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Abstract

Modern language models rely on the transformer
architecture and attention mechanism to per-
form language understanding and text genera-
tion. In this work, we study learning a 1-layer
self-attention model from a set of prompts and
the associated outputs sampled from the model.
We first establish a formal link between the self-
attention mechanism and Markov models un-
der suitable conditions: Inputting a prompt to
the self-attention model samples the output to-
ken according to a context-conditioned Markov
Chain (CCMC). CCMC is obtained by weigh-
ing the transition matrix of a standard Markov
chain according to the sufficient statistics of the
prompt/context. Building on this formalism, we
develop identifiability/coverage conditions for the
data distribution that guarantee consistent estima-
tion of the latent model under a teacher-student
setting and establish sample complexity guaran-
tees under IID data. Finally, we study the problem
of learning from a single output trajectory gen-
erated in response to an initial prompt. We char-
acterize a winner-takes-all phenomenon where
the generative process of self-attention evolves
to sampling from a small set of winner tokens
that dominate the context window. This provides
a mathematical explanation to the tendency of
modern LLMs to generate repetitive text.

1. Introduction

The attention mechanism (Vaswani et al., 2017) is a key
component of the canonical transformer architecture which
underlies the recent advances in language modeling (Rad-
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ford et al., 2018; 2019; Brown et al., 2020; Chowdhery et al.,
2022; Touvron et al., 2023). The self-attention layer allows
all tokens within an input sequence to interact with each
other. Through these interactions, the transformer assesses
the similarities of each token to a given query and composes
their value embedding in a non-local fashion.

In this work, we study the mathematical properties of the
one-layer self-attention model where the model is trained to
predict the next token of an input sequence. The token gener-
ation process via the self-attention mechanism is non-trivial
because the generation depends on entire input sequence.
This aspect is crucial for the capabilities of modern large
language models (LLMs) where the response is conditioned
on the user prompt. It is also unlike well-understood topics
such as Markov Chains where the model generates the next
state based on the current one. Theoretical analysis is fur-
ther complicated by the fact that the optimization landscape
is typically nonconvex. This motivates us to ask:

Q: Can self-attention be formally related to funda-
mental models such as Markov chains? Can this
allow us to study its optimization, approximation,
and generalization properties?

Our main contribution is addressing this question by for-
mally mapping the generative process of one self-attention
layer to, what we call, Context-Conditioned Markov Chains
(CCMC) under suitable conditions. In essence, CCMC mod-
ifies the transition probabilities of a base Markov chain
according to the sequence of tokens/states observed so far.
Thus, learning a self-attention layer from the (prompt, out-
put) pairs generated by it can be interpreted as learning a
Markov chain from its context-conditioned transitions.

Concretely, we make the following contributions:

¢ CCMC ¢ Self-attention (Sec 2). We introduce CCMC
and show that it can precisely represent the transition dy-
namics of self-attention under suitable conditions. Impor-
tantly, the optimization of self-attention weights becomes
convex, hence tractable via gradient descent, under maxi-
mum likelihood estimation i.e., — log loss.

* Consistency of learning (Sec 3). We study the learnabil-
ity of a self-attention layer where we observe its outputs
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for a set of input prompts. In practice, this is motivated by
the question: Can we distill the generative capabilities of
a language model by collecting its outputs on a set of in-
structions/prompts? Through the CCMC connection, we
identify necessary and sufficient coverage conditions on
the prompt distribution that ensures consistent estimation
of the underlying model.

* Sample complexity (Sec 4). Integrating consistency
guarantees with finite sample analysis, we develop gen-
eralization guarantees for learning a ground-truth self-
attention model from its IID (prompt, output) pairs. We
establish a fast statistical rate of O(K?/n) where K is
the size of the token vocabulary and n is the sample size.

* Learning from single prompt trajectory (Sec 5). Going
beyond IID samples, we provide theory and experiments
on the learnability of self-attention from a single trajec-
tory of its autoregressive generation. Our findings reveal
a distribution collapse phenomenon where the transition
dynamics evolve to generate only one or very few tokens
while suppressing the other tokens. This also provides an
explanation to why modern LLMs tend to generate repet-
itive sentences after a while (See et al., 2017; Holtzman
etal.,, 2019; Xu et al., 2022). Finally, we study the charac-
teristics of self-attention trajectory, identify novel phase
transitions, and shed light on when consistent estimation
succeeds or fails.

* The role of positional encoding (App A). We augment
our theory to incorporate positional encoding (PE). We
show that PE enriches CCMC to make transition dynam-
ics adjustable by learnable positional priors.

Overall, we believe that CCMC provides a powerful and
rigorous framework to study self-attention and its character-
istics. Note that, the token generation process implemented
by self-attention is inherently non-Markovian because the
next generated token depends on the whole past input
prompt/trajectory. Thus, CCMC is also a non-Markovian
process, however, it admits a simple representation in terms
of a base Markov chain and the prompt/trajectory charac-
teristics. CCMC is illustrated in Figure 1 and formally
introduced in the next section together with its connection
to the self-attention mechanism.

2. Setup: Markov Chain and Self-Attention

Notation. Let [n] denote the set {1,--- ,n} for an integer
n > 1. We use lower-case and upper-case bold letters (e.g.,
a, A) to represent vectors and matrices, respectively. a;
denotes the i-th entry of the vector a. Let ILs(-) denote the
projection operator on a set S, 1(E) denote the indicator
function of an event E, and S(-) : R* — R’ denote the
softmax operation. We use < and 2 for inequalities that
hold up to constant/logarithmic factors.

2.1. Context-Conditioned Markov Chain (CCMC)

Let P = [m...mg] € REXK be the transition matrix
associated with a base Markov chain where the -th column
m = (m1,. .., mix) € RE captures the transition proba-
bilities from state ¢ € [K] with entries adding up to 1. Thus,
given random state sequence (z;);>1 drawn according to
P, we have that P(z441 = jlz, = i) = m;.

Now consider the modified transitions for P where tran-
sition probabilities are weighted according to a vector
m € RX with non-negative entries. Concretely, we con-
sider the following transition model

m

P (41 = jlae = 1) = mj} 1= —=—. (N
Note that this transition model is still a standard Markov
chain with updated transition probabilities 7} = T575.
In contrast, we now introduce the setting where weighting
m changes as a function of the input sequence.

Context-conditioned Markov Chain (CCMC). CCMC
is a non-Markovian transition model derived from a base
transition matrix P. To proceed, given a state trajectory
X = (z)L, € [K]*, let us define m(X) to be the empiri-
cal frequencies of individual states where

{t € [L] : x: =k}
L )

CCMC is obtained by weighting the standard Markov chain

transitions according to m(X) determined by X.

Definition 2.1. Let X = ()L, and m = m(X). Given
a transition matrix P, the associated CCMC transition from

m(X), = Vk e [K]. ()

state 7, to x4 is governed by 7% £ ﬂ.;rz(X) c RK
defined as
My Ty i
Pp(x — X)) =¥ .= 22 _"TLJ 3
p(rri1 = j|X) j TTriUL 3)

Here, note that the last element x;, of X still serves as the
state of the Markov chain; however, transitions are weighted
by state frequencies, which can be observed in Figure 1.
These frequencies will be evolving as the model keeps gen-
erating new states. In the context of language modeling,
X = (x¢)E, corresponds to the prompt inputted to the
model and (x;);> 1, is the model’s response: Sections 3 and
4 will explore the learnability of underlying dynamics P
from multiple diverse prompts and the corresponding model
generations. On the other hand, Section 5 will study learn-
ability from an infinite trajectory generated from a single
prompt.

As we shall see, Definition 2.1 captures the dynamics of a
1-layer self-attention model when there are no positional
encodings. In Appendix A, we introduce a more general
setting where the transition dynamics of CCMC incorpo-
rate the positional information of the state trajectory. This
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Figure 1. Demonstration of Definition 2.1. We provide an example where the vocabulary size K = 3 and the input prompt X = [1, 2, 1],
which results in a frequency vector m(X). P represents the transition matrix of the base Markov chain.

enriched model will similarly capture self-attention with
absolute positional encoding.

2.2. Attention-based Token Generation

We consider a single attention head which admits a sequence
of tokens and outputs the next token. Suppose we have a
vocabulary of K tokens denoted by [K], which precisely
corresponds to the set of states in the (base) Markov chain.
To feed tokens to the attention layer, we embed them to

get an embedding matrix E = [e; ... eK]T € REXd
where e; € R? is the embedding of the i-th token. To feed
aprompt X = (x;)%, to the attention layer, we first obtain
its embedding as follows:

X =[z;...x]" € RE*? where x; :=e,,,Vic [L].

Throughout, we consistently denote the embedding of a
discrete sequence X and token x; by X and x;, respectively.

Self-attention model. A single-layer self-attention head
predicts the next token based on the input prompt X, with
the last token 7, forming the query token in the attention
layer and playing a distinct role in sampling the next token
zr+1. Let us denote the combined key-query weights by a
trainable matrix W € R?¥9, and assume the value weights
to be the identity matrix, i.e., V' = I;. With these, the
self-attention layer fy outputs

fw(X)=XTsx where sx =S(XWazxr). (SA)

Here S(-) is the softmax function and sy € R’ is the
softmax probability output associated with X. A useful
observation is that fy (X) produces probability-weighted
combination of the input tokens. To proceed, let us de-
fine a transition matrix P € RE*K associated with the
attention model weights W as follows:

PY =[m ... mg] where m =S(EWe;). (4)

Next, we observe the following identity on self-attention.

Lemma 2.2. Let (X,y) be an arbitrary pair of (prompt,
next token). Define #* € R¥ based on PV using Defini-
tion 2.1. We have that

fw(X)=X"Tsx = E"n¥.

Lemma 2.2 highlights a fundamental connection between
self-attention and CCMC, which we leverage by defining
the following sampling. The proof is provided in Appendix
B.1.

Sampling-from-softmax. The idea is sampling the next
token proportional to its contribution to the output of the
self-attention layer. This is equivalent to sampling the next
token according to its total probability within the softmax-
attention map given by 7~ . Thus, sampling-from-softmax
with weights W € R%*? is mathematically equivalent to a
CCMC with transition dynamics (4).

In what follows, we will introduce and investigate an
attention-based next token generation model that imple-
ments the sampling-from-softmax procedure. Let C' €
RX*4 be the linear prediction head. Following attention
output fyy (X), we sample the next token from C fy (X)) €
RE . We will utilize the following assumption.

Assumption 2.3. The vocabulary embeddings (ey)i_; are
linearly independent and the classifier obeys CE T = I.

This assumption is a slightly stronger version of the weight-
tying, where the output and input embedding are the same
(Press & Wolf, 2017). In addition to the weight-tying, we
apply orthogonalization to the output embedding with the
linearly independent conditions so that the output embed-
ding only interacts with the corresponding token. This as-
sumption also requires that the token embeddings are over-
parameterized and d > K. Under this assumption, applying
Lemma 2.2, we find that C fy(X) = 7. Thus, sampling
from the classifier output C' fy (X) becomes equivalent
to sampling-from-softmax. While the assumption is rather
strong, it will enable us to develop a thorough theoretical
understanding of self-attention through the CCMC connec-
tion and convex log-likelihood formulation that facilitates
consistency and sample complexity analysis.

Bijection between attention and CCMC dynamics. We
will next show that, under Assumption 2.3 there is a bijec-
tion between weights W and stochastic matrices P. This
will be established over a (K — 1) x K subspace of d X d
which is the degrees of freedom of the stochastic matrices.

Definition 2.4. Let S C R%*? be the subspace spanned
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Figure 2. Illustration of the Equivalency between the Attention and CCMC models. We provide an example where the vocabulary size
K = 3 and the input prompt is X = [1, 2, 1]. The upper figure represents how the token probabilities S(EW e;) can be mapped to a
base transition matrix P. The left-lower figure demonstrates the output of the self-attention given an input prompt X . The right-lower
figure derives CCMC transitions from this P given the same prompt. The resulting next token probabilities are the same for both of the
models. The masking operation is demonstrated in a more detailed way in Figure 1.

by the matrices in {(e; — e;)e; : 4,7,k € [K]}.

The next lemma states that the projection of W orthogonal
to Sg has no impact on the model output and justifies the
definition of Sg.

Lemma 2.5. For all W € R%? and X, we have
fw(X) = frs, w)(X).

The proof of this lemma is provided in Appendix B.2. With
this, we are ready to establish the equivalency between the
CCMC and self-attention dynamics.

Theorem 2.6. Suppose Assumption 2.3 holds. For any
transition matrix P with non-zero entries, there is a unique
W € Sg such that for any prompt X € [K|* and next
tokeny = xr41 € [K],

Pp(ylX)=c, X 'S(XWax_)
where ¢, is the y-th row of the linear prediction head C.

The proof of this theorem is provided in Appendix B.3. Note
that forany W € R4*<_there exists a transition matrix that
satisfies the above by Lemma 2.2. As a result, Theorem 2.6
establishes the equivalence between the CCMC model and
the self-attention model in the sense that Pp (y| X ) matches
the output distribution of the self-attention model for any
input prompt X . This equivalence can be observed in Figure
2. We will utilize this for learning latent attention models in
Sections 3 and 5.

2.3. Cross-Attention Model

We also consider the cross-attention model where the query
token x, is not among the keys for the attention head. Thus,
x 1, becomes a free variable resulting in a more flexible
transition model. The cross-attention is given by

Key tokens: X = [z1 ... x1_1]

H(X) = X"S(XWzxp) € R4 (CA)
The CCMC associated with the cross-attention only slightly
differs from Definition 2.1. Now, the transition probabilities
are defined with m = m(X) because the model can only
sample from the states/keys contained in X. This clearly
disentangles the state x 1, of the CCMC and the transition
weighting vector m(X). Specifically, unlike self-attention,
this CCMC is not biased towards transitioning to the last
token 1, and we can entirely mask out last token in the next
transition (as soon as , is not contained within X).

3. Consistent Estimation: When can we learn
an attention layer by prompting it?

In this section, our interest is learning a ground-truth atten-
tion layer by sampling (prompt, next-token) pairs. Let Dy
denote the distribution of input prompts. We assume D » has
a finite support and denote its support by €2, which is a set of
prompts. Finally, let W ¢ denote the ground-truth attention
weights which will be our generative model. Specifically,
we will sample the next token y € [K] according to the
model output C fyyer (X) under Assumption 2.3. Let Dyy
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be this distribution of (X, y) such that X ~ Dy andy | X
is sampled from C fyyer (X).

Throughout the section, we identify the conditions on the in-
put prompt distribution D and WC? that guarantee consis-
tent learning of the attention matrix W°? in the population
limit (given infinitely many samples from Dyy). We will
investigate the maximum likelihood estimation procedure
which is obtained by minimizing the negative log-likelihood.
As a result, our estimation procedure corresponds to the fol-
lowing optimization problem.

W, = arg o L(W) where 5)
LW) =E(x y)~Day|— log(c;XTS(XWwL))].

Note that the prompt length is not necessarily the same.
Here we use x 1, to simplify the notation and it presents the
last/query token of prompt X.

Definition 3.1. The estimator (5) is consistent if W, =
WET when data Dyy is sampled from WET. Otherwise,
the estimation is called inconsistent.

Observe that the optimization in (5) is performed over the
subspace Sg. As discussed in Lemma 2.5, its orthogonal
complement S ,%3 has no impact on the output of the attention
model. Similarly, the gradient of £(W) is zero over Sg,
thus S is essentially the null space of the problem where
token embeddings simply don’t interact. For this reason, we
make the following assumption.

Assumption 3.2. The ground truth obeys W¢T € Sg.

Learning the ground-truth model is challenging for two
reasons: First, through each prompt, we only collect par-
tial observations of the underlying model. It is not clear if
these observations can be stitched to recover the full model.
For instance, if we query an LLM on a subset of domains
(e.g., only query about medicine and law), we might not be
able to deduce its behavior on another domain (e.g., com-
puter science, math). Second, optimization of self-attention
is typically non-convex (Tarzanagh et al., 2023a) and does
not result in global convergence. Fortunately, under As-
sumption 2.3, (5) becomes a convex problem (Li et al.,
2024) which we will leverage in our analysis at the end of
this section.

Section 2 established the equivalency between the CCMC
model and the self-attention model under Assumption 3.2.
This enables us to prove the consistency of estimation for the
self-attention model through the consistency of estimation
for the CCMC model. We define the population estimate of
the transition matrix for the CCMC model as follows:

P, = arg m}in L(P)

L(P) = E(x y)~Dary [~ log(Pp(y|X))].

where (6)

Through Theorem 2.6, there is a mapping between the opti-
mal solution set of (5) and (6).

The consistency conditions on the input prompt distribution
and the ground truth variable W¢?, or equivalently P, =
PCST 2 PWY are related to how well input prompts
cover the pairwise token relations. To characterize this, for
each last token (i.e., query token), we define an undirected
co-occurrence graph as follows.

Definition 3.3. Let 2, C 2 be the set of input prompts
whose last tokens are equal to & for all k& € [K]. Define the
co-occurrence graph G(¥) with K vertices as follows: There
is an edge between i-th and j-th nodes in G(*) iff there is a
prompt X € € such that its key tokens include both ¢ and
7. Here, key tokens are all tokens for self-attention and all
but last tokens for cross-attention (i.e., X in (CA)).

A simple example highlighting the difference between self-
attention and cross-attention is given in Figure 3. Based on
this graph, the consistency of estimation is then translated
to the connectivity of the graphs G(¥). This is summarized
in the following theorem.

Theorem 3.4. Let P°7 be a transition matrix with non-zero
entries. Let (G (k))le be the co-occurrence graphs based
on the input distribution Dx. Then, the estimation P; in (6)
is consistent iff G\¥) is a connected graph for all k € [K].

The proof of Theorem 3.4 is provided in Appendix C. This
appendix also addresses the case where PC contains zero
transition probabilities. The main proof idea is that, op-
timizing the log-likelihood of a specific prompt results in
estimating the local Markov chain transitions over the tokens
within that prompt. When two prompts are connected and
optimized together, the optimization merges and expands
these local chains.

The connectivity of the graph is essentially a coverage condi-
tion that ensures that prompts can fully sense the underlying
Markov chain. For the self-attention model, this condition
simplifies quite a bit.

Observation 1. For self-attention model, G*) is connected
iff all tokens in [K] appear at least in one prompt within €2y,.

This observation follows from the fact that, for self-attention,
the last token is always within the keys of the input prompt.
Thus, all prompts within €2, overlap at the last token z;, = k.
Thus, the node k naturally connects all tokens that appear
within the prompts (at least once). Note that it is possible
that some tokens do not co-occur at the same input sequence.
In that case, Theorem 3.4 can be extended to the consistency
of estimation for the observable Markov Chain as follows:

Corollary 3.5. Given k € [K], let C, C [K] be the set of
all tokens that appear within some training prompt X € Q.
where X ends with token k. Let P* be the transition model
learned by the self-attention trained on X ~ Dy with labels
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Figure 3. Illustration of co-occurrence graphs for the self-attention (Left) and cross-attention (Right) models. We fit the same input
examples where the only difference is the use of self- vs cross-attention (which includes vs excludes the query token ‘1’ from the list of
key tokens). Following Theorem 3.4, in the cross-attention setting, where the token ‘1’ is not contained in the prompt, the co-occurrence
graph becomes disconnected, resulting in inconsistent estimation. In contrast, the estimation is consistent for the self-attention model

since both inputs share the same query token within their key tokens.

sampled from the ground-truth model P°7. Forany k € [K],
we have that

Thcr = Thiy-
Here ;. ¢ denotes the probability distribution induced by
normalizing the entries of 7, over the set C.

The proof of Corollary 3.5 is provided in Appendix C.

The situation is more intricate for cross-attention — where
the query token is distinct from keys — because there is no
immediate connectivity between prompts. The difference
between these two models are illustrated in Figure 3. For
this reason, our theory on cross-attention is strictly more
general than self-attention and its connection to Markov
chain is of broader interest.

Our next result is an application of Theorems 2.6 and 3.4
and states the result for self-attention problem (5). It equiv-
alently applies to the cross-attention variation of (5).

Corollary 3.6. Let W ST be the attention model underly-
ing Dxy for either the self-attention model or the cross-
attention model and suppose Assumptions 2.3 and 3.2 hold.
Then, W ST = W, in (5) iff all G'¥) s are connected.

3.1. Gradient-based Optimization of Attention Weights

An important feature of our problem formulation (5) is its
convexity, which was observed by (Li et al., 2024). The
convexity arises from the fact that, we directly feed the
attention probabilities to log-likelihood which results in a
LogSumExp function. We next state the following stronger
lemma which follows from Lemma 9 of (Li et al., 2024). A
detailed discussion is provided in Appendix C.1.

Lemma 3.7. Suppose Assumption 2.3 holds. If G¥) is a
connected graph for every k € [K]|, then L(W) of (5)
is strictly convex over Sg and W° is the unique finite
solution.

For a strictly convex function, we know that, when the min-
ima is finite, it is unique. Therefore, Lemma 3.7 guarantees

the gradient-based learnability of the ground-truth weights
WET as follows.

Corollary 3.8. Set Wy = 0 and run gradient iterations
Wit «— Wy, — nVL(W,) for t > 0 with a suitable
learning rate n > 0. If all G**)’s are connected, then
hmt_,oo Wt = WGT.

4. Guarantees on Finite Sample Learning

Following the setting of Section 3, we sample a training
dataset 7 = {(X;,¥:) },_, from Dyy. In this section, we
establish a sample complexity guarantee on the difference
between |W — WET||p where W is trained on 7.

ERM problem. Given a training dataset 7, we consider the
ERM problem with the following objective:

W,, = arg V[glelgE L, (W) where @)
~ 1 &
Ln(W) =~ ; —log(c,, X, S(X;Wwi1,)). (8)

Our main aim in this section is to establish a sample com-
plexity guarantee on |W — WET|| . We leverage the find-
ings of Section 3 to achieve our aim with the following
assumption:

Assumption 4.1. Recall the co-occurrence graphs in Def-
inition 3.3. We assume that the co-occurrence graphs
(G K| constructed from Dy are connected.

We prove the following theorem, which will provide finite
sample complexity guarantees for the loss function:

Theorem 4.2. Suppose Assumptions 2.3 and 4.1 hold. Let
Ro > 0 be a finite constant based on the structure of W T
and Dyx. Then, if n > RoK?, with probability at least
1—-20

< Kzlog%.

~

LWn) = LW) 5 —

The proof is provided in Appendix D.2. We apply the local
covering arguments to achieve sample complexity guaran-
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tees by concentration inequalities. Using Lemma 3.7, we
prove that W, is inside a local ball with sufficient samples
and we achieve the fast rate 1/n with the smoothness of the
loss function similar to (Bartlett et al., 2005) and (Srebro
et al., 2010).

Now, we are ready to share our main contribution in this
section with the following corollary:

Corollary 4.3. Consider the setting in Theorem 4.2 and
suppose Assumptions 2.3, 3.2, and 4.1 hold. Then, if n >
RoK?, with probability at least 1 — 26

W = W s ——52. ©

The proof of this corollary is provided in Appendix D.3 and
follows from Lemma 3.7 and Theorem 4.2.

5. Learning from a Single Trajectory

In this section, we ask: Can we learn a ground-truth self-
attention model by querying it once and collecting its output
trajectory? The question of single-trajectory learning is fun-
damental for two reasons: First, modern language models
train all tokens in parallel, that is we fit multiple next tokens
per sequence. Secondly, learning from a single trajectory
is inherently challenging due to dependent data and has
been subject of intense research in reinforcement learning
and control. Here, we initiate the statistical study of single
trajectory learning for attention models.

Setting: We first describe the single trajectory sampling.
Suppose we are given a ground truth attention matrix W 6T
and an initial prompt X of length L. We feed X to sample
the next token y; and auto-regressively feed back each next
token to sample a length n output trajectory. Overall, we
obtain the training dataset 7 = { (X, y;)}!; where X; =
[X1 y1 ... yi—1]. This sampling is done according to our
self-attention model under Assumption 2.3. To proceed, we
optimize the likelihood according to (7) and obtain Wn.

The consistency of estimation for the single trajectory sam-
pling is defined as follows.

Definition 5.1. Becall the estimation Wn of WS in (7).
The estimation W, is called consistent if and only if

P ( lim W, — WGT) —1.

n—oo

Let T C [K] be the set of tokens that appear in X;. Recall
that, our attention model samples the next token from the
input prompt, thus, all generated tokens will be within 7.
Thus, from a single trajectory, we can at most learn the local
Markov chain induced by 7 and consistency is only possible
if X contains all [K] tokens. Thus, we assume 7 = [K]
and X contains the full vocabulary going forward.

In what follows, we study two critical behaviors:

* (Q1) How does the distribution of generated tokens y;
evolve as a function of the time index 7?

* (Q2) When is consistent estimation of the underlying
attention model W ST possible?

5.1. Empirical Investigation

We first describe our experiments which elucidate why these
questions are interesting and provide a strong motivation for
the theory. Note that we have an equivalency between the
attention models and the CCMC model, which is true for any
sampling method. Throughout this section, we discuss the
consistency of P¢T, which directly implies the consistency
of WET.

The Distribution Collapse phenomenon. To gain more
motivation, we randomly initialize a one-layer self-attention
model and generate a single trajectory with a length of
500 starting from initial prompt X; = [6]. We track the
evolution of token frequency as shown in the middle of
Figure 4. As illustrated in the right side of Figure 4, when
the generation time increases, the diversity of output tokens
is greatly reduced, which eventually collapses to a singleton.
This arises due to the self-reinforcement of majority tokens
within the trajectory. This phenomenon also corresponds to
the repetition problem found in text generation by language
models, as demonstrated in the left side of Figure 4.

5.2. Theoretical Study of Single Trajectory Sampling

To learn the underlying self-attention model from a single
trajectory, we must visit each token/state infinitely many
times. Otherwise, we could not learn the probability tran-
sitions from that last token choice. Let Sy, ,, be the number
of occurrences of token k within X,,. Our first result shows
that each token is guaranteed to be visited infinitely many
times as the trajectory grows.

Lemma 5.2. Let PC7 be a transition matrix with non-zero
entries. We have that P(lim,,_, o Sk, = 00) = 1 for all
k € [K].

The proof of this lemma can be found in Appendix E and
follows from an application of the Borel-Cantelli lemma.

This lemma is insightful in light of Figure 4: Even if the
distribution of the generated tokens collapses to a singleton,
any token within the input prompt will keep appearing albeit
with potentially vanishing frequencies. Next, we discuss
the condition when the distribution collapse will happen
in response to Figure 4. To characterize the condition for
the distribution collapse, we consider a CCMC model with
K = 2. Suppose the ground-truth transition matrix P°T =
[1 —-p 1l—p

» ] Without loss of generality, assume p <
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Token index

Figure 4. Demonstration of Distribution Collapse/Repetition. Left: An example query where the GPT-2 response quickly degenerates into

repetition. Middle: We generate two single self-attention trajectorie

s with a vocabulary containing K = 6 tokens and plot the empirical

token frequencies (for each token in the vocabulary). The upper figure is generated using a randomly initialized transition matrix, while
the lower one is generated using the same transition matrix as the upper one except that the diagonal entries are set to 0, enforcing that the
probability of query token 7 — next token ¢ is 0. The frequency is calculated as the ratio of token occurrences to the sequence length at
that time. Right: Trajectory snapshots with a 10-token window from time index ¢ revealing that token 5 (upper) / tokens 2 and 5 (lower)

dominate the trajectory. The lower right is dominated by two tokens

1/2. For brevity, we define the weak token as the token with
a smaller transition probability p, which is Token 2 in our
setting. The next result bounds the frequency of the weak
token as the trajectory grows.

Lemma 5.3 (Distribution collapse). Consider the CCMC
model with K = 2 defined in Section 5.1. Suppose that X
includes all vocabulary at least once. Recall that m(X;)
denotes the empirical frequency of individual states where
X, is the state trajectory at time t. For any t > ty with
a sufficiently large to, we have E[m(X;)s] < t~7 where
qg=1—p/(1 —p). Furthermore, when p < 1/2,

{m(Xt)Q] =0.

m(X¢)1
The proof is provided in Appendix E. Lemma 5.3 states
that token 1 will dominate the trajectory when p < 1/2.
As a result, the distribution collapse will happen as long
as p # 1/2 due to the symmetry. So far, we show that all
tokens are visited infinitely many but their frequencies can
vanish. On the other hand, to learn the underlying transition
matrix, we should also visit each transition (from state/token
1 to state/token j) infinitely many times (otherwise the esti-
mated p would be 0). To study this question, we ask: Will
self-attention visit the transition from the weak token to it-
self forever? Figure 5 shows the number of weak—weak
transitions for varying p choices. We observe that this num-
ber grows super-logarithmic in trajectory length when p

lim E

t—o0

because a single token cannot self-reinforce due to zero diagonals.

exceeds 1/3 and it is sub-logarithmic when p is smaller than
1/3. We argue that this sub-logarithmic (very slow) growth
is actually an indicator of the fact that there are actually
finitely many weak—weak throughout the trajectory, which
would in turn make estimation of the second column of P¢*
inconsistent.

To justify this, we utilize our theory to study the growth
of weak—weak transitions (albeit non-rigorously). Lemma
5.3 shows that the expected density of the weak token is
t~4 throughout the trajectory. Let us treat this expectation
as the true weak token probability at time ¢. Next, since
the trajectory contains only O(¢~9) fraction weak tokens,
due to the CCMC model, the chance of transition to a weak
token (from any token) is O (¢~ 7). Combining these, we find
that P(weak — weak) = P(weak|weak)P(weak) o t~29.
With this estimate at hand, we can use Borel-Cantelli to
study finiteness of weak—weak transitions. Specifically
J.=, t72% s finite when ¢ > 1/2 and infinite when ¢ < 1/2.
This translates to p < 1/3 and p > 1/3 respectively and
remarkably coincides with the sub/super-logarithmic growth
observed in Figure 5.

6. Related Work

Theoretical treatment of attention models. Yun et al.
(2020); Edelman et al. (2022); Fu et al. (2023); Baldi &
Vershynin (2023) focused on expressive power or induc-
tive biases of attention-based models. Jelassi et al. (2022);
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Li et al. (2023a); Oymak et al. (2023); Tarzanagh et al.
(2023b;a) studied optimization and generalization dynamics
of simplified attention models for supervised classification
tasks. Tian et al. (2023); Li et al. (2024) explored the train-
ing dynamics of such models for the next-token prediction
task. To the best of our knowledge, we are the first ones
to establish the connection between (context-conditioned)
Markov chains and self-attention models and leverage that
to establish rigorous guarantees for learning the models.
Although not directly related to this work, there is also a
growing body of literature on the theoretical study of in-
context learning (Xie et al., 2022; Garg et al., 2022; Li et al.,
2023b; Akyiirek et al., 2023; Von Oswald et al., 2023).

Learning Markov chains. The problem of estimating the
transition matrix of a Markov chain from a single trajectory
generated by the chain is a classical problem (Billingsley,
1961). There is a large literature on estimating the transition
matrix under some structural constraints on the transition
matrix such as low-rank assumption (Zhang & Wang, 2019;
Shah et al., 2020; Stojanovic et al., 2023; Bi et al., 2023;
Liet al., 2018; Zhu et al., 2022). Interestingly, Stojanovic
et al. (2023) also considers matrix estimation from mul-
tiple transitions observed from IID sampled states. Note
that the text generation from attention models is not quite
Markovian due to the context-dependent masking of the
base Markov chain in CCMC. Furthermore, we are inter-
ested in recovering the model weights W instead of the
transition probabilities. A concurrent work (Makkuva et al.,
2024) also explores the connection between a 1-layer atten-
tion model and Markov chains. The authors aim to learn a
standard Markov chain using 1-layer self-attention whereas
we show that self-attention is a non-Markovian model and
we construct a general mapping between self-attention and
a modified Markov chain dynamics.

Shortcomings in neural text generation. Multiple
works (see, e.g., See et al., 2017; Holtzman et al., 2019;
Welleck et al., 2020; Xu et al., 2022) have explored various
issues with the language model generated texts, especially

repetitive nature of such texts. Xu et al. (2022) argue that the
self-enforcing behavior of language models leads to repeti-
tions. This aligns with our formal analysis of self-attention
models using CCMC. Several studies offer training-based
solutions to mitigate repetition (Xu et al., 2022; Welleck
etal., 2019; Lin et al., 2021), while others modify the decod-
ing process (Fan et al., 2018; Holtzman et al., 2019; Welleck
et al., 2020). Rather than proposing a new solution, our
work rigorously characterizes the conditions under which
repetition becomes inevitable in self-attention models.

Fu et al. (2021) analyzed repetition in a text generated
by Markov models, attributing it to high-inflow words.
Our work diverges significantly. Instead of assuming a
Markovian process, we establish an equivalence between
self-attention mechanisms and context-conditioned Markov
chains. This leads to the non-Markovian generation, where
the entire context influences the next token. Furthermore,
our theoretical analysis extends beyond repetition, using
this CCMC equivalence to explore the learnability of self-
attention models from generated data.

In Appendix F, we share further related work on reinforce-
ment learning and data-driven control.

7. Discussion

In this work, we have studied theoretical properties of the
self-attention layer by formally linking its dynamics to
(context-conditioned) Markov chains. Through this connec-
tion, we identify when a ground-truth self-attention layer is
learnable by observing its output tokens. We develop con-
sistency and finite sample learning guarantees for multiple
prompts as well as for single trajectory learning, which re-
veal novel insights into the self-attention mechanism (such
as prompt coverage conditions and distribution collapse in
the learning from a single trajectory setup).

An important future direction is relaxing Assumption 2.3
to more general and realistic conditions. An initial way
to relax this assumption is to assume that CE " is equal
to a column stochastic matrix. More broadly, instead of
linear classifier C, it is possible to incorporate a Multi-
Layer Perceptron (MLP) into the model. However, these
relaxations may cause the loss of convexity but provide a
deeper understanding of the self-attention layer. In addition,
it is also interesting to study the case of d < K, which
is closely related to the low-rank adaption (LoRA) of the
attention matrix.

Other possible future directions are (1) studying the multi-
layer attention models and their connection to hierarchical
Markov models and representation learning, and (2) analysis
of the impact of the End-Of-Sequence (EOS) token, which
is utilized to terminate the generation of outputs in modern
language models.
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Organization of Appendix

* Appendix A incorporates positional encoding into the CCMC.

* Appendix B provides the proof for the theoretical results in Section 2.
* Appendix C provides the proof for the theoretical results in Section 3.
» Appendix D provides the proof for the theoretical results in Section 4.
» Appendix E provides the proof for the theoretical results in Section 5.

» Appendix F shares further related work on reinforcement learning and data-driven control.

A. The Role of Positional Encoding

In Section 2, we have established an equivalence between the attention models and the CCMC model using a mask. This
mask was defined by m (X)) in (2), which is associated with the occurrences of different tokens in an input prompt. In this
section, we incorporate positional encodings into the CCMC model to study its impact on the transition dynamics.

To proceed, suppose the input prompt is fixed to be length L. We will use absolute position encoding Vaswani et al. (2017)
which adds a position vector u; at position ¢ for 1 < ¢ < L. Recalling e, is the vocabulary embedding, this leads to the
following input embedding =; = u; + e,,. Let U := [u; ... uz]’ € REX9 be the positional embedding matrix with
u; € R<. The linear classifier C' in the attention models predicts the next token ID. In addition to Lemma 2.3, we assume
the following to ensure that there is no bias to the classifier output from position embeddings.

Assumption A.1. The projection of positional embedding onto the columns of C'is zero, i.e., CU'™ =0
To quantify the effect of positional embedding on the output of the attention model, we define the variables a € R”, b € RX,
and V' € REXE ag follows:
a=exp(UWup) b = exp(EWurp)
V =exp(UWET)

where exp(-) represents the element-wise exponential function. Then, we define the probability distribution characterizing
the CCMC model as follows: P(p 7y (2141 = j|X) =

bjTrrL,j ZiL:1 ai‘/i,xL . 1(Iz = .7)

(10)
Zszl bkTap 25:1 aiViz, - Uz = k)

where 7;,; is based on PY, defined in (4). The intuition behind (10) is that, in Section 2, the CCMC model is constructed
by a mask with K —dimension whereas (10) can be considered as a mask with K x L dimension. Now, we are ready to
share our main results of this section:

Lemma A.2. Suppose Assumptions 2.3 and A.1 hold. Then, for any W € R*9, there exists the transition matrix PW
such that for any (X, y) we have the following:

Ppu(ylX)=cy X S(XWaL)

Note that the one-to-one map, consistency of estimation, and finite sample guarantee can be built upon Lemma A.2 for the
CCMC model with positional embedding by following similar arguments to the previous sections.

Proof. Consider any W € R?*? and an arbitrary input (X, y) with positional embedding U. Let X = M E+U, where M
is the same mapping matrix defined in Section B.1. Define a := exp(UWur),b := exp(EWwur),V = exp(UWET)
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we have:
ey X 'S(XWaxp)=c, (ETM" +U")S(XWay)
W ETMTS(XWay)
(b) Zle exp(x, Wag) - 1(z; =y)
- Zszl Zz‘Lzl exp(sz:cL) “L(zi = k)
Sir e (e +uy) Wies, +ur,)) e =1)
X S e (et u) TWes, +us,)) o = )
by expleg Wes,) iy i Vi, - Lai = y)
S b exple] Wey, ) Yy 4+ Vi, - 1w = )

(I

where (a) comes from the assumption that CU " = 0, (b) comes from the assumption that CE " = I and the definition
of M. Comparing Equation (11) with Equation (10), we can set 7 = exp(e] We,,)/ > jelK] exp(e;rWezL) to obtain
PY, O

B. Proof of Theorems in Section 2

In this section, we share the proofs of Lemmas 2.2, 2.5, and Theorem 2.6.

B.1. Proof of Lemma 2.2

Lemma B.1 (Restated Lemma 2.2). Recall the probability vector ©% € R¥ from Definition 2.1. We have that
fw(X)=XTsx = E"n¥.

Proof. Suppose X = M E where M € RE*X is a universal mapping matrix, which specifies the token index for each

1/L P =
entry. Specifically, M;; = {0/ T 4 €% Note that MT1; = m(X) = m. Then, we have:
) Tj 7 €k

X'sy=E"MTsy. (12)

Then, it is sufficient to prove (M "sx ) = 7 for any k € [K]. Let sg = > ek exp(ejTW:cL). To proceed, using the
definition of sx, we get:

my, - exp(e) W)

(MTSX)k =
Zje[K] m; - exp(e;W:cL)
~ my-exp(e, W) /s
et My exple] War)/so (13)
_ mk‘ : ’/T.rL,k
D jelk] My Tep.i
which completes the proof. ]

B.2. Proof of Lemma 2.5
Lemma B.2 (Restated Lemma 2.5). For all W € R and X: fw (X) = frs (w)(X).

Proof. Let S be the orthogonal complement of the subspace Sg in R?*?. Then, for any W € R%*?, we have W =
Hsg (W) + Ils L (W).
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By definition of Sg, for any j € [K], there exists ¢; € R such that eiTH‘gé (W)e; = ¢, fori € [K].
As a result, using the definition of fy (X)) in (SA), we obtain that
fw(X) = XTS(XWap) = X "S(X(sz (W) + sy (W))a )
= X "S(XTls, (W)xp + c1y)
= X 'S(XTls, (W)xy)
= fris, (w)(X)

which completes the proof. O

B.3. Proof of Theorem 2.6

Theorem B.3 (Restated Theorem 2.6). Suppose Assumption 2.3 holds. Let P be the set of transition matrices with non-zero
entries. For each P € P, there is a unique W € Sg with PW = P. Thus, for any prompt X € [K|" and next token
y=wr1 € [K]

Pp(ylX)=c, X 'S(XWax.)

where cy is the y-th row of the linear prediction head C.

Proof. 1) We prove that there exists W € Sg satisfying the lemma. Using Lemma 2.2, for any W € Sg, let 7}V =
S(EW e;), we have:

w
I XTS(XWar) = el ETaX = 7X = v Mooy (14)
Y L ] y miaW
Comparing the equation above with
My - T
P X) = Y LY
P(y]x) = T

it is sufficient to prove that for any given 7r, there exists a solution W for the following problem:
7 = exp(EWZ). (15)
It is equivalent to solving the following linear system:
Ew=rm (16)

where w = W, ™ = log . Since the rows of E are linearly independent from Assumption 2.3, E is right invertible.
Combining with Lemma 2.5 implies that there exists at least one solution to the problem above.

2) We prove the uniqueness as follows: Let’s assume the inverse. There exists W7, W5 € Sg such that Wi £ W5 and we
have the following for any (X, y):

c, X 'S(XWizy) = c, X 'S(XWazy) (17)

As Wi, W, € Sg and W, # Wo, there exists ¢, j, k € [K] such that H(ei—ej)ekT(Wl — W5) > 0. Then, let’s consider
X = [i,jlandy = k and ;, = k. (If the attention model is self-attention, then we can include k into X as well).
Let sx w, = S(XWixr) and sx.w, = S(XWazr). Let uy, = €] Wye, forn € {1,2},m € {i,j}. As we have
H(ei—ej)e,j (W7 —W53) > 0, then we obtain that Uj1 — Uit 7 Uj2 — Uiz, Which implies that sx w, = sx w,. As CE" =171
by Assumption 2.3, (17) cannot hold, which is a contradiction. This completes the proof. O

C. Proof of Theorems in Section 3

In this section, we will analyze the case where the ground-truth transition matrix P°T may have zero transitions. Note that
the transition matrix that has zero probability transitions is not important for the attention models as the equivalency between
the attention models and the CCMC model is constructed for the non-zero transitions. We provide a detailed analysis for the
sake of the Markov chain community. First, we share a supplementary lemma for this section:
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Figure 6. Illustration of the Co-occurrence Graphs for the Cross-attention Models with Possible Zero Transition Probability in P°".
In this figure, we draw the co-occurrence graphs of the input prompt distribution whose support consists of three elements under the
cross-attention model. In the left figure, the first column of the transition matrix P°" does not include any zero transition whereas, in the
right figure, the first column of the transition matrix P includes zero transition. For the left figure, the co-occurrence graph GW is
connected with respect to P¢". However, in the right figure, the co-occurrence graph G ) is not connected with respect to P°" as there is
no path between 2nd vertex and the Sth vertex using non-zero vertex.

Lemma C.1. Define the function f : RZ, — R for fixed (y;)}', positive variables and define x* as follows:

n
* _ . — A 1 ) 1
x* = arg mléln@of(m) arg_min ;y og(x;) (18)
n
subject to Z z; = 1. (19)
i=1

Then, we have c € R such that ¢ = Z—Zfor all i € [n].

Proof. Let L(x, \) be the Lagrangian function:

Lz, \) = — Zy log(z:) + A (1 - Zx) .

As a result of KKT condition, we have
—ZL_X=0 Vie[n (20)

which completes the proof. ]

Definition C.2. (i) Let €, be the set of input prompts that are inside the support of Dy and whose queries are the k-th
token. Then, we define an undirected co-occurrence graph (G*))X_ with K vertices such that the vertices 4, j € [K] are

connected in G(¥) if there exists an input prompt in €, that includes both the i-th and j-th tokens.

(i1) Let P°T be the ground-truth transition matrix. For an arbitrary query k € [K], the co-occurrence graph G(¥) is said to be
‘connected with respect to P if it satisfies the following: For every pair of vertices (i, ) € [K] x [K], Pg # 0, P¢f # 0,

there exists a path of (v,)_; such that vy =4, vy = j, and P, 7 0 for every m € [M].

To explain the notion of the ‘connected graph with respect to P°*’, we demonstrate a dataset for different P¢T in Figure 6.
Note that the following theorem reduces to Theorem 3.4 if P has non-zero transition probabilities.

Theorem C.3 (Stronger version of Theorem 3.4). Let P®” be the transition matrix of a Markov chain that determines the
next token under the CCMC model. Let (G (k))szl be the co-occurrence graphs based on the input prompt distribution D x.
Then, the estimation of PC” in (6) with the prompt distribution D is consistent if and only if G*¥) is connected with respect
to PCT (see Definition C.2 (ii)) for every k € [K].

Proof. For an arbitrary k € [K], we are going to prove that the k-th column of P¢T and P, are equivalent if and only if
G is connected with respect to PST. The proof of this statement is sufficient to prove Theorem C.3.
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Let 7, and 7°" be the k-th column of P, and P®7, respectively. Let £, be the set of input prompts such that the query is
the k-th token. Let Sxcr be the set of token IDs 4 such that Pg" # 0. Let X be an arbitrary prompt inside the set 2. Let [X]
represent the set of token IDs inside the input prompt X . We change the notation of Pp(y|X) to P (y|X) as we will deal
with the input prompts whose queries are the same. We first minimize the population risk for this specific input sequence X.

7w = argmin E, [~ log P (y| X)]
=argmin— Y Prer(y = i|X) log (P (y = i|X)). 1)
1€S et

Applying Lemma C.1 on (21) where K = n, y; = Prer(y = i|X) and z; = P (y = i|X), we know that there exists
c1 € R such that

IPT‘-GT (y = Z|X)

— L = ; or. 22
Ey=ix) e )

From (1), we know that the output probabilities of the CCMC model are a linear transformation of the transition probabilities
based on the occurrences of tokens inside an input prompt. As a result, the linear transformation is one-to-one for the tokens
IDs i such that i € Syer N [X]. Then, there exists ¢y > 0 such that

(W;X)i
(WGT)Z'

=y Vi€ Spn[X] (23)

Note that 7w, = 7" satisfies (23) for all ¢ € [K]. This means that 7v¢* is a solution to the population risk minimization
problem in (6). What is remaining is that there is no other 7 # #°" such that 7 is a solution to the population risk
minimization problem. As w = w7 satisfies (23) for all i € Syer N [X], if there exists any other 7r that minimizes (6), then
this 7 should satisfy (23) for all possible 2.

Proof of <: Now, we know that G(*) is connected with respect to PST and we want to prove the consistency of estimation.
Let’s assume the inverse: There exists a probability vector = € R¥ such that for an arbitrary index 7 € [K] we have
m; > 75" and m minimizes (6). Then, there must exist j € [K] such that 7; < 7T'5(.3T as both 7 and 7w¢* are probability
vectors. This implies that

;i 5
ot > 1> e 24)
i J

Since G*) is connected with respect to PCT, there exists a path of (vm)%zl € G such that vy =4 and vy = j and
U € Sper for every m € [M]. Since the path (v,,,)M_, is inside the co-occurrence graph G(*), there exists an input prompt
sequence (Xm)%;ll such that X,,, € Q and X, includes the tokens with ID v,, and v,,+1. Using (23) for the input

prompt sequence (X m)M*1 we obtain the following using the fact that these input sequences include the k™ token:

m=1:
7T 7T m
= R Yme [M -1 (25)
Toom T mt1

Combining (25) and the fact that v; = 7 and vy;_1 = j, we obtain

ﬂgiﬂ';

ST ST

i J
which contradicts with (24). This means that if G(*) is connected with respect to PS7, then the only solution that minimizes
(6) is wCT, which is equivalent to the consistency of estimation in Definition 3.1.

Proof of =: Now, we know that the estimation of 7w¢T in (6) is consistent and we want to prove that G is connected with
respect to PCT. Let’s assume the inverse: There exists 4, j € Syer such that there is no path between them in G*) using the
vertices in Syor. Then, there exists a partition S and Sy such that S NSy = 0, S; USs = Syer, i € S1, j € Sa, and there
is no path from any element of S; to any element S, in G(*) using the vertices in Sye:. We construct a probability vector
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7 € R such that v minimizes (6) and 7w # 7¢":
7 € RE
T = 27T]§T Vk e S
T = F,ST Vk € Sy

=k ifk € Sper
T = W=t TR
O7 if k &l Sﬂ.sr

Note that this constructed 7 satisfies (23) for all X € Q, which implies that 7 is a minimizer of (6) and 7t # 7w°". This is
a contradiction to the consistency of estimation, which completes the proof. O

Corollary C.4 (Restated Corollary 3.5). Given k € [K|, let C,, C [K| be the set of all tokens that appear within some
training prompt X € Qi where X ends with token k. Let P* be the transition model learned by the self-attention trained on
X ~ Dy with labels sampled from the ground-truth model P¢*. For any k € [K|, we have that

* _ GT
TkCe = Tk,Cr-

Here Ty, ¢ denotes the probability distribution induced by normalizing the entries of w, over the set C.

Proof. The first observation for the proof is that the co-occurrence graph of self-attention consists of a star graph and some
isolated vertices. Here, the center vertex of the star graph is the last token, and the isolated vertices correspond to the
unobserved tokens associated with that last token. This means that when we exclude the tokens that are not inside the set Cy,,
the remaining graph is connected. Finally, when we apply the proof of Theorem C.3 for a specific column, we obtain the
advertised result. O

C.1. Strict Convexity and Smoothness of Loss Function

In this subsection, we diicuss the convexity, strict convexity, and smoothness of the loss functions. First, we analyze the
empirical loss function £,,(W'), then we connect our analysis with the population loss function £(W). Throughout the
section, we omit the subscript of n in En(W) as we are analyzing the loss function for any arbitrary n. First, we define the
following subspace:

Definition C.5. Define the subspace Sy as the span of all matrices (e; — e;)e; forall i, j, k € [K] such that there exists an
input prompt in the dataset that includes the i token, 5 token is the next token, and k' token is the query or the last token.

The following Lemma proves the strict convexity inside a subspace, which is a slightly generalized version of Lemma 9
in (Li et al., 2024). Even though the proofs are almost the same as (Li et al., 2024), we restate the proofs for the sake of
completeness and notational coherence.

Lemma C.6 (Stronger version of Lemma 3.7, (Li et al., 2024)). Suppose Assumptions 2.3 and 4.1 hold. Then L(W') and
L(W) is convex on R4*?. Furthermore, L(W') and L(W) are strictly convex on Sg and ST, respectively.

Proof. First, we are going to prove the convexity and the strict convexity for E(W) Then, we apply our findings to L(W).
Recall from Definition 2.4 that Sg is the span of all matrices (e; — e;)e; fori,j,k € [K].

o First Case: W € Sg. Let g : Sg — RE*X guch that (W) = EW ET. By definition, this function is linear. In
addition to that, this function g is invertible on g(Sg) by Assumption 2.3 and the domain of the function is Sg. Note that
Assumption 2.3 ensures rank(E) = K.

Let E' = C' = I}, (X!, y/)™_, be a dataset constructed from (X, y;)™_, such that y; = y; and X! = X, E". Then, for
any W’ € RE*X we have the following:

n

Eog (W)= 13" ~loa ((€,) T (X)TS(X/W'e, )
i=1

Using Lemma C.7 and C.8, we know that £ o g~ (W) is convex on RE*K and strictly convex on g(S7). Using these two
facts and Lemma C.7, we have L(W) is convex on Sg and strictly convex on S+ N Sg = S7.
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e Second Case: W ¢ Sg. Using Lemma 2.5, we have the following for any 0 < A < 1:

-~ ~

LW 4+ (1 = \)W3) = L(MIs,, (W7) + Mg, (Wa)) (26)
Then, using (26), we have the following:
AL(W) + (1= NL(W2) = M (s (W) + (1 = AL (Is, (Wa))
2 E(MLsy (WA) + Al (Wa)) = ZOW; + (1 \)Wa)
where (a) follows from the convexity of Zi (W) inside Sg. This implies that £(W ) is convex when W ¢ Sg. Note that
S7 C Sg, therefore we do not look at the strict convexity in this case.

For the loss function £(W), the same procedure can be applied. By Assumption 4.1, the subspace of S7 for the population
dataset becomes Sg; as G(*) are connected for every k € [K]. 0

Lemma C.7 (Lemma 10, (Li et al., 2024)). Let T : X — Y be an invertible linear map. If a function f : Y — R is
convex/strictly convex on Y, then f o T(x) is a convex/strictly convex function on X.

Proof. Let x1 # x9 € X be arbitrary variables. Let y; = T'(x1) and yo = T'(x5). Since T is an invertible map, y; # yo.
Since T is a linear map, T'(Az1 + (1 — A\)z2) = Ay1 + (1 — A)y2 for 0 < A < 1. Then, we obtain the following

A(foT(x1)) + (1 = M)(f o T(x2)) = AMf(y1) + (1 = A) f(y2)
(a)
> fyr+ (1= Ny2)
=foT(Ax1+ (1 —N)z2)
where (a) follows from the strict convexity of the function f. This implies that f o T'(z) is a strictly convex function on X'.

Note that if y; = y», then we cannot achieve (a). Additionally, if f is convex instead of strictly convex, then > in (a) is
changed to >, and f o T'(x) is convex. O

Lemma C.8 (Lemma 11, (Li et al., 2024)). Let E = I,. Let | : Rdxd _, RE ‘be a linear transformation defined as
f(W) = v where vixar; = el Wej. Then, Lo f~1(v) is convex. Furthermore, L o f~*(v) is strictly convex on f(St),
where St is defined in Definition C.5.

Proof. e We first prove that £ o f~!(v) is convex. Let/: R% x RT*4 x R — R be defined as follows:
L(v,X,y) = —log (c;XTS(X(f_l(v))a:L)) .

Then, we have the following:

n n

S —log (e, X S(X, (£ (v)wi1,)) = % S 6w, X, i), @7)

i=1 i=1

~

Lof(v)=

S|

Note that the summation of convex functions is convex. Therefore, it is sufficient to prove the convexity of £ o f ~1(v) by
proving the convexity of ¢(v, X, y) for an arbitrary pair of input sequence and label (X, y). For the simplicity of notation,
we use ¢(v) instead of ¢(v, X, y). Let k be the last token of X . By Assumption 2.3 and log-loss, we know that

m(X), - etveass
> jerr) MUX); - evixatk

L(v) :=4l(v, X,y) = —log (

= log Z m(X)y Celixdtk | log(m(X)y . euyxdﬂc).
JEIK]

Let z € R be a vector such that the (j % d + k)™ element of 2 is zjx g4k = m(X); - e"7x4+* for k € [K], otherwise
z; = 0. Then, the Hessian matrix of ¢(v) is

V2(v) = ((1Tz)diag(z) - zzT)

(172)?
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— (Xlz y1) (Xz[ V2) (X3: V3) N (anln‘ynfl) (X;}, Yn) . . . Output 2:
! ! ! v e ! ! ! * . . A crime is typically defined as an act
pe or omission that violates a law and
is punishable by the government.
.
Teacher _J Data wWGT p
[ 5] sampling . CQ‘ Prompt 3:
. How to say “hello” in French?
. . . . . .
! ! | eee ! ! } . Output 3: -.Lo b
i | I I . T "Hello" in French is "Bonjour."
_ X1 Xz X; Xn—z Xn—l Xn o

Figure 7. Left: Illustration of finite sample learning where the next tokens are sampled from the ground-truth model, which corresponds
to single outputs from multiple IID trajectories. Right: In practice, the scenario is analogous to querying language models with prompts
on different topics and using the responses to train a tiny model. In Theorem 3.4, we characterize the condition when the tiny model can
estimate the ground-truth model consistently.

For any u € R?", we obtain that

2
1

d? d? d?
u' V(v)u = W Z Zj Z u?zj — Z U 25 > 0. (28)
j=1 j=1 j=1

Since z; > 0, i € [d?], (28) follows from the Cauchy-Schwarz inequality (" a)(3"3) > (a ' 3)? applied to the vectors
with a; = u;/z; and 3; = /z;. The equality condition holds kot = 3 for k # 0. This means that ¢(v) is convex.

o Next, we will show that Lo f~1(v) is strictly convex on f(S7). Assume that Lo f~1(v) is not strictly convex on
f(S7). Using the convexity of £ o f~!(v), this implies that there exist u,v € f(S7), ||u|/2 > 0 such that

u' (VQEO fﬁl(v)) u=0
Combining this with the convexity of ¢(v) and (27), we have the following:

u' (V2(v, X;,9))u=0 Vi€ n] (29)

Now, we are going to prove that |||z = 0 if (29) holds. As u € f(ST), there exists W € Sy such that f(W) = u. As
the function f preserves the norm, |[W ||z > 0. By definition of S7, there exist 7, j, k € [K] and (X, y») € T such that
((e; — e;)e,—f7 W) > 0, X includes the j™ token, the last token of X, is the k™ token, and y; = i. On the other hand,
by the generation of the dataset 7, the next token should be inside the input prompt. Then, z;, ;. and 2;, 4 in (28) are
non-zero for this input sequence X 5. Using the equality condition of Cauchy-Schwartz Inequality in (28), we obtain that
Uixdt+k — Ujxd+k = 0. This implies that

0= Uixark ~ Ujxd+k
T T _
e; Wep —e; We;,

= (e — e5) Weg = ((e; — ej)ef , W)

which contradicts with the fact that |u||2 > 0. This completes the proof. O

D. Proof Theorems in Section 4

In this section, we first share supplementary lemmas for the proof of Theorem 4.2.
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D.1. Supplementary Lemmas for Proof of Theorem 4.2

Definition D.1. Let B(W,,r) C R%*4 be a ball centered at a point W, with radius r defined as follows:
BW,,r)={WeSg | |[W-W,|r<r}

Lemma D.2. Suppose that Assumption 2.3 holds. Then, for any (X, y) where the token ID y exists in X, and W € B(W,,r)
the absolute loss difference satisfies the following:

[0(c, X TS(XWay)) — l(c, X "S(XW.,zr))| < 2r max lleill3
1€

This implies that the loss function is (2 max;c (k] ||€;]|3)-Lipschitz.

Proof. Let °° be the token occurrence vector, i.e., 7 is the number of occurrences of the i-th token inside the input

sequence X . Let 7y, be the last token ID of X. Let u € R¥ be the vector such that u, = e} We,, for k € [K]. Then, the
loss function will be the following:

Oy K
Z(CJXTS(XW:BL)) = —log <KU> = —log(zy) — uy + log <Z w?cce“f)

occ
Do TCe i=1

Let u* be the vector such that u} = e] W,e,, for k € [K]. Then, the loss difference will be the following:

K K
E(c;XTS(XWxL)) - E(CJXTS(XW*wL)) = log (Z wfcce“") —u, — log (Z :ch’cce“?> +uy,
i=1 i=1

K K

oce, u; occ u;
E 7% — log g x]e
i=1 1=1

Let f : RX — R be defined as f(u) = log (Zfil :c;-’cce“i). Then, the derivative of the function f is the following:

<

ul

+ [uy — uy,

w?cceu_j '
Vif(u) = K o Vj € [K]
D iy T

Note that f is a continuous function. Using the Intermediate Value Theorem, for any u, u*, there exists v € R¥ such that
v € [u, u*] and it satisfies the following:

K
Fw) = fu) = VI) (= u) £ 3V, @)l - o = Ju -l

As a result, we obtain that

*

[U(c) XTS(XWzL)) — l(c, X TS(XW, L)) < y

+luy —u

K K

occ u; occ uy
E x7e" | —log E 7%
=1 i=1

< 2w — v

=2maxe; (W — W,)e,,

< 2rmax e[
K3

O

Lemma D.3. Let W € B(W,,r) be an arbitrary attention matrix. Then, for any W, € R¥? and § > 0, we have the
following with probability at least 1 — 20

~ ~ log(1/6
£(W) = £(W,) — E(W) + E(W.)]| < 7 ma e[y S22
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Proof. We are going to utilize McDiarmid’s Inequality. First, we check whether the assumption of McDiarmid’s Inequality
is satisfied. Let T = (X, z; 1,,y:))", be the dataset. Let X; be the sample space of (X, x; ,, ;). Let the function
[ x Xy x ... X, — R be defined as follows:

F(T) = L(W) = L(W,) = % > ey XS(XiWai L)) — % > ey X S(X Wi 1))

=1 i=1

Let 7" = (X}, ,y;))j=, be the dataset such that the samples are different for only the j™ sample from 7". In other
words, if j # 4, then (X[, =] ; ,y;) = (X, @i 1,,¥:). Then, we are going to look at the following difference:

K2

FCT) = ST = ~|e] XTS(X, W) — e, XTS(X, W)

_ (6((:;_ X' S(XjWary)) — ey, XfS(X]’-W*a:’Lj))) |

1
<= ey, X S(X;Wap;)) — E(c;XjTS(XjW*ij))‘
1
+ = ey X5TS(XjWay)) — ey XiTS(X W)

(a) 4 i i 2
9 drmaxici [le:llz

n

where (a) follows from Lemma D.2. Now, using McDiarmid’s Inequality, we obtain the following for any £ > 0:

. A . . 2e?

P (|EIZ(W)] — EIL(W.)] - L(W) + L(W,)| > &) < 2exp e
" 16r% maxieuq llesllz
J= n

2exp ( ne’ )
= 2ex
8r2 maxie [k €l
This completes the proof. O

Lemma D.4. For any W, € R¥% and & > 0, we have the following with probability at least 1 — 26

sup  |L(W) — L(W,)—L(W) + L(W,)]
WeB(W,,r)

r>e>0

K21 2/e)/6
< inf {25maxei||g+rmax ||el||§\/8 og((r+2/¢)/ )}
1€[K] i1€[K] n

Proof. For any € > 0, let A, : N(Sg, €) be the minimal ¢ cover of Sg N B(W,, r) in terms of the Frobenius norm. Let

~ ~

the function g : Sg X Sg — R be defined as g(W,W') = L(W) — L(W') — (L(W) — L(W)). Then, we have the
following:

sup  [g(W,W,)| <  sup  min [g(W, W)+ max [g(W, W,)
WeB(W,,r) WeB(W,,r) WeA: WeA.

By definition, there exists W’ € A, such that W’ € B(W  ¢). Then, using Lemma D.2, we have the following:

sup min |g(W,W’)| < 2e max | e;||>
oS i (W W) < 2
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On the other hand, note that the cardinality of A. is finite and it is upper bounded by (r + 2/¢)% * from Corollary 4.2.13
(Vershynin, 2018). Then, we apply union bound to Lemma D.3 and obtain the following with probability at least 1 — 24:

8log(|-Ac:|/9)

max |g(W, W.)| < r max lle:]l3 -

2
Srm&% ||€i||§\/8K log((r +2/¢)/0)

1€ n

Combining all of the results, for any ¢ > 0, we derive the following with probability at least 1 — 29

8K?1 2 )
sup oW W) < 2 s el + r a3 2128+ 2720/
WeB(W,,r) i€[K] i€[K] n
which completes the proof. O

D.2. Proof of Theorem 4.2

Theorem D.5 (Restated Theorem 4.2). Suppose Assumptions 2.3 and 4.1 hold. Let Ry > 0 be a finite constant based on the
structure of W T and Dx. Then, if n > RoK?, with probability at least 1 — 26

) K?log
LW,) — L(W,) < — 85

~

n

Proof. Let rg € R and consider the ball B(W,, (). From Lemma C.6, we know that £(W) is strictly convex on Sg.
Additionally, note that the function £(W) is differentiable twice and its second derivative is continuous. As the B(W,, 1)
is a compact set, there exists a positive constant « > 0 such that the eigenvalues of the Hessian of £L(W') are lower bound
by a. It means that the loss function £(W) is a—strongly convex in the ball B(W,, 1q).

Now, let €4, 1= max;c[k] | €:]|2 and let’s set the following values:

g = S mas (30)

an

Ds = \/8K?log(3/(gd)) (31)

o 25D562mw
r= 7@\/5 (32)
~ o2(min(rg, 1))? (33)

From (30) and (32), we have ¢ < r/4/n, which shows that we can utilize this € in Lemma D.4. From (32) and (33), we have
r < min(rg, 1), which implies that the loss function £(W) is a—strongly convex inside the ball B(W,,r). We are going
to show that W,, € B(W,,r) if n satisfies (33). Let W, be an arbitrary point on the boundary of the ball B(W,,r).

Let W;,,,, be the boundary point of the ball B(W,r/2) such that it is on the line segment between W, and W,,,;. By the
strong convexity of £L(W') on B(W,,r), we have the following:

ar2

ﬁ(Wout) - L(Wznn) > ? (34)
We apply Lemma D.4 to both W,,,, and W,,,;. As r < min(rg, 1), we have log((r + 2/¢)/0) < log(3/(£6)). Then, we

obtain the following for any € > 0 with probability at least 1 — 26

— —~ K21 2
IL(Winn) — LOW,) — L(Winy) + L(W,)| < 2c€2,,. + reiam\/8 og((r +2/¢)/9)
n
(a) 2
< 74[)5&%’"“ (35)
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where (a) follows from the fact that e < Dgsr/+/n. Similarly, we have the following with probability at least 1 — 26

EWort) — £V~ EWora) 4 EW.)| < 2268, 4 7| B2 219/0) 36)
< ZM\;?“ 37)
Combining (34) and (37), we obtain the following for any € > 0
EWous) 2 E(Winn) — LW + E(W.) + O — (10 &
From (35), we obtain the following:
EWinn) < £(Wann) — (W) + B, + (1220 (39)
From (31), (32), and (33), we have that
0477“2 - 8D5\7;%12mx (40)
Combining (38), (39), and (40), we obtain the following
L(Wour) > L(Winn) (41)

Note that (41) is valid for any boundary point of B(W,, r). Due to the convexity of L (W) from Lemma C.6, W,, should
be inside the ball B(W,,r) with probability at least 1 — 24 as a result of (41). Now, let’s use the smoothness of the
loss function £(W). From (Li et al., 2024), we know that L(W) is 2€2, .. v/Lrmaz—smooth. As W, is inside the ball
B(W,,r), we have the following with at least probability 1 — 20:

T €maxV Lmazrz (2) K2 IOg Klg

L(W,) — (W) < EmesyTmesl 0 20

(42)
where (a) follows from (32). This completes the proof. O]

D.3. Proof of Corollary 4.3

Corollary D.6 (Restated Corollary 4.3). Consider the setting in Theorem 4.2 and suppose Assumptions 2.3, 3.2, and 4.1
hold. Then, if n > RoK?, with probability at least 1 — 2§

K?log %

n

W, — W3, < 43)

Proof. We show in the proof of Theorem D.5 that with probability at least 1 — 29 that W, e B(W,,r).

With the same argument in the proof of Theorem D.5, we have the strong convexity inside B(W™, ry): From Lemma C.6,
we know that L(W) is strictly convex on Sg. Additionally, note that the function £(W) is differentiable twice and its
second derivative is continuous. As the B(W,, () is a compact set, there exists a positive constant o > 0 such that the
eigenvalues of the Hessian of £L(W) are lower bound by «. It means that the loss function £L(W) is a—strongly convex
in the ball B(W,,r). Recall that » < min(rg, 1) from (30), (31), (32), and (33). Therefore, the loss function £(W) is
a—strongly convex in the B(W,, r) as well.

By a—strong convexity of L(W') on B(W,, r), we obtain that

LIW,) — L(W,) > M

In addition to that, the estimation of W°? is consistent by Theorem 3.4 using Assumption 4.1. This implies that W°¢T = W,
This completes the proof. O
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Trajectory from single prompt
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. (Xl‘v)ﬁ) (Xz‘,yz) ¢ (Xn—l‘v)’n—il‘ (Xn‘-J/n) \./_\‘
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5] sampling

|
[ \S)
__,‘I§>
A
N
=

S

Figure 8. Illustration of single-trajectory learning where next tokens are sampled from a single trajectory. The setting is
analogous to asking language models a broad question and constantly collecting the responses.

E. Proof of Theorems in Section 5
E.1. Proof of lemma 5.2

Definition E.1. Given sample space @ = {0,1}° and let Ay, = 1(y, = k). Let Fy, ¢t > 0 be a filtration with
Fio =10,Q} and Fy, ; = 0(Ag |7 € [t]), where o refers to the o-algebra.

Lemma E.2 (Restated Lemma 5.2). Let PST be a transition matrix with non-zero entries. For all k € [K],
P(limy,— 00 Skn = 00) = 1.

Proof. Let 7, = min;¢[g) mix. Consider any token & € [K], Then we have:

K

Pr(Ag il Froo1) L Plye = k) = S Py = klz, = i)p(@: = i) (44)
=1

To proceed, consider a single trajectory starting from X; = [K], then at time ¢, the length of X} is ¢ + K — 1. The minimum
of P(y: = k|Z; = ¢) can then be written as

min P(y; = k|Z; = ¢) = min ik St
i€[K] i€[K] SktTir + Zje[K]J# Sj4mij

> min Tk Skt
T ie[K] Sk,tﬂ'ik + (t + K — Sk7t — 1)(1 — 7Tik)
_ min TikSk,t

1€[K] Sk:,t(27rik — 1) + (t + K — 1)(1 — 7Tik)

. Tik

= 45

€K (2m — 1) + A @
> mi Tik ’

min
TaelK]) 2mig — 1)+ (t+ K — 1)(1 — )

. Tik

= min

ieK]t+ K -2+ (3— K —t)my
(@) 7
> Ik
ot

where (a) holds for sufficiently large ¢ where ¢ > K /7. Then we have:
T o 7
k = . k
Pr(A | Fra1) > = > _plo =1i) = — (46)

=1
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Hence, the sum of the probabilities over infinite iterations diverges to infinity, i.e., Zti 1 Pr(Ayg ¢|Fk.t—1) = oo. Using the
second Borel-Cantelli lemma, we have:

Pr(lim sup Ak’t) =1 47)

t—o00
which reveals that token & can be observed infinitely many times in the trajectory. This implies P(lim,,_,oc Skn = 00) =
1 where S, = >4 Ak.s. O
E.2. Proof of lemma 5.3

Lemma E.3 (Restated Distribution collapse Lemma 5.3). Consider the CCMC model with K = 2 defined in Section 5.1.
Suppose that X includes all vocabulary at least once. Recall that m(X,) denotes the empirical frequency of individual
states where X, is the state trajectory at time t. For any t > to with a sufficiently large t, we have:

E[m(X,)qs] <t

where g = 1 — p/(1 — p). Furthermore, when p < 1/2,

p | -0

Proof. Let S; and L; be the number of token 2 in the input prompt and the length of the input prompt at iteration ¢,
respectively. Note that S; > 1. Then, at iteration ¢, we have:

St—1p
E[S:] = Si—
S =St g T S ) 48)
=81(1+ b )

Si—1(2p — 1) + Li(1 —p)

Since the probability of selecting a specific token is weighted by the number of occurrences, when p < 1/2, the model tends
to sample token 1 over 2. Moreover, due to the positive reinforcement nature, selecting token 1 as the label will further
increase the probability of selecting token 1 in the next round. Thus, for any p < 1/2, there exists a sufficiently large to
such that when ¢ > to, L; > S;_1. Hence:

p
B =St g e T L)

) (49)

p
~S_1(14+ ——mM-
-1 Lt(lfp)

=Si1(1+p/Ly)

where p = p/(1 — p). Recall that m(X;)s = f—i For t > t( where ¢ is sufficiently large, we have:

Bim(Xi)2] =5 | 3|

:E{ Si-1(1+ 5/ L) ]

Li—1(1+1/Le-1) -
1+p/L
= E[m(X,1),] - 1+1%1

~E[m(X:—1)2](1 — q/L4)

where ¢ :=1—p = (1 — 2p)/(1 — p). Applying this equation recursively, we get:

E {M} = H(l —q/7) (%) H exp(—q/7) = eXp(—qZ 1/7) (2) exp(—qlnt) = t1 (51)

T=1 T=1 T=1
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where (a) comes from 1 + = < e* for any « and (b) comes from the fact that 23:1 1/7 > Int when ¢ is large. By
Euler-Maclaurin formula, H; = 23:1 1/T=Int+~vy+4+1/(2t) —e: = Int+~ > Int where v ~ 0.5772. As aresult, for a
sufficiently big ¢, E[m(X;)2] < t~% as m(X)s is a finite number. Moving forward, since E[m(X;)2] + E[m(X;)1] = 1,

we have: § [ZE)X(Z;T} . L Tgt;{i)i  E[m(Xy)s] t=r 1 (52)

1 -Em(X;)s] So e aw 1

Asp <1/2,q € (0,1), when t — o0, the ratio lim;_, 21&1%1 goes to zero. Combining the fact that %:%f > 0, it implies:
. m(X¢)o

lim E|——2%2| =0 53

s {m(Xt)l] oY

O

F. Further Related Work on Reinforcement Learning / Data-Driven Control

The coverage condition that we have found for the consistency of estimation is also related to the data coverage condition in
offline reinforcement learning (Chen & Jiang, 2019; Xie & Jiang, 2020; Zhan et al., 2022; Jin et al., 2022; Foster et al., 2022;
Rashidinejad et al., 2023). In these works, given a dataset collected according to offline policies, we wish to learn optimal
policy, which raises a distribution shift challenge. Their statistical analysis relies on the data coverage conditions during
dataset collection to withstand the distribution shift. Our work is related to these at a high level since we provide necessary
and sufficient conditions on the input prompt distribution for the consistent estimation of a ground truth attention matrix.
Furthermore, we establish finite sample complexity guarantees under the coverage conditions that provide the consistency of
estimation.

Our work also relates to the literature on the statistical aspects of time-series prediction (Kuznetsov & Mobhri, 2014; 2016;
Simchowitz et al., 2018; Mohri & Rostamizadeh, 2008) and learning (non)linear dynamics (Dean et al., 2020; Ziemann &
Tu, 2022; Dean et al., 2020; Tsiamis et al., 2022; Sarkar & Rakhlin, 2019; Sun et al., 2022; Mania et al., 2020; Oymak &
Ozay, 2021; Block et al., 2023). Learning dynamical systems from a single trajectory has attracted significant attention
in the recent literature (Ziemann et al., 2022; Oymak, 2019; Sattar & Oymak, 2022; Oymak & Ozay, 2019; Matni & Tu,
2019; Foster et al., 2020; Ziemann et al., 2024). As long as the stochastic process is mixing (e.g. ergodic Markov chain,
stable dynamical system), the samples from the trajectory are approximately independent, and the underlying hypothesis
can be learned under suitable assumptions (Yu, 1994). There is also a recent emphasis on mitigating the need for mixing
(Simchowitz et al., 2018; Ziemann & Tu, 2022). Unlike dynamical systems, MDPs, or Markov chains, the token generation
process of self-attention is non-Markovian as it depends on the whole past trajectory. Thus, our work initiates the statistical
and consistency study of learning self-attention process by highlighting its unique nature and challenges.
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