
tools, which are inexpensive and fast to use. It is also worth

noting that this is cheaper than the inference cost associ-
ated with using LMs as world models, as in previous search
approaches (Hao et al., 2023; Liu et al., 2023).

Assumption of environment reversion in decision-
making. Since our method is based on Monte Carlo
Tree Search and is model-free, one limitation of LATS on
decision-making tasks is that it requires the agent to be
able to revert to earlier states in the environments. How-
ever, this reversion property is feasible in many real-world
environments and applications (despite being not univer-
sally applicable in all possible environments), including
programming (HumanEval (Chen et al., 2021)), web search
(WebShop (Yao et al., 2022)), text-based manipulation tasks
(Alfworld (Shridhar et al., 2020)), and LMs with tool use
(ToolBench (Qin et al., 2024)). Therefore, we believe that
leveraging the reversion property is not a shortcoming but
rather a feature that has not been explicitly given notice

by the LM decision-making community – it opens up new
opportunities in the emerging LM agent community.

Additionally, the benchmarks we use in this paper are rel-
atively simple and focused on decision-making compared
to the complexity of real-world interactive environments.
Moreover, some environments might not easily support roll-
backs to previous states. However, the design of LATS is
flexible and can be adjusted to various resource constraints.
Using planning-based prompting methods like LATS in
environments like Minecraft (Fan et al., 2022) and more rea-
soning benchmarks would be interesting avenues for future
work.

C. Additional Ablations
In this section, we ablate various designs of LATS. Ex-
periments are conducted on HotPotQA with a maximum
of k = 50 trajectories and sampling size of n = 5 and
HumanEval with a maximum of k = 8 trajectories and sam-
pling size of n = 5. The result for HotPotQA is shown in
Tab. 8 and HumanEval in Fig. 3.

Exploration weight. We find that there is lower perfor-
mance on HotPotQA when the exploration weight w in the
selection formula is decreased to 0.5, suggesting that this
reduces the effectiveness of the search. Increasing w to 2.0
does not lead to a performance improvement, but we tend
to observe faster convergence. The optimal setting depends
on the particular environment and complexity of the state
space.

Depth. In our main experiments we use a maximum depth
of d = 7 on HotPotQA for all methods, following previous
work (Yao et al., 2023b). We ablate the effect on LATS after
reducing it to d = 4. This results in only a slight drop in
performance. We find that most questions can be answered
within four steps, and using a greater number of steps tends
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Algorithm 1 LATS(s, p✓, pV , pref, d, k, n, w, a, b)
Require: Initial state s, action generator p✓ , value function pV , reflection generator pref, number of generated actions n,

depth limit L, number of roll-outs K, context c, exploration weight w, and value function weight �
Initialize action space A, observation space O

Initialize the state-action value function pV : S ⇥A 7! R and visit counter N : S 7! N to one
for k  0, . . . ,K � 1 do

for t 0, . . . , L� 1 do
if st not terminal then . Expansion & Simulation

for i 1, . . . , n do
Sample a

(i)
t ⇠ p✓(st)

Get o(i)t from environment, s(i)t+1  (c(i)t , o
(i)
t , a

(i)
t ), c(i)t+1  (o(i)t , a

(i)
t )

Evaluate V
(i)
t ⇠ � ⇤ pV (s(i)t ) + (1� �) ⇤ SC(s(i)t ) . Evaluation

V (st) V
(i)
t

Add s
(i)
t to children

end for
end if
if st is terminal then . Reflection

Get r from environment
if r not success then

reflection pref(ct)
c reflection

end if
end if
at  argmaxa2e(st)

h
V (st) + w

q
lnN(st)
N(st+1)

i
. Selection

Get corresponding ot from memory, st+1  (ct, ot, at), ct+1  (ot, at)
N(st+1) N(st+1) + 1
if at is an output action then break

end for
T  the actual number of steps
for t T � 1, . . . , 0 do . Backpropagation

V (st) V (st)(N(st)�1)+r
N(st)

end for
end for

to force the agent into local minima and rarely improves
success.

LM value function. The LM value function scores states
based on expected future reward. Without this heuristic,
the only signal to guide search would be from environment
rewards for completed trajectories, which are scarce and
often binary. When we remove the evaluation operation, we
observe a dramatic 0.26 drop in performance.

Performance over time. To see the effects of increasing
the number of trajectories sampled, we change k to different
values. We conduct this experiment on HumanEval, which
has a more noticeable difference due to sampling less tra-
jectories. The results are shown in Fig. 3, in which LATS
scales better with more iterations than Reflexion.

D. Environment Details
D.1. HotPotQA

HotPotQA (Yang et al., 2018) is a question-answering
dataset that requires reasoning over multiple supporting
documents to answer questions. It contains 113k Wikipedia-

based question-answer pairs crafted by crowdworkers to
be diverse, multi-hop, and explainable. Questions cover a
range of types like entities, locations, dates, and comparison
of shared properties between two entities. Crowdworkers
also provide supporting facts from the documents that justify
the answer. We use the HotPotQA benchmark setting with
all the Wikipedia paragraphs to test retrieval. We use a ran-
domly selected subset of 100 questions for our experiments
and a maximum depth limit of 6. Fig. 4 illustrates how
ReAct and LATS work on an example task of HotPotQA,
and gives a qualitative example on how LATS outperforms
ReAct on the task. For value function hyperparameters, we
use � = 0.5 for the LM score and self-consistency score.

Action Space. We adopt the Wikipedia web API proposed
in Yao et al. (2023b), with three types of actions to support
interactive information retrieval:

(1) search[entity], which returns the first 5 sentences
from the corresponding entity wiki page if it exists,
or else suggests top-5 similar entities from the Wikipedia
search engine,

(2) lookup[string], which returns the next sentence in
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Prompt Method HotpotQA (EM) "
LATS (w = 0.5) 0.55
LATS (w = 2.0) 0.63

LATS (d = 4) 0.58
LATS (CoT) 0.62

LATS (No LM Heuristic) 0.37
LATS (w = 1.0, d = 7) 0.63

Table 11. Ablation results on LATS and baseline variants in Hot-
PotQA measured by Exact Match (EM). We test different depth d,
exploration factor w, and versions of LATS using CoT and without
the LM value function. We sample n = 5 and k = 50 trajectories.

Figure 3. Performance over successive iterations on HumanEval
with GPT-3.5.

the page containing string,

(3) finish[answer], which finishes the current task with
answer.

These API calls and free-form thoughts form the action
space for this environment.

D.2. Programming

The HumanEval dataset (Chen et al., 2021) is a collection
of 164 handwritten programming problems introduced to
evaluate the functional correctness of models for synthe-
sizing programs from natural language descriptions. Each
problem includes a function signature, docstring descrip-
tion, reference implementation, and multiple unit tests, with
an average of 7.7 tests per problem. The programming
tasks assess comprehension of natural language, reasoning,
algorithms, and basic mathematics, at a difficulty level com-
parable to simple software interview questions. Pass rates
are evaluated with the pass@k metric, where k samples are
generated per problem and a problem is considered solved

if any sample passes all tests. We use all 164 problems for
our experiments and a maximum depth limit of 8. For the
three questions without sample test cases, we write our own.
For value function hyperparameters, we use � = 0.8 for the
LM score and self-consistency score. For GPT-3.5 we use
six internal tests, while for GPT-4 we use four internal tests.

The Mostly Basic Programming Problems (MBPP) (Austin
et al., 2022) benchmark contains 974 short Python functions
designed to evaluate program synthesis techniques. The
dataset was constructed by crowdsourcing from workers
with basic Python knowledge. Each data point consists of
a natural language description of a programming task, a
reference solution implementation, and three test cases for
functional correctness. The natural language prompts are
typically short, one-sentence descriptions. Solutions cover
common programming constructs including mathematical
operations, list processing, string manipulation, and usage
of the Python standard library. On average, solutions are 6.8
lines of code. The dataset is also supplemented with an ad-
ditional set of 426 problems that were manually verified for
unambiguous specifications, standard function signatures,
and accurate test cases. We use a randomly selected subset
of 397 problems for our experiments. For value function
hyperparameters, we use � = 0.8 for the LM score and
self-consistency score.

D.3. WebShop

WebShop (Yao et al., 2022) is an interactive web-based
environment designed to evaluate agents on grounded
language understanding and decision-making. It simulates
an e-commerce shopping task by providing agents with
over 1 million real-world products scraped from Amazon,
spanning 5 categories and 113 subcategories. These
products contain rich linguistic information, with an
average text length of 262 words and a vocabulary size
of 224k. In addition, there are over 800k unique product
options available for customization. The environment
renders webpages in two modes: HTML mode provides
pixel-level observations with interactive elements, while
simple mode converts the raw HTML into a structured text
observation more amenable for training agents. The action
space consists of query searches and button clicks, which
transition between 4-page types: search, results, item, and
item detail. Instructions are crowdsourced natural language
specifying product attributes and options, with a total of 12k
collected. Automatic rewards are computed by comparing
the product purchased by the agent against the attributes
and options specified in the instruction, using both lexical
matching and semantic similarity metrics.

There are two evaluation metrics used in WebShop: (1) Task
Score defined as (100⇥ avg. reward), which captures the
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Figure 4. Example trajectories on HotPotQA for ReAct (left) and LATS (right). LATS can sample more actions and avoid failure from
previous mistakes by evaluating states with an LM to guide the search toward promising areas of the tree.

Type Argument State ! Next State

search [Query] Search ! Results
choose Back to search ⇤ ! Search
choose Prev/Next page Results ! Results
choose [Product title] Results ! Item
choose [Option] Item ! Item
choose Desc/Overview Item ! Item-Detail
choose Previous Item-Detail ! Item
choose Buy Item ! Episode End

Table 12. Action space of WebShop.

average reward obtained across episodes; and (2) Success
Rate (SR) defined as the portion of instructions where r = 1.
The reward is calculated based on the number of attributes
satisfied by the selected item. We use 50 environments for
our experiments and a maximum depth limit of 15. For
value function hyperparameters, we use � = 0.8 for the LM
score and self-consistency score.

D.4. Game of 24

Game of 24 is a mathematical reasoning challenge where
the goal is to use basic arithmetic operations to construct
24 out of 4 numbers. We follow the setup from Yao et al.
(2023a), where we measure success if the agent produces a

Prompt Method Game of 24 (Success Rate) "
LATS (CoT, � = 1) 0.40
LATS (CoT) 0.44

Table 13. Ablations on � in Game of 24 with GPT-3.5. � = 0.5
used in the main paper outperforms � = 1, equivalent to removing
self-consistency, which indicates that the self-consistency score
improves the performance of LATS.

correct equation that equals 24 and uses each input number
only once. We report success rate over 50 games. We use
k = 30 iterations and a maximum depth limit of 5. For value
function hyperparameters, we use � = 0.5 for the LM score
and self-consistency score. Tab. 13 shows the performance
comparison between � = 0.5 and � = 1, which validates
our design of self-consistency term.

E. HotPotQA Prompts
E.1. Base Acting Prompt

Solve a question answering task with interleaving Thought,
Action, Observation steps. Thought can reason about the
current situation, and Action can be three types:

(1) Search[entity], which searches the exact entity on
Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search.
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(2) Lookup[keyword], which returns the next sentence con-
taining keyword in the current passage.

(3) Finish[answer], which returns the answer and finishes
the task.

After each observation, provide the next Thought and next
Action.

Here are some examples:

Question: Which magazine was started first Arthur’s Maga-
zine or First for Women?

Thought 1: I need to search Arthur’s Magazine and First for
Women, and find which was started first.

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine was an American literary
periodical published in Philadelphia in the 19th century.
Edited by Timothy Shay Arthur, it featured work by Edgar
A. Poe, J.H. Ingraham, Sarah Josepha Hale, Thomas G.
Spear, and others.[1][2] In May 1846 it was merged into
Godey’s Lady’s Book.[3]

Thought 2: Arthur’s Magazine was started in 1844. I need
to search First for Women next.

Action 2: Search[First for Women]

Observation 2: First for Women is a woman’s magazine
published by Bauer Media Group in the USA.[1] The mag-
azine was started in 1989. It is based in Englewood Cliffs,
New Jersey.[2] In 2011 the circulation of the magazine was
1,310,696 copies.[3]

Thought 3: First for Women was started in 1989. 1844
(Arthur’s Magazine) < 1989 (First for Women), so Arthur’s
Magazine was started first.

Action 3: Finish[Arthur’s Magazine]

(examples)

You have attempted to answer the following question before
and failed. The following reflection(s) give a plan to avoid
failing to answer the question in the same way you did
previously. Use them to improve your strategy of correctly
answering the given question.

(trajectories)

(input)

E.2. Base Reasoning Prompt

Solve a question answering task by having a Thought, then
Finish with your answer. Thought can reason about the
current situation. Finish[answer] returns the answer and
finishes the task. You will be given context that you should
use to help you answer the question. Start your response

with either Action or an indexed Thought

Here are some examples:

Question: What is the elevation range for the area that the
eastern sector of the Colorado orogeny extends into?

Let’s think step by step.

Thought 1: The eastern sector of Colorado orogeny extends
into the High Plains.

Thought 2: High Plains rise in elevation from around 1,800
to 7,000 ft

Thought 3: The answer is 1,800 to 7,000 ft.

Action: Finish[1,800 to 7,000 ft]

(examples)

Previous trial: (trajectories)

(input)

E.3. Value Function Prompt

Analyze the trajectories of a solution to a question answering
task. The trajectories are labeled by environmental Obser-
vations about the situation, Thoughts that can reason about
the current situation, and Actions that can be three types:

(1) Search[entity], which searches the exact entity on
Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search.

(2) Lookup[keyword], which returns the next sentence con-
taining keyword in the current passage.

(3) Finish[answer], which returns the answer and finishes
the task.

Given a question and a trajectory, evaluate its correctness
and provide your reasoning and analysis in detail. Focus
on the latest thought, action, and observation. Incomplete
trajectories can be correct if the thoughts and actions so
far are correct, even if the answer is not found yet. Do not
generate additional thoughts or actions. Then at the last line
conclude “Thus the correctness score is s”, where s is an
integer from 1 to 10.

Question: Which magazine was started first Arthur’s Maga-
zine or First for Women?

Thought 1: I need to search Arthur’s Magazine and First for
Women, and find which was started first.

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine was an American literary
periodical published in Philadelphia in the 19th century.
Edited by Timothy Shay Arthur, it featured work by Edgar
A. Poe, J.H. Ingraham, Sarah Josepha Hale, Thomas G.
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Spear, and others.[1][2] In May 1846 it was merged into
Godey’s Lady’s Book.[3]

This trajectory is correct as it is reasonable to search for
the first magazine provided in the question. It is also better
to have simple searches corresponding to a single entity,
making this the best action.

Thus the correctness score is 10

(other examples)

(failed trajectories)

(context)

E.4. Reflection Prompt

Analyze the trajectories of a solution to a question-
answering task. The trajectories are labeled by environ-
mental Observations about the situation, Thoughts that can
reason about the current situation, and Actions that can be
three types:

(1) Search[entity], which searches the exact entity on
Wikipedia and returns the first paragraph if it exists. If
not, it will return some similar entities to search.

(2) Lookup[keyword], which returns the next sentence con-
taining keyword in the current passage.

(3) Finish[answer], which returns the answer and finishes
the task.

Given a question and a trajectory, evaluate its correctness
and provide your reasoning and analysis in detail. Focus
on the latest thought, action, and observation. Incomplete
trajectories can be correct if the thoughts and actions so
far are correct, even if the answer is not found yet. Do not
generate additional thoughts or actions. Then at the last line
conclude “Thus the correctness score is s”, where s is an
integer from 1 to 10.

Question: Which magazine was started first Arthur’s Maga-
zine or First for Women?

Thought 1: I need to search Arthur’s Magazine and First for
Women, and find which was started first.

Action 1: Search[Arthur’s Magazine]

Observation 1: Arthur’s Magazine was an American literary
periodical published in Philadelphia in the 19th century.
Edited by Timothy Shay Arthur, it featured work by Edgar
A. Poe, J.H. Ingraham, Sarah Josepha Hale, Thomas G.
Spear, and others.[1][2] In May 1846 it was merged into
Godey’s Lady’s Book.[3]

This trajectory is correct as it is reasonable to search for
the first magazine provided in the question. It is also better
to have simple searches corresponding to a single entity,

making this the best action.

Thus the correctness score is 10

(other examples)

(failed trajectories)

(context)

F. Programming Prompts
F.1. HumanEval function implementation example

Sample function signature:

d e f minSubArraySum ( nums ) :
Given an a r r a y o f i n t e g e r s nums ,
f i n d t h e minimum sum of any
non −empty sub − a r r a y o f nums .
Example
minSubArraySum ( [ − 1 , −2 , −3]) == −6

Sample function body implementation:

min sum = f l o a t ( ’ i n f ’ )
f o r i i n r a n g e ( l e n ( nums ) ) :

c u r r e n t s u m = 0
f o r j i n r a n g e ( i , l e n ( nums ) ) :

c u r r e n t s u m += nums [ j ]
i f c u r r e n t s u m < min sum :

min sum = c u r r e n t s u m
r e t u r n min sum

F.2. Base Acting/Reasoning Prompt

You are an AI Python assistant. You will be given your
previous implementation of a function, a series of unit tests
results, and your self-reflection on your previous implemen-
tation. Write your full implementation (restate the function
signature).

Example 1:

[previous impl]:

d e f add ( a : i n t , b : i n t ) −> i n t :
‘ ‘ Given i n t e g e r s a and b ,
r e t u r n t h e t o t a l v a l u e o f a and b . ’ ’
r e t u r n a − b

[unit test results from previous impl]:

Tested passed:

Tests failed:

assert add(1, 2) == 3 # output: -1

19



Language Agent Tree Search Unifies Reasoning, Acting, and Planning in Language Models

assert add(1, 2) == 4 # output: -1

[reflection on previous impl]:

The implementation failed the test cases where the input
integers are 1 and 2. The issue arises because the code does
not add the two integers together, but instead subtracts the
second integer from the first. To fix this issue, we should
change the operator from ‘-’ to ‘+’ in the return statement.
This will ensure that the function returns the correct output
for the given input.

[improved impl]:

d e f add ( a : i n t , b : i n t ) −> i n t :
‘ ‘
Given i n t e g e r s a and b ,
r e t u r n t h e t o t a l v a l u e o f a and b .
’ ’
r e t u r n a + b

F.3. Reflection Prompt

You are a Python programming assistant. You will be given
a function implementation and a series of unit test results.
Your goal is to write a few sentences to explain why your
implementation is wrong, as indicated by the tests. You
will need this as guidance when you try again later. Only
provide the few sentence description in your answer, not the
implementation. You will be given a few examples by the
user.

Example 1:

[previous impl]:

d e f add ( a : i n t , b : i n t ) −> i n t :
‘ ‘
Given i n t e g e r s a and b ,
r e t u r n t h e t o t a l v a l u e o f a and b .
’ ’

r e t u r n a − b

[unit test results from previous impl]:

Tested passed:

Tests failed:

assert add(1, 2) == 3 # output: -1

assert add(1, 2) == 4 # output: -1

[reflection on previous impl]:

The implementation failed the test cases where the input
integers are 1 and 2. The issue arises because the code does
not add the two integers together, but instead subtracts the
second integer from the first. To fix this issue, we should
change the operator from ‘-’ to ‘+’ in the return statement.

This will ensure that the function returns the correct output
for the given input.

F.4. Test Case Generation Prompt

You are an AI coding assistant that can write unique, diverse,
and intuitive unit tests for functions given the signature and
docstring.

(input)

G. WebShop Prompts
G.1. Acting Prompt

Webshop

Instruction:

i would like a 3 ounce bottle of bright citrus deodorant for
sensitive skin, and price lower than 50.00 dollars

[Search]

Action: search[3 ounce bright citrus deodorant sensitive
skin]

Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next ] [B078GWRC1J]

Bright Citrus Deodorant by Earth Mama — Natural and Safe
for Sensitive Skin, Pregnancy and Breastfeeding, Contains
Organic Calendula 3-Ounce

$10.99

[B078GTKVXY]

Ginger Fresh Deodorant by Earth Mama — Natural and Safe
for Sensitive Skin, Pregnancy and Breastfeeding, Contains
Organic Calendula 3-Ounce

$10.99

[B08KBVJ4XN]

Barrel and Oak - Aluminum-Free Deodorant, Deodorant
for Men, Essential Oil-Based Scent, 24-Hour Odor Protec-
tion, Cedar & Patchouli Blend, Gentle on Sensitive Skin
(Mountain Sage, 2.7 oz, 2-Pack)

$15.95

Action: think[B078GWRC1J and B078GTKVXY are
bright citrus deodorant less then 50 dollars. I can check
B078GWRC1J first.]
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Observation: OK.

Action: click[B078GWRC1J]

Observation:

[Back to Search]

[Prev]

scent [assorted scents][bright citrus][calming laven-
der][ginger fresh][simply non-scents] size [travel set (4-
pack)][3 ounce (pack of 1)][3-ounce (2-pack)] Bright Citrus
Deodorant by Earth Mama — Natural and Safe for Sensi-
tive Skin, Pregnancy and Breastfeeding, Contains Organic
Calendula 3-Ounce

Price: $10.99

Rating: N.A.

[Description]

[Features]

[Reviews]

[Buy Now]

Action: think[For 3 ounce bottle of bright citrus deodorant
for sensitive skin, the item has options ‘bright citrus’ and ‘3
ounce (pack of 1)’ and seems good to buy.]

Observation: OK.

Action: click[bright citrus]

Observation: You have clicked bright citrus.

Action: click[3 ounce (pack of 1)]

Observation: You have clicked 3 ounce (pack of 1).

Action: click[Buy Now]

G.2. Value Function Prompt

Given an item to purchase and a trajectory that aims to buy
an item that exactly matches the specification, which cor-
responds to the ideal score of 1.0, analyze the following
trajectory, then at the last line conclude, “Thus the correct-
ness score is s”, where s is an integer from 1 to 10.

Here are some examples

Webshop

Instruction:

i am looking for dairy free and apple variety pack of chips,
and price lower than 30.00 dollars

[Search]

Action: search[dairy free and apple variety pack of chips]

Observation:

[Back to Search]

Page 1 (Total results: 50)

[Next]

[B07HRFJWP8]

Enjoy Life Foods Soft Baked Ovals, Breakfast Bars, Nut
Free Bars, Soy Free, Dairy Free, Non GMO, Gluten Free,
Vegan, Variety Pack, 4 Boxes (20 Bars Total)

$100.0

[B01KMHY5PG]

Enjoy Life Soft Baked Chewy Bars, Variety Pack, Nut Free
Bars, Soy Free, Dairy Free, Gluten Free, 6 Boxes (30 Total
Bars)

$21.49

[B008D2X8C4]

Enjoy Life Lentil Chips Variety Pack, Dairy Free Chips, Soy
Free, Nut Free, Non GMO, Vegan, Gluten Free, 24 Bags
(0.8 oz)

$100.0

Action: think[The first two items are not what I want. The
third item is the dairy free and apple variety pack of chips I
want.]

Observation: OK.

Action: click[B008D2X8C4]

Observation:

[Back to Search]

[Prev]

flavor name [dill and sour cream][garlic & parmesan][light
sea salt][margherita pizza][thai chili lime][variety pack] size
[0.8 ounce (pack of 24)][4 ounce (pack of 12)]

Price: $100.0

Rating: N.A.

[Description]

[Features]
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[Reviews]

[Buy Now]

Action: think[The item has options ‘variety pack’ and ‘0.8
ounce (pack of 24)’ and seems good to buy.]

Observation: OK.

Action: click[variety pack]

Observation: You have clicked variety pack.

Action: click[0.8 ounce (pack of 24)]

Observation: You have clicked 0.8 ounce (pack of 24).

Action: click[Buy Now]

Reflection: In this attempt, I was unsuccessful. I acciden-
tally bought a product that was $100, which is more than my
budget of $30. Either way, the initial search results were not
good. Next time, I will do search[“variety pack of chip”;]
and then check if the results meet the dairy free and the $30
budget constraints. I will continue to refine my searches so
that I can find more products.

Thus the correctness score is 5

(input)

G.3. Reflection Prompt

You are an advanced reasoning agent that can improve based
on self-reflection. You will be given a previous reasoning
trial in which you were given access to a shopping website
and a specific type of item to buy. You were given access
to relevant context and an item to purchase. You were un-
successful in buying the correct item either because you did
not find an item meeting all of the required specifications
or because you did not select the correct item. The ideal
score is 1.0, and anything less is incorrect. In a few sen-
tences, Diagnose a possible reason for failure and devise a
new, concise, high-level plan that aims to mitigate the same
failure. Use complete sentences. Here are some examples:

Previous Trial Instruction: i am looking for dairy free and
apple variety pack of chips, and price lower than 30.00
dollars [Search]

Action: search[dairy free and apple variety pack of chips]
Observation: [Back to Search] Page 1 (Total results: 50)
[Next >] [B07HRFJWP8] Enjoy Life Foods Soft Baked
Ovals, Breakfast Bars, Nut Free Bars, Soy Free, Dairy Free,
Non GMO, Gluten Free, Vegan, Variety Pack, 4 Boxes

(20 Bars Total) $100.0 [B01KMHY5PG] Enjoy Life Soft
Baked Chewy Bars, Variety Pack, Nut Free Bars, Soy Free,
Dairy Free, Gluten Free, 6 Boxes (30 Total Bars) $21.49
[B008D2X8C4] Enjoy Life Lentil Chips Variety Pack, Dairy
Free Chips, Soy Free, Nut Free, Non GMO, Vegan, Gluten
Free, 24 Bags (0.8 oz) $100.0

Action: think[The first two items are not what I want. The
third item is the dairy free and apple variety pack of chips I
want.] Observation: OK.

Action: click[B008D2X8C4] Observation: [Back to Search]
[< Prev] flavor name [dill and sour cream][garlic & parme-
san][light sea salt][margherita pizza][thai chili lime][variety
pack] size [0.8 ounce (pack of 24)][4 ounce (pack of 12)]
Price: $100.0 Rating: N.A. [Description] [Features] [Re-
views] [Buy Now]

Action: think[The item has options ‘variety pack’ and ‘0.8
ounce (pack of 24)’ and seems good to buy.] Observation:
OK.

Action: click[variety pack] Observation: You have clicked
variety pack.

Action: click[0.8 ounce (pack of 24)] Observation: You
have clicked 0.8 ounce (pack of 24).

Action: click[Buy Now]

STATUS: FAIL

Reflection: In this attempt, I was unsuccessful. I acciden-
tally bought a product that was $100, which is more than my
budget of $30. Either way, the initial search results were not
good. Next time, I will do search[“variety pack of chips”]
and then check if the results meet the dairy free and the $30
budget constraints. I will continue to refine my searches so
that I can find more products.

Previous Trial Instruction: i need gluten free vegetarian
smoked peppered bacon - 4 ounce (pack of 2), and price
lower than 40.00 dollars [Search]

Action: search[gluten free vegetarian smoked peppered ba-
con 4 ounce pack of 2] Observation: [Back to Search] Page
1 (Total results: 50) [Next >] [B06Y96MXJV] Smoked
Bacon Sea Salt 3-Pack: Smoked Bacon Chipotle, Smoked
Bacon and Onion, Smoked Peppered Bacon - All-Natural
Sea Salts Slowly Smoked Over Alderwood - No Gluten, No
MSG, Non-GMO (12 total oz.) $29.99 [B06Y96N1KG]
Spicy Hot Pepper Sea Salt 3-Pack: Ghost Pepper, Jalapeno,
Habanero - All Natural, Delicious Blends of Peppers & Sea
Salt - Gluten-Free, Kosher, No MSG, Non-GMO (12 total
oz.) $29.99 [B07GJTKYJQ] Louisville Vegan Jerky - 5
Flavor Variety Pack, Non-GMO Soy Protein, Gluten-Free
(Black Pepper, Buffalo Dill, Pepperoni, Maple Bacon, and
Carolina BBQ, 3 Ounces) $42.99
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Action: think[The first two items are not what I want. The
third item is not what I want, but it is the closest one.]
Observation: OK.

Action: click[B07GJTKYJQ] Observation: [Back to
Search] [< Prev] Louisville Vegan Jerky - 5 Flavor Variety
Pack, Non-GMO Soy Protein, Gluten-Free (Black Pepper,
Buffalo Dill, Pepperoni, Maple Bacon, and Carolina BBQ,
3 Ounces) Price: $42.99 Rating: N.A. [Description] [Fea-
tures] [Reviews] [Buy Now]

Action: think[The price is too high and it is not what I want.]
Observation: OK.

Action: click[< Prev] Observation: [Back to Search] Page
1 (Total results: 50) [Next >] [B06Y96MXJV] Smoked
Bacon Sea Salt 3-Pack: Smoked Bacon Chipotle, Smoked
Bacon and Onion, Smoked Peppered Bacon - All-Natural
Sea Salts Slowly Smoked Over Alderwood - No Gluten,
No MSG, Non-GMO (12 total oz.) 29.99 [B06Y96N1KG]
Spicy Hot Pepper Sea Salt 3-Pack: Ghost Pepper, Jalapeno,
Habanero - All Natural, Delicious Blends of Peppers &
Sea Salt - Gluten-Free, Kosher, No MSG, Non-GMO (12
total oz.) 29.99 [B07GJTKYJQ] Louisville Vegan Jerky - 5
Flavor Variety Pack, Non-GMO Soy Protein, Gluten-Free
(Black Pepper, Buffalo Dill, Pepperoni, Maple Bacon, and
Carolina BBQ, 3 Ounces) 42.99

Action: think[The first two items are not what I want.]
Observation: OK.

Action: click[Next >] Observation: Invalid action!

Action: think[I need to refine my search.] Observation: OK.

Action: click[< Back to Search] Observation: Invalid ac-
tion!

Action: click[Back to Search]

STATUS: FAIL

Reflection: In this attempt, I was unsuccessful. The initial
search results were not the products that I was looking for.
Next time, I will do search[“vegetarian bacon”] for a broader
search. I will check that the new results will fulfill the gluten
free and 4 ounce pack of 2 constraints. I will continue to
refine my searches so that I can find more products.

Previous trial: trajectory Reflection:”’
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