% Formal Methods in Computer-Aided Design 2024

Efficient Synthesis of Symbolic Distributed
Protocols by Sketching

Derek Egolf
Northeastern University
Boston, MA USA
egolf.d@northeastern.edu

Abstract—We present a novel and efficient method for synthesis
of parameterized distributed protocols by sketching. Our method
is both syntax-guided and counterexample-guided, and utilizes
a fast equivalence reduction technique that enables efficient
completion of protocol sketches, often significantly reducing the
search space of candidate completions by several orders of
magnitude. To our knowledge, our tool, SCYTHE, is the first
synthesis tool for the widely used specification language TLA+.
We evaluate SCYTHE on a diverse benchmark of distributed
protocols, demonstrating the ability to synthesize a large scale
distributed Raft-based dynamic reconfiguration protocol beyond
the scale of what existing synthesis techniques can handle.

Index Terms—distributed protocols, synthesis, syntax-guided,
counterexample-guided, sketching

I. INTRODUCTION

Distributed protocols have become a crucial component in
the operation of modern computer systems, including financial
infrastructure [9], [8] and cloud data storage systems [10],
[12]. In addition to being consequential and widely used, the
complexity of these protocols makes them notoriously hard to
design and reason about.

Automated verification of distributed protocols has made
great advances in recent years. Specifically, inductive invariant
inference methods have allowed for fuller automation of the
verification of safety properties [18], [21], [50], [48], [41],
[39]. State of the art tools in this domain are able to verify non-
trivial specifications of parameterized, infinite-state protocols,
written in languages such as TLA* [28] or Ivy [35]. Such
verification efforts include not just protocol specifications es-
pecially designed to fit into the decidable fragment of Ivy [34],
but also generally undecidable specifications of protocols such
as Raft written in TLA* [41], [39] or Paxos written in Ivy [34],
[19]. Progress is also being made towards fuller automation
of the verification of liveness properties, e.g., see [49].

On the other hand, automated synthesis of distributed pro-
tocols is less advanced. This discrepancy might be expected
because synthesis is intuitively a harder problem than veri-
fication: verification is about checking that a given system
is correct, while synthesis involves inventing a system and

This material is partly supported by the National Science Foundation under
Graduate Research Fellowship Grant #1938052, and Award #2319500. Any
opinion, findings, and conclusions or recommendations expressed in this
material are those of the authors(s) and do not necessarily reflect the views
of the National Science Foundation.

d https://doi.org/

William Schultz
Northeastern University
Boston, MA
schultz.w @northeastern.edu

Stavros Tripakis
Northeastern University
Boston, MA
stavros @northeastern.edu

ensuring that it is correct. Theory supports this intuition: model
checking finite-state distributed systems is decidable, but syn-
thesis of finite-state distributed systems is generally undecid-
able [37], [45], [46]. Synthesis of parameterized distributed
protocols is also generally undecidable [25]. But even when
decidable, synthesis “from scratch” is still a harder problem
than verification, e.g., single-module reactive synthesis from
LTL specifications is doubly exponential in the size of the LTL
formula [36].

An easier problem than doing synthesis from scratch is to do
synthesis by sketching [42], [43]. Sketching turns the synthesis
problem into a completion problem: given a sketch (i.e., an
incomplete system with holes) the goal is to complete the
sketch such that the completion satisfies a given correctness
specification. The holes are typically missing state variable
updates, guards, or parts thereof. Completing a hole means
finding the missing expression.

In this paper, we consider the problem of synthesis of
distributed protocols by sketching. Contrary to prior works that
either apply only to special classes of protocols [30], [24], or
target protocols in an ad-hoc specification language [4], our
work targets general protocols written in TLA* [28], a highly
expressive specification language with widespread use in both
academia and the industry [32].

Our approach follows the counterexample-guided inductive
synthesis (CEGIS) paradigm [43], [20]: a learner is respon-
sible for generating candidate solutions, while a verifier is
responsible for checking whether a candidate satisfies the
requirements.

Our synthesis method is truly synfax-guided in the sense
that our synthesis loop explores directly the space of can-
didate symbolic expressions that can be generated from a
given grammar. In contrast, previous work [4] explores the
space of (finite) interpretations of uninterpreted functions. Our
synthesis tool generates expressions, whereas the synthesis
tool of [4] generates input-output tables (which can then be
passed to an external SyGusS solver [1] to obtain an expression
as a post-processing step). Our method does not rely on an
external SyGuS solver.

A crucial component of our synthesis algorithm is how ex-
actly we generate candidate expressions from a given grammar
(or grammars, in the case of multiple holes). A naive, breadth-
first enumeration of all possible expressions in the grammar

This article is licensed under a Creative
BY Commons Attribution 4.0 International License

https://fmcad.org/FMCAD24
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

does not scale. Instead, we use a novel technique that em-
ploys cache-based enumeration coupled with an equivalence
reduction with short-circuiting. This technique allows us to
not only avoid checking semantically equivalent expressions,
but also to avoid generating redundant expressions in the first
place. Indeed, some of our experiments show a reduction in
the number of generated expressions of more than three orders
of magnitude.

We implement our method in a synthesis tool called
SCYTHE. SCYTHE synthesizes protocols that are parameter-
ized, i.e., in a form that is directly generalizable to an arbitrary
number of nodes. Some of our synthesized protocols can be
instantiated with infinite-domain variables, i.e., we can handle
infinite-state protocols. SCYTHE is able to synthesize complex
expressions from non-trivial grammars. For example, SCYTHE
can synthesize the guard expression

V@1 € Quorums(config[i]),
VQ2 € Quorums(new_config) : Q1 N Qa # 0
which is parameterized by ¢, the node that is executing

reconfiguration, and it can also synthesize the state variable
update

(D

votes' = [votes EXCEPT [n;]| = votes[ni] U {n2}] (2)

which is parameterized by n; and no, the nodes that are
exchanging votes.

We evaluate SCYTHE on a suite of non-trivial benchmarks,
including variants of the Raft dynamic reconfiguration proto-
col [33], [40], [41]. SCYTHE is able to synthesize correct and
sometimes novel protocols in less than an hour and often in
a matter of minutes. Although SCYTHE itself only guarantees
correctness for a finite protocol instance, we were able to prove
a-posteriori (using TLAPS [11]) that the synthesized protocols
are in fact correct for an arbitrary number of nodes, as well
as in some cases for infinite-domain state variables.

In summary, this work makes the following contributions:
(1) A novel distributed protocol synthesis method that is both
syntax-guided as well as counterexample-guided. (2) Novel
techniques to accelerate the search of candidate completions,
often reducing the search space by several orders of magni-
tude. (3) The synthesis tool SCYTHE which, to our knowledge,
is the only tool able to handle a diverse suite of real-world
distributed protocol benchmarks written in a broadly used
language such as TLA*. (4) Formal correctness proofs which
demonstrate that SCYTHE is able to synthesize infinite-state,
parameterized protocols that are safe for any protocol instance.

II. PRELIMINARIES
A. Protocol Representation in TLA*

We consider symbolic transition systems modeled in
TLA* [28], e.g., as shown in Fig. 1. A primed variable, e.g.,
vote_yes', denotes the value of the variable in the next state.
Formally, a protocol is a tuple (PARAMS, VARS, INIT, NEXT).
PARAMS is a set of parameters that may vary from one
instantiation of the protocol to the other, but do not change

during the execution of the protocol (e.g. a set of node ids
Node in Fig. 1 line 1). VARS is the set of state variables
(e.g. Fig. 1 line 2). INIT and NEXT are predicates specifying,
respectively, the initial states and the transition relation of the
system, as explained in detail in Sections II-B and II-D.

TLA™ is untyped, but for purposes of synthesis we assume
that each symbol in PARAMS and VARS is typed. Supported
types include Bool and Int, and sets or arrays of types. If 71
and 72 are types, then an element of type (Set T1) is a set of
elements of type 71 and an element of type (Array T1 T2) is
a map from elements of type T1 to elements of type 72.

A tuple (CONST, VARS, INIT, NEXT) denotes an instance of
a protocol, where CONST is a mapping of PARAMS to values.
For instance, [Node — {nl,n2,n3}] characterizes one instance
of the protocol in Fig. 1 and [Node — {a0, b0}] characterizes
another. The values of parameters need not be finite sets, e.g.,
MaxVal might have type Int and specify a bound on some
value. Note that a protocol is technically not operational until
the symbols in PARAMS are assigned to values, since the
valuation of INIT and NEXT may depend on the valuation
of the symbols in PARAMS.

A symbol in PARAMS may have type Domain, which
designates it as an opaque set. If Prm is a PARAMS symbol
of type Domain and CONST assigns Prm to set P, then an
object x has type (OfDomain Prm) if and only if z € P.
For instance, if symbol Node in Fig. 1 has type Domain,
then the symbol vote_yes has type (Set (OfDomain Node)).
(Alternatively, Node could have type (Set Int), but this typing
would allow the protocol to, e.g., do arithmetic on node ids,
which may not be desirable.) We discuss in Section III-B the
use of opaque sets.

B. Protocol Semantics

A state of a protocol instance is an assignment of values to
the variables in VARS. INIT is a predicate mapping a state to
true or false; if a state satisfies INIT (if it maps to true), it is
an initial state of the protocol.

The transition relation NEXT is a predicate mapping a pair
of states to true or false. If a pair of states (s, ¢) satisfies NEXT,
then there is a transition from s to t, and we write s — t. A
state is reachable if there exists a run of the protocol instance
containing that state. A run of a protocol instance is a possibly
infinite sequence of states sg, s1, s2... such that (1) sq satifies
INIT, (2) s; — s;41 for all ¢ > 0, and (3) the sequence satisfies
optional fairness constraints. We omit a detailed discussion
of fairness. At a high-level, some transitions are called fair
and under certain conditions, they must be taken. In this way,
certain sequences of states are excluded from the set of runs
of the protocol. In particular, if a sequence of states that would
otherwise be a run ends in a certain cycle, that sequence may
be excluded from the set of runs of a protocol due to fairness
constraints.

C. Properties and Verification

We support standard temporal safety and liveness properties
for specifying protocol correctness. Safety is often specified

1 CONSTANT Node

2 vars := (vote_yes, go_commit, go_abort)
3 GoCommit :=

4 A vote_yes = Node

5 A go_commit = Node

6 A go_abort’ = go_abort

7 VoteYes(n) :=

8 A vote_yes' = vote_yes U {n}
9 A go_commit = go_commit
10 A go_abort’ = go_abort
11 INIT :=
12 A vote_yes = |
13 A go_commit =)
14 A go_abort =)
15 NEXT :=
16 V GoCommit
17 V 3n € Node : VoteYes(n)

Fig. 1. An example of a TLA* protocol (excerpt).

using a state invariant: a predicate mapping a state to true
or false. A protocol instance satisfies a state invariant if
all reachable states satisfy the invariant. A protocol instance
satisfies a temporal property if all runs (or fair runs, if fairness
is assumed) satisfy the property. A protocol satisfies a property
if all its protocol instances satisfy the property.

D. Modeling Conventions

We adopt standard conventions on the syntax used to
represent protocols, particularly on how NEXT is written.
Specifically, we decompose NEXT into a disjunction of actions
(e.g. Fig. 1 lines 15-17). An action is a predicate mapping
a pair of states to true or false; e.g., action GoCommit of
Fig. 1. We decompose an action into the conjunction of a pre-
condition and a post-condition. A pre-condition is a predicate
mapping a state to true or false; if the pre-condition of an
action is satisfied by a state, then we say the action is enabled
at that state. For instance, Fig. 1 line 4 says that action
GoCommit is enabled only when all nodes have voted yes.

We decompose a post-condition into a conjunction of post-
clauses, one for each state variable. A post-clause determines
how its associated state variable changes when the action is
taken. For instance, Fig. 1 line 5 shows a post-clause for
the state variable go_commit, denoted by priming the variable
name: go_commit’.

In general, post-clauses may be arbitrary predicates involv-
ing the primed variable (e.g. v’ € e). We assume that all
synthesized post-clauses are of the form v’ = e where e does
not contain any primed variables, but make no assumptions
on the post-clauses that we do not synthesize. In synthesis,
non-determinism is used extensively, e.g., for modeling the
environment. We note that the v/ = e assumption does not
limit us to deterministic protocols, since multiple actions may
be enabled at the same state.

Some actions are parameterized. For instance on line 7 of
Figure 1, the action VoteYes is parameterized by a symbol n.
From line 17, we can infer that n denotes an element of the set
Node. The arguments of an action are those symbols like n.
The domain of an argument to an action is the set quantified
over for that argument in NEXT. For example, the domain

of argument n of action VoteYes is the set Node. We require
that the domain of an argument be a symbol from PARAMS
of type Domain. An action may have multiple arguments; the
domain of an action is the Cartesian product of the domains
of its arguments. A parameterized action denotes a family of
actions, one for each element in its domain.

If s — ¢ is a transition and (s, t) satisfies an action A, we

. . A
can say that A is taken and write s — t. Note that (s, ¢) may
satisfy multiple actions and we may annotate the transition

with any of them. We write s ﬂ) t to explicitly denote the
arguments to A; ¥ is empty in the case of non-parameterized
actions. In this way, runs of a protocol may be outfitted with a
sequence of actions. Annotating runs of a protocol with actions
is critical for our synthesis algorithm, since annotations allow
us to “blame” particular actions for causing a counterexample
run (c.f. Section I'V-C). Fairness constraints are often specified
using actions: we may say A is (strongly) fair to mean that
action A must be taken if it is enabled infinitely often.

III. SYNTHESIS OF DISTRIBUTED PROTOCOLS
A. Protocol Sketches

A tuple (PARAMS, VARS, HOLES, INIT, NEXTy) is a pro-
tocol sketch, where PARAMS, VARS, and INIT are as in a
TLA™ protocol and NEXT(is a transition relation predicate
containing the hole names found in HOLES. HOLES is a
(possibly empty) set of tuples, each containing a hole name
h, a list of argument symbols ¥}, an output type tj, and a
grammar G, A hole represents an uninterpreted function of
type t;, over the arguments ¥,. Each hole is associated with
exactly one action Aj, and it appears exactly once in that
action. The grammar of a hole defines the set of candidate
expressions that can fill the hole.

For example, a sketch can be derived from Fig. 1 by
replacing the update of line 8 with vore_yes’ = h(vote_yes, n),
where h is the hole name, the hole has arguments vote_yes and
n, the return type is (Set (OfDomain Node)), and the action of
the hole is VoteYes(n). One grammar for this hole might be
(in Backus Normal Form):

E:=0]{n}|vote_yes| (EUE) | (ENE)|(E\E)

which generates all standard set expressions over the empty
set, the singleton set {n}, and the set vore_yes. We note that,
in general, each hole of a sketch may have its own distinct
grammar.

A hole is either a pre-hole or a post-hole. If the hole is a
pre-hole, it is a placeholder for a pre-condition of the action.
If the hole is a post-hole, it is a placeholder for the right-hand
side of a post-clause of the action, e.g., as in vote_yes’ =
h(vote_yes,n), where h is a post-hole. We do not consider
synthesis of the initial state predicate and therefore no holes
appear in INIT.

The arguments of a hole A may include any of the protocol
parameters in PARAMS, the state variables in VARS, and the
arguments of Ay if the action is parameterized. If h is a pre-
hole, then its return type is boolean. If the hole is a post-hole,

its type is the same as its associated variable, e.g., hole h
above has the same type as vote_yes.

B. Problem Statements

A completion of a sketch is a protocol derived from the
sketch by replacing each hole with an expression from its
grammar. Informally, the synthesis task is to find a completion
of the protocol that satisfies a given property. The distinction
between a protocol and an instance of a protocol is important
here; it may be easier to find a completion of a protocol such
that a specific (e.g., finite) instance satisfies a property than to
find a completion such that all instances satisfy the property.
Therefore, we define two versions of the synthesis problem:

Problem 1. Let (PARAMS, VARS, HOLES, INIT, NEXTq)
be a sketch and ® a property. Let CONST be
an assignment to PARAMS. Find a completion,

(PARAMS, VARS, INIT,NEXT), of the sketch such that

the instance (CONST, VARS, INIT, NEXT) satisfies ®.

Problem 2. Let (PARAMS, VARS, HOLES, INIT, NEXTg)
be a sketch and ® a property. Find a completion,
(PARAMS, VARS, INIT, NEXT), of the sketch such that
every instance of the completion satisfies ®.

In this paper we focus on solving Problem 1. It is a
more tractable problem and we are able to use a model
checker as a subroutine in cases where the instance has finitely
many states. It turns out that in many cases, a solution to
Problem 1 generalizes and is also a solution to Problem 2.
This generalizability comes from the fact that the symbols in
PARAMS are opaque; e.g., we may refer to the set of nodes
Node, but we cannot refer to any particular element of Node
without quantification. Indeed, as we show in Section V, our
tool is able to synthesize protocols that generalize, i.e., they
are also solutions to Problem 2.

IV. OUR APPROACH

As mentioned in the introduction, we follow the CEGIS
paradigm which includes two main components: a learner and
a verifier. In our case, the learner and verifier interact in a loop
with the following steps: (1) the learner generates a candidate
completion X, if one exists, that satisfies a (possibly empty)
set of pruning constraints (i.e., X is pruned if it violates the
constraints), (2) the verifier checks X against the supplied
property @, (3) if X satisfies @, a solution is found and the
algorithm terminates, (4) if X does not satisfy ®, the verifier
produces a counterexample run r, (5) the learner uses r to
add new pruning constraints, and we repeat until a solution is
found or the search space is exhausted.

Our learner component has three subcomponents: the ex-
pression generator (EG), the pruning constraint checker
(PCC), and the counterexample generalizer (CXG). EG gener-
ates expressions from grammars, as detailed in Section IV-A.
PCC checks each generated expression against the current set
of pruning constraints, as explained in Section IV-B. CXG
is invoked in Step (5) to update the pruning constraints by

generalizing the information contained in the counterexamples,
as detailed in Section IV-C.

Pruning constraints eliminate candidate completions that are
guaranteed to exhibit previously encountered counterexamples,
without having these candidates checked by the verifier, which
is often an expensive subroutine. A naive way to do that
would be to keep a list L of counterexamples seen so far, and
then check whether a candidate exhibits any of the runs in
L. Instead, we use more sophisticated pruning constraints that
encode counterexamples as logical constraints on uninterpreted
functions, c.f. Sections IV-B and IV-C.

As our verifier in Step (2), we use an off-the-shelf TLA*
model checker, specifically TLC [51]. We will not discuss
TLA™ model checking further as it is standard.

A. Expression Generation

Recall that candidate protocols are completions of some
sketch, which are in turn charaterized as members of some
grammar. In the case of multi-hole sketches, completions are
characterized as members of the cross-product of the gram-
mars. Therefore, generating candidate protocols reduces to
enumerating expressions from grammars. Note that, although
grammars have a finite representation, the language (i.e., set of
expressions) of a grammar may be infinite and the expressions
therein may be arbitrarily large.

We experimented with three grammar enumeration tech-
niques: (1) a naive breadth-first algorithm, (2) a cache-based
algorithm, and (3) an extension of the cache-based algorithm
that exploits semantic equivalence of expressions.

1) Naive Breadth-First Algorithm: A naive breadth-first
search algorithm is to keep a priority queue (sorted by size) of
partial expressions, i.e. expressions containing both terminals
and non-terminals. A partial expression is discharged from the
queue by considering all possible ways to replace the non-
terminals using the grammar rules and substituting those into
the partial expression. For example, if the partial expression
is d := E U (x UE) and the grammar has a production
G:=FE:=2z|y| EUE, we would consider nine different
partial expressions, one for each pair of productions of the
FE rule, since E appears twice in the expression d. After
substituting, we can immediately return those expressions
which do not contain non-terminals and add to the queue those
that do. Our experience was that this algorithm was too slow
in practice, since it iterates over and performs substitutions on
larger and larger partial expressions.

2) Cache-Based Algorithm: In the cache-based algorithm,
our learner generates all candidates of size n before it gener-
ates any candidates of size n 4 1. Expressions are essentially
trees and our notion of size is the number of nodes in the
tree, e.g., the size of (a + b) + ¢ is 5. We keep a cache
mapping each integer n to the set of all non-partial expressions
of that size, for each non-terminal. We then use this cache
to build larger non-partial expressions, substituting only into
productions (partial expressions) that appear in the grammar.
There are often many expressions of size n. We use generators

to yield a stream of expressions, which avoids generating all
expressions of a given size at once.

As an example of the cache-based algorithm, suppose we
want to generate the expressions of size 5 for the non-terminal
E in the grammar G above. Assume we already have a cache
containing all expressions of size 1,2,3, and 4 for E. Then we
can generate all expressions of size 5 by substituting pairs of
expressions into the rule £ ::= E U E such that the sum of
the sizes of the two expressions is 5.

3) Equivalence Reduction: Because the cache-based algo-
rithm reuses all expressions of a given size many times over,
it is important to keep the cache as small as possible. In
particular, if two expressions are semantically equivalent, only
one should appear in the cache. To illustrate, consider that
there are only 16 boolean expressions over two variables,
modulo equivalence. The grammar B ::=z |y | -B | BAB
can express all 16 of these expressions, but it generates
infinitely many expressions. The number of expressions of size
n is O(2™).

When we generate a new expression, we compute a normal
form for that expression. We then check if we have already
generated an expression with that normal form. If we have,
we do not return the new expression and we do not add it to
the cache. We implement normal forms for (1) set expressions
containing the operations U, N, and \, (2) boolean expressions
containing the operations V, A, and —, (3) equality expressions,
and (4) inequality expressions. We use DNF as the normal
form for boolean expressions. Our normal form for set expres-
sions exploits the correspondence between set expressions and
boolean functions and then uses DNF. Equality between sets
A and B is equivalent to) = (A\ B)U(B\ A); we exploit this
fact to obtain a normal form for equality between two sets.

In addition to equivalence reduction by normal forms, we
also exploit the semantics of expressions to short-circuit the
generation of expressions. Short-circuiting is a technique that
allows us to avoid iterating over large parts of the search space.
For instance, if we are generating expressions of size 5 for
the rule E'U E, we can consider pairs of expressions of sizes
(1,4) and (2,3), but we can exploit the commutativity of union
by ignoring sizes (4,1) and (3,2). Without this technique, we
would have to iterate over twice as many pairs of expressions,
compute their normal forms, and check if these normal forms
are in the cache. In general, for commutative operation © if
we are generating expression e; ®es, we first pick e; and only
iterate over choices for eo that are at least as large as e;.

B. Counterexamples and Pruning Constraints

1) Counterexamples: A counterexample is a run of the

. . Ay (1) Az (v2)

protocol annotated with actions: sg 51
A (Vi)
L

sk. The run is reported as a safety, deadlock, or
liveness violation. If the run is a safety or deadlock violation,
it is interpreted as a path. If it is a liveness violation, it is
interpreted as a path leading to a cycle, called a lasso. In the
case of liveness, s, = s; for some ¢ < k and s; is the state
that first injects into the cycle.

2) Pruning Constraints: Our pruning constraints are logical
constraints over propositional logic with equality and unin-
terpreted functions. For example, suppose we have the holes
hi(a,b) and ha(b, ¢). Then, an example of a pruning constraint
is the formula 7 := (h1(0,1) # True) V (h2(1,2) # 1). «
constrains the candidate expressions for the holes h; and hs.
For example, replacing h; and hy with the expressions a < b
and ¢ — b, respectively, violates 7, because 0 < 1 = True and
2—1 = 1. Replacing h; and ho with a < b and b, respectively,
also violates 7. Hence, 7 prunes at least two completions.

Formally, a pruning constraint is a disjunction of terms,
where each term is a triple containing (1) a hole h, (2) a
mapping s* from the arguments of h to values, and (3) a
literal value of the output type of h. For instance, in 7w above,
the first term has h = hy(a,b), s* = [a — 0,b — 1], and
y = True. The second term has h = ha(b,c), s* = [b —
lL,c = 2], and y = 1. Let 7 := (h,s*,y) be a term and
let h be an interpretation (in our case, an expression) for the
uninterpreted function h. Then h satisfies 7 if h(s*) # .

If hy, ho,...., hy, are the _uninterpreted functions in a pruning
constraint 7 and X := hgy, ho, ..., hy, are interpretations for

the h; (i.e. a completion), then X satisfies 7 if the disjunction
of the 7 terms in 7 is satisfied.

In each run, our algorithm maintains a setr of pruning
constraints, interpreted as a conjunction (of disjunctions of
terms). A completion satisfies a set of pruning constraints
if it satisfies all constraints in the set. Because we want to
avoid seeing any counterexample more than once, the learner
will pass a completion X to the verifier only if X satisfies
every pruning constraint. l.e., a pruning constraint 7 prunes
completions that do nor satisfy m. PCC checks against the
pruning constraints by substituting the expressions of the holes
into the constraints and performing evaluation. Each type of
counterexample (safety, deadlock, liveness) requires a slightly
different encoding as a pruning constraint, as explained next.

C. Counterexample Generalization

A pruning constraint 7w is under-pruning w.r.t. run r and
sketch S if there exists a completion X of S such that X
satisfies 7 and r is a run of X. 7 is over-pruning w.r.t. run
r and sketch S if there exists a completion X of .S such that
X does not satisfy 7 and 7 is not a run of X. 7 is optimal
if it is neither under- nor over-pruning. 7 is sub-optimal if it
is under-pruning, but not over-pruning. Our primary goal is
to avoid over-pruning constraints, since over-pruning results
in an incomplete algorithm, i.e., an algorithm that might miss
valid completions.

In what follows we present three techniques to encode
into pruning constraints, safety, deadlock, and liveness coun-
terexamples, respectively. Our safety pruning constraints are
optimal (Theorem 2), but our deadlock and liveness pruning
constraints are sub-optimal (Theorems 3 and 4). In practice,
these sub-optimal constraints are sufficient to avoid many
completions that exhibit the corresponding violations; the
bottleneck in our experiments is not the number of model
checker calls.

1) Encoding Safety Counterexamples: Intuitively, a safety
violation can be fixed by “cutting” at least one transition in
the counterexample run, either by violating its guard or by

e AL (i A (v}
modifying its state update. Let » = so (1) S1 2(%2)
Ay (vi L
. M) sk, be a safety violation and suppose that the com-

pletion is characterized by the interpretations hy, ho, ...h,,. We
denote the pruning constraint for r as wsaff(r) and construct
it as follows. 7y () is a disjunction of T-ferms. For each
s M t in the counterexample, we construct a set of 7-terms.
In particular, for each hole h; in the actionA A, we construct
the term 74(5); := (hq, s*,y), where y := h;(s*) and where
s* is the predecessor state s, restricted to the arguments of
h;, including the arguments to the action A. The pruning
constraint is then the disjunction containing all TA®)i-

For instance, suppose the safety violation is [a,b,c¢ +—
0,1,2] EN [a,b,¢ +— 1,1,2]. Suppose additionally that
hi(a,b) is a pre-hole in A and @’ = hy(b,c) is a post-hole
in A. Suppose that the completion that resulted in the safety
violation had hq(0,1) = True and ho(1,2) = 1. Then 741 =
(h1,]a — 0,b > 1], True) and 74 2 = (ho, [0 — 1,c¢— 2], 1).
The pruning constraint would be 741 V 74,2, which corre-
sponds to 7 from before. This constraint ensures that the pre-
condition of A is not satisfied in the state [a,b,c+— 0,1,2] or
that a # 1 after taking action A in that state.

2) Encoding Deadlock Counterexamples: Informally, a
pruning constraint of a deadlock violation is similar to that of
a safety violation because a deadlock violation can be fixed
by making the deadlocked state s; unreachable. But another
way to fix a deadlock violation is to make sj undeadlocked,
which may be done by weakening the pre-condition of some
action that is not enabled in s,.

Formally, the deadlock pruning constraint for run r is
defined to be Tgeaa(7) = Tsqae (1) V7, (1), where m,(7) is a dis-
junction of p-terms, each of the form pa(g) ik := (hi, 5%, y),
where s7 is s, restricted to the arguments of h; and where
Y = /f;Z(S’,:.) We construct a p-term for every action A and
every pre-hole h; in A such that h;(s;) = False. Then (1)
is the disjunction of all all p-terms.

3) Encoding Liveness Counterexamples: The constraint for
a liveness violation can be thought of as a generalization of
the constraint for a deadlock violation. It is sufficient to do
one of (1) break the path to the cycle using 7-terms, (2) break
the cycle using 7-terms, or (3) weaken the pre-condition of
some fair action that is not enabled in some state of the cycle
using p-terms, making the cycle unfair. Formally, we denote
our liveness pruning constraint as 7. (r). We construct it as
Thive (1) = Tsafe(1) V w;,, where w;, is the disjunction of the
following p-terms: For each fair action A, for every ¢ in the
domain of A, for every j such that s; is in the cycle, and for
every pre-hole h; in A such that h,(s;) = False, we construct
the term p4(i),i,5-

4) Fairness and Stuttering: Although we are able to handle
both weakly and strongly fair actions, we did not treat them
differently above in 7;,.. That construction may be under-
pruning in the presence of weakly fair actions, but it will never

over-prune and therefore our algorithm is complete. None of
our benchmarks required weak fairness when modeling the
synthesized protocols.

Stuttering (a special liveness violation) occurs when there
are no fair, enabled, non-self-looping actions in the final state
of the violation. In constrast, deadlock violations occur when
there is no enabled action at all. We denote the pruning con-
straint for a stuttering violation as 7, (1) := 7rmfg(r)\/7r7\/7r;).
In addition to the 7-terms from 7Tmfe(7“), we add 7., which is
the disjunction of 74y, for every post-hole h; in every fair
action A. We add 7r;) as we did for a typical liveness violation,
except the only s; in the cycle is the last state of r, s.

Theorem 1. Let r be a counterexample of a completion of the
sketch S. If r is a safety violation then Ty, (1) is optimal w.r.t.
rand S. If r is a deadlock, liveness, or stuttering violation then
Tdead(T), Tiive(T), and Ty, (r), respectively, are sub-optimal
w.r.t. v and S. — The proof can be found in Appendix A.

V. IMPLEMENTATION AND EVALUATION

Implementation and Experimental Setup: We implemented
our method (Section IV) in a tool, SCYTHE, which supports
many features of the TLA* language and utilizes the TLC
model checker [51] as verifier. SCYTHE is written in Python
and takes as input (1) a TLA+ file defining the protocol and its
sketch and (2) a configuration file defining the grammars and
types along with protocol parameters. Our grammars are typed
regular tree grammars [15] and our implementation essentially
uses the standard SYNTH-LIB input format for SyGuS [1]. We
ran each experiment on a dedicated 2.40 GHz CPU.

Benchmarks: Our benchmark suite contains seven distinct
protocols: (1) decentralized lock service (decentr. lock), (2)
server-client lock service (lock_serv), (3) Peterson’s algo-
rithm for mutual exclusion, (4) two phase commit (2PC),
(5) consensus, (6) sharded key-value store (sharded_kv), (7)
raft-reconfig, and (8) raft-reconfig-big. (7) and (8) are non-
trivial, reconfigurable variants of the Raft protocol [33], [40],
[41]. Our benchmarks are adapted from safety verification
benchmarks that have been used in recent years [41], [17].
These existing benchmarks contain a suite of correct, manually
crafted protocols and we refer to each manually crafted
solution as the ground truth. We report statistics about the
ground truth for reference, but we do not use this information
during synthesis. For instance, we do not assume knowledge
of which variables a missing expression depends on.

Adapting verification benchmarks for synthesis by sketching
requires a number of steps, some of which are non-trivial. We
discuss the most salient points of these steps next.

Holes: For each protocol we performed many synthesis
experiments by varying the number of holes in the protocol
sketch. All our experiments, as well as instructions for repro-
ducing them, can be found on GitHub [13]. Representative
experiments are summarized in Table I, explained below.

Grammars: Each hole requires a grammar. SCYTHE is
flexible; the user can provide a different grammar for each
hole, or reuse grammars across holes. SCYTHE grammars are

modular in the sense that they contain a general-purpose part
(e.g., the grammar of boolean or arithmetic or set expressions)
plus a hole-specific part (e.g., the terminals which are the
hole’s arguments). We implemented a library that allows
to build grammars by (1) automatically constructing non-
terminals based on the types of the hole’s arguments and
(2) exposing to the user common sub-grammars that can be
deployed across protocols.

Liveness and Fairness: Our benchmarks come from existing
suites focusing on safety verification [41], [17]. Performing
synthesis against only safety properties often results in vacu-
ous solutions that satisfy safety in trivial ways (e.g. by filling
a pre-hole with the expression False). Therefore, we augment
each benchmark with additional liveness properties and any
necessary fairness constraints.

Implementability Constraints: In addition to excluding vac-
uous solutions by adding extra properties, we sometimes need
to exclude unimplementable solutions, for instance, solutions
violating implicit communication/observability constraints be-
tween the protocol processes. For example, replacing the post-
condition in line 8 of Fig. 1 with vote_yes’ = () results in
an unimplementable protocol because a node cannot directly
change the vote state of another node. To avoid such so-
lutions, we used arrays instead of sets (e.g., vote_yes is an
array mapping process ids to booleans). Then, we restricted
the grammar to only contain array access expressions with
appropriate indices.

Explicitly Modeling the Environment: We had to modify
several of the verification benchmarks of [41] in order to
explicitly separate the (controllable) protocol from its (un-
controllable) environment, so as to prevent synthesis of parts
belonging to the environment.

Results: TLA* LOC is the number of lines of code of
the ground truth TLA* protocol specification, which is the
same as the lines of code in the sketch and the synthesized
protocols, since all synthesized expressions are printed to one
line, regardless of size. ID refers to the number used to identify
the experiment in the full results table [13]. “#pre/post holes”
is the number of pre- and post-holes in the sketch, and &
refers to k = k1 + ko + ... + k,,, where each k; is the size
of the expression (c.f. Section IV-A) used in the ground truth
protocol for the ¢th hole. “gram. LOC” is the number of lines
(non-boilerplate) code in the python script used to generate the
grammar. Every protocol uses the same grammar generation
script, regardless of which or how many holes are poked.

We report Execution Statistics for the tool with and with-
out equivalence reduction. The column “generated / model
checked” reports the number of completions generated by
the tool vs those model checked (the rest were pruned). The
column &’ is either the size of the expression found by the tool,
or the size of the largest expression the tool considered before
it timed out (marked with a > symbol). If there are multiple
holes then &’ is the sum of all expression sizes. Column “total
/ model checking time” reports the total execution time vs
the time devoted to model checking (both in seconds). TO
indicates that the tool timed out after 1 hour; TO™ is explained

below. Note that TLC is called without a timeout; hence, it
performs exhaustive model checking on the finite protocol
instances specified by the user configuration.

As Table I shows, our efficient expression generation tech-
nique with equivalence reduction achieves impressive results,
sometimes reducing the number of generated expressions by
more than three orders of magnitude (c.f. raft-reconfig ID 121
where only 271 expressions are generated with reduction, vs
> 690,000 without reduction at the TO point). In all cases, the
number of completions model checked is much smaller than
those generated, which shows how critical pruning constraints
are to scalability. With equivalence reduction, execution time
is typically dominated by model checking, although there
are exceptions (e.g. 2pc). Without equivalence reduction, the
time is typically dominated by expression generation, which
demonstrates the importance of the equivalence reduction.

Qualitatively, SCYTHE often synthesizes large, non-trivial
expressions, e.g., single expressions of size 14 in the cases
of raft-reconfig ID 121 and raft-reconfig-big ID 714, and
multiple expressions of combined size up to 18 in other cases.
Expressions (1) and (2) shown in Section I are two concrete
examples of synthesized expressions.

Novel Solutions: The protocols synthesized by SCYTHE
were often identical (or almost identical, up to commuta-
tivity of an operator such as A, etc.) to the ground truth.
In other cases, however, SCYTHE found novel, non-vacuous
solutions. SCYTHE often found solutions with shorter ex-
pressions. One notable example comes from the experiment
2pc ID 303, where instead of the ground-truth expression
er:=0# (P\A)U(PNN), SCYTHE found the expression
es := P # (A\ N), where P is the set of all nodes, A is the
set of alive nodes, and N is the set of nodes that voted no. So
e; says “There is a node that is dead or there is at least one
node that voted no.” In the context of the protocol, e; and es
are equivalent, but a proof requires the subtle reasoning that
both A and N are subsets of P, since P is the set of all nodes.

Correctness of Infinite Instances: A protocol synthesized
by SCYTHE is a solution to Problem 1, i.e., is correct for the
finite instance specified by the user. This correctness follows
from the fact that during the synthesis loop the verifier (TLC)
exhausts the state space of the specified finite instance. As it
turns out, the protocols of Table I produced by SCYTHE are
also solutions to Problem 2. Specifically, for each protocol
of Table I except peterson, we used the TLA* Proof System
(TLAPS) [11] to prove that all instances of that protocol satisfy
the key safety property (our TLAPS proofs did not consider
liveness; the four peterson variants involve only two processes
and need no extra verification). For our TLAPS proofs we used
techniques similar to those reported in [40].

In all but two cases, the initial solutions produced by
SCYTHE proved to be correct. For raft-reconfig ID 343 and
raft-reconfig-big ID 709, SCYTHE initially produced a solution
which is correct for up to 3 nodes, but which we were surprised
to find is incorrect for 4 or more nodes. To address this
scenario, we added to the tool an extra-check option to perform
an additional model checking step with larger parameter values

Execution Stats
Sketch Parameters w/o eq. reduction w/ eq. reduction

Protocol TLA* D #pre/post k gram. | generated/ & total / model generated/ i total / model

LOC holes LOC model checked checking time | model checked checking time
decentr. lock 48 486 | 1/3 21 | 28 93403 / 136 16 | 674/ 193 3020/ 117 16 | 190/ 175
lock_serv 83 599 | 276 16 | 22 384569 / 85 16 | 2116/ 134 7483 / 80 16 | 159 /120
lock_serv 83 611 | 2/6 16 | 22 665463 / 104 >16 | TO /1094 4064 / 84 16 | 145/ 124
peterson 105 475 1 371 19 | 53 442553 / 324 12 | 2731/ 453 485 /243 12 | 348 /346
peterson 105 375 | 2/2 19 | 53 583201 / 264 13 | 3355/ 356 1369 / 267 13 | 364 /357
peterson 105 413 | 3/1 22 | 53 582616 / 353 >12 | TO /602 7073 / 1259 15 | 1809 / 1753
peterson 105 547 | 2176 22 | 53 643529 / 167 >16 | TO /483 5569 / 222 17 | 329 /301
2pc 134 303 | 2/0 15 | 46 690411 / 24 >8 | TO /1494 65994 / 23 9 | 388743
2pc 134 558 | 3/5 18 | 46 410675 / 87 14 | 2301/ 179 89027 / 88 14 | 629/ 171
2pc 134 485 | 2/2 17 | 46 681190 / 44 >10 | TO /492 493492 / 55 11 | 2654/ 110
2pc 134 S13 | 2/6 18 | 46 642178 / 162 >18 | TO /1641 98009 / 211 18 | 886 /382
consensus 127 624 | 2/6 17 | 56 550501 / 97 17 | 3442 / 606 9988 / 63 17 | 427 /375
consensus 127 550 | 2/6 22 | 56 483126 / 162 >17 | TO/ 1116 53994 / 286 18 | 2291 /2011
sharded_kv 112 302 | 1/1 13 | 44 248298 / 13 13 | 1325/49 469 / 14 13 | 59 /57
sharded_kv 112 365 | 1/3 22 | 44 611512 / 129 >16 | TO /941 3149 / 149 17 | 472/ 455
raft-reconfig 174 463 | 1/3 21 | 82 64832 / 64 14 | 462 /128 1958 / 65 14 | 139/129
raft-reconfig 174 343 1 2/0 21 | 82 608586 / 215 >11 | TO /484 41411 / 251 17 | 750 / 530
raft-reconfig 174 121 | 1/0 18 | 82 694552 / 12 >12 | TO /3589 271/ 13 14 | 31/27
raft-reconfig-big | 304 708 | 173 21 | 85 67237 /78 14 | 1815/ 1465 3155/ 84 14 | 1668 / 1651
raft-reconfig-big | 304 709 | 2/0 21 | 85 2231397 /220 | >12 | TO™ /3950 282106 / 252 17 | TO™ /12943
raft-reconfig-big | 304 710 | 1/0 18 | 85 658492 / 12 >12 | TO /3588 1369 / 13 14 | 368 /359
raft-reconfig-big | 304 714 | 1/7 25 | 85 221648 / 101 18 | 2662/ 1519 6500 / 102 18 | 1802 /1768

TABLE T

than those used in the synthesis loop, right before outputting
the final solution (if the extra-check fails, the tool continues
to search for a solution). SCYTHE with extra-check found a
correct (for all instances) solution for raft-reconfig ID 343
in 750 secs (this includes the time spent for extra-checks).
SCYTHE with equivalence redution also found a correct (for
all instances) solution for raft-reconfig-big ID 709, although it
timed out after a total of four hours (TO™) while performing
the final extra-check for 4 nodes—that single final extra-check
took about 2 hours. For ID 709, SCYTHE without equivalence
reduction failed to find a solution as it spent 4 hours generating
expressions that were much smaller (< size 12) than the
solution found with equivalence reduction (size 17).

VI. RELATED WORK

Past works synthesize explicit-state, finite-state ma-
chines [2], [5], [14], [16]. In contrast, we synthesize symbolic
and parameterized infinite-state machines. TRANSIT [47]
cannot process counterexamples automatically and requires a
human in the synthesis loop. [30] and [6] use cut-off tech-
niques which only apply to a special class of self-stabilizing
protocols in symmetric networks, and [24] study a special
class of distributed agreement-based systems. [29] consider
only threshold-guarded distributed protocols. In contrast, our
work applies to general distributed protocols.

As discussed in Section I, [4] synthesize interpretations
of uninterpreted functions represented as finite lookup tables,
whereas we synthesize symbolic expressions directly. We use
TLA™ models with parameterized actions. In contrast, [4] use
extended finite state machines (EFSMs) which do not have
parameterized actions. It is unclear whether expressions such
as (1) and (2) on page 2 could be synthesized by [4].

Like [4], we use CEGIS and our counterexample encodings
are similar. Unlike [4], we rely neither on an external SyGuS
solver nor on an SMT solver. [4] encodes the search space

of candidate interpretations as SMT formulas and calls an
SMT solver to generate the next candidate. SMT queries are
both expensive and numerous in the context of CEGIS. In
contrast, we use efficient grammar enumeration techniques and
we bypass SMT solvers by checking candidate expressions
directly against the pruning constraints (Section IV).

Like [4], our tool synthesizes solutions that are guaranteed
correct only up to the finite instances model checked in the
CEGIS loop. Unlike [4], we went one step further and proved
with TLAPS that the solutions produced by our tool are
actually correct for all instances. As discussed in Section V,
this step is not redundant: there were surprising cases of
solutions which are correct for 3 nodes but not for 4 or more
nodes. It is unclear whether the protocols synthesized in [4]
are correct beyond the finite model checked instances.

[26] use genetic programming and [23] use machine learn-
ing for synthesis. Generally, these approaches are not guar-
anteed to find a solution even if one exists, i.e. they are
incomplete. In contrast, our approach is complete.

None of the works cited above use syntax to guide the
search, none use equivalence of expressions with short-
circuiting to reduce the search space, and none handle state
variables with infinite domains. To our knowledge, ours is
the only truly syntax-guided synthesis method for symbolic,
parameterized distributed protocols.

Existing SyGusS solvers use SMT formulas to express prop-
erties, and are therefore not directly applicable to distributed
protocol synthesis which requires temporal logic properties.
But our techniques for generating expressions and checking
them against pruning constraints are generally related to term
enumeration strategies used in SyGuS [1]. Both EUSolver [3]
and cvcdsy [38] are SyGuS solvers that generate larger ex-
pressions from smaller expressions. EUSolver uses divide-
and-conquer techniques in combination with decision tree
learning and is quite different from our approach. To our

knowledge, EUSolver does not employ equivalence reduction.
The “fast term enumeration strategy” of cvcdsy is similar to
our cache-based approach and also uses equivalence reduction
techniques. To our knowledge, cvcdsy does not use short-
circuiting.

In our work, we assume that the user has a means of con-
structing the appropriate sketch; we do not address the problem
of “sketch inference.” Work on scenarios [2] and flows [44]
is directly applicable to this problem of coming up with a
sketch. The sketch may also arise from a manually constructed,
incorrect protocol that the user wishes to repair [7], along with
knowledge of where a bug exists. Likewise, we assume that
the user provided a sketch-property pair that is realizable—
i.e., there exists a completion of the sketch that satisfies the
property. Recent work on unrealizability logic [22], [27], [31]
provides insight on how to identify unrealizable synthesis
instances and communicate appropriate information to the user
to help facilitate sketch debugging. A synthesis pipeline that
integrates our work with that above is a promising direction
for future work.

VII. CONCLUSION

We present the only, to our knowledge, truly syntax-guided
synthesis method for symbolic, parameterized, infinite-state
distributed protocols. We show experimentally that our method
and tool are able to synthesize non-trivial completions across
a broad set of non-trivial protocols written in TLA*, and
prove that these completions generalize correctly (i.e., preserve
safety) in all possible instances.

Our sketch-based approach to distributed protocol synthesis
is motivated by several factors. First, a common pattern in the
design of distributed protocols is to extend an existing protocol
(e.g. a non-reconfigurable protocol) with a new feature (e.g. re-
configuration). Indeed, our benchmarks include variants of the
Raft dynamic reconfiguration protocol [33], [40], [41], and we
focus on synthesizing the “Reconfig” action of those protocols.
Sketching naturally fits this design pattern. Second, if a bug
has been localized to a specific part of a protocol, sketching
can be used to repair the protocol [7]. Finally, synthesis “from
scratch” is a special case of synthesis by sketching where
the sketch admits all protocols as completions. Therefore, no
generality is lost when studying a sketch-based approach to
synthesis and tractability is gained.

Future work includes: (1) further ways to reduce the search
space and short-circuit parts of the search; (2) optimization of
the SCYTHE-TLC interface to avoid running a new instance
of (and repeatedly initializing) TLC each time SCYTHE needs
to check a candidate protocol; (3) addressing the problems of
sketch inference and unrealizability handling for the synthesis
of distributed protocols; and (4) automating the final, all-
instances verification step (generally an undecidable problem),
by potentially combining TLAPS with state of the art inductive
invariant inference techniques [39].

REFERENCES

[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando

[2]

[3]

[4]

[5]
[6]

[7]
[8]
[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided
synthesis. In Formal Methods in Computer-Aided Design, FMCAD 2013,
Portland, OR, USA, October 20-23, 2013, pages 1-8. IEEE, 2013.
Rajeev Alur, Milo Martin, Mukund Raghothaman, Christos Stergiou,
Stavros Tripakis, and Abhishek Udupa. Synthesizing Finite-state Proto-
cols from Scenarios and Requirements. In Haifa Verification Conference,
volume 8855 of LNCS. Springer, 2014.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling
enumerative program synthesis via divide and conquer. In Tools
and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, volume 10205 of Lecture Notes
in Computer Science, pages 319-336, 2017.

Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis,
and Abhishek Udupa. Automatic completion of distributed protocols
with symmetry. In Daniel Kroening and Corina S. Pasareanu, editors,
Computer Aided Verification - 27th International Conference, CAV,
volume 9207 of Lecture Notes in Computer Science, pages 395-412.
Springer, 2015.

Rajeev Alur and Stavros Tripakis. Automatic synthesis of distributed
protocols. SIGACT News, 48(1):55-90, 2017.

Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs. Synthesis
of self-stabilising and byzantine-resilient distributed systems. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification -
28th International Conference, CAV, volume 9779 of Lecture Notes in
Computer Science, pages 157-176. Springer, 2016.

Borzoo Bonakdarpour and Sandeep S. Kulkarni. Automated model
repair for distributed programs. SIGACT News, 43(2):85-107, 2012.
Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. 2016.

Vitalik Buterin. Ethereum white paper: A next generation smart contract
& decentralized application platform. 2013.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer Systems (TOCS),
31(3):1-22, 2013.

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz,
Daniel Ricketts, and Hernan Vanzetto. TLA+ Proofs. 18th International
Symposium on Formal Methods (FM 2012), 7436:147-154, January
2012.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. ACM SIGOPS operating systems review,
41(6):205-220, 2007.

Derek Egolf. scythe-fmcad2024.
scythe-fmcad2024.

Derek Egolf and Stavros Tripakis. Synthesis of distributed protocols
by enumeration modulo isomorphisms. In ATVA 2023 - Part I, Lecture
Notes in Computer Science, pages 270-291. Springer, 2023.
Joost Engelfriet. Tree automata and tree grammars.
abs/1510.02036, 2015.

Bernd Finkbeiner and Sven Schewe. Bounded synthesis. Int. J. Softw.
Tools Technol. Transf., 15(5-6):519-539, 2013.

Aman Goel. IvyBench. https://github.com/aman-goel/ivybench, Ac-
cessed: 2024-04-22.

Aman Goel and Karem Sakallah. On Symmetry and Quantification:
A New Approach to Verify Distributed Protocols. In NASA Formal
Methods: 13th International Symposium, NFM 2021, page 131-150,
2021.

Aman Goel and Karem A. Sakallah. Towards an automatic proof of
lamport’s paxos. In 2021 Formal Methods in Computer Aided Design
(FMCAD), pages 112-122, 2021.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program
synthesis. Foundations and Trends in Programming Languages, 4(1-
2):1-119, 2017.

Travis Hance, Marijn Heule, Ruben Martins, and Bryan Parno. Finding
Invariants of Distributed Systems: It’s a Small (Enough) World After
All. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 115-131. USENIX Association, April
2021.

Qinheping Hu, John Cyphert, Loris D’Antoni, and Thomas W. Reps.
Exact and approximate methods for proving unrealizability of syntax-
guided synthesis problems. In Alastair F. Donaldson and Emina

https://github.com/egolf-cs/

CoRR,

https://github.com/egolf-cs/scythe-fmcad2024
https://github.com/egolf-cs/scythe-fmcad2024
https://github.com/aman-goel/ivybench

(23]

[24]

[25]

[26]

[27]
(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Torlak, editors, Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 1128-1142. ACM,
2020.

Yujie Hui, Drew Ripberger, Xiaoyi Lu, and Yang Wang. Learning
distributed protocols with zero knowledge. In Machine Learning for
Systems at NeurlPS 2023, 2023.

Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni,
and Roopsha Samanta. Synthesis of distributed agreement-based systems
with efficiently-decidable verification. In TACAS 2023, volume 13994
of Lecture Notes in Computer Science, pages 289-308. Springer, 2023.
Swen Jacobs and Roderick Bloem. Parameterized synthesis. Log.
Methods Comput. Sci., 10(1), 2014.

Gal Katz and Doron Peled. Synthesizing solutions to the leader election
problem using model checking and genetic programming. In Haifa
Verification Conference, HVC’09, page 117-132. Springer, 2009.
Jinwoo Kim, Loris D’Antoni, and Thomas W. Reps. Unrealizability
logic. Proc. ACM Program. Lang., 7(POPL):659-688, 2023.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, Jun 2002.
Marijana Lazic, Igor Konnov, Josef Widder, and Roderick Bloem.
Synthesis of distributed algorithms with parameterized threshold guards.
In 21st International Conference on Principles of Distributed Systems,
OPODIS, volume 95 of LIPIcs, pages 32:1-32:20. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2017.

Nahal Mirzaie, Fathiyeh Faghih, Swen Jacobs, and Borzoo Bonakdar-
pour. Parameterized synthesis of self-stabilizing protocols in symmetric
networks. Acta Informatica, 57(1-2):271-304, 2020.

Shaan Nagy, Jinwoo Kim, Loris D’Antoni, and Thomas W. Reps.
Automating unrealizability logic: Hoare-style proof synthesis for infinite
sets of programs. CoRR, abs/2401.13244, 2024.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How Amazon Web Services Uses
Formal Methods. Commun. ACM, 58(4):66-73, March 2015.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305-319. USENIX Association, June 2014.
Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos
Made EPR: Decidable Reasoning about Distributed Protocols. Proc.
ACM Program. Lang., 1(OOPSLA), Oct 2017.

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and
Sharon Shoham. Ivy: Safety Verification by Interactive Generalization.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI * 16, pages 614-630. ACM,
2016.

A. Pnueli and R. Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’89, page 179-190, New
York, NY, USA, 1989. Association for Computing Machinery.

A. Pnueli and R. Rosner. Distributed reactive systems are hard to
synthesize. In Proceedings of the 31th IEEE Symposium on Foundations
of Computer Science, pages 746=757, 1990.

Andrew Reynolds, Haniel Barbosa, Andres Notzli, Cesare Tinelli, and
Clark Barrett. CVC4SY: Smart and fast term enumeration for syntax-
guided synthesis. In Isil Dillig and Serdar Tasiran, editors, Proceedings
of the 31st International Conference on Computer Aided Verification
(CAV), volume 11561 of Lecture Notes in Computer Science, pages 74—
83. Springer, July 2019.

William Schultz, Edward Ashton, Heidi Howard, and Stavros Tripakis.
Scalable, Interpretable Distributed Protocol Verification by Inductive
Proof Slicing. arXiv eprint 2404.18048, 2024.

William Schultz, Ian Dardik, and Stavros Tripakis. Formal verification
of a distributed dynamic reconfiguration protocol. In Proceedings of the
11th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2022, page 143-152. ACM, 2022.

William Schultz, Ian Dardik, and Stavros Tripakis. Plain and Simple
Inductive Invariant Inference for Distributed Protocols in TLA*. 1In
22nd Formal Methods in Computer-Aided Design, FMCAD 2022, pages
273-283. IEEE, 2022.

Armando Solar-Lezama. The sketching approach to program synthesis.
In Proceedings of the 7th Asian Symposium on Programming Languages
and Systems, APLAS °09, pages 4-13. Springer, 2009.

Armando Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol.
Transf., 15(5-6):475-495, oct 2013.

[44] Murali Talupur, Sandip Ray, and John Erickson. Transaction flows
and executable models: Formalization and analysis of message passing
protocols. In Roope Kaivola and Thomas Wahl, editors, Formal
Methods in Computer-Aided Design, FMCAD 2015, Austin, Texas, USA,
September 27-30, 2015, pages 168—175. IEEE, 2015.

John G. Thistle. Undecidability in decentralized supervision. Systems
& Control Letters, 54(5):503-509, 2005.

Stavros Tripakis. Undecidable Problems of Decentralized Observation
and Control on Regular Languages. Information Processing Letters,
90(1):21-28, April 2004.

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M. K. Martin, and Rajeev Alur. TRANSIT: specifying
protocols with concolic snippets. In Hans-Juergen Boehm and Cormac
Flanagan, editors, ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013, pages 287-296. ACM, 2013.

Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. DuoAl: Fast,
Automated Inference of Inductive Invariants for Verifying Distributed
Protocols. In Marcos K. Aguilera and Hakim Weatherspoon, editors,
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 2022), pages 485-501. USENIX Association, 2022.
Jianan Yao, Runzhou Tao, Ronghui Gu, and Jason Nieh. Mostly
automated verification of liveness properties for distributed protocols
with ranking functions. Proceedings of the ACM on Programming
Languages (POPL), 8:1028-1059, jan 2024.

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana,
and Gabriel Ryan. DistAl: Data-Driven Automated Invariant Learning
for Distributed Protocols. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2021), pages 405-421.
USENIX Association, July 2021.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking
TLA+ Specifications. In Laurence Pierre and Thomas Kropf, editors,
Correct Hardware Design and Verification Methods, pages 54-66,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[45]

[46]

[47]

(48]

[49]

[50]

(51]

APPENDIX

A. Proof of Theorem 1
Theorem 1 follows from the four theorems below.

Theorem 2. Let r be a safety violation of a completion of the
sketch S. Then (1) is optimal w.rt. v and S.

Proof. For brevity, ™ := myyp(r). To show that 7 is optimal,
we must show that for any completion X of the sketch S, X
satisfies 7 if and only if 7 is not a run of X. First suppose X
satisfies 7. Then 7 is not an empty disjunction and moreover
there exists a 74(g),; in 7 that is satisfied by X. This 7-

. A(D) .

term corresponds to some transition s —— ¢ in r. If the
h; corresponding to the 7-term is a pre-hole, then the action
A(7) is disabled in state s of X. Suppose h; is a post-hole
corresponding to the state variable . Then = has some value
v, in t. Because X satisfies 7, we know that after taking action
A(?) in state s, = has some value v} # v,. In either case, r
is not a run of X because it cannot transition from s to ¢ by
action A(7).

Now suppose X does not satisfy 7. Then none of the 7-
terms in 7 are satisfied. Let T = s M t be a transition in
r. We will show that X contains all such 7" and therefore r
is a run of X. There are two cases: (1) the action of 1" has
holes in it, or (2) it does not. In case (2), T is a transition that
is present in every completion of the sketch. In case (1), we
can leverage that X violates all 74(5); that were constructed
for T. If it violates all 74z, for all pre-holes, then A(%) is

enabled in state s. If it violates all 74(z),; for all post-holes,
then ¢ is a successor of s by action A(%) in X. O

Theorem 3. Let r be a deadlock violation of a completion of
the sketch S. Then Tguqq(r) is sub-optimal w.rt. r and S.

Proof. Let ™ := Tgeaq(r) for brevity. m is under-pruning
because although p terms ensure that some pre-condition for
some action A is weakened for deadlocked state s, it is
possible that multiple pre-conditions need to be weakened in
order for A to be taken in sy.

Let X be a completion of the sketch S that does not satisfy
7. To show that 7 is not over-pruning, we must show that r
is a run of X and that the final state is deadlocked in X. As
with the g proof, we know that X has all the transitions in
r, since all 7-terms are violated. Furthermore, we know that
the final state of r is deadlocked in X because all p-terms are
violated and therefore no pre-condition is weak enough to be
taken in order to escape the deadlocked state. O

Theorem 4. Let r be a liveness violation of a completion of
the sketch S. Then m;.(r) is sub-optimal w.rt. v and S.

Proof. Let m := mu.(r). As with the deadlock case, 7 is
under-pruning because X satifying m may only weaken one
pre-condition of a fair action where it is necessary to weaken
multiple pre-conditions to enable a fair action and make a
cycle unfair.

Let X be a completion of the sketch S that does not satisfy
m. Then all T-terms are violated, so 7 is a run of X, so long
as fairness constraints are satisfied. Fairness constraints are
satisfied because all of the p-terms in 7 are violated. Le., p-
terms ensure there does not exist a fair action in X that is
enabled in the cycle of r. O

Theorem 5. Let r be a stuttering violation of a completion
of the sketch S. Then g, (1) is sub-optimal w.r.t. v and S.

Proof. Let w := 7y, (r) and suppose X, is a completion of S
that exhibits . As with the deadlock and liveness violations,
m is under-pruning because X satisfying m may only weaken
one pre-condition of a fair action where it is necessary to
weaken multiple pre-conditions to enable a fair action and
make stuttering unfair.

Let X be a completion of the sketch S that does not satisfy
7. We must show that r is a run of X. All terms of 7y (1)
are violated, so the last state, sj, of r is reachable in X by
taking the sequence of transitions in 7. Now, each fair action
A of X is either enabled or disabled in s;. We must show that
all enabled fair actions are self-looping. Because the terms in
ﬂ; are violated, we know that the non-self-looping fair actions
that were disabled in state s; of X are also disabled in state
s of X. Because the terms in 7, are violated, we know that
states that were self-looping in X are still self-looping in X,
if they are enabled in X. O

	Introduction
	Preliminaries
	Protocol Representation in TLA+
	Protocol Semantics
	Properties and Verification
	Modeling Conventions

	Synthesis of Distributed Protocols
	Protocol Sketches
	Problem Statements

	Our Approach
	Expression Generation
	Naive Breadth-First Algorithm
	Cache-Based Algorithm
	Equivalence Reduction

	Counterexamples and Pruning Constraints
	Counterexamples
	Pruning Constraints

	Counterexample Generalization
	Encoding Safety Counterexamples
	Encoding Deadlock Counterexamples
	Encoding Liveness Counterexamples
	Fairness and Stuttering

	Implementation and Evaluation
	Related Work
	Conclusion
	References
	Appendix
	Proof of Theorem 1

