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Abstract—Compared to stationary wind turbines, mobile wind
turbines (MWTSs) can move within the transportation system
and supply power to electrical microgrids. With the goal to
enhance the power distribution system (PDS) resilience, MWTs
can help in service restoration and supply power to islands
that are separated from the main grid during emergencies.
However, MWTs typically start to operate only after faults
driven by high-impact low-probability (HILP) events occur. To
improve service restoration efficiency with MWTs, we propose
a framework based on deep reinforcement learning (DRL) for
MWT pre-positioning. This framework uses the DRL agent’s
training rewards to determine the pre-position of MWTs before
HILP emergencies arise. Since the MWT movement is a discrete
decision, we applied the Deep Q-learning (DQL) and Double Deep
Q-learning (DDQL) algorithms as the DRL agent models. The
agent provides MWTs actions on an integrated system comprising
an 11-node transportation system (TS) and a 33-bus PDS.

Index Terms—Mobile wind turbine (MWT), pre-positioning,
resilience, deep reinforcement learning (DRL), Deep Q-learning
(DQL), power distribution system (PDS).

I. INTRODUCTION

In recent years, high-impact low-probability (HILP) inci-
dents such as hurricanes, floods, wildfires, and winter storm
have been evidenced to cause widespread, prolonged power
outages, significant equipment damage, and severe economic
losses [1]. From 1980 to 2023, the frequency of billion-dollar
disasters has steadily increased, with many of them resulting
in widespread power outages [2]. Power outages driven by
extreme weather not only caused significant economic loss
but also has threatened human lives [3]. In 2021, a historic
winter storm impacted many northwest, central, and eastern
states in the US, leading to widespread power outages and the
deaths of 226 people due to a shortage of energy for heating
[4]. In response to such threatening events, enhancing service
resilience has become a primary goal of the energy community.

With the ability to supply power to essential loads and
help reduce economic losses, utilizing mobile power sources
(MPSs) for service restoration can be crucial [5]. Due to their
significant mobility and flexibility advantages over stationary
energy sources, MPSs can move to isolated areas and supply
power to aid in faster service restoration [6]. For instance, the
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study in [7] proposes a co-optimization approach for integrat-
ing MPSs and dispatching repair crews, formulated as a mixed-
integer second-order cone programming model to enhance
power distribution systems (PDSs) resilience. The study in
[8] proposes a two-stage restoration scheme for PDSs, lever-
aging the full potential of MPS dispatch alongside dynamic
distribution system reconfiguration under various seismic force
scenarios. The study in [9] accounts for decision-dependent
uncertainty in the availability of MPSs, considering travel and
waiting times to provide a more realistic estimation of their
contributions to enhancing PDS resilience. By strategically
deploying MPSs, the study in [10] proposes a risk-averse
model that generates a public-safety power-shutoff plan to
balance wildfire risks and power outages.

However, available research in the existing literature [S]—
[10] focuses on MPSs that rely on traditional energy sources,
such as fossil fuels, which generate greenhouse gas emissions
and are harmful to the environment. The development of
sustainable energy systems is considered essential to mitigate
the impacts of climate change-driven HILP incidents [11].
To address environmental problems, sustainable energy re-
sources are widely integrated into power systems [12]. Mobile
wind turbines (MWTs) are small-scale, easily-portable wind
turbines commonly used for off-grid power generation or
supplying power to remote locations [13]. The study [14]
incorporates the joint use of MWTs and electric thermal stor-
age into the microgrids energy portfolio, enabling load profile
shifting and preventing additional costs associated with peak
demand. In reference [15], MWTs combined with hydrogen
storage units are applied in microgrids to minimize expected
power outage costs and reduce carbon emissions.

With the advancement of artificial intelligence, machine
learning methods are increasingly utilized to enhance the
service resilience in power systems [16]. Unlike classical
optimization methods, deep reinforcement learning (DRL)
does not require a precise objective function and can handle
higher-dimensional data than convex optimization methods
[17]. In addition, DRL can make decisions based on the
state of the current time step, facilitating real-time and online
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Fig. 1. The proposed DRL-based MWT pre-positioning framework for PDS restoration.

decision-making [18]. With proven advantages, the DRL was
also applied to identify the optimal strategy for restoring the
PDS with MPSs. In [19], a single-agent DRL approach was
introduced to optimize the dispatch decisions of MPSs for
the restoration of critical loads, considering the uncertainties
in electrical consumption. To simplify the complex actions
of different repair crews and various types of MPSs during
service restoration, the authors in [20] applied a multi-agent
DRL (MADRL) approach to reduce the action dimension for
each agent. To integrate the discrete MPS action of routing
with the continuous MPS action of charge/discharge schedules,
reference [21] employs different agents within a MADRL
framework, which addresses the hybrid discrete-continuous
action space for MPSs and derives the restoration scheme.
In previous research on service restoration policies for MPSs
based on DRL, as referenced in [19]-[21], all MPSs were
stationed at the same depot and began moving only after
the disaster occurs. However, a research gap is found in pre-
positioning MWTs using DRL. The DRL is better suited for
natural signals without a clear mathematical formula, as the ac-
tual data distribution is analytically unknown [22]. For MWTs,
wind power generation depends on the local, unpredictable
wind speed. Therefore, applying DRL to pre-position MWTs
is crucial for identifying suitable positions for allocating
MWTs. To address the issue of MWTs pre-positioning, we
developed a framework for pre-positioning of MWTs based
on a single-agent DRL algorithm. We use episode rewards of
DRL training to evaluate the pre-positioning of MWTs. This
framework is validated in an environment consisting of an 11-
node transportation system and an IEEE 33-bus test system.
The remainder of the paper is organized as follows: Section
IT presents the MWT pre-positioning framework and the
DRL algorithm. Section III discusses the training results and
compares the DRL model with and without pre-positioning
decisions. Section IV summarizes the research findings.

II. PROBLEM DESCRIPTION
A. DRL-Based Framework

The general idea of the proposed MWT pre-positioning
framework is depicted in Fig. 1. The framework comprises

two main components: the reinforcement learning agent and
the environment. The environment is responsible for managing
MWT actions (including movement and power delivery), sim-
ulating the system (involving the PDS and the transportation
system (TS)), and evaluating actions based on system infor-
mation and the reward function. The DRL agent comprises
a DRL network that determines the actions of the MWTs
based on the state, which includes environment information.
The agent is updated with the reward for the action that it
provided. In our framework, the agent must provide two types
of actions: one for the pre-positioning of the MWTs, depicted
by the brown arrow in the framework, and another for the
MWTs restoration of the PDS, depicted by the green arrow in
the framework. Initially, the agent needs to provide the pre-
positioning action before a natural disaster occurs. The agent
receives the initial state of the environment without faults
and provides the pre-positioning information to the MWTs.
The environment then moves the MWTs to the pre-positioned
locations and simulates the faults caused by the natural disaster
in the TS and PDS. Once the disaster occurs, MWTs begin to
operate. The environment provides information on the MWTs
and the system as the state and calculates the reward for
the agent. The agent updates and provides restoration actions
to MWTs, guiding the restoration work at each time step.
The loop of MWT restoration actions, represented by the
green arrow in the framework, continues until the restoration
process is complete. At each time step, the framework provides
a reward, and the total reward accumulated throughout the
process is used to evaluate the pre-positioning action. In
the context of DRL training, each process is considered one
episode, with the occurrence of faults due to natural disasters
being randomly generated in each episode.

B. DRL Algorithm

The dispatch of MWTs for service restoration focuses solely
on the destination node for each MWT as they route through
the transportation system, making it possible to model this
process as a Markov decision process (MDP) with a discrete
action space. The MDP is fundamental in RL and is defined
as a four-dimensional tuple, which is used as the experience



for the DRL learning process. The MDP tuple is (S, A, R, P),
in which [23]:

« S represents the environment state, with s, indicating the
state of the environment at time slot ¢.

o A denotes the action taken by the agent, with a; repre-
senting the agent’s action at time ¢ corresponding to the
state ;.

o R represents the reward received by the agent for its
action in a given state, with r; indicating the reward
obtained by the agent when taking action a, in state s;.

o P denotes the transient stability function, which evaluates
the stability of state transitions using s;, a;, and Syyi.
P(st,a;) represents the transition where the agent takes
action ay in state sy, resulting in a transfer to state s .

In our framework, we utilize a single agent to provide
actions for all MWTs. This agent is a DRL model, allowing
it to learn from experience, which consists of the MDP
tuple, directly from the environment through exploration and
exploitation [24]. For the DRL model in this paper, we em-
ployed Deep Q-Learning (DQL) and Double Deep Q-learning
(DDQL) as the agent model. In DQL, the agent calculates a
Q-value using S, A, and R, representing the expected reward
when the agent chooses action A in state .S. However, the DQL
architecture always selects the action that maximizes the Q-
value, which can result in an overestimation in the training
process. To address this issue, DDQL employs a different
structure by using two neural networks: one network selects
the action, while the other evaluates the selected action. The
details of DQL and the DDQL are provided in Algorithm 1:

In line 1, the replay memory space D is created to store
the experiences from training. In line 2, two Q-networks are
established. One Q-network is used to determine the action for
MWTs, while the other, known as the target network, is used
to evaluate the actions generated by the first Q-network. From
line 3, the loop of the training episode starts. In lines 4 and
5, the state s; should be initialized and the fault information
in the current episode is generated. From line 6, the episode
starts. From line 7 to 11, the DRL agent provides the actions
to MWTs for pre-positioning and restoration action a; for the
current time step based on the state information s;. In line 13,
the environment will change due to a;, giving the new state s
and reward 7. In line 14, the tuple (s;, a, ¢, s;) will be saved
in the memory D as the experience. Once the experience is
sufficiently accumulated, from the line 15 to 25, the model
starts training by using the loss function to update the weights
of the Q-networks. In line 15, the agent randomly selects an
experience sample from replay memory D and calculates the
target value y; based on the current time step. If the episode
has ended, the target value y; equals the reward value for the
last time step. If the agent uses DQL, the target y; is calculated
using the single Q-value from the target Q-network and the
reward value. Conversely, if the agent uses DDQL, the target
y; is determined by selecting the lower value from the two
Q-networks and calculating y; with the reward value. Then,
in line 23, the agent computes the loss function based on the

Algorithm 1 DQL & DDQL Algorithm for MWT Agent
1: Initialize replay memory D
2: Initialize action-value function Q(s, a;6) and target func-
tion Q with random weights 6~ =6
3: for episode =1, M do

4: Initialize state s;

5: Set fault and input to the environment

6: for time step t = 1,7 do

7: if t=1 then

8: Generate pre-position of MWTs as ay

9: else if ¢ # 0 then

10: Trigger the fault

11: Generate MWTSs restoration action for as a;
12: end if

13: Getting new State information s} and reward r;
14: Save (s, a,re,s}) into D

15: Randomly samples (s;, a;,7;,s}) from D

16: Set y; = r; if episode terminates at Step j + 1
17: Otherwise

18: if DQL then

19: y; = r; +ymaxg QA(S;, a;67)
20: else if DDQL then
21: y; = r; +YQ(s}, argmax(Q(s}, a’)))

22: end if
23: Li(0;) = (y; — Q(s5,a;30))*
24: Update 6 with loss function
25: Update the state s = s’
26: end for

27: end for

target value and the Q-value. In line 24, the agent updates 6
based on the loss function. In line 25, the state information is
updated as the next input for the agent.

III. NUMERICAL CASE STUDIES
A. DRL Training Environment

The DRL environment simulates the problem that needs to
be solved, allowing the agent to make decisions based on the
current state of the environment. The environment of the MWT
pre-positioning consists of three parts: (i) a system simulation
of the TS and PDS; (ii) a wind speed generation function
and MWTs output power estimation; (iii) an action reward
function that calculates rewards based on the power supplied
by the MWTs and the load cost at PDS load points.

1) The Integrated Power-Transport Network: In this paper,
the natural disaster causes damage not only to the PDS but
also to the TS, requiring MWTs to move within the available
TS and aid in restoration on the PDS. Therefore, establishing
an integrated Power-Transport network is essential for the
DRL environment. The TS and PDS are illustrated in Fig.
2. In this paper, we use the IEEE 33-bus test system [25] as
the PDS coupled with an 11-node transportation system [20].
Each node in the TS is coupled with a bus in the PDS. The
fault configurations within the PDS involve randomly selecting
several power distribution lines to fail at different times during
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Fig. 2. The integrated power-transport network of the DRL environment

the process. This results in the segmentation of the PDS into
multiple disconnected islands. The TS fault is modeled as
road damage caused by a disaster. Throughout the simulation,
these damaged roads will not be repaired, preserving the
existing road conditions to restrict MWT transport. In each
case, up to three roads in the TS will be randomly selected
to be unavailable during the disaster. To provide PDS and TS
information to the DRL agent’s input state, we use the number
of damaged power lines and the power supply status of the load
points to represent the PDS information. For TS information,
we use the MWTS’ locations and the shortest path matrix of
the TS, considering road damage.

2) MWTs Power Generation: In our paper, we applied three
MWTs in the framework. The power output of a wind turbine
follows a truncated cubic relationship with wind speed [26].
We set the cut in speed to O mph. The MWT’s power output

can be expressed as follows:
3

v
ru3 Pmal‘ 0 < v < vmal‘
maz
P = Prax U > Umaz
0 V> Vout

Umaz Tepresents the rated wind speed of the wind turbine,
and P,,,, denotes its rated power output. v,,; indicates the
cut-out wind speed of the turbine, while v refers to the wind
speed at the current time step. In this study, the rated wind
power output, P,,,,, for each MWT group is set at 1,000
kW. The wind speed, v, varies between 30 and 40 mph and
follows a Weibull distribution that is randomly generated for
each traffic node at every time step. The v, is 45 mph, and
the v,y is 60 mph. The MWTSs’ power information includes
two parts: the status of the MWT (whether it is supplying
power to the PDS or not) and the wind power generation.
Both pieces of information will be part of the agent’s input
state.

3) Reward Function: The reward for each timestep depends
on the cost of loads supplied by the MWTs and the wind power
generation of the MWTs. To minimize the wind spillage, if
the MWTs’ generated power exceeds the load demand on the
same island, the wasted wind power will incur a penalty based
on the average load cost of the island’s power demand. The
reward equation for each MWTs is:

PymwT

PymwT
ptotale )

Pioad
o ptotale

Ryrwr = Cload — Cavg(Ptotal — (D

Rarwr represents the reward value for each agent, where
Cload denotes the cost of the load supplied by the MWT in
the current island of the PDS. ¢, is the average load cost of
the island. ppswr signifies the wind power output of MWTs,
while potq; indicates the total power supplied by MWTs in
the current section of the PDS. N; represents the transfer
coefficient, which reduces the magnitude of the reward. The
agent’s reward is the sum of the rewards from the three
MWTs at each time step. Each training episode consists of 24
timesteps, with each timestep representing half an hour. The
evaluation of the MWTs pre-positioning is based on the total
reward accumulated over all timesteps in a single episode.

B. The Deep Learning Network and the Action in DRL

The MWTs actions consist of selecting a destination node
in the TS, giving the agent a discrete action space. In this
framework, we use a Convolutional Neural Network (CNN)
as the deep learning model for the DRL to perform the
classification tasks. The size of the action space corresponds to
the number of output labels for the CNN. In each time step, the
CNN generates a label that is used to stand for a specific action
combination. The action combination consists of the target
transportation node in TS for each MWT. In the integrated
power-transport network, we have three identical MWTs and
ten transportation nodes capable of supplying power to the
PDS. Thus, excluding combinations with the same MWT
positions but different vehicle positions, the number of output
labels for this convolutional network should be 120 (i.e., the
action space size is 120). The input state will be reshaped to
a group of 12212 matrix. and the structure of the CNN is:
Input(3, 12x12) — Conv1(64, 10x10) — Pooll(64, 5x5) —
Conv2(128, 4x4) — Pool2(128, 2x2) — FC1((64x2)x2x2,
144) - FC2(144, 72) — FC2(72, 120). The learning rate 7 is
le-4, and the minimum exploration rate € is 5e-4.

C. Training for MWT Pre-positioning

To compare the agent models base on DQL and DDQL,
we conducted two separate training sessions with different
models. Since the pre-positioning should be applicable to
various fault settings in the PDS and TS, we use the moving
reward, calculated from the latest 500 episode rewards, to
evaluate the performance of the agent model. Figure 3 shows
the moving reward curve for the DQL and DDQL models,
as well as the difference between the actual episode reward
and the moving reward. During the training, we applied
the e-greedy method to make the agent do exploration and
exploitation and get experience [23].
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Fig. 3. Training moving reward for different networks.

At the start of training, both agents take random actions,
resulting in poor performance for both, with no significant



differences between the two moving reward curves. After 5000
episodes, as the € value decreases, both agents begin to exploit
more, leveraging the experience gained from previous actions
at each timestep. The initial moving reward of the agent model
using the DQL algorithm is lower than that of the agent model
using the DDQL algorithm. This difference is caused by the
overestimate of the DQL algorithm.
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Fig. 4. The moving reward curve of training in different cases.

Since the damage caused by natural disasters is unpre-
dictable, the PDS and TS remain undamaged, and all MWTs
are parked at the depot before the pre-positioning command.
As a result, the input state of the agent cannot provide
sufficient information for MWTs to move to specific locations
based on the specific damage information in the PDS and
TS in each episode. Therefore, in each episode, the agent
will provide actions for the first timestep based on the same
state input matrix. For the agent model with DQL, due to

overestimation, the agent will provide pre-positioning for
MWTs that yield high episode rewards in certain fault settings
in the PDS and TS. This is because these actions have higher
Q values in the Q table, leading the agent to believe they have
the best expectations while ignoring some poor reward values
associated with the same MWTSs’ pre-position actions. This
will lead the agent to provide suboptimal actions. However,
with the DDQL agent model having separate networks for
estimation and action selection, the agent does not solely rely
on actions with high Q values from the action network. This
separation encourages the agent to explore a wider range of
actions, rising the likelihood of discovering the optimal action.
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Fig. 6. The pre-positioning decisions of MWTs in the TS.

The pre-positions of the three MWTs are shown in Fig.
6. The selected locations in the TS are Node 1, Node 9,
and Node 10. However, as illustrated in Fig. 3, there is a
significant discrepancy between the real episode reward and
the moving reward. This is because the damage in the PDS and
TS is randomly generated in each episode, causing variations
in faults that require changes in the MWTs’ strategy, making
the training difficult to converge. To test the pre-positions of
the MWTs and ensure that the framework provides convergent
results, we applied three cases with different fault settings in
the PDS and TS.

To demonstrate the efficiency of MWT pre-positioning
approach, we used two DDQL agent models on three different
cases. In one model, the MWTSs’ starting points are the pre-
positions shown in Fig. 6. In the other model, all MWTs start
at the depot node of the TS. The training result is shown in
Fig. 4. The three moving reward curves for training based
on the three different cases show that the performance of
the agent model with MWTSs’ pre-position is better than the
agent model without MWTSs’ pre-position. Additionally, all
standard deviations decrease to a lower level. However, due
to the unpredictability of wind speed, the moving reward still
exhibits fluctuations.

Figure 5 illustrates the restoration scenario based on the
PDS and TS faults in case 3. R1 represents the restoration
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Fig. 5. Percentage of the total restored demand over time with the fault setting in Case 3.



TABLE I
COST SAVING WITH MWTS CONTRIBUTION

Load Cost Saving Ratio

Case  Cost Saving ($) (%)
R1 0 0
R2 17,604k 32.35
R3 22,517k 41.37

process without MWTs, R2 represents the restoration process
with MWTs but without pre-positioning, and R3 represents
the restoration process with both MWTs and pre-positioning
decisions. It is evident that the MWTs help reduce the loss
of the load in the PDS. Comparing the load restoration values
over the first three hours, MWT pre-positioning significantly
improves the efficiency of the restoration process as MWTs
start supplying power earlier. From the fourth to the eleventh
hour, the load restoration between R2 and R3 shows no
significant difference. This difference is caused by the MWTs’
power generation. Table I shows the load cost saved by MWT
restoration. The Cost Saving refers to the load cost supplied
by MWTs during the restoration process. The Load Cost
Saving ratio is the proportion of the MWT restoration load cost
relative to the total load cost of the PDS. MWT pre-positioning
helps the PDS save 9.02% of the total load cost. Thus, MWT
pre-positioning can enhance the efficiency of PDS restoration
following natural disasters and reduce economic losses.

IV. CONCLUSION

In this paper, we present a novel restoration framework de-
signed to enhance the resilience of PDSs impacted by natural
disasters. The proposed DRL framework provides optimal pre-
positions and discrete actions for MWTs, enabling effective
scheduling and restoration strategies for PDSs using MWTs, as
well as ensuring power supply to loads isolated from the main
grid. This framework is tested on an integrated power-transport
network with one IEEE 33-bus test system and an 11-node TS.
The training results demonstrated that the proposed framework
enhances system resilience by determining pre-positions and
movement actions for MWTs in anticipation of emergencies.
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