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Abstract. The integration of neural networks into safety-critical sys-
tems has shown great potential in recent years. However, the challenge
of effectively verifying the safety of Neural Network Controlled Sys-
tems (NNCS) persists. This paper introduces a novel approach to NNCS
safety verification, leveraging the inductive invariant method. Verifying
the inductiveness of a candidate inductive invariant in the context of
NNCS is hard because of the scale and nonlinearity of neural networks.
Our compositional method makes this verification process manageable
by decomposing the inductiveness proof obligation into smaller, more
tractable subproblems. Alongside the high-level method, we present an
algorithm capable of automatically verifying the inductiveness of given
candidates by automatically inferring the necessary decomposition pred-
icates. The algorithm significantly outperforms the baseline method and
shows remarkable reductions in execution time in our case studies, short-
ening the verification time from hours (or timeout) to seconds.

Keywords: Formal Verification + Inductive Invariant - Neural
Networks - Neural Network Controlled Systems

1 Introduction

Neural Network Controlled Systems (NNCSs) are closed-loop systems that con-
sist of an environment controlled by a neural network (NN). Advancements in
machine learning have made NNCSs more widespread in safety-critical applica-
tions, such as autonomous cars, industrial control, and healthcare [47]. While
many methods exist for the formal verification of standard closed-loop sys-
tems [8], the scale and nonlinearity of NNs makes the direct application of these
methods to NNCSs a challenging task.

In this paper, we study formal verification of safety properties of NNCSs,
using the inductive invariant method [28]. In a nutshell, the method consists in
coming up with a state predicate IndInv which is inductive, an invariant, and
implies safety (see Sect.2, Conditions (4), (5) and (6)). The most important
property, and often the most difficult to check, is inductiveness. In the case of
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NNCSs, checking inductiveness amounts to checking the validity of the follow-
ing formula, where Nextyyc and Nextpyy are the transition relation predicates
of the NN controller and of the environment, respectively, and ¢’ is the state
predicate ¢ applied to the next-state (primed) variables:

(IndInv A Nextyyc A Nextpyy) = IndInd (1)

The problem that motivates our work is that checking formula (1) is infeasible
in practice using state-of-the-art tools. On the one hand, generic tools such as
SMT solvers [9] cannot handle formula 1 directly, typically due to the size and
complexity of the NN and corresponding Nextyyc predicate. On the other hand,
specialized NN verification tools [45,46] also cannot handle formula (1) directly,
typically due to limitations in being able to deal with closed-loop systems and
the environment transition relation Nextgyy (which, for example, might be non-
deterministic).

This paper proposes a compositional method to deal with this problem. The
key idea is the following: instead of checking formula (1) monolithically, we
propose to break it up into two separate conditions:

(IndInv A Nextynyc) = Bridge (2)
(Bridge A Nextgny) = IndInt (3)

where Bridge is a new state predicate that needs to be invented (we propose
a technique to do this automatically). Not only are each of the formulas (2)
and (3) smaller than the monolithic formula (1) they can also be handled by the
corresponding specialized tool: formula (2) by a NN verifier, and formula (3) by
an SMT solver.

In Sect.3 we elaborate our approach. We propose a technique to construct
Bridge predicates automatically, and show how this technique can also be used
to establish the validity of Condition (2) by construction. We also present a
heuristic that can falsify inductiveness compositionally in some cases when for-
mula (1) is not valid. We incorporate these techniques into an algorithm that
checks inductiveness of candidate IndInv predicates for NNCSs.

Our experimental results (Sect.4) indicate that our algorithm consistently
terminates, effectively verifying or falsifying the inductiveness of the given can-
didate in both deterministic and non-deterministic environment setups, for NNs
of sizes up to 2 x 1024 neurons, in a matter of seconds. This is in contrast to the
monolithic method, which times out after one hour for all our experiments with
NNs larger than 2 x 56 neurons.

2 Preliminaries and Problem Statement

Symbolic Transition Systems: The systems considered in this paper can be
modeled as symbolic transition systems (STSs), like the ones shown in Fig. 1.
An STS is defined by: (1) a set of state variables, each of appropriate type; (2)
a predicate Init over the state variables, specifying the set of possible initial
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State variable : s € Z

Init:s=0
NN function : fynv:Z — R
State variable : s € Z Nextnne : a = fun(s)
Init:s=0 Nextpyv: (@ >0 = s' =0) A
Next: (s=3 = s =0) A (a<0 = s’ =s5+1)
(s#3 = s =5+ 1) Next : Nextync A Nextpny
Safe:0<s<3 Safe:0<s<3
(a) Mod-4 counter (b) Mod-4 counter with NN controller

Fig. 1. Two STSs. The one in Fig.1b is a NNCS: function fyn (defined elsewhere)
models a neural network controller.

states; and (3) a predicate Next over current and next (primed) state variables,
specifying the transition relation of the system. For example, the STS shown in
Fig. 1a models a counter modulo-4. This system has one state variable s of type
integer (Z). Its Init predicate specifies that s is initially 0. Next specifies that at
each transition, s is incremented by one until we reach s = 3, upon which s is
reset to 0 (primed variable s’ denotes the value of state variable s at the next
state). The Safe predicate defines the set of safe states (used later).

A state is an assignment of values to all state variables. We use the notation
x = P to denote that state x satisfies state predicate P, i.e., that P evaluates
to true once we replace all state variables in P by their values as given by x.
A transition is a pair of states (z, ') that satisfies the predicate Next, denoted
(z,2") = Next. We also use notation  — 2’ instead of (z,2’) = Next, when Next
is clear from context. A trace is an infinite sequence of states xg, z1, - - such that
zo = Init and x; — x4 for all ¢ > 0. A state x is reachable if there exists a
trace xg,x1,- -, such that x = x; for some i. We use Reach(M) to denote the
set of all reachable states of an STS M.

Invariants: In this paper we are interested in the verification of safety prop-
erties, and in particular ‘nvariants, which are state predicates that hold at all
reachable states. Formally, for an STS M, an invariant is a state predicate Inv
such that Reach(M) C {s | s = Inv}. Predicates s > 0 and 0 < s < 3 are both
invariants of the STS of Fig. 1a.

Inductive Invariants: A standard technique for checking whether a given state
predicate Safe is an invariant of a given STS is to come up with an inductive
invariant stronger than Safe, that is, with a state predicate IndInv which satisfies
the following conditions [28]:
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Init = IndInv (4)
(IndInv A Next) = IndIn/ (5)
IndInv = Safe (6)

where IndInv' denotes the predicate IndInv where state variables are replaced
by their primed, next-state versions. Condition (4) states that IndInv holds at
all initial states. Condition (5) states that IndInv is inductive, that is, if IndInv
holds at a state s, then it also holds at any successor of s. We call Condition (5)
the inductiveness condition. Condition (6) states that IndInv is stronger than
Safe. Conditions (4) and (5) imply that all reachable states satisfy IndInv, which
together with Condition (6) implies that they also satisfy Safe.

Neural Networks: At its core, a neural network (NN) is a function, receiving
inputs and producing outputs. Mathematically, the output z(*) of each layer in
a feed-forward NN with L layers can be expressed as:

L0 — Ui(w(i)z(i—l) + b(i)), i=1,2,---,L,

where W and b represent the weight matrix and bias vector for the i-th layer,
respectively, and o; is the activation function for that layer. Our paper considers
feed-forward NNs with ReLU activation functions, where ReLU(z) = max(0, z).

Neural Network Controlled Systems: In this paper, we are interested in
safety verification for neural network controlled systems (NNCSs). A NNCS is a
STS consisting of a neural network controller and an environment, in closed-loop
configuration. Formally, a NNCS is a STS whose transition relation predicate
Next is of the form Nextyyc A Nextgyy, where Nextyye is a predicate capturing
the NN controller, and Neztgyy is a predicate capturing the transition relation
of the environment. We assume that Nextyyc is always of the form a = fyn(s),
where fyn is the function modeling the NN controller, s is the vector of state
variables of the environment (which are the inputs to the NN controller), and
a is the vector of outputs of the NN controller (which are the inputs to the
environment). Then, Neztgyy is a predicate on s, s/, and a. Note that the only
state variables in the NNCS are s. Variables a are not state variables, but just
temporary variables that can be eliminated and replaced by fyn(s), according
to the equation a = fyn(s). We assume that for any assignment of s and a,
there always exists an assignment of s’ such that Nextgyy is satisfied; that is,
the system is deadlock-free.

An example NNCS is shown in Fig. 1b. In this simple example, the output a
of the NN controller controls the environment to either reset the state variable
s to 0 (if a > 0) or increment it by 1 (if a < 0).

Safety Verification Problem for NNCS: The problem we study in this
paper is the safety verification problem for NNCS, namely: given a NNCS M
and a safety predicate Safe, check whether Safe is an invariant of M.
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3 Owur Approach

To solve the safety verification problem for NNCSs, we will use the inductive
invariant method described in Sect. 2. In particular, our approach assumes that
a candidate inductive invariant is given, and our focus is to check whether this
candidate is indeed a valid inductive invariant stronger than Safe, i.e., whether
it satisfies Conditions (4), (5), and (6). Specifically, we focus on checking induc-
tiveness, i.e., Condition (5), because this is the most challenging condition to
check.
In the case of NNCS, Condition (5) instantiates to:

(IndInv A Nextyyc A Nextgny) = IndIny'. (7)

A naive approach is to attempt to check Condition (7) directly: we call this
the monolithic method. Unfortunately, as we will show in Sect. 4, the monolithic
method does not scale. This is typically because of the size of the Nextyyc part
of the formula, which encodes the NN controller, and tends to be very large.
To address this challenge, we introduce a compositional method for checking
inductiveness, described next.

3.1 Owur Approach: Compositional Method

Our compositional method is centered around two key ideas: (i) automatically
construct a bridge predicate, denoted Bridge; and (ii) replace the monolithic
inductiveness Condition (7) by two separate conditions:

(IndInv A Nextync) = Bridge (8)
(Bridge A Nextgyy) = IndInt (9)

By transitivity of logical implication, it is easy to show the following:

Theorem 1 (Soundness). If Conditions (8) and (9) hold then Condition (7)
holds.

The completeness of our method follows from the fact that in the worst case
we can set Bridge to be equal to IndInv A Nextyyc.

Theorem 2 (Completeness). If Condition (7) holds then we can find Bridge
such that Conditions (8) and (9) hold.

As it turns out (c.f. Section4) checking Conditions (8) and (9) separately
scales much better than checking Condition (7) monolithically. However, this
relies on finding a “good” bridge precidate. Setting Bridge to IndInv A\ Nextync
is not helpful, because then Condition (9) becomes identical to the monolithic
Condition (7). Thus, a necessary step is finding a bridge predicate that satisfies
Conditions (8) and (9), while remaining manageable. In Sect. 3.2, we present
an automatic technique for doing so. But first, we examine bridge predicates in
more depth.
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Naive Bridge Predicates are Incomplete: A natural starting point for
constructing the bridge predicate is to define it only over the output variables a
of the NN controller. We call this a naive bridge predicate. Unfortunately, naive
bridge predicates might be insufficient, as we show next. Consider the system
shown in Fig. 1b. Suppose we set Nextyyc to:

(0<s<2)ha=-1)V(s=3Aa=1)V((s<0Vs>3)A(a=-1Va=1))

It can be checked that the set of reachable states of this system is 0 < s < 3.
Therefore, 0 < s < 3 is also an inductive invariant of this system. A naive
bridge predicate that satisfies Condition (8) could be a = 1V a = —1. This is,
in fact, the strongest naive bridge predicate that satisfies Condition (8), as it
captures all the possible values of a. Therefore, if this naive bridge predicate
does not satisfy Condition (9), then no naive bridge predicate that satisfies both
Conditions (8) and (9) exists. Indeed, Condition (9) is violated by this naive
bridge, as it becomes

(a=1Va=-1DA(a>0 = s =0)A(a<0 = ' =s5+1))
= (0< s <3)

which is false when s = 3, a = —1 and s’ = 4. So, no naive bridge predicate can
satisfy both Condition (8) and (9). This suggests that naive bridge predicates
are insufficient. The solution is to allow bridge predicates to refer both to the
inputs and outputs of the NN controller:

Generalized Bridge Predicates are Complete: A generalized bridge predi-
cate is a predicate defined over both the output variables a as well as the input
variables s of the NN controller (the inputs s are the same as the state variables
of the environment). Continuing our example above, a generalized bridge pred-
icate could be: (0 < s<2)Aa=—-1)V (s =3Aa=1). Then, Conditions (8)
and (9) become:

(0<s<3) A
(0<s<2)na=—-1)V(s=3Na=1)V((s<O0Vs>3)A(a=—-1Va=1)))
= (((0<s<2)Aha=-1)V(s=3Aa=1)) (10)

(0<s<2)ha=-1)V(s=3Aa=1))A(a>0 = s =0)
AN(a<0 = s =s5+1))
= (0<s' <3). (11)

and it can be checked that both are valid, which shows that this generalized
bridge predicate is sufficient.

In general, and according to Theorem 2, a generalized bridge predicate is
sufficient, since we can set Bridge to IndInv A Nextyye, and the latter predicate
is over s and a. But it is important to note that a bridge that works need not
be the “worst-case scenario” predicate IndInv A Nextyyc. Indeed, the bridge of
our example is not, and neither are the bridges constructed by our tool for the
case studies in Sect. 4.



Compositional Inductive Invariant Based Verification of NNCSs 245

3.2 Automatic Inference of Generalized Bridge Predicates

The key idea of our automatic bridge inference technique is to synthesize a
generalized bridge predicate such that Condition (8) holds by construction (i.e.,
it does not need to be checked). To explain how this works, let us first define,
given a predicate A over both s and a, and predicate B over only s, the set of
postconditions, denoted AllPosts(A, B), to be the set of all predicates C over a
such that (AA B) = C is valid.

Then, our algorithm will construct a bridge predicate the has the form:

Bridge = (py A1) V (p2 Aha) V-V (pr A y) (12)

where each p; is a predicate over s, and each ); is a predicate over a, such that
the following conditions hold:

(p1VpaV---Vp,) < Indlnv (13)
Vi=1,...,n, ¥; € AllPosts(Nextync, pi) (14)

Condition (13) ensures that the set of all p;’s is a decomposition of the candi-
date inductive invariant IndInv, i.e., that their union, viewed as sets, “covers”
IndInv. This decomposition need not be a partition of IndInv, i.e., the p;’s need
not be disjoint. Condition (14) ensures that each 1; is a postcondition of the
corresponding p; w.r.t. the NN controller (note that 1; is not necessarily the
strongest postcondition).

Now, from (12) and (13), Condition (8) becomes:

((pl Vpa V.- \/pn) AN@l'tNNC) - ((pl /\1/)1) \ (p2 /\¢2) VeV (pn /\wn))

which is equivalent to

(\/(pi A Ne:rtNNC)) = \/ (pj AYj) (15)

i=1

which is equivalent to

/\ (pi A NextNNC \/ pj N "/}j (16)
i=1 j=1

But observe that (p; A Nextyne) = p; trivially holds, for each i = 1,...,n
And note that (p; A Nextynye) = ; also holds, since by construction, v¢; €
AllPosts(Nextyne, pi). Therefore, (p; A Nextyne) = (p; A 9;) holds for each
i, which implies that (16) holds by construction. Therefore, we have:

Theorem 3 (Condition (8) holds by construction). For any bridge pred-
icate that is in form of Condition (12), if this predicate satisfies Conditions (13)
and (14), then Condition (8) holds by construction.
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Next, consider Condition (9). From (12), Condition (9) becomes:

(((pl A1)V (p2 A2) V-V (pr A z/;n)) A Ne:ctENV) = IndInV (17)

which is equivalent to:

(\/(Pz A ; A Ne:ctENv)> = IndIn/ (18)
i=1

which is equivalent to:
/\ ((pi ANi A Neatgny) = IndInd) (19)
i=1

which means that checking Condition (9) can be replaced by checking n smaller
conditions, namely, (p; A ¥; A Nextgyy) = IndInd, for i = 1,...,n.

The algorithm that we present below (Algorithm 1) starts with n = 1 and
p1 = IndInv. It then computes some 1 € AllPosts(Nextyne, p1) and checks
whether (p; A1 A Nextpyy) = IndInd is valid. If it is, then p; A4 is a valid
bridge and inductiveness holds. Otherwise, p; is split into several p;’s, and the
process repeats.

3.3 Heuristic for Falsifying Inductiveness

An additional feature of our algorithm is that it is often capable to falsify induc-
tiveness and thereby prove that it does not hold. This allows us to avoid search-
ing hopelessly for a bridge predicate when none exists, because the candidate
invariant is not inductive.

Directly falsifying Condition (7) faces the same scalability issues as trying to
prove this condition monolithically. On the other hand, falsifying Conditions (8)
or (9) is not sufficient to disprove inductiveness. The failure to prove these con-
ditions might simply mean that our chosen bridge predicate does not work.

Therefore, we propose a practical heuristic which inherits the decomposition
ideas described above. This heuristic involves constructing: (i) a satisfiable falsi-
fying state predicate over s, denoted FState; and (ii) a predicate over the output
of the NN controller a, denoted FPred, such that the following conditions hold:

FState = IndInv (20)
(F'State A\ Nextynyc) = FPred (21)
(FState A FPred A Nextgpyy) = —IndInd (22)

Intuitively, FState identifies a set of states which satisfy IndInv but violate
IndInd after a transition. FPred captures the outputs of the NN controller when
its inputs satisfy FState. The conjunction of (21) and (22) implies:

(FState A Nextync A Nextpyy) = —IndInd (23)

In turn, (23) and (20) together imply that Condition (7) does not hold. This
leads us to the following theorem:
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Theorem 4 (Falsifying Inductiveness). If FState is satisfiable, and if Con-
ditions (20), (21), and (22) hold, then Condition (7) does not hold.

Our falsification approach aligns well with the composite structure of a
NNCS, and is compositional, because it allows to check separately the NN tran-
sition relation Nextyyc in (21) and the environment transition relation Nextgny
in (22).

3.4 Algorithm

The aforementioned ideas are combined in Algorithm 1, which implements our
compositional inductiveness verification approach for NNCSs. Line 7 ensures
that v is a postcondition of p w.r.t. the NN controller. In practice we use a
NN werifier to compute the postcondition (see Sect.4). Lines 15 and 16 ensure
Condition (13), together with the fact that the initial p is IndInv (Line 3).
Line 9 ensures that the bridge predicate is in form of Condition (12). Therefore,
by Theorem 3, Algorithm 1 ensures Condition (8) by construction.

Line 8 corresponds to checking (19) compositionally, i.e., separately for each
i. In practice, we use an SMT solver for this check (see Sect.4).

For falsification, to use Theorem 4, we set FState = p and FPred = 1.
The splitting process at Line 15 guarantees that p is satisfiable. Condition (20)
then becomes p = IndInv, which holds by construction because of Condi-
tion (13). Condition (21) becomes p A Nextyne == 1, which holds because
1 € AllPosts(Neztyne, p). Condition (22) becomes (p A ¢ A Nextpny) =
—IndInv, which is checked in Line 11.

If the algorithm can neither prove (p Ay A Nextpyy) = IndInv/, nor falsify
inductiveness, then it splits p into a disjunction of satisfiable state predicates,
ensuring Condition (12). Our implementation utilizes various splitting strategies.
The specific splitting strategies employed in our case studies are elaborated in
Sect. 4. After splitting, all resulting state predicates are added into the queue
Q. Consequently, the queue becomes empty if and only if the validity of every
conjunct in Condition (19) is proved. Therefore, an empty queue indicates that
inductiveness holds.

Termination: The algorithm terminates either upon successfully proving or
upon falsifying inductiveness. However, termination is not guaranteed in all
cases. In infinite state spaces, the algorithm may keep splitting predicates ad
infinitum. In practice, as observed in our case studies, the algorithm consistently
terminated (see Sect.4).
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Algorithm 1: Compositional Inductiveness Checking for NNCS

Input: Transition relations Nextynyc, Nextpnyv; Candidate Inductive Invariant
IndInv
Output: Verification result: (True with bridge predicate Bridge) or (False with
falsifying state predicate)

1 Function CheckInductiveness(Nextnyne, Nextgny, IndInv):
2 Bridge := False ;

3 Q = {IndInv} ;

4 | while Q#0 do

5 Let pe @ ;

6 Q:=Q\{p};

7 Let 1 € AllPosts(Neztyne, p) ;

8 if (p Ay A Nextpny) = IndInv' holds then

9 ‘ Bridge := BridgeV (p A1) ;
10 end
11 else if (p Ay A Nextpny) = —IndInv' holds then
12 ‘ return (False, p) ;
13 end
14 else

15 Split p into p1,p2,- - ,pk such that p <= (p1 Vp2V---Vpi);
16 Q::Qu{p17p27"'7pk};

17 end

18 end

19 return (True, Bridge) ;

4 Evaluation

In the experiments reported below, we evaluate our compositional method by
comparing it against the monolithic method which uses Z3 to check Condition 7
directly. We remark that we also attempted to use specialized NN verifiers such
as [45] to check inductiveness monolithically, but this proved infeasible. Specif-
ically, we tried two ways of encoding checking inductiveness as an NN verifi-
cation problem: (i) Encoding Nextgyy and Condition (7) into the NN’s input
and output constraints. This approach was impractical for our case studies since
Nextgyy involves arithmetic applied simultaneously to both the input and out-
put of the NN controller, e.g., (' = x 4+ 0.1a). Such constraints are beyond the
capability of existing NN verifiers such as [5,25,26,45]. (ii) Encoding both the
NN controller and the environment into a single NN. Our trials revealed that
current NN verifiers support only a limited range of operators for defining a
NN, restricting this approach as well. Notably, the operators we required, such
as adding the NN’s input to its output, are not typically supported. Although
these limitations might diminish as NN verifiers evolve, an additional compli-
cation arises from the fact that Nextgyy might be non-deterministic (as in our
second set of case studies). Encoding non-deterministic transition relations into
a NN remains a significant challenge because NNs are typically deterministic
functions.
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In our evaluation, we do not attempt to systematically compare our tool
against NNCS reachability analysis tools, e.g. [16,23,35,41], primarily because
these tools perform verification over a bounded time horizon through reachability
analysis, while our method is based on inductive invariants and enables the
verification of safety properties over an infinite time horizon. However, following
the recommendation of an anonymous Reviewer, we did execute some of the
aforementioned tools on the 2D maze case studies described in Sect.4.2 that
follows. In summary, in many of our experiments, tools such as JuliaReach [6]
and NNV [41] have been able to successfully verify safety within a bounded
time horizon. For example, it took NNV a few seconds to perform a 50-step
reachability analysis on the deterministic 2D maze with the largest NN controller
that we used (2 x 1024 neurons). However, both JuliaReach and NNV also failed
to verify safety in some instances, due to the overapproximation of the reach set.
Our experiments with JuliaReach and NNV will be reported in the extended
version of this paper [48].

4.1 Implementation and Experimental Setup

We implemented Algorithm 1 in a prototype tool — the source code and mod-
els needed to reproduce our experiments are available at https://github.com/
YUH-Z/comp-indinv-verification-nncs. We use the SMT solver Z3 [9] for the
validity checks of Lines 8 and 11 of Algorithm 1. To compute the postcondition
¥ (Line 7 of Algorithm 1), we use AutoLIRPA [46], which is the core engine
of the NN wverifier a-3-CROWN [45]. AutoLIRPA computes a postcondition
¢ € AllPosts(Nextyne, p), i-€., guarantees that (p A Nextyne) = 1, but it
does not generally guarantee that v is the strongest possible postcondition.

In our case studies reported below, each candidate inductive invariant is a
union of hyperrectangles, which aligns with the constraint types supported by
mainstream NN verifiers such as [5,25,26,45].

Our splitting strategy (Line 15 of Algorithm 1) follows a binary scheme,
dividing hyperrectangles at their midpoints along each dimension. For example,
the interval [1,2] would be split into [1,3/2] and [3/2,2]. This straightforward
strategy turns out to be effective in our case studies.

Our experiments were conducted on a machine equipped with a 3.3 GHz
8-core AMD CPU, 16 GB memory, and an Nvidia 3060 GPU. Z3 ran on the
CPU and AutoLIRPA on the GPU with CUDA enabled, both using default
configurations.

4.2 Case Studies and Experimental Results

We ran our experiments on two sets of examples, a deterministic 2D maze, and
a non-deterministic 2D maze, as described below.

Deterministic 2D Maze: In this example, the environment has two state
variables 2 and y of type real (R), representing an object’s 2D position. The
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Table 1. Experimental results: Det and NDet indicate the results for the deterministic
and non-deterministic 2D maze case studies, respectively. All execution times are in
seconds. T.O. represents an one-hour timeout. The Verified? column shows whether the
compositional method successfully terminated, either by proving (T) or by disproving
(F) inductiveness. #Splits reports the total number of splits performed. #SMT and
#NNV queries report the total number of calls made to Z3 and AutoLIRPA, respec-
tively.

NN size | Verified? |Monolithic Compositional |#Splits #SMT #NNV queries
execution time |execution time queries
Det | NDet | Det NDet Det | NDet Det | NDet | Det | NDet Det | NDet

2 x 32 T T 51.59 39.73 0.73]0.83 12 14 61 |71 49 |57

2 x 40 T T 113.69 |296.61 |0.70|0.66 13 |13 66 |66 53 |53

2 X 48 T T 410.14 |3002.20|0.52|0.42 10 |8 51 |41 41 |33

2 X 56 T T 1203.76 | T.O 0.420.46 8 9 41 |46 33 |37

2 X 64 T T T.O. T.O 0.760.61 15 |12 76 |61 61 |49
2x 128 |F T T.O. T.O 2.21/1.43 64 |28 225|141 160 | 113
2x256 | T T T.O. T.O 1.68|1.18 27 |23 136 | 116 109 1 93
2x512 | T T T.O. T.O 3.04|2.30 60 |45 301 | 226 241 | 181
2x1024| T T T.O. T.O. 1.94|5.23 38 |102 191 | 511 153 | 409

NN controller fyy : R? — R? outputs (a,b) = fyn(z,y), guiding the object’s
horizontal and vertical movement. The initial state is set within 0.3 < x <
0.4 and 0.6 < y < 0.7. The transition relation Nextgyy of the environment is
deterministic and defined by 2’ = z + 0.1¢ and y’ = y + 0.1b. The controller’s
goal is to navigate the object to (0.8 < z < 0.9 and 0.8 < y < 0.9), while keeping
it within a safe region of (0.22 < z < 0.98 and 0.54 < y < 0.98), which is the
safety property we want to prove.

As NN controllers, we used two-layer feed-forward NNs with ReLU acti-
vations, trained via PyTorch [31] and Stable-Baselines3 [33]. We trained NN
controllers of various sizes, ranging from 2 x 32 to 2 x 1024 neurons. To stan-
dardize the comparison among the systems containing different NN controllers,
for each system, we check the same candidate inductive invariant, defined as
0.25 < x < 0.95 and 0.55 < y < 0.95. For this candidate and for the Init and
Safe predicates defined above, it is easy to see that Conditions (4) and (6) hold.
So our experiments only check the inductiveness Condition (7).

The results are reported in Table 1: for this case study, the relevant columns
are those marked as Det. The compositional method successfully terminated in
all cases, and proved inductiveness for all NN configurations, except for 2 x 128,
for which inductiveness does not hold, and in which case the compositional
method managed to falsify it. In terms of performance, the monolithic method
requires around one minute even for the smallest NN configurations, and times
out after one hour for the larger configurations; while the compositional method
terminates in all cases in a couple of seconds. A key metric of the compositional
method is the number of splits, which is determined by the number of times
Line 15 of Algorithm 1 is executed. This metric is crucial as it impacts the
number of queries made to the SMT solver and to the NN verifier, typically the
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most time-consuming steps in the algorithm. Additionally, the number of splits
indicates the size of the bridge predicate, where fewer splits suggest smaller
bridge predicates.

Non-deterministic 2D Maze: This case study is similar to the deterministic
2D maze, with the difference that the environment’s transition relation is non-
deterministic, specifically, defined as 2’ = x + 0.1c-a and y’ = y+0.1c- b, where
c is a constant of type real, non-deterministically ranging between 0.5 and 1.0.
This non-determinism simulates the noise within the system.

The NN controllers in this set of experiments, while maintaining the same
architecture and size as in the deterministic case studies, were retrained from
scratch to adapt to the new transition relation. The candidate inductive invari-
ant is the same as in the deterministic case study, ensuring consistency in our
comparative analysis.

The results are shown in Table 1, columns marked by NDet. As demonstrated
by the results, our compositional method successfully verified inductiveness in
all configurations, in a matter of seconds.

5 Related Work

A large body of research exists on NN verification, including methods that verify
NN input-output relations, using SMT solvers [22,25,26] or MILP solvers [40],
as well as methods that employ abstract-interpretation techniques [17,38], sym-
bolic interval propagation [44], dual optimization [13], linear relaxation [46], and
bound propagation [45]. [29] formally verifies equivalence and adversarial robust-
ness of binarized NNs by SAT solvers. [14] propose an SMT based approach for
checking equivalence and approximate equivalence of NNs.

These and other techniques and the corresponding tools focus on NN verifi-
cation at the component level, that is, they verify a NN in isolation. In contrast,
we focus on system-level verification, that is, verification of a closed-loop system
consisting of a NN controller and an environment.

System-level verification approaches have also been proposed in the litera-
ture. A number of methods capture NNCSs as hybrid systems: in [24] the NN is
transformed into a hybrid system and the existing tool Flow* [7] is used to verify
the resulting hybrid system. In [21] the NN is approximated using Bernstein poly-
nomials, while [23] employs Taylor models, and uses various techniques to reduce
error. In [15] NNCSs are modeled as transition systems, and existing NN verifiers
like Marabou [26] are used for bounded model checking. These methods are adept
at proving safety properties within a bounded time horizon. The ARCH-COMP
series of competitions includes categories for verifying continuous and hybrid
systems with neural network components [27]. The tools [2,6,12,16,20,24,41]
that participated in these competitions are designed to verify properties within
a bounded time horizon by reachability analysis. In contrast, our approach is
designed to verify safety properties over an infinite time horizon using inductive
invariants instead of reachability. Also, our approach works for a discrete-time
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rather than continuous-time model. In [4], the authors perform time-unbounded
safety verification of NNCS within a conventional reinforcement learning setting
that features a finite set of possible actions by computing polyhedral overap-
proximations of the reach set using MILP techniques. In contrast, our method
does not assume a finite action space and uses inductive invariants.

Our approach can handle non-deterministic environments. While the non-
deterministic case is less studied than deterministic NNCSs, some of the tools
mentioned above, e.g., [2,41], can also handle non-determinism, albeit with a
fundamentally different technique than ours (reachability instead of inductive
invariants). The verification of non-deterministic NNCSs has also been studied
in [1], which leverages MILP solvers for the verification task.

In addition to verification, various methods for testing NNCSs have been
explored. Simulation-based approaches for NNCS analysis, including falsifica-
tion, fuzz testing, and counterexample analysis, were introduced by [11,42]. [19]
proposed a method to explore the state space of hybrid systems containing neural
networks.

Our work is also related to research on automatic inductive invariant dis-
covery, which is a hard, generally undecidable, problem [30]. Recently, several
studies have proposed techniques for automatic inductive invariant discovery
for distributed protocols [18,36], while [34] applies deep learning techniques to
infer loop invariants for programs. [3] proposes a heuristic for inferring simple
inductive invariants in NNCSs, within the context of communication network-
ing systems. Such systems possess unique traits not commonly found in general
NNCSs. These specific traits enable using a NN verifier to check a weaker con-
dition instead of directly verifying the inductiveness condition. In contrast, our
method does not depend on specific properties of specialized NNCSs.

Our work is also related to barrier certificates, an alternative technique for
verifying continuous-time systems [32,39]. In [43] the authors synthesize bar-
rier certificates by solving an optimization problem subject to bilinear matrix
inequalities. In [10] the authors propose a method that uses barrier certificates
to synthesize neural network controllers which are safe by design. [37] presents
an approach to verifying NNCSs by constructing barrier certificates.

6 Conclusions

We present a compositional, inductive-invariant based method for NNCS veri-
fication. Our method allows to to verify safety properties over an infinite time
horizon. The key idea is to decompose the monolithic inductiveness check (which
is typically not supported by state-of-the-art NN verifiers, and does not scale
with state-of-the-art SMT solvers) into several manageable subproblems, which
can be each individually handled by the corresponding tool. Our case studies
show encouraging results where the verification time is reduced from hours (or
timeout) to seconds.

Future work includes augmenting our method’s capabilities to suit a broader
range of NNCS applications. We also plan to explore the automatic generation
of candidate inductive invariants (in addition to bridges) for NNCSs.
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