
RLJ | RLC 2024

Shield Decomposition for Safe Reinforcement
Learning in General Partially Observable
Multi-Agent Environments

Daniel Melcer
Northeastern University
Boston, MA 02115
melcer.d@northeastern.edu

Christopher Amato∗

Northeastern University
Boston, MA 02115
c.amato@northeastern.edu

Stavros Tripakis∗

Northeastern University
Boston, MA 02115
stavros@northeastern.edu

Abstract

As Reinforcement Learning is increasingly used in safety-critical systems, it is im-
portant to restrict RL agents to only take safe actions. Shielding is a promising
approach to this task; however, in multi-agent domains, shielding has previously
been restricted to environments where all agents observe the same information.
Most real-world tasks do not satisfy this strong assumption. We discuss the the-
oretical foundations of multi-agent shielding in environments with general partial
observability and develop a novel shielding method which is effective in such do-
mains. Through a series of experiments, we show that agents that use our shielding
method are able to safely and successfully solve a variety of RL tasks, including
tasks in which prior methods cannot be applied.

1 Introduction

Reinforcement learning is gaining popularity as a general method to solve a wide variety of tasks, such
as car racing (Wurman et al., 2022), datacenter cooling (Lazic et al., 2018), and robotic warehouse
operations (Knight, 2020). However, in all of these domains, a series of bad actions by the controller
can lead to catastrophic failure. Reinforcement learning requires extensive exploration in order to
learn a policy which can solve a given task (Sutton and Barto, 2018), and deep RL agents may still
behave unpredictably, even after convergence (Clark and Amodei, 2016). Therefore, the use of RL
without any modifications or external checks would be inappropriate for many potential applications.

In this paper, we focus on shielding, a technique which addresses this issue using ideas from Formal
Methods (Alshiekh et al., 2018; Bloem et al., 2015). While shielding is a promising approach, existing
methods for multi-agent shielding are limited by assumptions on observability—current shielding
methods assume that all controllable agents observe all safety-relevant information (ElSayed-Aly
et al., 2021; Carr et al., 2021), or at least the same safety-relevant information as all other agents
(Melcer et al., 2022); alternatively, they are restricted to specific domains (Althoff and Dolan, 2014),
or provide probabilistic guarantees by modeling the intentions of other agents in the environment
(Nakamura and Bansal, 2023). There does not yet exist, to our knowledge, a shielding method that
can protect against unsafe actions throughout the entire training and execution process in multi-
agent domains with general partial observability; i.e., environments in which each agent may receive
a different observation, the agents cannot communicate with each other, and there may not be any
single agent that observes all safety-relevant information, where. However, such general domains
are exactly the focus of multi-agent reinforcement learning (Gronauer and Diepold, 2022; Albrecht
et al., 2023), as real-world tasks often present arbitrary restrictions on observability.

We first discuss the challenge of multi-agent shielding in general partially observable domains, and
contribute an abstraction to express safety properties in such domains. We then present an algorithm

∗Equal Advising

RLJ | RLC 2024

for shielding in these domains: We begin by introducing a lightweight algorithm to synthesize a shield
for some instances of partially observable environments and describe certain conditions that cause
this algorithm to fail. Next, we describe an extension to this algorithm that can find a shield in many
of these harder instances, using a novel SAT encoding of the problem for efficiency. Finally, we use
a series of experiments to show that this family of methods correctly prevents safety violations in a
wider variety of environments than prior shielding methods. We also show that in many domains,
decentralized shields accomplish this feat without negatively affecting the task-specific performance
of the agent. We conclude by discussing several further research directions related to this work.
Overall, our method is a significant step toward making multi-agent reinforcement learning methods
safe in realistic partially observable settings.

2 Related Work

Several methods have extended shielding (Alshiekh et al., 2018; Bloem et al., 2015) to partially
observable single-agent domains. Mazzi et al. (2021) use expert human knowledge to avoid unsafe
selections within the POMCP algorithm (Silver and Veness, 2010). Carr et al. (2022); Junges et al.
(2021) both describe belief support-based methods for shielding in such environments; i.e., methods
that track the set of possible ground truth states. However, these methods assume a single observer,
and have no means for coordinating actions among multiple agents to collaboratively enforce safety.

Alternatively, shielding has been extended to multi-agent environments, both with communication
(ElSayed-Aly et al., 2021) and without communication (Melcer et al., 2022). However, these methods
don’t allow for general partial observability—all agents are assumed to observe the same safety-
relevant information. There have been early attempts to extend shielding into partially observable
multi-agent domains; for example, two-player one-sided POSGs (Carr et al., 2021). However, this
method relies on several strong assumptions; for example, one agent must be able to observe all
safety-relevant information.

Hsu et al. (2023) presents a survey of methods for safety-critical control, placing a variety of meth-
ods such as model-predictive shielding (Bastani, 2020) and control-barrier functions (Wieland and
Allgöwer, 2007) into a single unified framework. This survey includes methods for agents to stay
safe when interacting with humans or other agents, by modeling their behavior and expected actions
(Nakamura and Bansal, 2023). In contrast, our method creates a decentralized shield for the whole
system; we synthesize a specific protocol with the assumption that all agents follow it. The survey
also discusses methods for enforcing the safety of multi-agent systems in specific domains (Althoff
and Dolan, 2014); in contrast, our method is a general framework for any environment a model is
available for.

3 Preliminaries

For set A, we use 2A to denote the powerset of A. The Cartesian product of two sets A1, A2, denoted
as A1 × A2, is the set {(a1, a2)|a1 ∈ A1 ∧ a2 ∈ A2}.

3.1 Environments

A reinforcement learning environment may be complex: it may have an infinite state space, a
complex stochastic transition structure, and a reward function which is irrelevant for safe operation.
Therefore, shielding works utilize abstractions of the environment—typically finite-state transition
systems—taking as input a safety specification over this abstraction (Alshiekh et al., 2018; ElSayed-
Aly et al., 2021; Melcer et al., 2022).

We use a slightly different definition of an environment compared to prior works in order to better
separate the dynamics of the environment itself from how agents observe and interact with it:

RLJ | RLC 2024

Definition 1 (Environment). An environment is a non-deterministic finite transition system E =
(Q, Q0,A, δ) where Q is a finite set of states, Q0 ⊆ Q is the set of initial states, A is a finite set of
actions, and δ : (Q × A) → 2Q is the transition function.

We note that δ(q, a) may be empty for some q ∈ Q, a ∈ A—there might be no successor state.

While we will generate a shield that operates over an environment as defined above, the field of
reinforcement learning typically focuses on more complex environments; i.e. those with an infinite
state space or a reward function. For example, it is common to utilize a Dec-POMDP (Goldman and
Zilberstein, 2004) as a very general formalization of the environment, and to develop reinforcement
learning algorithms that operate over any Dec-POMDP. This is not an exclusive decision—shielding
can operate in tandem with a reinforcement learning process in such environments, rather than
replace it. Appendix E gives a definition for Dec-POMDPs, and discusses considerations for creating
a useful abstraction for a given environment. Given a Dec-POMDP, the usual shielding workflow
would be to create an abstracted environment (as given in Definition 1), synthesize a shield over
this abstracted environment, and then train a set of reinforcement learning agents on the Dec-
POMDP, while simulating the abstracted environment in lockstep to avoid taking unsafe actions. All
environments in our evaluations are Dec-POMDPs for which we create an abstraction for shielding.

A run of environment E is a sequence of states and actions q0, a0, q1, a1, . . ., where q0 ∈ Q0, and for
all i, (1) qi ∈ Q, (2) ai ∈ A, and (3) qi+1 ∈ δ(qi, ai). This run visits states q0, q1, A state is
reachable if there exists some run that visits it; all initial states are reachable by definition.

Action a ∈ A is legal at state q ∈ Q if δ(q, a) ̸= ∅; q is a deadlock if no action is legal at q. An
environment with no reachable deadlock states is deadlock-free. We can model valid terminal states
in a deadlock-free environments by adding self-loop transitions in such states.

3.2 Centralized Shields

Definition 2 (Centralized Shield). Given environment E = (Q, Q0,A, δ), a centralized shield for E
is a function CS : Q → 2A.

For a given state q ∈ Q, CS(q) is the set of actions permissible by the shield at q.

The shielded environment CS(E) is the non-deterministic finite transition system (Q, Q0,A, δCS); i.e.,
E with a modified transition function δCS where for q ∈ Q, a ∈ A, δCS(q, a) = δ(q, a) if a ∈ CS(q),
and δCS(q, a) = ∅ otherwise (making actions prohibited by the shield illegal).

4 Problem Statement

4.1 Decentralized Environments

Existing abstractions for shielding are not expressive enough to describe how an environment is
observed and controlled by many agents, especially where agents may have differing observations.
We introduce the following structure to capture this information:
Definition 3 (Decentralization Setup). Given environment E = (Q, Q0,A, δ), a decentralization
setup for E is a tuple D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) where k ∈ N is a number of
agents; Ai is an individual action space for each agent i ∈ [1..k] such that A = A1 × . . . ×Ak; Ωi is a
set of possible observations for each agent i ∈ [1..k]; and obsi : Q → 2Ωi is a function for each agent
that defines the nonempty set of possible observations of agent i for a given state.

This formulation assumes that the set of possible observations for a given agent is independent of
other agents’ observations at a given state. This is not a limiting assumption: if agents’ observa-
tions are not independent, the underlying variables in the environment that affect these dependent
observations should be explicitly modeled as part of the state. Note that in a fully observable
environment, ∀i ∈ [1..k], Ωi = Q, and obsi(q) = {q}.

RLJ | RLC 2024

Definition 4 (Decentralized Shield). Given environment E = (Q, Q0,A, δ) and decentralization
setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) for E, a decentralized shield over E and D is a
tuple DS = (DS1, . . . , DSk) such that DSi : Ωi → 2Ai for all i ∈ [1..k].

A decentralized shield can also be applied to an environment; DS(E) is the transition sys-
tem (Q, Q0,A, δDS)—this is E with the modified transition function δDS where for q ∈ Q, a =
(a1, . . . , ak) ∈ (A1 × . . . × Ak), δDS(q, a) = δ(q, a) when ∀i ∈ [1..k], ai ∈

⋃
oi∈obsi(q) DSi(oi) and ∅

otherwise. In other words, the shielded environment allows joint action a when all individual shields
DSi allow its component individual actions ai for some possible observation of the current state.

4.2 Decentralized Shield Synthesis

Problem 1 (Decentralized Shield Synthesis). Given a deadlock-free environment E = (Q, Q0,A, δ),
a decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) for E, and a set of bad states
Qbad ⊆ Q, find, if there exists, a decentralized shield DS = (DS1, . . . , DSk) over E and D such that
(1) all states in Qbad are unreachable in DS(E), and (2) for every reachable state q of DS(E), for
every possible o1 ∈ obs1(q), . . . , ok ∈ obsk(q), it holds that DS1(o1) × . . . × DSk(ok) is a nonempty
subset of the legal actions of E at q; i.e., ∀a ∈ (DS1(o1) × . . . × DSk(ok)), δ(q, a) ̸= ∅.

Condition (1) ensures that the resulting system is safe, as it is impossible for a “bad” state to be
reached in any run. To understand condition (2), consider the alternative where Problem 1 simply
demanded that DS(E) were deadlock-free—this would imply that the set of joint actions allowed by
the decentralized shield may contain some illegal actions, as long as it contains at least one legal
action. This does not work well when the joint action is collectively chosen by many independent
agents. Rather, as written, condition (2) means that each agent i can independently choose an
individual action from DSi, and the joint action is guaranteed to be legal. We must still show that
a shield that satisfies these conditions results in a deadlock-free environment:
Theorem 1. Given a decentralized shield DS that satisfies Problem 1, DS(E) is deadlock-free.

A proof sketch of this theorem is given in Appendix J.1.

4.3 Example

Consider a driverless car scenario with many agents, and a complex reward function based on energy
efficiency and time to reach the destination. While RL may be able to optimize for this reward,
there is no appropriate penalty for a safety violation—it should be “infinitely” high to reflect that
a collision absolutely should not occur no matter the time savings, but this presents a practical
reward scaling problem for a RL agent, and the agent must still experience this reward to learn it.
We create a shield here to enforce a safety constraint, even at the start of training.

For shielding purposes, we create a simpler environment E that only tracks relative agent, pedes-
trian, and obstacle positions, ignoring non-safety-relevant information such as efficiency or passenger
temperature control. The abstracted environment E, and the set of unsafe states Qbad, must be
constructed such that if all states in Qbad are successfully avoided, the underlying environment is not
in an unsafe state (i.e., a collision). The decentralization setup describes how each car is observed
and controlled by individual agents, rather than a centralized controller.

5 Method

Shield synthesis is essentially a controller synthesis problem (Bloem et al., 2015; Ramadge and
Wonham, 1987; Pnueli and Rosner, 1989); decentralized shield synthesis is therefore essentially a
decentralized controller synthesis problem. Such problems are known to be generally undecidable
when agents receive different observations from the environment (Pnueli and Rosner, 1990; Thistle,
2005; Tripakis, 2004). Despite this undecidability, we present an algorithm that successfully syn-
thesizes a decentralized shield in many cases where previous methods, such as those presented in

RLJ | RLC 2024

ElSayed-Aly et al. (2021) and Melcer et al. (2022), make input assumptions that are too prohibitive.
Our algorithm always terminates; however, as any terminating algorithm for an undecidable problem
must, it sometimes reports failure in cases where a shield may exist.

At a high level, we first synthesize a centralized shield, then decompose it into a decentralized shield.
Problem 2 (Centralized Shield Synthesis). Given a deadlock-free environment E = (Q, Q0,A, δ),
and a set of bad states Qbad ⊆ Q, find, if there exists, a centralized shield CS for E such that (1)
all states in Qbad are unreachable in CS(E), and (2) for every reachable state q of CS(E), CS(q) is
nonempty and contains only legal actions at q; i.e., ∀a ∈ CS(q), δ(q, a) ̸= ∅.

Existing methods solve the centralized shield synthesis problem though a simple fixpoint-finding
process (Bloem et al., 2015; ElSayed-Aly et al., 2021). The resulting centralized shields have the
property that they do not disallow any actions which do not absolutely need to be disallowed. The
cited methods define an environment slightly differently from each other, and from how we define an
environment; we detail the adaptation of these methods to our setting in Algorithm 2 (Appendix).
Problem 3 (Shield Decomposition). Given an environment E = (Q, Q0,A, δ), a centralized
shield CS for E that satisfies the conditions from Problem 2, and a decentralization setup D =
(k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) for E, find a decentralized shield DS = (DS1, . . . , DSk) over
E and D such that for all reachable q ∈ Q, ∀o1 ∈ obs1(q), . . . , ∀ok ∈ obsk(q), DS1(o1) × . . . × DSk(ok)
is a non-empty subset of CS(q).

Theorem 2. A decentralized shield DS that satisfies the requirements of Problem 3 also satisfies the
requirements of Problem 1.

A proof sketch of this theorem is given in Appendix J.2.

5.1 A Naive Algorithm for Centralized Shield Decomposition

One potential solution to Problem 3 is as follows. Given a centralized shield CS for environment
E = (Q, Q0,A, δ) and decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk), we first
find, for each state q ∈ Q, a sequence of sets of individual actions Aq

1 ⊆ A1, . . . , Aq
k ⊆ Ak, such

that (Aq
1 × . . . × Aq

k) ⊆ CS(q). We refer to such a sequence of sets as a state-decentralization for
state q. Such a state-decentralization always exists for any reachable state: as CS(q) is nonempty
by assumption, we can choose any element a = (a1, . . . , ak) ∈ CS(q), and set Aq

i = {ai} for all i.

Second, for each agent i, we define the function Ri : Ωi → 2Q where Ri(oi) = {q ∈ Q|oi ∈ obsi(q)};
i.e., the set of states where agent i may encounter observation oi. We construct a decentralized
shield DS = (DS1, . . . , DSk) where DSi(oi) =

⋂
r∈Ri(oi) Ar

i .

Finally, we check that DSi(oi) ̸= ∅ for every i ∈ [1..k] and oi ∈ Ωi. If this holds, the algorithm has
finished: for every state q and observation o1 ∈ obs1(q), . . . , ok ∈ obsk(q), (

⋂
r∈R1(o1) Ar

1) × . . . ×
(
⋂

r∈Rk(ok) Ar
k) is trivially a subset of Aq

1 × . . . × Aq
k, which itself is, by definition, a subset of CS(q).

Otherwise, the algorithm reports failure; the chosen state-decentralizations result in a deadlock. We
name this process the naive algorithm, detailed in Algorithms 3 and 4 (Appendix).

This algorithm may be improved by restricting its consideration to maximally permissive state-
decentralizations; i.e., sets of actions Aq

1 ⊆ Ai, . . . , Aq
k ⊆ Ak for which (Aq

1 × . . . × Aq
k) ⊆ CS(q),

but ∄i ∈ [1..k], ai ∈ Ai where ai /∈ Aq
i and (Aq

1 × . . . Aq
i ∪ {ai} . . . × Aq

k) ⊆ CS(q)—in other words,
state-decentralizations where no individual actions may be added while retaining safety. If there
exists any q such that Aq = (Aq

1, . . . , Aq
k), and shield decomposition succeeds, there exists a safe

maximally permissive state-decentralization A′q = (A′q
1, . . . , A′q

k) where shield decomposition would
succeed if we replace Aq with A′q—∀i ∈ [1..k], A′q

i ⊇ Aq
i . Algorithm 6 (Appendix) describes how to

compute the set of maximally permissive state-decentralizations MPDCS(q) for a given state q ∈ Q.

RLJ | RLC 2024

Algorithm 1 Shielded Training Overview
1: Input
2: E = (Q, Q0,A, δ); // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: Qbad : 2Q // A set of unsafe states
5: rp : R− // Penalty reward
6: M // RL environment with agents [1..k], actions A1, . . . ,Ak, observations Ω1, . . . , Ωk

7: πi : (Ωi × Ai)∗ × Ωi → Ai; // Initial policies for each i ∈ [1..k]
8: procedure TrainWithShield(E,D, Qbad, M, (π1, . . . , πk), rp)
9: CS := SynthCShield(E, Qbad) // Appendix, Algorithm 2

10: (DS1, . . . , DSk) := DecomposeCShield(E,D, CS) // Appendix, Algorithm 3
11: while πi not converged, in parallel for each i ∈ [1..k] do // Agents act independently
12: oi := Initial observation
13: hi := (oi)
14: while Episode not terminated do
15: ai := πi(h)
16: safe := DSi(oi) // oi may be abstracted before being passed to DSi

17: if ai ∈ safe then
18: ri, oi := Reward, observation after ai in M // Joint action is (a1, . . . , ak)
19: h′

i := hi + (ai, oi)
20: Train πi with (hi, ai, ri, h′

i)
21: else
22: a′

i := Arbitrary element of safe
23: ri, oi := Reward, obs after a′

i in M
24: h′

i := hi + (a′
i, oi)

25: Train πi with (hi, a′
i, ri, h′

i) or (hi, ai, ri + rp, hi + (ai, oi)) with probability 0.5
26: end if
27: h := h′

28: end while
29: end while
30: end procedure

5.1.1 Weaknesses of the Naive Algorithm

Despite the improvements from restricting the set of state-decentralizations, the naive algorithm
presented in Section 5.1 has a clear weakness: if the emptiness check fails, the algorithm has failed
to synthesize a decentralized shield.

For example, consider a simple environment with two agents; each agent has two actions, a0 and a1.
In state s0, both agents must select the same action; in s1, the agents must select opposite actions.
Agent 1 receives an observation that can distinguish between these cases, but agent 2 does not.

One possible set of maximally permissive state-decentralizations is that agent 1 must always select a0,
and then agent 2 must select a0 or a1 in s1 and s2, respectively. If this set of state-decentralizations
were chosen, the naive algorithm would fail—agent 2 is unable to distinguish between s0 and s1,
but there are no individual actions allowed in both states. There is an alternative set of state-
decentralizations, where agent 2 always selects a0, and then agent 1 must select a0 in state s0, or a1
in s1. With this set of state-decentralizations, shield decomposition succeeds.

However, the number of possible combinations of state-decentralizations grows exponentially with
the state space, rendering a brute-force approach intractable for any non-trivial environment.

RLJ | RLC 2024

Figure 1: Illustration of the decomposition problem for an environment with a small observation ra-
dius. For each state, there are several possible state-decentralizations (d1

1, d1
2 ∈ MPDCS(q1)); one per

state must be chosen in advance (Aq1 = d1
1 or d1

2). Depending on the chosen state-decentralizations,
there may not be any safe actions available to the agent. Example further described in Appendix C.

5.2 A Comprehensive Constraint-Based Algorithm

To overcome the limitations of the naive algorithm discussed in Section 5.1.1, we introduce a method
to synthesize a decentralized shield by taking advantage of highly efficient SAT solvers.

5.2.1 SAT Solvers

SAT is a well-studied problem, defined as: given a set of boolean variables, and a boolean expression
over these variables, find an assignment to the boolean variables such that the expression’s value is
true, or disprove the existence of such an assignment. This is an NP-complete problem; however,
modern SAT solvers can efficiently solve very large instances of the SAT problem (Malik and Zhang,
2009). We use the Kissat solver (Biere et al., 2020) for all instances of SAT described in this paper.

5.2.2 Encoding Shield Decomposition in SAT

The core of the problem is to choose a specific state-decentralization in MPDCS(q) for every reachable
q ∈ Q (1). If a state-decentralization Aq = (Aq

1, . . . , Aq
k) ∈ MPDCS(q) is chosen, and for some agent

i ∈ [1..k] there exists action ai /∈ Aq
i , this means that agent i is not allowed to take action ai in

state q, so ai should not be a member of
⋃

oi∈obsi(q) DSi(oi), and thus ai should not be a member
of DSi(oi) for any oi ∈ obsi(q) (2). Finally, there must be an action available for every observation
(3). We encode these conditions as the following set of constraints:

∧
q∈Q

⊕
dq∈MP DCS(q)

Aq = dq (1)

∧
q∈Q,dq∈MP DCS(q),i∈[1..k],a∈(Ai\dq [i]),oi∈obsi(q)

Aq = dq =⇒ a /∈ DSi(oi) (2)

∧
i∈[1..k],oi∈Ωi

∨
a∈Ai

a ∈ DSi(oi) (3)

These constraints permit a natural SAT encoding, with one set of variables representing if Aq = dq

for each q ∈ Q, dq ∈ MPDCS(q), and another set of variables representing a ∈ DSi(oi) for each
i ∈ [1..k], oi ∈ Ωi, a ∈ Ai. By construction, if the solver can satisfy the constraints listed above, the
resulting decentralized shield satisfies the requirements of Problem 3. This procedure (referred to
as the SAT-based algorithm) is shown in Algorithms 3 and 5.

6 Experiments

We first replicate environments found in prior multi-agent shielding works (ElSayed-Aly et al., 2021;
Melcer et al., 2022). Gridworld-Collision (Grid-Col), introduced by Melo and Veloso (2009), is

RLJ | RLC 2024

a 2-agent gridworld with four maps. In Particle-Momentum, agents move with inertia in an open
gridworld, observing either both relative positions and velocities (Particle-P-V), or only relative
positions (Particle-P).

In the above domains, all agents receive identical observations. By contrast, in Nearby-Obs, agents
are only able to observe other agents up to 2 Manhattan-distance units away; when the agents are
farther apart, they are only able to observe their own position. Otherwise, the environment dynamics
are similar to Grid-Col.

Finally, we create Flashlight. In this set of environments, agents can only observe squares which are
directly adjacent, and are forced to move at every step. Each agent is equipped with a flashlight; if
an agent’s light is turned on, agents can observe each other up to a 5-unit radius for one time step.
Afterwards, the flashlight must recharge for several steps, during which attempts to turn it on will
fail. Each agent is able to observe whether its own flashlight is on; if its light is on and the other
agent is not visible, this implies that the other agent is more than five units away. We instantiate
this environment in both 6x6 (Flashlight-6) and 10x10 (Flashlight-10) sizes, with a variety of
recharge times.

In all of our experiments, there exists an underlying Dec-POMDP that assigns rewards; this Dec-
POMDP may be arbitrarily complex. For example, in the Flashlight environments, part of the
state space of the Dec-POMDP tracks the current flashlight charge level, in order to determine
if an action to turn the light on will succeed. We also create an abstraction of each of these
environments for shielding purposes; at minimum, these abstractions ignore rewards, but they may
be a more simplified version of the environment. For example, the Flashlight abstractions do not
maintain charge level; rather, the action to turn the flashlight on will nondeterministically fail in the
abstraction. As this abstraction satisfies the properties in Appendix E, it is straightforward to use
this abstraction to enforce safety while running a conventional RL algorithm on the Dec-POMDP.

Extended descriptions of all environments are located in Appendix A.

6.1 Shield Decentralization

We first focus on the ability to synthesize a decentralized shield using a variety of methods. Overall,
while current methods are sufficient for shielding in fully observable and simple partially observable
domains, they fail in more complex environments, leaving only our method for guaranteeing safety.

As shown in Table 1, all methods are able to produce a decentralized shield for fully observable
domains. In order to decompose the centralized shield for Particle-P, we needed to modify our
implementation to account for history; an overview of this modification is given in Appendix D. In
Nearby-Obs, prior shielding methods are unable to calculate a decentralized shield, as the agents
may observe different information. In contrast, both of our algorithms succeed, without even needing
to account for history, as all states which can be confused with each other (agents are > 2 units
apart) permit the same safe actions (agents have no risk of colliding in one step, so all actions are
safe). However, Flashlight-6 and Flashlight-10 contain several states which can be confused with
each other, each with different sets of safe actions; our SAT-based methods are the only ones which
succeed here. An analysis of the runtime of the decentralization algorithm for each environment is
located in Appendix F.

6.2 RL Performance

While the primary purpose of shield synthesis is safety, we would like to ensure that the shields are
permissive as well. The goal of a permissive shield is to facilitate successful training of a reinforcement
learning agent; therefore, rather than creating a metric which measures properties of the shields in
isolation, we train RL agents using each shielding method in a variety of environments, and evaluate
agent performance. We show that agents shielded with our method perform about the same, or
potentially better compared to centralized-shielded or unshielded agents, while our method ensures
safe and decentralized execution in the widest variety of environments.

RLJ | RLC 2024

Note that shielding is independent of the underlying RL algorithm; we believe that our method can
be applied to centralized training/decentralized execution methods (Oliehoek et al., 2008) such as
MADDPG (Lowe et al., 2017) or QMIX (Rashid et al., 2020) with minimal modification; specific
applications of shielding to state-of-the-art MARL methods are an area for future research.

6.2.1 Training Details

In order to best compare our methods to prior results, we replicate the same agent architecture
and hyperparameters for Grid-Col, Particle-P, and Particle-P-V as in Melcer et al. (2022). As an
overview, Grid-Col uses tabular individual Q-learning. Particle-P and Particle-P-V use Deep Double
Q-learning, without any recurrent layer (Van Hasselt et al., 2016). For Nearby-Obs, Flashlight-6,
and Flashlight-10, we add a recurrent layer. Further details are located in Appendix G.

For all shielded agents, we use post-posed shielding (Alshiekh et al., 2018). Specifically, if an
agent’s chosen action a is considered unsafe by the shield, an arbitrary safe action a′ is given to the
environment, yielding reward r. When training the agent, we randomly (p = 0.5) select whether to
use action a′ and reward r, as actually occurred in the environment, or action a and reward r + rp,
where rp = −10 is a penalty reward modifier, so that the agent will be biased to non-arbitrarily
choose a safe action in the future. For non-recurrent agents, we add both transitions to the replay
buffer. An overview of the shielded training method is given as Algorithm 1.

6.2.2 Results

As shown in Table 1, and in the full results in the Appendix (Tables 5, 6), all agents perform about
equally to each other in Grid-Col and Particle-P-V; however, only the shielded agents have zero
safety violations in all environments. We note that while the SAT-based method finds a decom-
position in a wider variety of environments than the naive method, if both methods succeed
in decomposition, there is no reason to expect the shield produced by one method to
perform better than the other, other than by random chance. This doesn’t necessarily apply
to shields which incorporate history, as the additional information available for such shields allows
for more permissive action selection.

In Particle-P, the shielded agents all achieve better RL performance than the unshielded agents, but
otherwise perform similarly to each other. It is initially surprising that decentralized agents would
perform so close to agents with a centralized shield, as centralization should intuitively lead to much
better performance. One possible explanation is that a decentralized shield consistently permits or
prohibits actions, depending solely on the agent’s own observation. In contrast, a centralized shield
will allow an individual action based on unobserved state information, or actions that other agents
take. Because the RL method itself is fully decentralized in both cases, the changes in allowed actions
due to centralized shielding may appear as nonstationarity in the environment, hurting performance
and balancing out any benefits of extra permissiveness.

In Nearby-Obs, the decentralized-shielded agents perform at least as well as, and potentially better
than, the unshielded agents, without incurring any safety violations; full results are listed in Table 7,
in the Appendix. Additionally, they hold up quite well against agents that use a centralized shield.

More interesting are the Flashlight-6 and Flashlight-10 domains, where agents have no chance of
safe navigation without the flashlight, but can locate the other agent by turning on the flashlight.
While it is possible to synthesize a restrictive shield in this domain that does not include history, the
results in Table 2 show that including history during shield synthesis often improves performance.
Without knowledge of the other agents’ position, any uncoordinated joint action has the potential
for a collision. With history, the agents can guarantee collision-free movement for a short length of
time after the flashlight turns off.

Full results and further discussion are located in the Appendix (Tables 8 and 9).

RLJ | RLC 2024

Table 1: A summary of shield decomposition and RL execution results. Random starts are used for
all evaluations. ‘X’ denotes that shield decentralization fails, or violates input assumptions for a given
method. Otherwise, we report results for the minimum history length where shield decomposition
succeeds (one step for Particle-P, no history for others). Results show average discounted sum of
rewards. We report standard error over 50 seeds. Unshielded agents include average sum of safety
violations over 100 episodes in parentheses.

Domain Melcer et al. (2022) Naive SAT Centralized None (Violations)
Grid-Col 29.4 ± 2.0 29.5 ± 2.4 30.1 ± 2.2 31.1 ± 2.5 28.1 ± 1.9 (0.9)
Particle-P-V 51.3 ± 2.1 53.0 ± 2.4 50.0 ± 1.8 51.7 ± 2.0 48.7 ± 2.0 (0.1)
Particle-P 26.0 ± 3.2 28.8 ± 2.0 27.6 ± 3.1 29.7 ± 3.8 17.0 ± 3.5 (69.2)
Nearby-Obs X 61.1 ± 5.7 45.0 ± 7.3 61.8 ± 5.4 5.6 ± 8.8 (113.4)
Flashlight X X Table 2 Table 2 Table 2

Table 2: Average discounted sum of rewards and standard error in Flashlight-6 and Flashlight-10,
random starting locations, 10 seeds. Prior shielding methods (Melcer et al., 2022) and the naive
decomposition algorithm all fail to synthesize a shield.

Size Recharge SAT–No History SAT–1 Step History Centralized None (Violations)

6x6

3 65.4 ± 1.1 74.9 ± 0.3 84.7 ± 0.3 83.4 ± 0.2 (7.2)
4 53.1 ± 1.2 68.5 ± 0.4 83.7 ± 0.2 82.7 ± 0.7 (5.1)
5 -20.6 ± 14.0 56.0 ± 3.7 81.6 ± 0.9 83.5 ± 0.3 (5.2)
6 -23.8 ± 15.8 30.0 ± 12.7 76.9 ± 7.0 83.5 ± 0.3 (5.5)

10x10 2 -52.4 ± 0.3 57.2 ± 2.4 16.9 ± 14.3 43.2 ± 11.4 (6.9)
3 -109.6 ± 7.4 38.1 ± 3.6 14.5 ± 17.3 18.3 ± 20.3 (9.3)

7 Societal Impact

Shielding can be a powerful tool to prevent mistakes as the result of an incorrectly trained RL agent.
However, as with other shielding works, there is an inherent risk that the creator or user of an RL
system could be overconfident in a shielded RL agent—it is possible for an environment or safety
specification to be incorrectly specified, or for there to be a bug in the implementation of the shield
synthesis tool. Care must be taken when applying shielding to a given problem, and there should
be redundant systems in place for any safety-critical process.

8 Conclusion & Future Work

Communication-free multi-agent shielding was previously limited to domains in which all agents
received enough information to deduce the true environment state, or operated on environments
with significantly different assumptions on environment structure and agent interaction. In this
paper, we developed, to our knowledge, the first decentralized shield synthesis method that allows
agents to enforce a safety specification without communication in environments with general partial
observability—the first shielding method for the general Dec-POMDP case. These shields allow
agents to act safely and are often permissive enough to allow agents to successfully solve difficult
reinforcement learning problems under a shielding protocol.

While our approach can scale by using small abstractions for arbitrarily large MARL environments,
there is still work to be done to improve the scalability and performance of decentralized shielding
when the abstractions themselves grow larger. Symbolic approaches have led to several orders-of-
magnitude increases of supported input sizes for model checking (Clarke et al., 2018); the application
of these methods to shield synthesis and decentralization is a promising area for future work. Addi-
tionally, there are often many different possible shields which are all safe for a given environment,

RLJ | RLC 2024

but some may be more conducive for learning a successful policy. It may be possible to develop
metrics for measuring the quality of a shield, or to use information observed during RL training to
iteratively improve a shield while maintaining safety.

The methods presented in this paper represent a significant step towards making reinforcement
learning safe in realistic partially observable settings.

Acknowledgements

This work has been supported by NSF CCF award #2319500, FMitF: Track I: Safe Multi-Agent
Reinforcement Learning with Shielding, and used the Discovery cluster, supported by Northeastern
University’s Research Computing team.

References
Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. 2023. Multi-Agent Reinforce-

ment Learning: Foundations and Modern Approaches. MIT Press, Boston, MA. https:
//www.marl-book.com

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and Ufuk
Topcu. 2018. Safe reinforcement learning via shielding. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 32. AAAI Conference on Artificial Intelligence, New Orleans, LA,
10 pages.

Matthias Althoff and John M. Dolan. 2014. Online Verification of Automated Road Vehicles Using
Reachability Analysis. IEEE Transactions on Robotics 30, 4 (2014), 903–918. https://doi.
org/10.1109/TRO.2014.2312453

Osbert Bastani. 2020. Safe Reinforcement Learning with Nonlinear Dynamics via Model Predictive
Shielding. arXiv:1905.10691 [cs.LG]

Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. 2020. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling Entering the SAT Competition 2020. In Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions (Department of Computer Science Report
Series B, Vol. B-2020-1), Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo,
and Martin Suda (Eds.). University of Helsinki, Alghero, Italy, 51–53.

Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. 2015. Shield synthesis:
Runtime enforcement for reactive systems. In Tools and Algorithms for the Construction and
Analysis of Systems: 21st International Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-
18, 2015, Proceedings 21. Springer, International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, London, UK, 533–548.

Steven Carr, Nils Jansen, Suda Bharadwaj, M.T.J. Spaan, and Ufuk Topcu. 2021. Safe Policies for
Factored Partially Observable Stochastic Games. In Robotics: Science and System XVII, Dylan
A. Shell, Marc Toussaint, and M. Ani Hsieh (Eds.). Robotics: Science and Systems, Virtual,
11 pages. https://doi.org/10.15607/RSS.2021.XVII.079 Robotics: Science and Systems
XVII, 2021 ; Conference date: 12-07-2021 Through 16-07-2021.

Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. 2022. Safe reinforcement learning via
shielding for pomdps. , 21 pages.

Jack Clark and Dario Amodei. 2016. Faulty reward functions in the wild. https://openai.com/
research/faulty-reward-functions

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). 2018.
Handbook of Model Checking. Springer International Publishing, New York, NY. https:
//doi.org/10.1007/978-3-319-10575-8

https://www.marl-book.com
https://www.marl-book.com
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.1109/TRO.2014.2312453
https://doi.org/10.15607/RSS.2021.XVII.079
https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8

RLJ | RLC 2024

Ingy ElSayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers, Ufuk Topcu, and Lu Feng.
2021. Safe Multi-Agent Reinforcement Learning via Shielding. In Proceedings of the 20th In-
ternational Conference on Autonomous Agents and MultiAgent Systems (Virtual Event, United
Kingdom) (AAMAS ’21). International Foundation for Autonomous Agents and Multiagent Sys-
tems, Richland, SC, 483–491.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier Neural Networks.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statis-
tics (Proceedings of Machine Learning Research, Vol. 15), Geoffrey Gordon, David Dunson, and
Miroslav Dudík (Eds.). PMLR, Fort Lauderdale, FL, USA, 315–323. https://proceedings.
mlr.press/v15/glorot11a.html

C. V. Goldman and S. Zilberstein. 2004. Decentralized Control of Cooperative Systems: Categoriza-
tion and Complexity Analysis. Journal of Artificial Intelligence Research 22 (Nov. 2004), 143–174.
https://doi.org/10.1613/jair.1427

Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning: a sur-
vey. Artificial Intelligence Review 55, 2 (Feb 2022), 895–943. https://doi.org/10.1007/
s10462-021-09996-w

Kai-Chieh Hsu, Haimin Hu, and Jaime Fernández Fisac. 2023. The Safety Filter: A Unified View
of Safety-Critical Control in Autonomous Systems. arXiv:2309.05837 [eess.SY]

Sebastian Junges, Nils Jansen, and Sanjit A. Seshia. 2021. Enforcing Almost-Sure Reachability
in POMDPs. In Computer Aided Verification, Alexandra Silva and K. Rustan M. Leino (Eds.).
Springer International Publishing, Cham, 602–625.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

Will Knight. 2020. AI Helps Warehouse Robots Pick Up New Tricks. https://www.wired.com/
story/ai-helps-warehouse-bots-pick-new-skills/

Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, MK Ryu, and Greg Imwalle. 2018.
Data center cooling using model-predictive control. Advances in Neural Information Processing
Systems 31 (2018), 10 pages.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. 2017. Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments. Neural Information Processing
Systems (NIPS) 30 (2017), 12 pages.

Sharad Malik and Lintao Zhang. 2009. Boolean Satisfiability: From Theoretical Hardness to Prac-
tical Success. Commun. ACM 52, 8 (2009), 76–82.

Giulio Mazzi, Alberto Castellini, and Alessandro Farinelli. 2021. Rule-based Shielding for Partially
Observable Monte-Carlo Planning. In Proceedings of the International Conference on Automated
Planning and Scheduling, Vol. 31. International Conference on Automated Planning and Schedul-
ing, Virtual, 243–251.

Daniel Melcer, Christopher Amato, and Stavros Tripakis. 2022. Shield Decentralization for Safe
Multi-Agent Reinforcement Learning. Advances in Neural Information Processing Systems 36
(2022), 13 pages.

Francisco S. Melo and Manuela Veloso. 2009. Learning of Coordination: Exploiting Sparse Interac-
tions in Multiagent Systems. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2 (Budapest, Hungary) (AAMAS ’09). International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 773–780.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari with deep reinforcement learning.

https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1613/jair.1427
https://doi.org/10.1007/s10462-021-09996-w
https://doi.org/10.1007/s10462-021-09996-w
https://www.wired.com/story/ai-helps-warehouse-bots-pick-new-skills/
https://www.wired.com/story/ai-helps-warehouse-bots-pick-new-skills/

RLJ | RLC 2024

Kensuke Nakamura and Somil Bansal. 2023. Online Update of Safety Assurances Using Confidence-
Based Predictions. arXiv:2210.01199 [cs.RO]

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. 2008. Optimal and Approximate Q-value Functions
for Decentralized POMDPs. Journal of Artificial Intelligence Research 32 (may 2008), 289–353.
https://doi.org/10.1613/jair.2447

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.).
Curran Associates, Inc., Vancouver, Canada, 8024–8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Amir Pnueli and Roni Rosner. 1989. On the synthesis of a reactive module. In ACM Symp. POPL.
Principles of Programming Languages, Austin, TX, 12 pages.

A. Pnueli and R. Rosner. 1990. Distributed reactive systems are hard to synthesize. In Proceedings
[1990] 31st Annual Symposium on Foundations of Computer Science. IEEE Symposium on Foun-
dations of Computer Science, St. Louis, MO, 746–757 vol.2. https://doi.org/10.1109/FSCS.
1990.89597

P. Ramadge and W. Wonham. 1987. Supervisory control of a class of discrete event processes. SIAM
J. Control Optim. 25, 1 (Jan. 1987), 25 pages.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. 2020. Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning. J. Mach. Learn. Res. 21, 1, Article 178 (jan 2020), 51 pages.

David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs. In Ad-
vances in Neural Information Processing Systems, J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta (Eds.), Vol. 23. Curran Associates, Inc., Van-
couver, Canada. https://proceedings.neurips.cc/paper_files/paper/2010/file/
edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA.

John G. Thistle. 2005. Undecidability in decentralized supervision. Systems & Control Letters 54,
5 (2005), 503–509. https://doi.org/10.1016/j.sysconle.2004.10.002

Stavros Tripakis. 2004. Undecidable Problems of Decentralized Observation and Control on Regular
Languages. Inform. Process. Lett. 90, 1 (April 2004), 21–28. https://doi.org/10.1016/j.ipl.
2004.01.004

Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learning with double
Q-learning. In Proceedings of the AAAI conference on artificial intelligence, Vol. 30. Association
for the Advancement of Artificial Intelligence, Pheonix, AZ, 2094–2100.

Peter Wieland and Frank Allgöwer. 2007. CONSTRUCTIVE SAFETY USING CONTROL BAR-
RIER FUNCTIONS. IFAC Proceedings Volumes 40, 12 (2007), 462–467. https://doi.org/10.
3182/20070822-3-ZA-2920.00076 7th IFAC Symposium on Nonlinear Control Systems.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory

https://doi.org/10.1613/jair.2447
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://proceedings.neurips.cc/paper_files/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/edfbe1afcf9246bb0d40eb4d8027d90f-Paper.pdf
https://doi.org/10.1016/j.sysconle.2004.10.002
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.3182/20070822-3-ZA-2920.00076
https://doi.org/10.3182/20070822-3-ZA-2920.00076

RLJ | RLC 2024

Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. 2022.
Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 602, 7896
(Feb. 2022), 223–228. https://doi.org/10.1038/s41586-021-04357-7

https://doi.org/10.1038/s41586-021-04357-7

RLJ | RLC 2024

Figure 2: The four maps of Grid-Col and Nearby-Obs. One agent’s goal is the red square, the other
agent’s goal is green. When using the fixed-start environments, agents begin in the opposite agent’s
goal.

A Environment Descriptions

As mentioned in Section 6, Grid-Col is a commonly used domain (Melo and Veloso, 2009; ElSayed-
Aly et al., 2021; Melcer et al., 2022) consisting of two agents, each with five actions—up, left, down,
right, and no-op. There are four maps, shown in Figure 2. Agents receive a +100 reward and the
episode terminates when they both reach the goal, and a -30 penalty for colliding; collisions are
also disallowed by the shield’s safety specification. Otherwise, an agent receives a -10 reward when
hitting a wall, or a -1 reward for all other time steps. The episode also terminates after 500 time
steps without reaching the goal.

Particle-P and Particle-P-V are also pre-existing domains (Melcer et al., 2022) which we replicate for
comparison. In these domains, agents can be up to 10 units away from each other. If they stray any
further, or collide with each other, this is considered a safety violation by the shield; any unshielded
agents which attempt this receive a -30 reward. When agent 1 takes the action corresponding to,
for example, “right”, the relative x velocity increases; if agent 2 takes the same action, the relative
x velocity decreases. Relative velocity is capped at an absolute value of 2 for each axis. The relative
position then changes according to the velocity. The goal is for agent 1 to be 9 units below and to
the right of agent 2. In the fixed-start environment, agent 1 starts 9 units above, and 9 units to the
left of agent 2, with no momentum. In the randomized environment, the agents start at a random
relative position, but still with no momentum. Upon both agents reaching the goal, they receive a
+100 reward; otherwise, a -1 reward at each step.

The Nearby-Obs domain is identical to Grid-Col except for observability. Flashlight-6 and Flashlight-
10 are similar, except that the maps are 6x6 or 10x10 squares respectively, with only exterior walls.
We keep the no-op action available, but denote it as unsafe by the shield, and add a -30 penalty
if an agent attempts it anyways. Independently of the movement choice, the agents also choose
whether to attempt to turn on the flashlight; the agents must still choose to move in a cardinal
direction when attempting the flashlight, or face a safety violation for staying still. Each agent is
able to observe whether its own flashlight is on—if its light is on and the other agent is not visible,
this implies that the other agent is far away. There is no penalty for turning the light on, or for
attempting to do so while it is being recharged.

RLJ | RLC 2024

B Shield Synthesis

B.1 CFOS Synthesis Algorithms

Algorithm 2 uses a standard fixpoint-finding procedure to obtain a centralized shield from an envi-
ronment and set of bad states. The algorithm will always terminate: QUnsafe cannot grow forever
as it will run out of states in Q to add, at which point the loop will end.

Algorithm 2 Synthesize a Centralized Shield
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: Qbad : 2Q // A set of prohibited states
4: Output
5: CS : Q → 2A // Centralized Shield
6: procedure SynthesizeCShield(E, Qbad)
7: Initialize QUnsafe := Qbad // Bad states, plus any states which inevitably lead to them
8: repeat
9: CS(q) := {a ∈ A|∄q′ ∈ δ(q, a), q′ ∈ QUnsafe} for all q ∈ Q

10: QUnsafe := QUnsafe ∪ {q ∈ Q|CS(q) = ∅}
11: until QUnsafe is stable
12: if ∃q ∈ Q0, CS(q) = ∅ then
13: return fail
14: end if
15: return CS
16: end procedure

RLJ | RLC 2024

B.2 Shield Decentralization Algorithms

Algorithm 3 describes the shared parts between the naive and SAT-based decentralization methods.
In practice, an implementer of the naive algorithm will simply calculate a single state-decentralization
arbitrarily for each state, rather than calculating all state-decentralizations and then choosing one
arbitrarily, but the two procedures produce identical results.

Algorithm 3 Decompose a Centralized Shield
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: CS : Q → 2A // Centralized Shield
5: Output
6: DS = (DS1, . . . , DSk) // Decentralized Shield
7: procedure DecomposeCShield(E,D, CS)
8: for q ∈ Q do
9: MPDCS(q) := CalcMPDs(CS(q))

10: end for
11: A := ChooseDecentralizations(E,D, MPDCS) // Several methods; see Algorithms 4, 5
12: for i ∈ [1..k] do
13: ∀oi ∈ Ωi, DSi(oi) = Ai

14: for q ∈ Q, oi ∈ obsi(q) do
15: DSi(oi) := DSi(oi) ∩ Aq

i

16: if DSi(oi) = ∅ then
17: return fail
18: end if
19: end for
20: end for
21: return (DS1, . . . , DSk)
22: end procedure

Algorithm 4 is the naive method for decomposition; this may lead to a set of state-decentralizations
that fail on Algorithm 3, Line 17.

Algorithm 4 Naively choose state-decentralization
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: MPDCS : Q → 2(2A1 ,...,2Ak) // Maximally Permissive State-Decentralizations
5: Output
6: Aq = (Aq

1 ⊆ A1, . . . , Aq
k ⊆ Ak), ∀q ∈ Q // Chosen State-Decentralizations

7: procedure ChooseDecentralizationsNaive(E,D, MPDCS)
8: for q ∈ Q do
9: Aq = (Aq

1, . . . , Aq
k) := Choose an arbitrary member of MPDCS(q)

10: end for
11: return Aq, ∀q ∈ Q
12: end procedure

RLJ | RLC 2024

In contrast, if Algorithm 5 (the SAT-based method) succeeds at finding a set of state-
decentralizations, shield decomposition will succeed when using this set.

Algorithm 5 Choose state-decentralizations using a SAT solver
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: MPDCS : Q → 2(2A1 ,...,2Ak) // Maximally Permissive State-Decentralizations
5: Output
6: Aq = (Aq

1 ⊆ A1, . . . , Aq
k ⊆ Ak), ∀q ∈ Q // Chosen State-Decentralizations

7: procedure ChooseDecentralizationsSAT(E,D, MPDCS)
8: C := {} // A set of boolean constraints to be given to the SAT solver
9: ∀i ∈ [1..k], oi ∈ Ωi, ai ∈ Ai, ActionEnabledi,oi,ai

: B // Var representing ai ∈
⋂

q∈Ri(oi) Aq
i

10: ∀q ∈ Q, dq ∈ MPDCS(q), DecompSelectedq,dq : B // Var representing Aq = dq

11: for i ∈ [1..k], oi ∈ Ωi do
12: C := C ∪ {∨ai∈Ai

ActionEnabledi,oi,ai
} // Some action is always available

13: end for
14: for q ∈ Q do
15: C := C ∪ {⊕dq∈MPDCS(q)DecompSelectedq,dq) // At least one decomp is chosen
16: for dq ∈ MPDCS(q), i ∈ [1..k], ai ∈ (Ai \ dq

i) do
17: // If decentralization dq is chosen for state q, the agents’ available actions will be safe
18: C := C ∪ {DecompSelectedq,dq → ¬ActionEnabledi,obsi(q),ai

}
19: end for
20: end for
21: Sol := SATSolver(C)
22: if Sol = UNSAT then
23: return fail
24: else
25: for q ∈ Q do
26: for dq ∈ MPDCS(q) do
27: if Sol(DecompSelectedq,dq) = ⊤ then // True for one dq (line 15)
28: Aq := dq

29: end if
30: end for
31: end for
32: return Aq, ∀q ∈ Q
33: end if
34: end procedure

RLJ | RLC 2024

For each environment state, the centralized shield specifies a safe set of joint actions; for exam-
ple, {(a1

1, a2
1), (a1

1, a2
2), (a1

2, a2
1)}. The goal of Algorithm 6 is to find all maximally-permissive state-

decentralizations. In this example, there are exactly two: ({a1
1, a1

2}, {a2
1}) and ({a1

1}, {a2
1, a2

2}). Both
state-decentralizations have the property that the Cartesian product of their components is a sub-
set of the safe set of joint actions, and no individual actions can be added while maintaining that
property.

The classic method to find a single maximally-permissive state-decentralization (Melcer et al., 2022)
starts with one known-safe joint action, and adds all individual actions that it can, while main-
taining the safety property. While this works well to find a single maximally permissive state-
decentralization, it cannot be used to obtain all state-decentralizations for a given state.

In contrast, the following algorithm starts with a state-decentralization that allows every joint action.
It iterates through unsafe joint actions. If a given state-decentralization d = (Aq

1, Aq
2, . . .) allows an

unsafe joint action (a1, a2, . . .), the algorithm splits d into several state-decentralizations {(A1 \
a1, A2, . . .), (A1, A2 \ a2, . . .), . . .}) which are each now safe and maximally permissive.

The time complexity of this algorithm is difficult to analyze traditionally; while it would seem that
the size of D would grow exponentially as the algorithm proceeds, its size is significantly limited in
practice by the operation on line 20. This algorithm consumes a negligible portion of the overall
runtime for shield decentralization.

Furthermore, the only input of this algorithm is the set of safe joint actions, plus information about
the overall environment—it is not dependent on environment state. Therefore, the output of this
algorithm for any one state can be reused among all states which share the same safe joint actions.

Algorithm 6 Find all possible maximally-permissive state-decentralizations
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization Setup
4: Asafe ⊆ A // A set of safe joint actions
5: Output
6: D : 2(2A1 ,...,2Ak) // A set of maximally-permissive state-decentralizations
7: procedure CalcMPDs(E,D,Asafe)
8: D := {{Ai|i ∈ [1..k]}}
9: for au = (au

1 , . . . , au
k) ∈ (A \ Asafe) do

10: for d = (d1, . . . , dk) ∈ D do
11: if au ∈ (d1 × . . . × dk) then
12: D := D \ d
13: for i ∈ [1..k] do // Create state-decentralizations that omit
14: if di \ {au

i } ̸= ∅ then // a specific unsafe action for each agent
15: D := D ∪ {(d1, . . . , di \ {au

i }, . . . , dk)}
16: end if
17: end for
18: end if
19: end for
20: Remove subsumed elements from D
21: end for
22: return D
23: end procedure

RLJ | RLC 2024

C Extended Algorithmic Example

Consider the environment shown in Figure 1: a 2-agent 3x3 gridworld, where each agent’s observation
radius is limited to directly adjacent and diagonal squares.

The environment E = (Q, Q0,A, δ) is defined as follows: Q is all possible states; for this environment,
this is (Z3)4; i.e., a tuple of four numbers representing the x and y positions of the circle and triangle
from 0 to 2, inclusive. Q0 is the set of initial states; for example, the circle and triangle start at
the top-left and bottom-right respectively. A is the set of joint actions; i.e., all combinations of
movements between the circle and triangle. Finally, δ outputs the set of possible next states, given
the current state and an action. δ may have arbitrary dynamics; for example, when an agent
attempts to leave the boundary, the set of next possible states may include an artificial “sink” state
with a self-loop.

So far, the environment doesn’t have the concept of multiple agents; it is possible for one agent to
control both the circle and triangle, with full observability.

To specify the exact semantics of how agents interact with the environment, we create the decentral-
ization setup D = (2,A1,A2, Ω1, Ω2, obs1, obs2). The “2” specifies that there are two agents in the
environment. A1 and A2 are individual action spaces such that A = A1 × A2; in our example, A1 is
the component of the action which controls the circle, while A2 is the component which controls the
triangle. Ω1 and Ω2 are sets of possible individual observations, while obs1 and obs2 map the state
space onto this set—for example, all states in which the circle is in the top-left and the triangle is
far away are mapped to the same observation.

We assume that these two structures are given, along with the set of unsafe states Qbad. The first
step of the decentralized shield generation process is to produce a centralized shield. If there existed
any states for which no safe action existed, such states would be marked as unsafe themselves. In
this example, no such states exist; the centralized shield is thus very simple—a function that, given
a state, returns the set of joint actions which do not immediately lead to a safety violation. The
centralized shield would be more complex in environments for which there are states that aren’t
unsafe themselves, but will inevitably lead to a safety violation.

The next step is to calculate all sets of safe state-decentralizations for each state. This means a
set of actions for each agent such that, without communication, it is safe for both agents to choose
from this set. For example, when Agent 1 is in the top-left, and Agent 2 is in the top-right, it is
safe for Agent 1 to go right or down as long as Agent 2 always goes down. This is not the only
safe state-decentralization: it would also be safe for Agent 2 to go left or down, if Agent 1 were
to always go down. The important thing is that for this state, one safe state-decentralization is
chosen in advance of any training or execution. An enumeration of all safe state-decentralizations is
performed by Algorithm 6.

Finally, we must choose one of these state-decentralizations for each state. Note that because
multiple states map to the same observation, the safe actions allowed for a given observation is the
intersection of the sets of actions allowed for that agent for the chosen state-decentralization of all
states which may produce that observation. If in one state, the chosen state-decentralization only
allows Agent 1 to go right or down, while in another state, the chosen state-decentralization only
allows Agent 1 to go right, then if Agent 1 cannot tell apart these two states (due to them having the
same observation), it must always go right. In contrast, if the actions allowed do not overlap, then
Agent 1 is stuck with no possible safe action. Our challenge is thus to choose state-decentralizations
for which there is always a safe action available for each agent, among all states which produce the
same observation.

We encode this selection as a SAT problem. In Figure 3, the first two clauses that we add to the
SAT problem relate the chosen state-decentralizations to the actions which are allowed for a given
observation: the second clause states that when Agent 1 is in the top-left, and Agent 2 in the
top-right, then if the first state-decentralization is selected, Agent 1 is not allowed to move right.

RLJ | RLC 2024

Figure 3: Example SAT constraints for the environment from Figure 1. When a specific state-
decentralization is selected, some actions are disabled for each agent. A state-decentralization must
be selected for each state. Finally, there must be an action which remains enabled for each observa-
tion. Corresponding constraints are also added for other states and observations, and for the blue
triangle agent.

The third and fourth clauses state that a state-decentralization must be selected for every state;
otherwise, the problem is trivially solvable by not selecting any state-decentralization, and allowing
every action. Finally, the fifth clause states that Agent 1 should never be stuck with no safe action
available when it observes that it is in the top-left, and does not know where Agent 2 is. This is
just a small sample of the constraints that would be added to the SAT problem; similar constraints
would be added for other states, observations, and agents. If SAT solver succeeds, it gives us a
listing of safe individual actions that may be taken after any observation; this is the decentralized
shield.

RLJ | RLC 2024

D Incorporating Bounded History in Shield Synthesis

The methods described in this paper only search for shields that do not take history into account.
However, consider a domain where agents have momentum, but only observe positions, such as
Particle-P. In this domain, |Ri(oi)| is large: for a given position observation, there are many states,
with different velocities, which the agents are unable to distinguish between. Each state in |Ri(oi)|
may have a different set of safe actions. The inclusion of just one step of observation history1 can
disambiguate the states, as there is only one velocity for a given pair of position observations, making
it much more likely that a shield exists.

We accomplish this by augmenting the decentralization setup, as described in Algorithm 7. For
a given history length H, for each q ∈ Q, i ∈ [1..k], the modified observation functions obs′

i(q)
return the set of possible length-(H + 1) observation traces for agent i at state q: H steps of
historical observations, plus the current observation at q. We then simply provide this modified
decentralization setup to the previous algorithm to decompose a shield. Operationally, agents must
track the last H observations they encounter; they then provide this limited-horizon history to the
decentralized shield to compute the set of safe actions. Our algorithm also handles the beginning
of each episode, when agents have not yet encountered H + 1 observations—the possible initial
environment states must be taken into consideration for this.

Algorithm 7 Increasing history length
1: Input
2: E = (Q, Q0,A, δ) // Environment
3: D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) // Decentralization setup
4: H : N // Number of history steps in resulting decentralization setup
5: Output
6: D′ = (k,A1, . . . ,Ak, Ω′

1, . . . , Ω′
k, obs′

1, . . . , obs′
k)

7: procedure IterateHistory(E,D, H)
8: ∀i ∈ [1..k], q ∈ Q0, Inits0

i (q) := obsi(q) if q ∈ Q0 else ∅ // Possible obs when horizon < H
9: ∀i ∈ [1..k], q ∈ Q, Hist0

i (q) := obsi(q) // Possible observations when horizon ≥ H
10: for t ∈ [1..H] do
11: ∀i ∈ [1..k], q ∈ Q, Initst

i(q) := Histt
i(q) := ∅

12: for q ∈ Q, q′ ∈ ∪a∈Aδ(q, a) do
13: for i ∈ [1..k], o′

i ∈ obsi(q′) do // “Push” history to successor states
14: ∀hi ∈ Initst−1

i (q), Initst
i(q′) := Initst

i(q′) ∪ Concat(hi, o′
i)

15: ∀hi ∈ Histt−1
i (q), Histt

i(q′) := Histt
i(q′) ∪ Concat(hi, o′

i)
16: end for
17: end for
18: end for
19: for i ∈ [1..k] do
20: Ω′

i := Ωi + (Ωi × Ωi) + . . . + (Ωi)H+1 //
∑H

t=0(Ωi)t+1

21: ∀q ∈ Q, obs′
i(q) = (

⋃
t∈[0..(H−1)] Initst

i(q)) ∪ HistH
i (q)

22: end for
23: return (k,A1, . . . ,Ak, Ω′

1, . . . , Ω′
k, obs′

1, . . . , obs′
k)

24: end procedure

1It is possible to also use action history for further disambiguation, but this is often not necessary in practice.

RLJ | RLC 2024

E Considerations for Creating an Environment Abstraction

For set X, we use ∆(X) to represent a distribution over X, and supp(∆(X)) to represent the support
of that distribution; i.e., values with non-zero probabilities. R represents the set of real numbers.

Consider a common specification of a decentralized environment, such as a Dec-POMDP (Goldman
and Zilberstein, 2004). Note that there are several closely-related versions of this specification; the
same principles apply to other variants.
Definition 5 (Dec-POMDP). A Dec-POMDP is a multi-agent environment defined as a tuple
M = (I = [1..k], S, S0, (A1, . . . , Ak), T, R, (O1, . . . , Ak), (O1, . . . , Ok), γ) where I is a set of agents; S
is a state space; S0 : ∆(S) is the distribution over initial states, Ai is an individual action space for
each agent i ∈ [1..k]; T : S × A1 × . . . × Ak → ∆(S) is a transition probability function, R : S → R
is a reward function, Oi is an individual observation space for each agent i ∈ [1..k], Oi : S → ∆(Oi)
is an individual observation space for each agent i ∈ [1..k], and γ is a discount factor.

There are several ways to relate an environment abstraction to a Dec-POMDP. As a simple starting
point, we say that environment E = (Q, Q0,A, δ) is a sound abstraction of Dec-POMDP M = (I =
[1..k], S, S0, (A1, . . . , Ak), T, R, (O1, . . . , Ak), (O1, . . . , Ok), γ) if A = (A1 × . . . × Ak) and there exists
some state abstraction function ς : S → Q such that ∀s ∈ S, a ∈ A, ∀s′ ∈ supp(T (s, a)), ∀ς(s′) ∈
δ(ς(s), a), and ∀s0 ∈ supp(S0), ς(s0) ∈ Q0.

The decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) is similarly abstracted.
We require that ∀i ∈ [1..k],Ai = Ai, and that there exists some observation abstraction function
ϱ : Oi → Ωi such that ∀s ∈ S, ∀oi ∈ Oi(s), ϱ(oi) ∈ obsi(ς(s)).

Finally, let SBad ⊂ S be a set of unsafe states. The corresponding set of unsafe states in E is
Qbad = {ς(s)|s ∈ SBad}. It can be seen that if one avoids all states in Qbad in E, then it is trivial to
also avoid states in SBad in M.

If S is small, it is possible to create an environment abstraction more or less automatically by
discarding reward information and exact transition probabilities: E = (Q, Q0,A, δ), with Q = S,
Q0 : supp(S0), A = A1 × . . . × Ak, and δ(q, a) = supp(T (q, a)). Similarly, if Oi are small for all
i ∈ [1..k], the decentralization setup D = (k,A1, . . . ,Ak, Ω1, . . . , Ωk, obs1, . . . , obsk) is straightforward
to create; for all i ∈ [1..k], Ai = Ai, Ωi = Oi, and ∀q ∈ Q, obsi(q) = supp(Oi(q)).

S may be large, or even infinite—in this case, abstraction is usually an art. The user must decide how
much information to discard, leaving enough useful information for the shielding method to work
with, without creating too many unique states and observations in the abstracted environment.

For example, consider a large Minecraft-like environment, with continuous positions and several
different types of objects. If collision prevention is the only safety objective, a practitioner may
discard most information about different objects in the environment, as this will usually only affect
reward, not safety. It is straightforward to discretize agent positions; the primary consideration
is that any given movement in a certain direction may not cause the agent to move into the next
discrete space. This can be handled by ensuring that δ reflects all possible discrete positions that
may be the result of a given transition.

To further reduce the state space, it is possible to use relative agent positions as the state space
for shield synthesis, rather than absolute positions. Relative agent positions greater than a modest
distance from each other do not need to be enumerated; the state space can just include one state
to represent that the agents are distant from each other. For example, we might include one state
to represent all cases in which agents are at least 10 units of distance from each other; this one state
would then include nondeterministic transitions to all states in which agents are 8 or 9 units from
each other.

Of course, it is possible to over-abstract an environment. If, for example, we create one abstracted
state to represent all states in which agents are 2 units or more from each other, our procedure may

RLJ | RLC 2024

not be able to find a shield—it would be necessary to further refine the abstraction. Methods to
automatically perform abstraction creation and refinement are an area for future work.

While this formalism is a simple way to represent an abstraction of a Dec-POMDP, it is not the only
useful, or the only correct way. For example, many prior works rely on a trace equivalence property,
rather than a state and observation abstraction property (Alshiekh et al., 2018; ElSayed-Aly et al.,
2021). It is even possible that a state abstraction which isn’t strictly correct can still be useful; if the
goal is merely to reduce the number of safety violations, or to eliminate only a subclass of violations,
an approximate abstraction is acceptable, and our decentralization method will still work.

RLJ | RLC 2024

F Algorithm Runtime

Our algorithms have real-world performance that is significantly different from their worst-
case performance, meaning that a traditional asymptotic complexity analysis is not reflec-
tive of the realistic algorithmic runtime. For example, the SAT-based algorithm produces∑k

i=1|Ωi|×|Ai|+
∑

q∈Q|MPDCS(q)| variables that are given to the solver. This would imply an ob-

scene worst-case runtime of O(2
∑k

i=1
|Ωi|×|Ai|+

∑
q∈Q

|MPDCS(q)|); the algorithm would never terminate
except for the most trivial of examples.

While the solver does consume a significant amount of time for more complex examples, there are a
number of factors that we believe lead to a generally low runtime, aside from the general advancement
in SAT solvers over the past several decades—for example, many of the clauses we add to the solver
contain only one or two variables. Similarly, a strict worst-case complexity analysis would add a
factor of

∑k
i=1|Ωi| to many of the algorithms’ runtimes. While this factor is technically possible if

every state had O(|Ωi|) possible observations for each i ∈ [1..k] on average, this is not usually the
case for real-world environments and decentralization setups.

We therefore focus on algorithm runtime, as presented in Table 3.

Table 3: Time required for the decentralization process itself, followed by total time taken in disk
access, serialization, and deserialization. All times are measured in seconds, and measured on a M1
Max Macbook Pro. “X” represents that shield decentralization completes, but results in failure, for
the selected environment and decentralization method. “-” indicates that a given shield decentral-
ization method was not attempted for this environment. Note that performance optimization was
done on a best-effort basis; these times are for shield decentralization, but these times are often
dwarfed by the runtime of currently existing centralized synthesis tools.

Domain Naive (0 History) Naive (1 History) SAT (0 History) SAT (1 History) SAT (2 History)

Grid-Col 0.3, 0.6 26.9, 2.1 0.8, 1.1 63.6, 2.0 -
Particle-P X 1.3, 0.1 X 2.4, 0.1 -
Particle-P-V 0.1, 0.1 1.6, 0.1 0.1, 0.1 2.9, 0.1 -
Nearby-Obs 0.3, 0.6 23.8, 0.7 0.6, 0.6 55.5, 0.7 -
Flashlight-6 X X <0.1, <0.1 3.0, 0.1 273, 2.2
Flashlight-10 X X 0.6, 0.4 52.9, 0.7 -

We can also compare the runtimes to the number of variables that are produced during the SAT-
based decentralization process. There are two families of variables, we track numbers of each of
these separately. The totals are listed in Table 4.

Table 4: Number of SAT variables produced by our method

Environment |Q| History a ∈ DSi(oi) Aq = dq Total
Length (

∑
i∈[1..k]|Ωi|×|Ai|) (

∑
q∈Q|MPDCS(q)|) Variables

Grid-Col 52670 0 526700 55384 582084
1 12128840 1284224 13413064

Particle-P-V 7824 0 78240 11180 89420
1 645360 93832 739192

Particle-P 7824 0 3600 11180 14780
1 81840 11796 93636

Flashlight (6x6) 2400
0 11250 3856 15106
1 388970 214020 602990
2 13628090 12213716 25841806

Flashlight (10x10) 39600 0 80800 46496 127296
1 2904920 2858920 5763840

RLJ | RLC 2024

G Additional Training Details

We replicate the hyperparameters from Melcer et al. (2022) as closely as possible. In Grid-Col, we use
tabular individual Q-learning with γ = 0.9. We use ϵ-greedy action selection with ϵ annealed from
1 to 0 over 2.5 million time steps during training, and ϵ = 0 during evaluation. We use 50 random
seeds. Note that our methodology diverges from ElSayed-Aly et al. (2021); Melcer et al. (2022) by
using ϵ = 0 during evaluation (as opposed to ϵ = 0.05) to be fairer to unshielded agents—if a policy
had learned to avoid a specific action, it may have been forced to take it anyways during evaluation,
while shielded agents were still able to block such an action. Additionally, we use discounted rewards
as the evaluation metric, rather than undiscounted rewards.

For Particle-P and Particle-P-V, we use Deep Double Q-learning (Mnih et al., 2013; Van Hasselt
et al., 2016) with a simple network architecture. The agent’s network consists of a linear layer from
the input space (one-hot encoding of agent positions) to 128 features, a ReLU activation (Glorot
et al., 2011), then additional linear layers of size 128, 64, and 5 (the action space size), all with
ReLU activation except for the last layer. We set the replay buffer size to be 105, and optimize the
network using default parameters of the PyTorch Adam optimizer, with a batch size of 32 (Kingma
and Ba, 2014; Paszke et al., 2019). Otherwise, all hyperparameters are the same as in Grid-Col. We
use 50 seeds as well for these runs.

In Nearby-Obs, we modify the agents to use a DRQN architecture. The neural network is similar
to the network used for Particle, except that between the two linear layers of size 128, we insert
a GRU layer of size 128. We train with a sequence length of 4 and a batch size of 8; otherwise,
all hyperparameters are the same as with Particle-P and Particle-P-V; we did not perform any
architecture or hyperparameter search to arrive at these values. We evaluate each configuration
with 50 random seeds.

Flashlight-6 and Flashlight-10 use the same agent architecture and hyperparameters as Nearby-Obs,
but with 10 random seeds.

Note that we introduce seeded randomness during the shield decentralization process so that the
generated shields are diverse over different random seeds of the same experiment. The naive shield
generation method often fails when this randomness is introduced, even in cases where it succeeds
without randomness; if this occurs, we substitute a non-random shield generated with the naive
algorithm.

RLJ | RLC 2024

H Reinforcement Learning Results

We include full results for all environments. Table 5 shows results from Grid-Col for each method.
Table 6 shows results from Particle-P using a history length of one, and Particle-P-V without history.
Table 7 shows results for Nearby-Obs for each method; note that the method in Melcer et al. (2022)
cannot produce a shield for this method due to its partial observability. Tables 8 and 9 show results
for Flashlight-6 and Flashlight-10, respectively. Note that our SAT-based decomposition is the only
decentralized method that succeeds in this environment.

Aside from the results described here, shielded agents avoid taking unsafe actions during training,
compared to the hundreds of thousands of safety violations that unshielded agents take during
training. While many of these violations during training are undoubtedly attributable to high
ϵ values during ϵ-greedy action selection, we note that shielding allows a RL practitioner to be
more flexible with their selection of training hyperparameters, without needing to worry about the
hyperparameters’ effect on safety violations.

Table 5: Results in Grid-Col; average discounted returns and standard error over 50 seeds, and
average total safety violations over 100 evaluation runs in parentheses (omitted for configurations
with no violations). History was not used.

Start Map Melcer et al. (2022) Naive SAT Centralized No Shield

Fixed

ISR 38.4 ± 0.6 38.9 ± 0.6 38.1 ± 0.6 38.4 ± 0.7 39.9 ± 0.9 (4.0)
MIT 2.2 ± 0.1 2.0 ± 0.1 1.8 ± 0.1 2.1 ± 0.2 1.8 ± 0.1

Pentagon 31.1 ± 0.5 30.7 ± 0.6 32.6 ± 0.5 31.9 ± 0.6 35.4 ± 0.7
SUNY 24.4 ± 0.4 23.4 ± 0.4 24.0 ± 0.4 22.6 ± 0.3 23.1 ± 0.4

Rand

ISR 29.4 ± 2.0 29.5 ± 2.4 30.1 ± 2.2 31.1 ± 2.5 28.1 ± 1.9 (0.9)
MIT 15.1 ± 1.6 19.7 ± 2.4 18.0 ± 2.2 19.1 ± 2.3 15.7 ± 1.8

Pentagon 32.4 ± 1.9 37.2 ± 2.2 34.1 ± 2.2 39.6 ± 2.8 31.8 ± 2.1 (0.3)
SUNY 11.9 ± 2.5 8.0 ± 1.9 14.8 ± 2.4 10.6 ± 2.4 11.6 ± 2.0

RLJ | RLC 2024

Table 6: Results in Grid-Col; average discounted returns and standard error over 50 seeds, and
average total safety violations over 100 evaluation runs in parentheses (omitted for configurations
with no violations). Particle-P uses 1 step of history, Particle-P-V uses no history.

Environment Start Melcer et al. (2022) Naive SAT Centralized No Shield

Particle-P Fixed 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0 33.1 ± 0.5 33.6 ± 0.0
Rand 26.0 ± 3.2 28.8 ± 2.0 27.6 ± 3.1 29.7 ± 3.8 17.0 ± 3.5 (69.2)

Particle-P-V Fixed 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0 33.6 ± 0.0
Rand 51.3 ± 2.1 53.0 ± 2.4 50.0 ± 1.8 51.7 ± 2.0 48.7 ± 2.0 (0.1)

Table 7: Results in Nearby-Obs, average discounted returns and standard error over 50 random
seeds, and average total safety violations over 100 runs in parentheses (omitted for configurations
with no violations). History was not used.

Start Type Map Naive SAT Centralized No Shield

Fixed

ISR 80.9 ± 0.2 78.6 ± 2.6 83.9 ± 0.0 81.2 ± 2.7
MIT -49.0 ± 0.0 -49.0 ± 0.0 -49.0 ± 0.0 -47.0 ± 2.0

Pentagon -2.4 ± 8.5 48.5 ± 7.4 35.2 ± 8.6 -46.5 ± 11.8 (1482.0)
SUNY 2.4 ± 8.6 -0.6 ± 8.5 2.5 ± 8.6 14.7 ± 8.7

Random

ISR 61.1 ± 5.7 45.0 ± 7.3 61.8 ± 5.4 5.6 ± 8.8 (113.4)
MIT -42.4 ± 3.7 -42.2 ± 3.9 -44.2 ± 3.4 -43.5 ± 6.6 (159.8)

Pentagon -31.3 ± 6.1 -25.1 ± 9.3 -6.0 ± 9.2 -42.0 ± 4.3 (56.9)
SUNY -49.0 ± 0.0 -49.0 ± 0.0 -49.0 ± 0.0 -49.0 ± 0.0 (146.4)

Table 8: Flashlight-6 results; average discounted returns and standard error over 10 random seeds
for varying recharge times (RT), and average sum of safety violations over 100 testing episodes in
parentheses (omitted for configurations with no violations).

Start RT SAT (0 History) SAT (1 History) SAT (2 History) Centralized No Shield

Fixed

3 65.7 ± 1.5 69.2 ± 1.5 71.1 ± 0.8 78.6 ± 0.0 78.6 ± 0.0
4 58.7 ± 1.5 66.5 ± 1.9 69.1 ± 1.7 78.1 ± 0.5 78.6 ± 0.0
5 -41.6 ± 60.5 52.0 ± 11.6 65.1 ± 2.5 78.6 ± 0.0 78.6 ± 0.0
6 -40.6 ± 41.9 16.4 ± 13.9 50.5 ± 12.3 78.6 ± 0.0 77.7 ± 0.9 (10.0)

Rand

3 65.4 ± 1.1 74.9 ± 0.3 74.4 ± 0.4 84.7 ± 0.3 83.4 ± 0.2 (7.2)
4 53.1 ± 1.2 68.5 ± 0.4 72.0 ± 0.5 83.7 ± 0.2 82.7 ± 0.7 (5.1)
5 -20.6 ± 14.0 56.0 ± 3.7 67.1 ± 0.7 81.6 ± 0.9 83.5 ± 0.3 (5.2)
6 -23.8 ± 15.8 30.0 ± 12.7 62.9 ± 1.7 76.9 ± 7.0 83.5 ± 0.3 (5.5)

Table 9: Flashlight-10 results; average reward and standard error over 10 random seeds for varying
recharge times (RT), and average sum of safety violations over 100 testing episodes in parentheses
(omitted for configurations with no violations).

Start Type RT SAT (0 History) SAT (1 History) Centralized No Shield

Fixed
2 -49.0 ± 0.0 45.7 ± 0.9 55.3 ± 0.0 54.4 ± 0.8 (10.0)
3 -49.0 ± 0.0 -34.9 ± 10.5 55.3 ± 0.0 54.4 ± 0.8 (10.0)
4 -49.8 ± 0.8 -52.5 ± 1.4 55.3 ± 0.0 55.3 ± 0.0

Random
2 -52.4 ± 0.3 57.2 ± 2.4 16.9 ± 14.3 43.2 ± 11.4 (6.9)
3 -109.6 ± 7.4 38.1 ± 3.6 14.5 ± 17.3 18.3 ± 20.3 (9.3)
4 -171.7 ± 12.8 -55.1 ± 0.3 38.9 ± 8.0 49.8 ± 11.2 (6.4)

RLJ | RLC 2024

I Comparison of Shielding Methods

We include Table 10 to directly compare the domains of several shielding methods in terms of
observability, and the number and types of agents.

Method Obs Agents Brief Description
Alshiekh et al. (2018) Full Single First to apply Shielding to RL

Mazzi et al. (2021) Partial Single Enforces safety in context of POMCP algorithm
Carr et al. (2022) Partial Single Uses belief support to handle partial observability

Junges et al. (2021) Partial Single Another belief support method
ElSayed-Aly et al. (2021) Full Communicate Local centralized shields allow for scalability

Melcer et al. (2022) Full Cooperative Avoids communication by decentralizing safe action sets
Carr et al. (2021) Full Adversarial Models adversary as part of nondeterministic env

Ours Partial Cooperative Decentralizes both observations and actions

Table 10: Comparison of the shielding methods mentioned in Section 2; in particular, which domains
each method operates in. Note that “Full” observability specifically references observability of safety-
relevant, rather than reward-relevant, information. Unless specifically noted, cooperative methods
do not use communication. As all shielding methods operate on an abstraction of the environment,
information irrelevant for safety may be partially observable.

J Proof Sketches

J.1 Decentralized Shields that Satisfy Problem 1 are Deadlock-Free

Proof Sketch ∀i ∈ [1..k], q ∈ Q, obsi(q) ̸= ∅, and DSi(oi) is nonempty for every oi ∈ obsi(q) when q
is reachable, so it follows that

⋃
oi∈obsi(q) DSi(oi) is also nonempty. Because this is true for every

i, it holds that (
⋃

o1∈obs1(q) DS1(o1)) × . . . × (
⋃

ok∈obsk(q) DSk(ok)) is also nonempty. Because the
application of a decentralized shield to the environment preserves legality for these actions, there is
at least one legal action for every reachable state of DS(E), and it is thus deadlock-free.

J.2 Problems 2 and 3 solve Problem 1

Since for all reachable q, ∀o1 ∈ obs1(q), . . . , ∀ok ∈ obsk(q), DS1(o1) × . . . × DSk(ok) is a non-empty
subset of CS(q), and since CS(q) is a subset of the legal actions at q, it follows that DS1(o1) ×
. . . × DSk(ok) is also a subset of the legal actions at q. Additionally, (

⋃
o1∈obs1(q) DS1(o1)) × . . . ×

(
⋃

ok∈obsk(q) DSk(ok)) ⊆ CS(q); therefore, the legal actions at q for DS(E) are a subset of the legal
actions at q for CS(E). Thus, all states which are unreachable in CS(E), such as those in Qbad, are
also unreachable in DS(E).

