ICPhS

4. Speech Prosody

ID: 1007

Methods for PoLaR Explorations with Machine Learning: Grammatical
Analysis of Intonation without Grammatical Labels

Nanette Veilleux, Byron Ahn, Alejna Brugos, Sunwoo Jeong, & Stefanie Shattuck-Hufnagel

Simmons University, Princeton University, Simmons University, Seoul National University, MIT

ABSTRACT

This study provides a proof-of-concept for a
new method for analyzing intonational form and
meaning, demonstrated by analysis of mirative
utterances in American English. Here, K-means
clustering using measures derived from PoLaR
labels (i.e., TCoG) revealed emergent clusters
of pitch accents that are suggestive of familiar
phonological categories (e.g., MAE ToBI H* and
L+H*). A Random Forest analysis then classified
utterance-level meaning based on measures from
both smaller granularity (about clusters and
acoustics) was subsequently (related to individual
pitch accents) and larger granularity (e.g., global {0
information), showing >85% correct categorization
of exclamative vs filler sentences.

This work has implications for how to model
mappings between prosody and meaning, especially
where existing phonological categories alone don’t
identify semantic/pragmatic categories.

Keywords: intonation, methodology, phonetics-phonology
interface, form-meaning mapping, machine learning

1. INTRODUCTION

Intonation is known to convey a wide range of
meanings, but exploring intonational form-meaning
mapping has been challenging (e.g., [1] and [2] for
some recent overviews, and [3], [4], [5], and [6]
for some critical junctures in the development of
the theoretical landscape). This challenge stems in
part from the persistent indeterminacy regarding the
relevant units of analysis, both on the form side
(i.e., which phonetic and phonological aspects of
tunes signal systematic meaning differences?) and
on the meaning side (i.e., what types of meanings
are conventionally encoded by tunes?)

On the form side, using phonological categories
alone can miss important details, such as gradient
variation in f0 slope that may generate incremental
shifts in meaning. But unpacking these categories
into global acoustic measures and treating them
indiscriminately (in, e.g., machine learning), may
miss the key generalization that linguistically
meaningful prosodic features are often localized.
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We address this methodological hurdle, with
a case study on the intonation of mirativity in
mainstream American English (henceforth MAE).
Mirativity can be defined intuitively as an expression
of speaker surprise and a perceived violation
of speaker expectations (regarding a proposition).
Manifesting in exclamatives like (1), it can be
marked by certain particles (e.g., ‘Wow!’), or by
designated syntactic configurations (e.g., the wh-
fronting without subj-aux inversion in (1); compare
this to (2), a non-exclamative), and most relevant
here, intonation.

(1 (Wow!) How believable Theodore is!
[exclamative, conveying mirativity)
2) How is Theodore believable?

[non-exclamative, not conveying mirativity|

Regarding the intonational correlates of mirativity,
previous work [7] identifies certain (phonologically
defined) pitch accents as its primary prosodic cue,
but also points out that additional gradient cues may
be at play. Building on this, we have developed a
method to clarify the aspects of intonation associated
with meanings of mirativity, by annotating the
corpus data from that paper for some of its acoustic
characteristics, and submitting that phonologically-
informed acoustic information to machine learning.

More specifically, we use PoLaR ([8], [9]) to
identify relevant acoustic cues in phonologically-
defined regions (e.g., pitch accents), and submit the
resulting labels and related measures (e.g., tonal
center of gravity; TCoG [10]) to k-means clustering,
thereby bundling accent-related measures in a form
that can be converted to utterance-level information
(in the form of, e.g., each accent cluster’s rate of
occurrence).

Utterance level features (including information
about labels, clusters and acoustics) were
subsequently submitted to a Random Forest. The
results produced over 85% correct categorization
of a balanced sample of over 250 exclamative vs.
filler sentences. This approach has more general
implications for analyzing intonational meaning,
and establishes a method that is extendable to
other prosody-meaning mappings where existing
phonological categories alone do not distinguish
semantic/pragmatic categories.
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Figure 1: Overall methodology and final results of analysis

2. METHODS

The dataset used in this study is a corpus of
256 utterances collected by [7], in which two
MAE speakers read scripts, half of which were
exclamatives (e.g., ‘Wow, is that nice!’) and the
other half not (e.g., ‘Is that nice?’), occurring in four
different syntactic frames (declarative, subject-aux
inversion, fronted WH-phrase, definite nominal).
This dataset was analyzed following the flowchart
in Fig.1. The recordings were first force-aligned
([11]) and then PoLaR-labelled in Praat ([12]), as
illustrated in the lower half of Fig.2.
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Figure 2: An annotated recording from the corpus

The f0 visualization in the top half of Fig.2 has
been marked up to show some key aspects of PoLaR
labelling, described more fully in [8, 9]. The dots
are at coordinates of (time, f0), where the time value
depends on the timing of labels on the Points tier,
and the f0 coordinate is either taken from special
Points tier labels (“comma override values™) or (as is
default) from the f0 value calculated by Praat (shown
in blue). Interpolating between these dots creates
a straight line approximation of the fO (shown as
a red line). PoLaR labels also include a Ranges
tier, which defines the local 10 floor/ceiling, which
can change over an utterance (or even within a
phrase). Each range defined by the floor/ceiling
is divided into evenly-spaced quintiles (shown as
colored bands); the quintile in which the (time, f0)
coordinates of a Points label occur is translated into
a numerical value (1-5), which is transcribed on the
Levels tier. Levels labels thus encode scaled pitch
that is normalized relative to the local intonational
context. In addition to these three tiers annotating
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fO0 properties, the PrStr (Prosodic Structure) tier
contains minimal phonological labels that indicate
perceived prominences (*) and boundaries (1).

The annotation process involved three pairs of
labellers. The two members of a pair each labeled
alone, then compared their labels, and discussed
disagreements to generate consensus labels. The
first pair labeled according to the basic PoLaR
annotation guidelines [9], and the second two pairs
used the advanced annotation guidelines, which
(among other things) augment basic Points labels to
indicate whether Points-defined f0 movements are
related to prominences and/or boundaries as labeled
on the PrStr tier.

For each of these labeled recordings, a variety
of features were subsequently extracted for use in
analysis. Certain f0 attributes (such as maximum,
minimum, average) were calculated both in
raw values and z-score normalized by speaker.
PoLaR-labelled TextGrids facilitated extraction
and calculation of additional features, including (1)
Features based on PoLaR labels themselves (e.g.,
counts of phrasal prominences and boundaries), (2)
direct measures such as timing and (normalized)
pitch values, and (3) derived measures such as slope
between certain PrStr-associated Points labels and
Tonal Center of Gravity ([10]) relative to local f0
ranges (i.e. PoLaR Ranges labels).

Machine Learning 1: pitch accent type clusters

The machine learning modeling of this data takes
place in two sequential stages: unsupervised
clustering of pitch accents, and supervised random
forest categorization of utterances’s mirativity. The
reason for this two-stage approach is two fold.
First, even though ToBI-type pitch accents can
signal semantic/pragmatic differences (e.g., [4]), we
suspect that they may be too broad for capturing all
the relevant distinctions; so, we used unsupervised
learning to capture distinctions without bundling
them into these umbrella phonological categories.
The second issue is at the heart of the difficulties
of using machine learning in prosodic form-meaning
mapping: prosodic events occur at a more local level
(e.g., a syllable or word) than meaning events (e.g.,
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an utterance). This work is an example of classifying
each utterance as one of two categories (exclamative
vs filler) and using the characteristics of the (usually
multiple) pitch accents in each utterance. If the
utterances in each category had been more parallel,
then the unique pitch accent on the target words
could have been used. Here, we use the percentage
of pitch accents belonging to each stage-one cluster
in the final random forest categorization model.

An unsupervised k-means clustering algorithm
([13], [14]) was used to model the pitch accent
types, resulting in 3 clusters. Though this was
a linguistically informed question (based on [7]),
the k-means algorithm automatically determines the
number of clusters and the feature values associated
with each cluster. After systematic exploration
of various combinations of intonational features
(mentioned above) to the clustering algorithm, we
choose the feature set that produced clusters with
the best Sum of Squares characteristics. As a result,
the two pitch accent measures used in the clustering
algorithm were Tonal Center of Gravity (TCoG)
measures, which have also been previously shown
to differentiate pitch accents ([10]). Specifically,
TCoG was measured over the pitch-accent’s rise,
and we submitted two relativized (and subsequently
z-scored) values: the time of the TCoG relative to the
vowel center (tcogT), and the frequency of the TCoG
relative to the Range min/max (tcogF). The resulting
three clusters are shown as different shapes/colors
in Fig.3, with each cluster’s centroid annotated in
black.
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Figure 3: Results of K-Means clustering

These three clusters are suggestive of MAE ToBI
labels: K1 as H* with a preceding high target, K3 as
H* without a preceding high target, and K2 as L+H*.

Machine Learning 2: classification
exclamative vs. filler

The ultimate goal of the machine learning model
is to determine if exclamatives can be categorized
separately from the filler sentences and what
features contribute to this separation. In this stage,

a supervised random forest model ([13], [15]) was

as
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used to classify exclamatives and filler sentences.
The particle “wow” was excised from exclamative
input utterances. In addition to the rate at which
each pitch accent cluster occurred in an utterance,
other acoustic and semantic features served as input
to this classification, listed below. (Data analysis
materials can be found at [16].)

Direct acoustic measures and derived features

* Changes in f0 (max, min, average, delta): raw
and z-score normalized by speaker
» Tonal Centers of Gravity (time, frequency)
PoLaR label features

* Measures of f0 for the utterance: timing and
(normalized) pitch values for turning points in
f0, (local) fO Ranges, location of prominences
and boundaries

» Counts of prominences and phrase boundaries,
raw and as a ratio of number of content words

Semantic features:

» Semantic type (content vs function word) for
the word containing the maximum f0

3. RESULTS

A random forest was trained on a random sample of
77% of the data (197 utterances: 99 fillers and 98
exclamatives from a set of 256 equally distributed
utterances.). When this model was tested on the
remaining 23% of the data (59 utterances, 29 filler,
30 Excl.), the resulting classification has a 86%
accuracy rate [95% CI : (0.7502, 0.9396)]. The
confusion matrix shown at the end of the flowchart
in Figure 1 further details this model’s output. In
examining the mis-classification by class, fillers
tend to be misclassified as exclamatives more often.
However, given the limitations of the data set size,
these values are sensitive to the random selection of
the test set.

In addition, Random Forest models allow the
predictors to be ranked according to importance
(which tends not to vary significantly between the
random selections of training/test sets), as shown in
Fig.4 for the present model.
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Figure 4: The relative importance of factors in the
Random Forest classification of exclamatives or not
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Each utterances’ z-scored f0 max-min and f0 max
were ranked highest. Accent types still play a role
despite the use of related acoustic measures.

4. DISCUSSION

First, we discuss the broad findings of this study.
This work reaffirms the idea that semantic mirativity
is marked intonationally. Moreover, the specific
findings are strikingly similar to [7]’s, suggesting
that their analysis does not depend on the use
of MAE ToBI labels or adoption of its grammar.
While the rate of occurrence of a particular
pitch accent type (here: k-means cluster) is not
as important as other acoustic characteristics for
classification in this model (see Fig.4), the features
that do rank high in importance (e.g., f0.delta.zscore)
may be the very cues that identify L+H* apart from
other accents — again consistent with [7]’s analysis.
On the other hand, the meaning of mirativity
may arise not just from (cues to) L+H* alone,
but rather from some constellation of intonational
characteristics, including categories of intonational
phonology (such as L+H*) and other gradient
components of intonation.

Methodologically, the main contribution here is
a proof-of-concept machine learning analysis that
is on par with established qualitative methods for
intonational meaning, since our results are broadly
consistent with the findings in [7]. Moreover, unlike
a model that uses only global acoustics, the use
of PoLaR labels has the advantage of enabling the
targeting of acoustics from smaller, phonologically-
relevant domains, thereby allowing for a clearer
characterization of the intonational form of MAE
exclamatives.

Combining PoLaR annotation with ML
techniques opens many new avenues for pursuing
form-meaning mapping research, in areas where
it’s not (yet) clear what the categories of form are.
This is facilitated by PoLaR’s capacity to capture
linguistically-informed acoustic measures without
presupposing a particular set of phonological
categories. In fact, this methodology can help
identify intonational categories by revealing which
aspects of form map onto particular meanings.
In addition, for cases where there are no discrete
phonological categories (i.e., if the meanings and
forms are not grammatically structured; e.g., for so-
called “paralinguistic” uses of intonation), PoLaR
labels can potentially identify which dimensions of
acoustic form are relevant for signalling particular
meanings.

Beyond using ML techniques alongside PoLaR,
using PoLaR for intonational research is itself
advantageous, as it does not require the same
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extensive training or experience that other labelling
systems might.  Instead, labelers are able to
identify appropriate regions for collecting the salient
acoustic measurements that feed into the statistical
and machine learning analyses. Utterance-level
acoustic measures (e.g., f0 min/max/average) are
insufficiently targeted, as the most critical acoustic
values are often localized in specific phonologically-
relevant regions. On the other hand, strictly
phonological annotation systems run the risk of
ignoring key patterns in the acoustics that may be
of interest in conveying meaning (for discussion on
this point, see [8]). In contrast, PoLaR identifies
phonologically-informed acoustic measures which
can be input into ML models of intonational
form-meaning relationships, to discover potential
meaning-bearing aspects of the {0 signal that are not
directly related to phonological contrasts.

Turning now to an analysis of how to formally
model intonational meaning, these results are
consistent with a model in which L+H* is the
marker of mirativity. Despite this, caution should
be exercised in modelling this relationship with a
conventional and categorical one-to-one mapping
between L+H* form and mirative meaning. Instead,
we speculate that it may be more fitting to propose a
many-to-many mapping between form and meaning,
with multiple intonational cues (related to or partly
consisting of L+H*) marking multiple possible
interpretations. This is especially plausible since
L+H* has been argued to mark other meanings,
such as contrastive focus. Additionally, determining
whether these ML algorithms reflect the intonational
factors that matter for interpretation of utterances
by human listeners, will require extensive study of
human intonation perception.

5. CONCLUSIONS

The key contribution of this paper is its
demonstration of a new methodology for exploring
intonational form and meaning. We are confident
in the applicability/usefulness of this methodology,
but due to practical limitations such as the size of
the corpus, we do not yet draw strong conclusions
about the phonology of exclamatives in MAE
and what in the semantics maps onto the relevant
phonology. Coupling this methodology with
a deeper investigation into the production and
(human) perception of these intonational variables
(e.g., with minimal pairs that differ in terms of the
intonational dimensions identified here) may be
able to illuminate form-meaning relationships as
well as the phonetics-phonology interface.
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