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CARTESIAN EXPONENTIATION AND
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Résumé. Un résultat important de la théorie des quasi-catégories dii a Lurie est que les fibrations
cocartésiennes sont exponentiables, dans le sens ou le produit fibré le long d’une fibration cocartési-
enne admet un adjoint a droite de Quillen qui préserve de plus les fibrations cartésiennes; il en est
de méme pour le cas ol le role des fibrations cartésiennes et cocartésiennes est interchangé. Pour
expliquer ce résultat classique, on prouve que le produit fibré le long d’une fibration cocartésienne
entre quasi-catégories est la colimite oplax de sa “rigidification,” un diagramme homotopiquement
cohérent a valeurs dans les quasi-catégories; on retrouve ainsi un résultat déja observé par Gep-
ner, Haugseng, et Nikolaus. Comme application de 1’opération d’exponentiation d’une fibration
cartésienne par une fibration cocartésienne, on utilise le lemme de Yoneda pour construire des ad-
joints a gauche et a droite du foncteur oubli qui envoie une fibration cartésienne au-dessus de B
vers sa famille de fibres indéxée par ob B, et on prouve que ce foncteur oubli est monadique et
comonadique. Ce résultat de monadicité est ensuite appliqué pour construire la réflexion d’une fi-
bration cartésienne en une fibration cartésienne groupoidale, dont les fibres sont des complexes de
Kan plutdt que des quasi-catégories.

Abstract. An important result in quasi-category theory due to Lurie is that the cocartesian fibrations
are exponentiable, in the sense that pullback along a cocartesian fibration admits a right Quillen
right adjoint that moreover preserves cartesian fibrations; the same is true with the cartesian and
cocartesian fibrations interchanged. To explicate this classical result, we prove that the pullback
along a cocartesian fibration between quasi-categories forms the oplax colimit of its “straighten-
ing,” a homotopy coherent diagram valued in quasi-categories, recovering a result first observed by
Gepner, Haugseng, and Nikolaus. As an application of the exponentiation operation of a cartesian
fibration by a cocartesian one, we use the Yoneda lemma to construct left and right adjoints to the
forgetful functor that carries a cartesian fibration over B to its ob B-indexed family of fibers, and
prove that this forgetful functor is monadic and comonadic. This monadicity is then applied to
construct the reflection of a cartesian fibration into a groupoidal cartesian fibration, whose fibers
are Kan complexes rather than quasi-categories.

Keywords. infinity category, cartesian fibration, oplax colimit, monadic adjunction.
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1. Introduction

Famously the category Cat of small categories is not a topos because, among other things, it
fails to be locally cartesian closed. A finitely complete category & is locally cartesian closed
just when each slice category & is cartesian closed, or equivalently, which the pullback functor
associated to any morphism f: A — B admits a right adjoint (as well as a left adjoint given by
composition with f):

Xy

PN
E /B —f— & /A
I
Iy
In the case £ = Cat, those functors f for which the pullback functor f* does admit a right

adjoint ITy are called exponentiable and have been characterized by Conduché [4]. Famously,

(i) All cartesian and cocartesian fibrations p: £/ — B of 1-categories are exponentiable.

(i) If p: E — B is a cocartesian fibration and ¢: F' — FE is a cartesian fibration then
the pushforward I1,(¢: F' — E) is also a cartesian fibration, and the dual result holds
when the cartesian and cocartesian fibrations are interchanged.

In [13] Lurie established co-categorical analogues of these results for quasi-categories.! Sub-
sequent authors, for instance Barwick and Shah [2], have stressed the importance of these results
to the theory and practice of co-categories, and we have further applications in mind. In [25,
§12.3], we use this result to prove that modules between quasi-categories admit all right and left
extensions. It follows that the question of existence of pointwise right and left Kan extensions
can be reduced to the existence of certain limits and colimits. For those results, it is useful to
have a somewhat more refined version of these results than is easily found in the literature—see
especially Theorem 4.2.9 and Corollary 4.2.10—which is the motivation for the present exposi-
tion

A cocartesian fibration of quasi-categories is an isofibration” p: E — B whose fibers depend
covariantly functorially on B. In the simplest non-trivial case, when B = A!, the data is given
by a pair of quasi-categories Ey and E; together with a functor E, — E;. In general, the
comprehension construction of [21] “straightens” p: E — B into a simplicial functor ¢,: ¢€B —
QCat that sends each vertex b € B to the fiber E,. The domain category appearing here is

I'A general characterization of the exponentiable functors between quasi-categories, while not the focus of our
interest here, can be found in [13, §B.3] or [1].

%In the Joyal model structure on simplicial sets, we refer to the fibrations between fibrant objects (the quasi-
categories) as isofibrations because they have a lifting property for isomorphisms analogous to that for the isofibra-
tions in classical category theory.
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the homotopy coherent realization of the quasi-category B, a cofibrant simplicial category® that
indexes B-shaped homotopy coherent diagrams. At the level of objects and 1-arrows f: a — bin
B, the comprehension construction is defined by lifting the 1-arrow f to a p-cocartesian I-arrow
with codomain E:

Together, this data defines a lax cocone ¢E under the comprehension functor ¢, with nadir E the
data of which is given by a functor (E: ¢[Bx A] — QCat that restricts along €B — ¢[B x A’
to c,. In fact, (E is a colimit cocone:

Corollary 3.2.8. The domain of a cocartesian fibration p: E — B is equivalent to the oplax
colimit of the associated comprehension functor c,: €B — QCat, with colimit cocone:

1+¢B
(Escp)

QCat

¢Bx A I

In particular the domain E of the cocartesian fibration p can be recovered up to equivalence
as the oplax colimit of a the comprehension functor ¢,: €B — OCat. Gepner, Haugseng, and
Nikolaus, who obtain a similar result to Corollary 3.2.8 as one of the main theorems of [8], inter-
pret this result as a proof that “Lurie’s unstraightening functor is a model for the oo-categorical
analogue of the Grothendieck construction.” Their methodology is quite different from ours,
constructing oplax colimits directly at the quasi-categorical level, whereas our comprehension
construction enables us to work at the level of simplicial categories and functors. The compre-
hension functor ¢,: €B — OCat can be used to define a “straightening” of the pullback of p
along any generalized element b: X — B, even in the case where X is not a quasi-category sim-
ply by restricting the comprehension functor (and its lax cocone) along b. We derive Corollary
3.2.8 as a special case of our first main theorem, which proves that the fiber £ is equivalent to
the oplax colimit of this straightened diagram.

3The simplicial categories that are cofibrant in the Bergner model structure are precisely the simplicial computads
that are freely generated by their non-degenerate “atomic” n-arrows for each n > 0, admitting no non-trivial
factorizations; see Definition 2.1.10.

4Unfortunately, the assignment of the terms “oplax colimit” and “lax colimit” given in [8, 2.8] is opposite to
the one used here. The standard convention in 2-category theory is that the 2-cell component of an oplax natural
transformation is parallel to its 1-cell components, while these 2-cells are reversed in a lax natural transformation.
A lax cocone is then a lax natural transformation whose codomain is a constant diagram. Confusingly, due to the
principle that a W-weighted colimit in an enriched category coincides with a W -weighted limit in the opposite
category, oplax colimits represent lax cocones under a diagram.
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Theorem 3.1.3. For any cocartesian fibration p: E — B and any b: X — B, the comprehension
cocone induces a canonical map over E from the oplax colimit of the diagram

ex & ¢B & OCat

to the fiber
Eb—>E
|7 b

and this map is a natural weak equivalence in the Joyal model structure.

The canonical natural transformation of Theorem 3.1.3 defines a natural Joyal equivalence
relating the pullback functor p* to a functor p* defined by forming oplax colimits of restrictions
of the comprehension cocone:

~k

p

/\
sSet)g Uy sSet g
~_ 7

*

p

Both functors p* and p* are left Quillen with respect to the sliced Joyal model structures, admit-
ting right Quillen adjoints:

Proposition 4.2.5. If p: E — B is a cocartesian fibration, the adjunctions

* Sk

p p
VS VS
sSetg L sSets and sSetg | sSet
~_ ~_
I i,

are Quillen with respect to the sliced Joyal model structures.

By taking mates, there is a canonical natural transformation : II, = ﬁp whose component
at any isofibration ¢: F — E is an equivalence. In this way we obtain an alternate model flp
for the pushforward functor that is more easily understood: at an isofibration ¢q: F — E, ﬁpq is
the pullback along the comprehension cocone of the induced map between lax slices induced by
whiskering with ¢:°

1,(F = E) —qCat, ¢

| F

>The precise meaning of this notation, involving slices of the homotopy coherent nerve of QCat regarded as a
2-complicial set, is explained in Lemma 4.2.1.
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To prove Proposition 4.2.5, we show that the “whiskering with ¢”” map is an isofibration. This
establishes the quasi-categorical analogue of desiderata (i) above. We then show further that if
q: F — E is a cartesian fibration, then the “whiskering with ¢”” map has a certain right horn
lifting property, thereby proving the quasi-categorical analogue of desiderata (i1):

Corollary 4.2.8. If p: E — B is a cocartesian fibration and q: F — E is a cartesian fibration
between quasi-categories, then the pushforward

II,(¢g:F—-E)—B
is a cartesian fibration between quasi-categories.

We show also that the pullback and pushforward functors along a cocartesian fibration pre-
serve the accompanying class of cartesian functors between cartesian fibrations. These results
are summarized in the following theorem:

Theorem 4.2.9. For any cocartesian fibration p: E — B between quasi-categories, the pullback-
pushforward adjunction restricts to define an adjunction

*

p

—
QCEH/E \_L/‘r QCQT/B

] ; ]
p*
L
Cart(QCat)e 1 Cart(QCat)s

—
Iy
As an immediate corollary, we construct “exponentials” whose exponents are either cartesian
or cocartesian, justifying the appelation “exponentiable” for these maps, and prove:

Proposition 4.3.3. Ifp: E — B is a cocartesian fibration and q: F — B is a cartesian fibration,
then
(q: F— B)P:E-B

is a cartesian fibration.

The final two sections of this paper supply some first applications of these results. As the
comprehension construction reveals, cartesian fibrations over B encode functors B® — qCat
valued in the (large) quasi-category of small quasi-categories. In ordinary category theory it is
well-known that for any small category B and complete and cocomplete category C', the forgetful
functor C® — (C°P8 that carries a diagram to its ob B-indexed family of objects admits both
left and right adjoints, given by left and right Kan extension, and is moreover monadic and
comonadic. Informally, this means that B-indexed diagrams can be understood as “algebras”
or as “coalgebras” for a monad or comonad acting on the category of ob B-indexed families of
objects.

The corresponding result for quasi-categories will be proven in a sequel to this paper, but
here we demonstrate that the analogous result holds for cartesian fibrations, using a version of
Beck’s monadicity theorem for quasi-categories proven in [18]. Writing Cart g for the large
quasi-category of cartesian fibrations and cartesian functors over B, we prove:
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Theorem 5.2.6. The forgetful functor

u: Cartjg — Cart/q, = | [ qCat
obB

is comonadic and hence also monadic.

In a further sequel, we will use this monadicity to establish an equivalence between Cart g
and qCat®”, both quasi-categories being monadic over [1.,s9Cat.

Here we include another application of the monadicity of Theorem 5.2.6. Using our analysis
of limits and colimits in quasi-categories defined as homotopy coherent nerves in [22], we prove:

Theorem 6.1.2. The inclusion Kan — qCat admits both left and right adjoints

invert
/ﬁ
Ka@qCat

core
and is monadic and comonadic.

The right adjoint here is the familiar functor that takes a quasi-category to its maximal Kan
complex core, while the left adjoint is a somewhat more delicate “groupoidal reflection” func-
tor. Our final result establishes an analogous groupoidal reflection for cartesian fibrations into
the subcategory of groupoidal cartesian fibrations, whose fibers are Kan complexes rather than
quasi-categories.

Theorem 6.3.6. There is a left adjoint to the inclusion

invert

Carti; 1  Cartp
~_

defining the reflection of a cartesian fibration into a groupoidal cartesian fibration.

All of the results mentioned above have duals with cocartesian and cartesian fibrations inter-
changed. The comprehension functor associated to a cartesian fibration is contravariant and its
domain is recovered as the lax colimit of this diagram. It is to avoid this contravariance that we
choose to focus the bulk of our presentation on the case of cocartesian fibrations.

This paper is organized as follows. In §2, we provide background material on oplax colimits,
cocartesian fibrations, and the comprehension construction from [21]. Then in §3, we prove that
pullback along a cocartesian fibration can be modeled as a oplax colimit of a restriction of the
comprehension functor.

The corresponding results for the pushforward functor, including in particular (i) and (ii), are
then proven in §4. The oplax colimits defining the functor p* in §3 are properly understood as a
variety of (0o, 2)-categorical colimits. Consequently, the description of the corresponding right
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adjoint f[p involves an (oo, 2)-categorical cocone construction, instantiated by forming the slice
of 2-complicial set over a vertex. As we explain in §4.1, 2-complicial sets are simplicial sets in
which certain simplices are marked as “thin.” This notion is not as unfamiliar as it may seem
at first: Kan complexes are precisely the O-complicial sets while quasi-categories correspond to
I-complicial sets.

In §5, we consider the forgetful functor Cart(QCat) g — Cart(QCat), ., s and construct left
and right biadjoints: quasi-categorically enriched functors equipped with a natural equivalence of
function complexes encoding the adjoint transpose relation. Such data descends to an adjunction
between the quasi-categorical cores of these quasi-categorically enriched categories. We then
review the monadicity theorem from [18] and apply it to prove that this forgetful functor is
monadic and comonad as a map between large quasi-categories.

To say that the functor Cart)g — Cart, ., = [, g dCat is monadic is to say that Cart,g
may be recovered as the quasi-category of homotopy coherent algebras for a homotopy coher-
ent monad acting on [ [ , g qCat. In §6, we show that Cart% is similarly the quasi-category of
homotopy coherent algebras for the restriction of this homotopy coherent monad along the inclu-
sion [ [, g Kan — [],,gaCat. We then show that this characterization allows us to construct
the groupoidal reflection functor as a lift of the groupoidal reflection functor gCat — Kan.

This paper is a continuation of a series of papers that redevelop the foundations of (oo, 1)-
category theory [16, 18, 17, 19, 20, 21, 23, 22], the results of which are referenced as I.x.x.x,
..., and VIILx.x.x respectively. However, we deploy relatively few of the tools developed in our
previous work to prove the theorems appearing here, and when we do reference prior results,
we typically restate them in considerably less generality. Many of the results from previous
work recalled here — for instance Theorem 2.3.9 — are proven in the more abstract setting of
any oco-cosmos, while in the present manuscript we consider only a single example: the quasi-
categorically enriched category QCat of quasi-categories. As we do not need this notion, we do
not recall any specifics here.® While this paper was in press, the book [25] was published, so
in the final version of the present manuscript we have cut a few proofs and instead refer to the
corresponding results X.x.x.x that now appear there.
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2. Background

In §2.1, we introduce oplax colimits through the general mechanism of weighted colimits. We
prove that oplax weights are flexible, which implies that the oplax weighted colimit functor is
equivalence-invariant. We also review the collage construction, which allows us to construct
flexible weights by instead specifying the shape of their corresponding cocones. In particular, a
lax cocone of shape X is indexed by the homotopy coherent realization of the join X x A°.

In §2.2, we review some basic aspects of the theory of cocartesian fibrations between quasi-
categories. We introduce a quasi-categorical version of the collage construction and prove that
the quasi-categorical collage of a functor f: A — B defines a cocartesian fibration over A! that
models the oplax colimit of f.

In §2.3, we review the comprehension construction, devoting somewhat more attention to the
lax cocones that are the focus of much of the work here.

2.1 Oplax colimits in simplicial categories

Our aim in this section is to define the oplax colimit of a homotopy coherent diagram €X —
SSet indexed by the homotopy coherent realization of a simplicial set X. Oplax colimits are
introduced as particular weighted colimits, where the weights in question are simplicial functors
that describe the shape of lax cocones. Some of this material was previously discussed in §VIL.4,
where the “oplax” weights were called “pseudo” weights. See Remark 2.1.15 for an explanation
of this contrast in nomenclature.

In a simplicially enriched category, the appropriately general notion of colimit allows for
the specification of any particular “shape” of cone under the diagrams being considered. This
specification is given by a simplicial functor referred to as a weight for the colimit.

Definition 2.1.1 (weights for simplicial colimits). Suppose D is a small simplicial category,
which we think of as a diagram shape. Then a weight on D is a simplicial functor W : T? —
SSet. For any diagram F': D — K valued in a simplicial category K, a W-cocone with nadir
an object e € Kis a simplicial natural transformation c: W — Funi(F(—), e). We say that the
W -cocone ¢ displays e as a W-colimit of F' if and only if for all objects ¢/ € K the simplicial
map

Funi(e, ') ————— Fun g 0 (W, Funi(F(—),¢))
given by pre-composition with ¢ is an isomorphism.
Many notations are common for the nadir of a weighted colimit cone; here we write colim"” F

for the colimit of F' weighted by 1. When these exist for all weights and diagrams in /C then
colim defines a simplicial bifunctor that is cocontinuous in both variables:

SSet™ x kP colim K

A simplicial functor W : T’* — SSet may otherwise be described as comprising a family of
simplicial sets {IW d} conj(p) along with right actions of the hom-spaces of D

Wd' x Funp(d,d') - Wd (2.1.2)
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which satisfy axioms with respect to the identities and composition of D. This description leads
us to define a simplicially enriched category coll(11), called the collage of W.

Definition 2.1.3 (collages). For any weight W : D — SSet, the collage of W is a simplicial
category coll(WW) that contains D as a full simplicial subcategory along with precisely one extra
object T whose endomorphism space is the point. The function complexes Funcouw (T, d) are
all taken to be empty and we define:

Funconow(d, T) := Wd for objects d € D.

The composition operations between hom-spaces in D and those with codomain T are given by
the actions depicted in (2.1.2).

In the statement of the following result, sSet”" denotes the underlying category of the sim-
plicially enriched category SSet”" .

Proposition 2.1.4 (collage adjunction, VIL.5.2.3).

(i) The collage construction defines a fully faithful functor

sSet”” coll s 147/ ¢Set-Cat

from the category of D-indexed weights to the category of simplicial categories under
L+Dwhose essential image is comprised of those (e, F'): 1+D — Kthat are bijective
on objects, fully faithful when restricted to D and 1, and have the property that there
are no maps in K from e to the image of F.

(ii) The collage functor admits a right adjoint, which carries a pair (e, F): 1 +D — Kto
the weight Funi(F(—),e): D’ — SSet.

coll

TP/gSet-Cats— L — —5sSet™ [

wgt

This adjunction has a useful and important interpretation:

Corollary 2.1.5 (VIL.5.2.4). The collage coll(W) of a weight realises the shape of W -cocones,
in the sense that simplicial functors

G: coll(W) — K
stand in bijection to W -cocones under the diagram G|p with nadir G(T). [l

We record some basic properties about weighted colimits, collages, and left Kan extensions
for later use. For proof see [24, §2.1].

Lemma 2.1.6. For any simplicial functor I : D — C and weight W : D — SSet:
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(i) For any diagram G : C — K, we have an isomorphism

colim" GI = colim™™ W @G

where the colimit on one side exists if and only if the one on the other does.

(ii) Left Kan extension of W along I gives rise to a pushout square in the category of
simplicial categories and simplicial functors:

]1+DL>]I+C O

-
coll(W) —— coll(lan; W)

In ordinary unenriched category theory, the colimit cone under a D-shaped diagram may be
formed as the left Kan extension along the inclusion D < Dx 1 into the category D 1 formed
by freely adjoining a terminal object “T” to D. The following lemma reveals that the collage
plays the roll of the category D 1 for weighted colimits.

Lemma 2.1.7. The pointwise left Kan extension of any simplicial functor F': D — K along
I: D < coll(W) exists if and only if the colimit colim" F exists in K, in which case lan; F(T) =
colim" F. ]

In order to understand the sense in which certain weighted colimits, including in particular
the oplax colimits to be introduced below, are homotopically well behaved, we recall some facts
about weights and simplicial computads from §I1.5.3:

Definition 2.1.8 (flexible weights and projective cell complexes). For a simplicial category D,
the projective n-cell associated with [n] € A and d € Dis the simplicial natural transformation

OA™ % Funp(—,d) — A" x Funp(—,d).

A natural transformation o: W — V in SSet”" is a relative projective cell complex if it factors
as a countable composite of pushouts of coproducts of projective cells. A weight IV in SSet™”
is a flexible weight if the map !: () — W is a relative projective cell complex.

The following result extends without change to pointwise cofibrant diagrams valued in any
model category enriched over the Joyal model structure on simplicial sets.

Proposition 2.1.9 (I1.5.2.6, VII.4.1.5).

(i) For aflexible weight W : TP — SSet and any diagram F: D — SSet, colim"' F may
be expressed as a countable composite of pushouts of coproducts of maps

OA™ x Fd — A™ x Fd.
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(ii) If a: ' — G is a simplicial natural transformation between two such diagrams whose
components are weak equivalences in the Joyal model structure, then for any flexible
weight W the map

colim“a: colim" F — colim"' @
is a weak equivalence in the Joyal model structure. ]

The collage construction defines a correspondence between flexible weights and simplicial
computads, a class of “freely generated” simplicial categories that define precisely the cofibrant
objects [14, §16.2] in the model structure due to Bergner [3].

Definition 2.1.10 (simplicial computad). A simplicial category A, regarded as a simplicial object
[n] — A, in the category of categories with a common set of objects and identity-on-objects
functors, is a simplicial computad if and only if:

e each category A, of n-arrows is freely generated by the reflexive directed graph of atomic
n-arrows, these being those arrows that admit no non-trivial factorizations, and

e if f is an atomic n-arrow in A, and a: [m] — [n] is a degeneracy operator in A then the
degenerated m-arrow f - «v is atomic in A4,,,.

We have the following recognition principle for flexible weights on simplicial computads, a
mild variant of Proposition I1.5.3.5, proven in §VIL.5.2.

Proposition 2.1.11 (relating flexible weights and simplicial computads, VIL.5.2.6). Suppose that
D is a simplicial computad. Then a weight W : T — SSet is flexible if and only if its collage
coll(W) is a simplicial computad. O

By the next result, the left adjoint to the homotopy coherent nerve
¢
sSet-Cat&— 1 —5sSet
N
the homotopy coherent realization functor, provides a source of flexible weights. See §VI.4 for

a more leisurely presentation with considerably more details.

Proposition 2.1.12 (V1.4.4.7). For any simplicial set X, the homotopy coherent realization €.X
is a simplicial computad. O]

Recall 2.1.13. For any simplicial set X, there is a canonical inclusion X < X x A into its join
with the point. The join X x A? has a single vertex of X % A that is not also a vertex of its
subset X, which we shall denote by “T.” Now for each non-degenerate n-simplex x € X the
join X « AY has two corresponding non-degenerate simplices:

* asimplex of dimension n identified with z itself and

* asimplex (z, T) of dimension n + 1,
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and these two cases enumerate all of the non-degenerate simplices of X x A° with the exception
of T.

Oplax colimits represent particular cones under a homotopy coherent diagram €X — K
indexed by a simplicial set X. In this context, the homotopy coherent realization of of the joint
X x A defines a collage that presents the weight for oplax colimits.

Definition 2.1.14 (weights for oplax colimits). Applying homotopy coherent realisation to the
canonical inclusion X < X x A for any simplicial set X, yields a simplicial subcomputad
Ix: €X — €[X x A so that the conditions discussed in Proposition 2.1.4(i) hold for the
inclusion (T, Ix): 1 + €X < €[X x A%. Hence, via the counit isomorphism of the collage
adjunction, this simplicial category is isomorphic to the collage of the corresponding weight,
defining the weight for oplax colimits of diagrams of shape €.X.

exoPr X . SSet givenby  Lx () := Fungpx.ao(z, T).

When F': €X — Kis a homotopy coherent diagram of shape X, then its oplax colimit is defined
to be the weighted colimit
colim®”™ F := colim*X F.

Remark 2.1.15. The oplax weights being defined here are precisely the “pseudo” weights intro-
duced in Definition VIL.5.2.8. The reason for the difference in nomenclature is that in that paper
the diagrams considered in [23] are valued in Kan complex enriched categories, whereas here the
diagrams are valued in quasi-categorically (or simplicially) enriched categories. In a Kan com-
plex, the 1-simplex A represents an invertible morphism, while in a quasi-category it models a
non-invertible morphism.

Immediately from Proposition 2.1.11:

Lemma 2.1.16 (VIL.5.2.9). For all simplicial sets X the weight Lx : €X°° — SSet for oplax
colimits of diagrams of shape €X is a flexible weight. [

2.2 Cocartesian fibrations and quasi-categorical collages

In this section, we construct an explicit example of an oplax colimit of diagram of quasi-categories
via the quasi-categorical collage construction. In an important special case, the quasi-categorical
collage defines a cocartesian fibration over the 1-simplex, so we first introduce the quasi-categorically
enriched category of cocartesian fibrations and cartesian functors.

Of the many equivalent definitions of cocartesian fibration (see §1V.4 and §VI.3), the follow-
ing will be the most convenient for this paper:

Definition 2.2.1 ([12, 2.4.1.8,2.4.2.1], IV.4.1.24). Let p: E — B be an isofibration between
quasi-categories.
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(i) A l-arrow x: e — €’ of E is p-cocartesian if and only if any lifting problem

X
AT gm0 g
I
| )
An B
has a solution.

(i1) Anisofibration p: E — B is a cocartesian fibration of quasi-categories precisely when
any arrow «: pe — b in B admits a lift to an arrow x: e — €’ in E which enjoys the
lifting property of (i).

If p and ¢ are cocartesian fibrations over B then a functor

is a cartesian functor just when it carries p-cocartesian 1-arrows to g-cocartesian 1-arrows. As
one illustration of the importance of this notion:

Proposition 2.2.2 (VIIL.5.1.3). A cartesian functor between cocartesian fibrations of quasi-
categories is an equivalence if and only if it is a fiberwise equivalence:

E——F
N
B
i.e., for each b € ob B, the induced functor g,: E, — Fy is an equivalence. Il

If B is a quasi-category, then we adopt the notation QCat g for the quasi-categoricaly en-
riched category of isofibrations over B defined as follows.

Definition 2.2.3. For a quasi-category B, let OCat g denote the category whose:
* objects are isofibrations p: E — B with codomain B and

* whose function complexes Fung(p: E — B, ¢: F — B) are defined by the pullbacks

S

& Fun(E,B

Fung(p: E - B,q: F - B) —— Fun(E,F)
)
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where Fun(E, F) = FF denotes the usual internal hom in QCat.
Definition 2.2.4. For a quasi-category B, let coCart(QCat) g denote the category whose:
* objects are cocartesian fibrations p: E — B with codomain B and

* whose function complexes Fung(p: E — B, ¢: F — B) are defined to be the full sub quasi-
categories of the function complexes Fung(p: E — B,q: F — B) of QCat g defined by
restricting the 0-arrows to be cartesian functors over B.

The quasi-categorically enriched category Cart(QCat),g of cartesian fibrations and cartesian
functors is defined similarly.

Proposition IV.5.2.1 proves that the pullback of a cocartesian fibration is a cocartesian fibra-
tion
F—2>E
L
in which an arrow Y is g-cocartesian if and only gy is p-cocartesian. It follows that pullback also
preserves cartesian functors. Hence:

Proposition 2.2.5. Pullback along any f: A — B defines a quasi-categorically enriched functor

coCart(QCat) g SEAIN coCart(QCat)a [
N . N
QCat/B f—> QC&I’/A

We now argue that the pullback functor preserves simplicial tensors. This will be used in §4

to show that its right adjoint is simplicially enriched, when this functor exists.

Observation 2.2.6 (tensors and pullback). Let X € sSet be a simplicial set. The tensor of an
isofibration p: E — B with X is the right-hand vertical composite, which pulls back to the
right-hand vertical composite

FxX—ExX

F——E

f*(p)l - lp

which defines the tensor of f*(p): F — A with X.

The following lemma tells us that this tensor construction respects cartesian functors.
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Lemma 2.2.7. For any simplicial set X and cocartesian fibrations p: E — B and q: F — B,
the isomorphism Fung(E x X, F) = Fung(E, F)* restricts to an isomorphism

Fung(E x X, F) = Fung(E, F)X

Proof. We make use of Theorem IV.5.1.4 which provides the following characterization of the
sub quasi-category Fung(E,F) C Fung(E,F). Any functor f: E — F over B induces a com-

mutative square over B

E— ' F

7 N
eul lk\é
\ /
pPIB3alB

whose vertical functors are the canonical ones induced by p: E — B and ¢: F — B. Because p
and ¢ are cocartesian, Theorem IV.4.1.10 proves the vertical functors admit left adjoints over B.
Theorem IV.5.1.4 proves that f is cartesian if and only if the mate of this canonical isomorphism
is an isomorphism.

The mate that detects whether f is a cartesian functor lives as a 1-simplex in the simplicial
set

Sag(pi B — E, ¢} B = F):=Fung(E,F) Xrung(per) Funs(p | B,q | B).
of commutative squares from /: p | B — E to /: ¢ | B — F. The adjunction over B associated
to the cocartesian fibration E x X ——» E —— Bis

Z
Ex X" = S, 1BxX

PN

the product of the adjunction for p with X. In particular,
Sqs(p4Bx X - Ex X,q}B—F)=Sqs(p)B—EqlB—F)7~

Now a 1-simplex C* is an isomorphism if and only if it is a pointwise isomorphism, which
proves that Fung(E x X, F) = Fung(E, F)X. O

We conclude this section with an example of an oplax colimit. When X = A! a homotopy
coherent diagram CA! — QCat is just a functor f: A — B between quasi-categories. The oplax
colimit in simplicial sets is given by the pushout

A— 7T B

id xdol r l

Ax Al —— (:ohrnOplax

Up to equivalence, this oplax colimit is modeled by the quasi-categorical collage construction
that we now introduce.
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Definition 2.2.8 (the quasi-categorical collage construction X.F.5.2). For any cospan f: A — C
and g: B — C, with A, B, and C all quasi-categories, define a new simplicial set coll(f, g) by
declaring that
. : . ’ = 5,7 > —1
coll(f, n={<N—>A,Ni>B,A”—>C> 0. fla), 52—l }
(f,9) ln—j..y =9(b), i+j=n—1

'''''

with the convention that conditions indexed by A~! are empty (or that each simplicial set is
terminally augmented). There are simplicial maps

B —— coll(f,g) +—— A
| oo
{1} —— Al «+—— {0}

where the map p sends an n-simplex (a: A" — A b: AV — B,c: A" — C) to the n-simplex
[n] — [1] that carries 0,...,7to 0 and ¢ + 1,...,n to 1. Note that the fiber of p over 0 is
isomorphic to A while the fiber of p over 1 is isomorphic to B.

Lemma 2.2.9 (X.F5.3). The map p: coll(f,g) — Al is an inner fibration. In particular, the
simplicial set coll( f, g) is a quasi-category. O

We write coll( f, B) for the collage of f: A — B with the identity on B.

Lemma 2.2.10 (X.F.5.4). For any f: A — B, the map p: coll(f,B) — Al is a cocartesian
fibration. 0

Proposition 2.2.11 (X.F.5.5). Forany f: A — B between quasi-categories, the collage coll( f,B)
defines the oplax colimit of f in QCat. That is coll(f, B) defines a cone under the pushout dia-
gram

A—>B
1d><60Jj l—\[
Ax A 1—>P
\\k
N

coll(f, B)

so that the induced map k is inner anodyne, and in particular a weak equivalence in the Joyal
model structure. [

Corollary 2.2.12 (X.E.5.6). Consider a pair of functors between quasi-categories f: A — B
andu: B — A. Then [ is left adjoint to u if and only if the collages coll( f,B) and coll(A, u) are
equivalent under B + A and over A'. O
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2.3 The comprehension construction

In this section we review the comprehension construction from [21]. It constructs, for any co-
cartesian fibration p: E — B of quasi-categories, a “straightening,” which has the form of a
simplicial functor ¢,: €B — QCat that sends each vertex b € B to the fiber E,. It also con-
structs a canonical lax cocone (E: €[B x A°] — QCat of shape B under this diagram with nadir
E.

Corollary 2.1.5 tells us that the collage of a weight W realizes the shape of I/ -cocones.
Applying this result to the weights for oplax colimits introduced in Definition 2.1.14, we obtain
the following definition of a lax cocone.

Definition 2.3.1 (lax cocones VI.5.2.4). Suppose that X is a simplicial set. Then a lax cocone of
shape X in SSet is defined to be a simplicial functor /7 : €[X x A’] — SSet

1+ex

N

C[X x A SSet

eB

The restriction of a lax cocone ¢7: €[X x A’] — K to a functor B,: €X — SSet is called its
base. We say that ¢ is a lax cocone under the diagram B,; the object B € sSet obtained by
evaluating /7 at the object T is called the nadir of that lax cocone.

Example 2.3.2 (canonical lax cocones VI.6.1.6). For any simplicial set X, there exists a lax
cocone
1+c¢Xx

/ <X71>

C[X x AY SSet

k‘X

whose base is constant at the terminal quasi-category 1 and whose nadir is X that we refer to as
the canonical X -shaped lax cocone.

Observation 2.3.3 (whiskering lax cocones VL1.5.2.6). Let ¢4: €[X x A] — SSet be a lax
cocone with base diagram A,: €X — SSet and nadir /4 = A, and let f: A — B be any map
of simplicial sets. Then there is a whiskered lax cocone f - (*: €[X x A°] — SSet with the same
base diagram A,: €X — SSet and with nadir B, whose components from a vertex z € X to T
are defined by whiskering with f:

X o
FuNepy.an (2, T) =5 Fun(A,, A) £ Fun(4,, B)

Lemma 2.3.4. For any map of simplicial sets f: Y — X, the canonical lax cocone of shape X
restricts along €[ f xid]: €[Y x A°| — €[X x A 0 the whiskered composite

1+cecy — Y Plex L+ey o
— / o~ T / N
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of the canonical lax cocone of shape Y with f: Y — X.
Proof. By direct verification from Lemma V1.6.1.6 and Observation 2.3.3. U

§VLS5 introduces a mechanism for producing new lax cocones from given ones: namely as
domain components of cocartesian cocones over a given codomain lax cocone.

Definition 2.3.5 (cocartesian cocones VI.5.3.1). Suppose we are given a simplicial set X and
lax cocones (¥ (P: €[X x A°] — SSet of shape X with bases F, and B, respectively. Suppose
also that we are given a simplicial natural transformation

—
C[X x AY Ip SSet.

Then we say that the triple (¢, (2, p) is a cocartesian cocone if and only if

(i) the nadir of the natural transformation p, that being its component p: E — B at the
object T, is a cocartesian fibration between quasi-categories

(i1) for all O-simplices x € X the naturality square is a pullback, and

E,

B,

Nl L lN
W4——m

(iii) for all non-degenerate 1-simplices f: x — y € X the l-arrow is p-cocartesian.

E,

&3
o|
by

Y

Lemma 2.3.6 (pullbacks of cocartesian cocones VI.5.3.3). Suppose given:

* a pullback diagram of quasi-categories in which p and q are cocartesian fibrations;

F2SE (2.3.7)

12 ]

A—>B

e alax cocone (*: €[X « A — Kwith nadir A; and
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* a cocartesian cocone ((¥, (B, p) whose nadir is p: E — B and whose codomain cocone
(B = f . (A is obtained from the lax cocone (" by whiskering with f: A — B.

Then there is a cocartesian cone ({, A, q) whose codomain is (A, whose nadiris q: F — A, and
whose domain component is a lax cocone (¥ that whiskers with g to the lax cone (¥ = g-(F. [

Conversely, a cocartesian cocone (¢, (4, ¢) with nadir ¢: F — A can be whiskered with a
pullback square (2.3.7) to define a cocartesian cocone (g - /¥, f - ¢4, p) with nadir p: E — B and
whose domain and codomain are whiskered lax cocones as defined in Observation 2.3.3.

Remark 2.3.8. If the map f of Lemma 2.3.6 is replaced by any map of simplicial sets f: X — B,
whose domain is not necessarily a quasi-category, it is still possible to pull back the data of a
cocartesian cocone (¢, (7 p) whose codomain lax cocone ¢Z = f-(¥ is obtained by whiskering
a lax cocone with nadir X . This constructs a simplicial natural transformation (¢, ¢~ ¢) whose
nadir is the pullback ¢: F* — X of p along f. Since this is not a map between quasi-categories,
it does not really make sense to call it a cocartesian fibration. Nonetheless, this construction
produces a lax cocone /% of shape X, which will have some utility. See Remark 2.3.12.

A cocartesian fibration p: E — B between quasi-categories has a “straightening” called the
comprehension functor c,: €B — QCat, a homotopy coherent diagram of shape B that sends
each vertex b to the fiber E, of p over b. This arises as the base diagram of the domain of a
cartesian cocone over the canonical B-shaped lax cocone.

Theorem 2.3.9 (V1.6.1.7). For any cocartesian fibration p: E — B of quasi-categories, there is

a cocartesian cocone
ZE
— ,,
C[B x AY] Up QCat.
\—/

k’B
of shape B in QCat with nadir p: E — B over the canonical lax cocone kB. The base of the

domain component defines the comprehension functor c,, which acts on an object b: 1 — B of
¢B by forming the pullback

ZB
E,——E

2]
178

and acts on 1-arrows f: a — b of B by factoring the codomain of a p-cocartesian lift €]Ec of f
through the pullback at the front of the diagram:

<l% Lp (2.3.10)
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These cocartesian lifts define components of the lax cocone

1+¢B

wﬁ

¢[Bx A’ I QCat

with nadir E under the comprehension functor. [

By Observation V1.6.1.9, any pair of lax cocones that arise as the domain of a cocartesian
cocone over a common codomain define vertices in a contractible Kan complex and are in par-
ticular equivalent as diagrams. This is used to prove the following result relating comprehension
functors with pullbacks.

Proposition 2.3.11 (comprehension and change of base V1.6.1.11). Suppose that we are given a
pullback

FY2LE
L)
A—>B

of quasi-categories in which p and thus q are cocartesian fibrations. Then the diagrams

“y 0Cat  and €AYy eB 2 oCat

are connected by a homotopy coherent natural isomorphism. O

Remark 2.3.12. If A is not a quasi-category, it is not possible to directly construct the compre-
hension functor for the pullback of p along f. However, by Lemmas 2.3.4 and Remark 2.3.8, the
cocartesian cocone over the canonical B-shaped lax cocone can be pulled back along any map
of simplicial sets f: X — B to define a cocartesian cocone over the canonical X-shaped lax
cocone. Thus, a posteriori, we can think of the base of the lax cocone

¢[f*id]

CIX « AY —— ¢[Bx AO]—>QCat

as defining a comprehension functor for the pullback of p: E — B along f: X — B.

3. Pullback along a cocartesian fibration as an oplax colimit
Our aim in this section is to provide an equivalent model of the pullback functor
P M/B — M/E

along a cocartesian fibration p: E — B between quasi-categories. In the next section, we will use
this to construct an equivalent model of its right adjoint, the pushforward II,,, whose homotopical
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properties are more easily established. Before commencing with our work, we briefly sketch the
connection between the pullback and pushforward.

The category of simplicial sets, as a presheaf topos, is locally cartesian closed, so pullback
along any map p: £ — B admits a right adjoint:

*

P
L

sSet); L sSet/p

~_ 7
Iy

By Observation 2.2.6, pullback along p is a simplicially enriched functor that preserves tensors
with simplicial sets, so by [11, 4.85] it follows that the adjunction p* — II, is simplicially en-
riched.

The right adjoint may be described explicitly:

Lemma 3.0.1. The n-simplices of the pushforward 11,,q: 11,F' — B of q: I' — E correspond
to pair comprised of an n-simplex b: A™ — B together with a map Ej, — F'in sSet,p, whose
domain is defined by the pullback

E,—25 F

NElE

A”T>B

Moreover, a simplicial operator a.: [m] — [n] acts on an n-simplex by pre-composition with

Eyo—2ovm, O

pb»al J lpb

AWTAH

To study the pushforward construction along a cocartesian fibration p: E — B, we will
replace the test objects e,: E;, — E involved the description of II, given in Lemma 3.0.1 by
weakly equivalent test objects in the Joyal model structure. These new test objects €;: E, —E
will arise as certain weighted colimits of a fixed diagram ¢,: €B — QCat C SSet, namely the
straightening of the cocartesian fibration p defined using the comprehension construction.

The construction of the replacement to the pullback functor is given in §3.1, and the proof
that the pullback replacement is equivalent to the strict pullback is given in §3.2.

3.1 A replacement for pullback along a cocartesian fibration

Notation 3.1.1. For the remainder of this section shall fix a cocartesian fibration of quasi-
categories p: E — B as well as a corresponding comprehension functor

¢B—"—— QCat,
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the “straightening” of the cocartesian fibration p. We also fix the associated lifted lax cocone
with nadir E described in Theorem 2.3.9:

1+¢B (3.1.2)

W)

¢[Bx A’ » QCat

ZE

Our aim is to prove that this lax cocone is a colimit cocone. We will achieve this as the
b = idg special case of our first main theorem:

Theorem 3.1.3. For any cocartesian fibrationp: E — B and any b: X — B, the comprehension
cocone induces a canonical map over E from the oplax colimit of the diagram

ex & ¢B & OCat

to the fiber
Eb—>E
|2 b
X——B

and this map is a natural weak equivalence in the Joyal model structure.

Before proving this result, we tighten up its statement. As we explain presently, there is a
functor p*: sSet g — sSet g that acts on objects by carrying a generalized element b: X — B

to a canonical map colim®"** (¢, o €b) — E. After defining this more formally, we construct a
comparison natural transformation

~k

p
—

sSet)g ¥v sSet (3.1.4)
~__

*

p

Theorem 3.1.3 asserts that this map is a componentwise Joyal equivalence. We first describe the
action of the functor p*: sSet ;g — sSet g on objects before establishing the functoriality of this
construction. Recall from Remark 2.3.12 that the comprehension functor ¢,: €B — QCat can
be used to define a “straightening” of its pullbacks:

ex —% LeB— " SSet

even in the case where X is not a quasi-category.

Definition 3.1.5. Given an generalized element b: X — B in sSet g, define a simplicial set

E, = colimc’plax< ex — 5 ¢B —2 SSet )
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The oplax colimit E, is the nadir of the universal lax cocone under the diagram cp o €X. This
is the weighted colimit weighted by the weight for oplax colimits Ly introduced in Definition
2.1.14.

The simplicial functor

1+¢X 1eb » 1+ ¢B

— / ~0E (3.1.6)

> C[Bx A » SSet

fE

C[X x AY

Clbxid]

defines a lax cocone (|, : €[X x A% — SSet under the diagram ¢, o €b with nadir E, inducing a
unique simplicial map é;: £ — E from the oplax colimit. This constructs an object of SSet .

To establish the functoriality of this construction, it will be convenient to re-express the oplax
colimits of Definition 3.1.5.

Lemma 3.1.7. For any simplicial map b: X — B define a weight Ly,: €B® — SSet by taking
the left Kan extension along €b: €X° — €B™ of the weight for oplax colimits.

(i) Then for any diagram F: €B — SSet, there is an isomorphism

colim®™™ (F o €b) := colim™ (F o €b) = colim™ F.

(ii) The weight L,: €B® — SSet is flexible and its collage is given by the pushout

1+¢X 1reb , 1+ ¢B

[ -

CX * A" —— (X *A%) U (B+A%) = coll L,

X+A0

Proof. Statement (i) and the second part of (ii) follow from Lemma 2.1.6. Since coll(L,) is the
homotopy coherent realization of the pushout of simplicial sets, Proposition 2.1.12 tells us that
it is a simplicial computad and thus, by Proposition 2.1.11, L, is a flexible weight. ]

Observation 3.1.8. The utility of Lemma 3.1.7 is as follows. Suppose now that we have a map

X ———Y

N
B
in the slice category sSet 5. This gives rise to a commutative diagram of simplicial computads

CX xAY +— 1+ex % 1+ ¢B
wl 11+€ul H (3.1.9)
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inducing a simplicial computad morphism coll(L;) — coll(L.) in the category 1*®®/sSet-Cptd.
This construction is functorial, defining the horizontal functor in the following square

sSet g ol Ley 14+eB/gGet-Cptd

G

coll

sSet®®” <ol y 1+EB/¢Get-Cat

By the description of the essential image of the collage functor given in Proposition 2.1.4, we
see that coll L, factors as indicated defining a functor L, : sSet g — *+*®/sSet-Cat.

Finally note that the collage coll Lg» = €B x A° for the weight for oplax colimits of shape B
defines a cone under the pushout diagram of Lemma 3.1.7(ii). Thus the codomain of the functor
coll(L,) lifts to the slice category

coll Lo
sSet)g — ("+*®/sSet-Cptd) /EBxAD
Correspondingly, by the fully faithfulness of the collage construction, we can equally regard L,
as a functor

La ¢B
sSet g —— (sSet )/LB

landing in the full subcategory spanned by the flexible weights.

Observation 3.1.8 allows us to extend Definition 3.1.5 to a functor.

Definition 3.1.10. Define p*: sSet /B — sSet g to be the composite functor

colim™ ¢p

~ Le 0] é
p* = SSet/B e (SSetGBp E— Sset/EB L SSet/E

- )/LBop

oplax

where EB = colim cpand eg: EB — E is the map induced by the lax cocone (3.1.2).

For later use, we record a few properties of the functor just constructed.
Lemma 3.1.11. The functor p*: sSet,g — sSet g preserves colimits.

Proof. In Definition 3.1.10 the functor under consideration is defined as a composite of three
functors, the latter two of which manifestly preserve colimits. Since colimits in a slice cate-
gory over an object are created by the forgetful functor, it remains only to prove that the functor
Le: sSet)g — sSet*B” preserves colimits. Since Proposition 2.1.4 demonstrates that the in-

_tQBOp <y 1+EB/sSet-Cat is full and coreflective, to show that this functor preserves
colimits, it suffices to show that

clusion sSe

1L,
sSet g L0 14+EB/sSet-Cat

preserves them.
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By Observation 3.1.8, the action of this functor on objects and morphisms is defined by the
pushout of Lemma 3.1.7(ii), which we regard as a diagram in 1/sSet-Cat. The functors

1+e(— —)*xA0
sSet/B ig 1/sSet-Cat and sSet/B M 1/5Set-Cat

both preserve colimits. Thus, the functor from sSet g to the category of pushout diagrams in

1/sSet-Cat with one vertex fixed at 1 + @B preserves colimits. The pushout preserves colimits
as well so we conclude that coll(L,) and hence p*: sSet /8 — sSet)p preserves colimits, as
desired. [l

Lemma 3.1.12. The functor p*: sSet ;g — sSet g preserves monomorphisms.

Proof. From the Definition 3.1.10, to see that p* preserves monomorphisms

VI
B

over B it suffices to show that the composite of the functors L, and colimeg(—, ¢,) preserve
monomorphisms. To do so, we’ll prove that the comparison functor L, : L, — L. between
weights in sSet®®” is a relative projective cell complex, as defined in 2.1.8. A theorem of Gam-
bino [7] implies that colimeg(—, ¢, ) carries relative projective cell complexes to monomorphisms
in simplicial sets; see also [14, 11.5.1]

Recall that the weight L, is constructed as a collage defined by a pushout, which is the ho-
motopy coherent realization of a pushout of simplicial sets. The natural transformation L, is
encoded by the map between collages constructed as the pushout (3.1.9); again this map is the
homotopy coherent realization of a map of simplicial sets. Since the left-hand horizontal inclu-
sions are also simplicial subcomputad inclusions, it follows from the standard argument that the
induced map coll(L,,): coll(L;) < coll(L.) between the pushouts is a simplicial subcomputad
inclusion and by the relative analogue Proposition 11.5.3.5 of Proposition 2.1.11, L,,: Ly, — L.
is a relative projective cell complex, as desired. [

3.2 Comparison with the strict pullback

Now that we’ve precisely defined a functor p*: sSet,g — sSet g that carries a generalized el-
ement to the oplax colimit of the restricted comprehension functor, our next task is to define
the natural transformation (3.1.4) alluded to in the statement of Theorem 3.1.3. To explain
the existence of the natural map ~;: Eb — FE,, for b: X — B, recall that the p-cocartesian
lifts with codomain E used to define the action of ¢,: €B — QCat on arrows in the image
of €b: €X — €B lie over arrows with codomain B which have a given factorisation through
b: X — B. This is depicted in the following diagram by the arrow b~y and its p-cocartesian lift
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E.
i

Ebm

Pox

From the diagram, it is clear that such p-cocartesian arrows factor through e;,: E, — E to give
the dotted arrows with codomain £ as drawn; this is the main component of the proof of Lemma
2.3.6. This idea is formalized as follows:

Lemma 3.2.1. Forany b: X — B, the diagram c, o €b is the base of a lax cocone with nadir Ej,

1+ex

/ \<"Eb,cp06b>

C[X x AY > SSet

ZE

Hence, the universal property of the oplax colimit defines a natural map E, — E, over E.

Proof. Apply Lemma 2.3.6 to the cocartesian cone of Theorem 2.3.9 as described in Remark
2.3.8. []

To prove Theorem 3.1.3 we must verify that (3.1.4) is a componentwise Joyal weak equiv-
alence. We first demonstrate this for generalized elements b: A" — B whose domains are
simplices and then use the results of Lemmas 3.1.11 and 3.1.12 to extend these results to the
general case.

Example 3.2.2. By definition p*(b: A® — B) is the oplax colimit of the diagram

CA —& ., ¢B "5 QCat

that sends the unique object to the fiber E;, of p: E — B over b: A° — B. The weight for lax
cocones of shape A is the terminal weight so the weighted colimit is just the ordinary colimit
of this one object diagram. Thus p*: sSet,g — sSet g sends b: A — Bto E, — E, which is
isomorphic to the strict pullback p*(b: A° — B).

For b: A' — B, p*(b: A! — B) is the oplax colimit of the diagram

cAl —& ., ¢B — 74 QOCat
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whose image is diagram e,: E,, — E;, of quasi-categories constructed in (3.2.4). In this case,
the oplax colimit has a simple description: it is given by an “mapping cylinder” formed by
attaching E;, along the codomain edge of the cylinder E;, x A! via the map e,. We now show
this simplicial set is Joyal weak equivalent to the strict fiber E,.

Proposition 3.2.3. The data formed by applying the comprehension construction

(3.24)

to the pullback p,: E, — A' of p: E — B along b: A* — B induces a Joyal weak equivalence

€p
E,, — Es,

id x 50£ j
-

Ebo x Al —— Eb

X

Proof. By Proposition 2.2.11, the oplax colimit E, is weakly equivalent to the quasi-categorical
collage coll(e, Ep, ), introduced in Definition 2.2.8. Moreover, Proposition 2.2.11 demonstrates
that the equivalence k: E, —— coll(ey, E;, ) is inner anodyne. In particular, there exists a lift

EbL>Eb

/>r
kIZ // I ll’b

coll(ey, Ep,) —5— Al

defining a direct comparison map /: coll(e,, E;,) — E; over Al

To prove that ¢ is an equivalence, observe by Lemma 2.2.10 and Proposition 2.2.5 that p and
pp are both cocartesian fibrations. Hence, Proposition 2.2.2 tells us that if ¢ is a cartesian functor,
then to demonstrate that ¢ is an equivalence, we need only show that it restricts to an equivalence
on the fibers over 0 and 1. Indeed, ¢ is an isomorphism on both fibers, so now our only remaining
task is to demonstrate that it is a cartesian functor.
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The proof of Lemma 2.2.10 reveals that the non-degenerate cocartesian edges of coll(ep, Ep, )
are those represented by the degenerate edge of some vertex lying over the non-degenerate 1-
simplex in A'. Such edges lie in the image of the functor E;, x A' — E;, used to define the
map E, — E,, and this functor in turn is defined to be a representative for the cocartesian lift
of the 1-arrow between the two objects of A! to a map with domain E;, — E,. In particular, it
defines a cocartesian cylinder in the sense of Lemma VI1.3.2.4, which tells us that its components
indexed by vertices of E;, are p-cocartesian 1-arrows. This proves that ¢ carries p-cocartesian
arrows to p-cocartesian arrows, and thus ¢ is an equivalence. (]

We argue inductively that -, : E, — E,is an equivalence for any n-simplex b: A" — B
under the assumption that this is true for simplices of lower dimension. Our strategy mirrors
that adopted for the 1-simplex: we construct a quasi-categorical model for the oplax colimit of
a homotopy coherent diagram c, o €b: €A™ — QCat, i.e., a quasi-category equivalent to the
simplicial set E, defined as the oplax colimit of ¢, o €b, and then show that this is equivalent to
the strict pullback E,. The inductive step makes use of the following weights.

Notation 3.2.5 (weights for the inductive comparison). To compare the weights La»-1 and Lan
for oplax colimits of a homotopy coherent n — 1-simplex and n-simplex, we left Kan extend the
former along the inclusion §": (€A™ )P — (CA™)°P, writing Lan—1: (EA™)P — sSet for the
left Kan extension of Lan-1. Explicitly, this weight is defined by

Lan-1: (EAM)P —, SSet

; N Fungar(i,n) i<n
0 i=n

Let Y denote the representable weight

Y™ (€A")® — SSet

1 = Funegan (Z, TL)

Note there is a natural inclusion Lan-1 < Y™ that is the identity in all components except the
one indexed by the object n € CA".

Lemma 3.2.6.

(i) The following diagram defines a pushout of weights in SSet (CA™.

Lant e Y7

id xéol l
-

Lan—1 X Al —— Lan
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(ii) Let [': €A™ — SSet be a homotopy coherent diagram whose L an-1-weighted colimit
is Joyal weakly equivalent to the simplicial set E,_1. Then the oplax colimit of F
is Joyal weakly equivalent to the pushout along a canonical map t,, induced by the
diagram F'.

E... —=— F,

id x 50l l
-

E, . xA! — E,

Proof. The pushout in (i) can be verified componentwise at each i € €A™ at which point this
relationship is evident from the definitions.

The pushout of (ii) follows. If E,,_; is isomorphic to the L x»-1-weighted colimit of F', then
the pushout diagram of (ii) is obtained by applying the cocontinuous functor colim™ F' to the
pushout diagram of (i). In this case, the map ¢,, has a natural explicit description. By Lemma
2.1.6, the L an-1-weighted colimit of F’ coincides with the oplax colimit of the restricted diagram
F o €(0™)°P. The functor F itself defines a canonical lax cocone under this restricted diagram
with nadir F;,. Hence there is a natural comparison ¢,, from the L a~-1-weighted colimit to F,.

Observe from Proposition 2.1.11 and Lemma 2.1.16 that all of the weights appearing in (i) are
flexible. Proposition 2.1.9 then demonstrates that the pushout being constructed is equivalence-
invariant. O]

This lemma provides the inductive step in the following computation:

Proposition 3.2.7. For any simplex b: A" — B, the component ,: E, - E, from the oplax
colimit to the strict pullback is a Joyal weak equivalence.

Proof. The base cases for n = 0 and n = 1 appear as Example 3.2.2 and Proposition 3.2.3.
For the induction step, suppose we have shown this is a componentwise weak equivalence for
all n — 1-simplices in B. By Lemma 2.1.6 and Notation 3.2.5, the L a»-1-weighted colimit of
the diagram CA" & ¢B 2 sSet is isomorphic to the oplax weighted colimit of the restricted
diagram

CAl &% gAn & ¢B 7 sSet.

By the inductive hypothesis, this weighted colimit Eyon is weakly equivalent to the pullback
E;.s». By Lemma 3.2.6, the diagram

Eb.(;n # Ebn

v ]

is then a pushout up to Joyal weak equivalence. So it follows from Proposition 2.2.11 that E, is
equivalent to the quasi-categorical collage coll(¢,,, E;, ), and as in the proof of Proposition 3.2.3,
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the map -y, factors to define a map

in this case involving the map m,: A™ — Al that carries every element but the last one to 0.
Observe that 7, a cocartesian fibration, and indeed a bifibration, as it is covariantly represented
by the functor !: [n — 1] — [0], which admits both left and right adjoints; see Corollary 2.2.12.
Our task, again, is to show that / is an equivalence. By Lemma 2.2.10 and the fact that
cocartesian fibrations compose, it is a functor between cocartesian fibrations. Moreover, /¢ is
bijective on the fibers over 0,1 € Al, the latter being E;, in both cases and the former being
E;.sn. As in the proof of Proposition 3.2.3, ¢ is a cartesian functor, so Proposition 2.2.2 implies
that ¢ is an equivalence, as desired. O]

Combining the work in this section, we can finally prove our main result.

Proof of Theorem 3.1.3. Our task is to demonstrate that the canonical natural transformation

~k

p
~—

sSet/;g Uy sSet g
~_ 7

5

p

is a componentwise Joyal weak equivalence using the result of Proposition 3.2.7, which demon-
strates that this is the case for the simplices b: A™ — B of B.

The category sSet g is equivalent to the category sSet®'B” of presheaves indexed by the cat-
egory el B of simplices of B; its objects are simplices b: A" — B and a morphism from b to
c: A™ — Bis a simplicial operator ov: A™ — A™ so that c-« = b. The representable presheaves
generate sSet®'B” under colimits, and such colimits are preserved by both of the functors p* and

p*, the former case because of the right adjoint IT, that exists in the locally cartesian closed cat-

egory sSet and the latter case by Lemma 3.1.11. Under the equivalence sSet®®" 2 sSet /8> these

representables correspond to the objects b: A" — B whose domain is a simplex. Proposition
3.2.7 verifies that the components of v indexed by such objects are equivalences, which is the
moral reason why + is an equivalence at all objects.

To demonstrate this, note that b: X — B is a colimit indexed by the category el X of its

simplices A" nx b B, ie.,
(X % B) colim(A" — B).
The map -, factors as
Vo ﬁ*(C(e)ll;(m A" — B) = Cgll;(mﬁ*(A” —B) — C(gll}(mp*(A” — B) = p*(cgllg(m A" — B),
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so it remains only to show that this middle map, the colimit of the equivalences v, indexed by
the simplices of X, is itself an equivalence. The indexing category el X is a Reedy category,
so if we can show that the two el X -indexed diagrams are Reedy cofibrant and that the category
el X has fibrant constants, then the pointwise equivalence between the diagrams will induce the
desired equivalence between their colimits. To say that the Reedy category el X has fibrant
constants means that for each element x: A" — X, the category of elements of the covariant
representable boundary functor 0 el X, is either empty or connected. This category is empty just
when x is non-degenerate and has a terminal object, and is connected in particular, when z is
degenerate. So el X has fibrant constants and the colimit functor (sSet /B)elX — sSet g carries
pointwise weak equivalences between Reedy cofibrant diagrams to weak equivalences.
To verify this Reedy cofibrancyj, it suffices to show

(1) the canonical diagram el X' — sSet g is Reedy cofibrant
(i1) p* and p* preserve Reedy cofibrant objects.

Since p* and p* preserve colimits, they in particular preserve latching objects, so for this second
item it suffices to show that both functors also preserve monomorphisms. Here, the fact that the
pullback functor p* preserves monomorphisms is standard, and the fact that its replacement p*
preserves monomorphisms was proven in Lemma 3.1.12.

So it remains only to prove (i), that is, to argue that the functor

el X sSet g

r: A" - X — bxr: A" — B

is Reedy cofibrant. The latching object associated to z: A" — X is the composite OA™ —>

A" % X 2 Band the latching map is the inclusion 0A™ — A™ over B, which is obviously a
monomorphism. This completes the proof. [

Specializing Theorem 3.1.3 to the identity morphism on B, we have

Corollary 3.2.8. The domain of a cocartesian fibration p: E — B is equivalent to the oplax
colimit of the associated comprehension functor c,: €B — QCat, with colimit cocone:

1+¢B O

&,cjﬁ

¢[Bx A’ = QCat

4. Pushforward along a cocartesian fibration

In this section, we shall fix a cocartesian fibration p: E — B of quasi-categories and prove that
the pushforward functor

sSet N sSet g
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has two properties that are relevant to the development of the category of theory of quasi-
categories:

(1) The pushforward functor preserves isofibrations. In model categorical terminology,
this implies that the adjunction

*

p
T

sSetg L sSetg

~_ 7
My

is Quillen with respect to slices of the Joyal model structure.
Moreover:

(i1) The pushforward functor preserves cartesian fibrations and cartesian functors between
them.

In fact, both pullback and pushforward along p define cosmological functors, a property we
briefly note for use in future work.

Both of the properties (i) and (i1) are more easily established for an alternate model of the
pushforward functor defined as a right adjoint to the functor p*: sSet,g — sSet g introduced
in §3. Theorem 3.1.3 demonstrates that the pullback Ej, — E of a functor b: X — B along
a cocartesian fibration p: E — B is computed, up to equivalence, as the oplax colimit of a
particular diagram

¢X — ¢B — QCat
When the oplax colimit is defined strictly as a simplicial set it enjoys the universal property of

Definition 2.1.1: maps colim®"** (¢, o €b) — F correspond to lax cocones under c, o €b with
nadir F. This correspondence defines a right adjoint

Sk

p
VRS
sSet,g L sSetg
~_ 7

1

characterized on an object ¢: F — E by the bijection

A7 s TLF colim®®* (¢, 0 €h) —— F
x A - B (b): =", /
B E

That is, n-simplices in f[pF over b: A" — B correspond to lax cocones under the homotopy co-
herent n-simplex c,, o €b with nadir F whose whiskered composite with ¢ recovers the restriction
(|, of the lax cocone produced by the comprehension construction of Theorem 2.3.9.
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To make this simplex level construction of f[pq precise, we require a simplicial set whose n-
simplices correspond to lax cocones under a homotopy coherent n-simplex in QCat with nadir
F'. One might think that the slice quasi-category qCat/F provides just such a gadget, where
gCat is the quasi-category of quasi-categories defined by passing to the maximal Kan complex
enriched core and then applying the homotopy coherent nerve, but this isn’t quite correct: since
we’ve passed to the (0o, 1)-categorical core of QCat before taking the homotopy coherent nerve,
simplices in qCat s correspond to pseudo cocones rather than lax cocones. The solution is to
drop the core functor, in which case the homotopy coherent nerve qCat, := NQCat is not a
quasi-category but rather a 2-complicial set, a type of marked simplicial set which is introduced
in §4.1. Definition 4.1.3 introduces a slice construction for marked simplicial sets, which does
not commute with the functor that forgets the markings, but this is a good thing. The marked
slice gCat, JF has exactly the property we desire, in that its n-simplices correspond to lax cocones
under a homotopy coherent n-simplex in QCat with nadir F'.

In §4.2, we describe f[pq explicitly as the pullback of a map between lax slices of the homo-
topy coherent nerve of QCat defined by “whiskering with ¢.” After establishing the properties (i)
and (ii) for ﬁp, we use the natural Joyal equivalence v: p* = p* to transfer these properties to the
pushforward functor 11,,. Having established that pullback and pushforward along a cocartesian
fibration both preserve cartesian fibrations, in §4.3, we construct a closely related exponentiation
operation (q: F — B)P* E~B of a cartesian fibration ¢ by a cocartesian fibration p with the same
codomain. These exponentials are used in §5 to establish the comonadicity and monadicity of
the quasi-category of cartesian fibrations over B over the quasi-category of ob B-indexed families
of quasi-categories.

4.1 2-complicial sets

We know from Cordier and Porter [5, 6] that the homotopy coherent nerve of a Kan complex
enriched category is itself a quasi-category. But when we apply the homotopy coherent nerve
to a quasi-category enriched category, such as QCat itself, it is not the case that these nerves
are quasi-categories. Since the hom-spaces of a quasi-category enriched category contain 1-
simplices that are not invertible, its homotopy coherent nerve contains 2-simplices which are not
invertible. A homotopy coherent nerve of this kind is most naturally regarded as possessing the
structure of a 2-complicial set.

We leave the precise definition to the original sources [26, 27] or to more recent expository
accounts such as [15] or §X.D.1 and instead present an overview of the main ideas. Extending the
terminology used by Lurie in [12, §3.1], a marked simplicial set is a simplicial set equipped with
a chosen subset of marked simplices, which must be positive-dimensional and contain all degen-
eracies. Maps of marked simplicial sets preserve the markings. A complicial set is a marked
simplicial set with the right lifting property with respect to certain marked horn inclusions—
including both inner and outer marked horns—as well as certain marking extensions. A com-
plicial set is saturated if “all n-equivalences are marked,” where the notion of n-equivalence is
defined relative to the collection of marked (n + 1)-simplices. An n-complicial set is a saturated
complicial set in which all simplices above dimension n are marked.” We refer to maps between

"One might think of the n-complicial sets as being a model for the theory of (oo, n)-categories, although we will
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complicial sets of any of the varieties just introduced that have the right lifting property with
respect to the marked horn inclusions as isofibrations.
For our purposes here, we note the following examples.

Example 4.1.1 (Kan complexes and quasi-categories as complicial sets). The O-complicial sets
are precisely the Kan complexes with all positive-dimensional simplices marked and an isofibra-
tion between such is just a Kan fibration.

The 1-complicial sets are precisely the quasi-categories with their natural markings—in
which all 1-dimensional isomorphisms and all higher simplices are marked—and the isofibra-
tions between such coincide with the isofibrations between quasi-categories. In this setting, the
outer horn lifting property of 1-complicial sets and isofibrations between them is typically re-
ferred to as “special outer horn” lifting; see [9, 1.3] or Proposition X.D.4.6.

Example 4.1.2. Suppose that K is a quasi-category enriched category. Its homotopy coherent
nerve VK has:

* (-simplices corresponding to the objects a of K,
 1-simplices corresponding to O-arrows f: ag — ay,

 2-simplices corresponding to diagrams

a0—>a2

NN

where « is a 1-arrow in the hom-space Funy(ao, az) with source fy2 and target fi5 o fo;.
Now we define the natural marking of the homotopy coherent nerve by marking:
(i) all n-simplices with n > 2,

(i1) those 2-simplices, as depicted above, for which « is an invertible arrow in the quasi-
category Funy(ao, as), and

(iii) each 1-simplex f: ay — a; which is an equivalence, in the sense that it possesses an
equivalence inverse f': a; — ag witnessed by a pair of invertible 1-arrows

id id
N AT
f I’ f! !

ai Qo

in the quasi-categories Funy(ao, ag) and Funi(as, as) respectively.

not pursue that intuition here.
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By [26, Theorem 40], the naturally marked homotopy coherent nerve K, := N is a 2-complicial
set.

Definition 4.1.3 (joins and slices of marked simplicial sets). The join operation extends to
marked simplicial sets as follows. Concretely, the join X % Y of two marked augmented simpli-
cial sets X and Y has as its simplices pairs (x,y) with z € X and y € Y of arbitrary dimension
with dim(z, y) = dim(x) + dim(y) + 1, where the convention is to augment a marked simplicial
set with a single —1-simplex. We declare that a simplex (x,y) € X %Y is marked if « is marked
in X or y is marked in Y.

Now consider a map of marked simplicial sets f: X — Y. The slice Y is the simplical
set of whose n-simplices are maps g: A" x X — Y which restrict on X C A" x X to the fixed
map f: X — Y. Such a simplex g: A" x X — Y is marked if and only if it extends along
the inclusion A" x X C A" x X—where §A" extends the minimally marked n-simplex A" by
marking the non-degenerate n-simplex—and this happens exactly when g maps every simplex
(idpn, ) for 2 € X to a marked simplex in Y. A dual construction defines Iy,

Suppose that A is a complicial set and that f: X — A is any map of marked simplicial
sets. As shown in [27], it is then the case that 7IA and A /¢ are also complicial sets and that the

projections 7/ : /A — A and r 72 Ay — A are isofibrations of such.

4.2 The right adjoint to pullback

We now have all the tools we require to construct an alternate model of the pushforward functor
along a cocartesian fibration p: E — B whose value at any isofibration ¢: F — B will be
equivalent to those of the strict pushforward. The alternate model for the pushforward

l:[pq: f[pF —B

of an isofibration ¢: F — E along a cocartesian fibration p: E — B is defined as a pullback of
a whiskering map for slices of homotopy coherent nerves that we now introduce.. Let K be a
quasi-category enriched category such as QCat, and write Ky := NI for its naturally marked
homotopy coherent nerve, a 2-complicial set.

Lemma 4.2.1. Let q: F — E be a 0-arrow in a quasi-category enriched category K.

(i) There is a functor of slice 2-complicial sets
Ka/r s Ka/e

induced from the whiskering operation for lax cocones.

(ii) If ¢: F' — FE is a representably-defined isofibration, then q o —: Kyyp — Ky/g is a
isofibration of complicial sets.

Proof. By the Yoneda lemma and the natural isomorphisms arising from the slice and homotopy
coherent nerve adjunctions

sSet(X, Ky ) & sSetr, , (X x A%, Ky) 2 sSet-Catr, , p(€[X * A%, K),

328



E. RIEHL AND D. VERITY CARTESIAN EXPONENTIATION

to define the map in (i), it suffices to provide a natural operation that converts a lax cocone of
shape X with nadir F' into a lax cocone with shape X and nadir 2. The whiskering operation
for lax cocones described in Observation 2.3.3 defines such a natural transformation. Since
whiskering preserves fibered equivalences and isomorphisms, which correspond to marked 1-
and 2-simplices in Ky 5, this defines the desired map of 2-complicial sets.

For (i1), we must show that the map between the sliced complicial sets has the right lifting
property with respect to the marked horn inclusions of [27, 15], which define lifting problems of
underlying simplicial sets of the form

AMF —— Ky p

R
//’ qo—

An,k K2//E

forn > 1 and 0 < k < n with additional marking constraints that we describe below. By [27,
Corollary 49], it suffices to consider the case 0 < k£ < n. Here the bottom horizontal functor is
given by a homotopy coherent n + 1-simplex

CA™

that sends the first n + 1 objects to Ej, ..., F, and the final object to £ € K and satisfies one
additional condition forced by the markings on A™* and K, ye- If k < n, then this functor must
be defined so that the 1-simplex oo € Fun(Fy_1, Eyy1) is invertible.

fe—1,k41

E Bt

k—1
\ Ua/
fr—1,k fr k1
E,

If & = n, then the 1-simplex o € Fun(FE,_», E,) must be invertible and f,,_1,,: E,_1 — E,
must admit an equivalence inverse.

n—2,n
Ean ! : En
\ \&a /
fn—2,n—1 fn—l,n
En—l

The 6"*!-face of this homotopy coherent simplex and the top horizontal together define a

simplicial functor
CA™TER 5 IC

that carries the n 4 1 objects to Ey, ..., I, F', respectively, and has the property that for each
0 < j < n the diagram of function complexes commutes:

Fungpn+ik(j,n + 1) — Fun(E;, F)

lqo

Fungan+1(j,n + 1) —— Fun(E;, E)
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Because 0 < £ < n + 1, by a calculation of homotopy coherent realizations in Example
V1.4.4.3, to solve the original lifting problem, it remains only to construct a single lift

ﬂ?’k = FunQ:An+1,k (07 n+ 1) — Fun(EO’ F)

_
el lqo

0" = Fungan+: (O, n+ 1) — Fun(EOv E)

the other inclusions being full. The left-hand side is a cubical horn and the right-hand side is
an isofibration of quasi-categories. As noted in Example 4.1.1, isofibrations of quasi-categories
admit lifts against “special outer horns” — those in which the image of the final edge is invertible.
Such extensions solve this lifting problem. [

Proposition 4.2.2. There is a right adjoint

VRS
sSetg L sSet/g
~_ 7

Iy

to the oplax colimit functor defined at q: F' — E by the pullback

I, —— qCat, ¢

B J
Ipq lqo—

B —“— qCat,;

Moreover, when q: F' — E is an isofibration, flpq: ﬁpF — B is an isofibration between quasi-
categories.

Proof. Recall from Lemma 4.2.1 that n-simplices in gCat, JF correspond to lax cocones un-
der homotopy coherent simplices with nadir F', and observe that the whiskering functor q o
—: gCat, Vi gCat, JE does not change the underlying homotopy coherent diagram. By the
defining universal property, an n-simplex in the pullback over b: A™ — B corresponds to lax co-
cone under the homotopy coherent n-simplex ¢, o €b: €A™ — QCat with nadir F' that whiskers
with ¢ to the lax cocone of (3.1.2). This recovers the characterization of the right adjoint l:[p given
above and Lemma 3.1.11 demonstrates that this adjoint correspondence extends to all elements
of sSet g.
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The action of ﬁp on morphisms u: G — F over F is given similarly by the pullback

! M
: uo—
<3

B _
Ipq lqo—

By Lemma 4.2.1 and Example 4.1.1, it is immediate from the fact that B is a quasi-category
and qCat, is a 2-complicial set that ﬂpF is a 2-complicial set. We argue that in fact all 2-
simplices are marked: by the defining universal property, a 2-simplex in ﬁpF corresponds to a
pair comprised of a 2-simplex in B and a 2-simplex in qCat, 4r and both of these 2-simplices
are marked. Thus, ﬁpF is a 1-complicial set, which Example 4.1.1 tells us is the same thing as a
quasi-category, and now the isofibration of complicial sets ﬂpq becomes an isofibration between
quasi-categories. ]

Corollary 4.2.3. If p: E — B is a cocartesian fibration.:
(i) The functor ﬂp: sSet g — sSet g carries isofibrations over E to isofibrations over B,
restricting to define a functor
QCat/E i QCat/B. 4.2.4)
(ii) The functor (4.2.4) preserves isofibrations, now considered as morphisms in these slice
categories.

Proof. Proposition 4.2.2 demonstrates that f[p carries isofibrations to isofibrations, restricting to
define a functor II,,: QOCat JE — QCat /8- Moreover this functor preserves isofibrations, now

considered as morphisms in these slice categories, since the action of ﬁp on an isofibration
u: G — Fover E is defined by pulling back the isofibration of complicial sets uo—: qCat, ;g —

qCat, .

We now transfer the properties of the functor ﬁp to the right adjoint II,,: sSet g — sSet g to
the strict pullback functor p*: sSet /g — sSet .

Proposition 4.2.5. If p: E — B is a cocartesian fibration, then the adjunctions

* Sk

p p
VR VRS
SSet/E 1 SSet/B and SSet/E | SSet/B
~_ ~_
I, i,

are Quillen with respect to the sliced Joyal model structure.
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In particular, II,, preserves both fibrant objects and the fibrations between, and thus has the
properties enumerated for f[p in Corollary 4.2.3. Consequently, the natural Joyal equivalence
~v: p* = p of Theorem 3.1.3, which defines a natural isomorphism of total left derived functors,
transposes to a natural equivalence 7: II,, = ﬁp, which defines a natural isomorphism of total
right derived functors.

Proof. By an observation of Joyal and Tierney [10, 7.15], to show that p* f[p is Quillen
it suffices to show that the left adjoint preserves cofibrations and the right adjoint preserves
fibrations between fibrant objects. Lemma 3.1.12 demonstrates the first of these and Corollary
4.2.3(i1) proves the second.

To prove that p* - II, is Quillen, we prove that p* is left Quillen. Thus functor preserves
cofibrations because pullbacks preserve monomorphisms. By Theorem 3.1.3, p* is naturally
weakly equivalent to the left Quillen functor p*. Since all objects in sSet ¢ are cofibrant, the left
Quillen functor p* preserves all Joyal weak equivalences, and hence by the 2-of-3 property p*
does as well. [

We now consider the actions of the pushforward functors TI, and II, along a cocartesian
fibration p: E — B when applied to a cartesian fibration ¢: F — E. As before, we demon-
strate directly that IT,q: TI,F — B is a then a cartesian fibration and then use Theorem 3.1.3 to
conclude the same for II,,.

Lemma 4.2.6. Let q: F — E between quasi-categories. Then the corresponding map q o
—: gCat, Vi gCat, e of 2-complicial sets has the right lifting property with respect to any
outer horn inclusion

X
A{n—l,n} m qCat2//F
1
| I
whose final edge defines a cartesian I-arrow

En_l fn—l

fn—l,n—Q\" zx /f[’”

for the cartesian fibration g o —: Fun(E,,_y, F') — Fun(E,_1, E).

Proof. As in the proof of Lemma 4.2.1, the bottom horizontal functor is given by a homotopy
coherent n + 1-simplex €A™ — QCat that sends the first n 4 1 objects to £y, ... £, and the
final object to E, while the §"*!-face of this homotopy coherent simplex and the top horizontal
functor together define a simplicial functor €A"T1" — QCat that caries the n + 2 objects to
Ey, ..., E,, F and has the property that for each 0 < j < n the diagram of function complexes
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commutes:
CA™L(j 0 + 1) —— Fun(E;, E)

[ b

CA"(j,n+1) —— Fun(E;, F)

By Example VI1.4.4.3, to solve the original lifting problem, we need only construct a single
lift
np" = A" (0,n +1) —— Fun(Ey, E)

0" = €A™ (0,n + 1) — Fun(Ep, F)

This extension problem can be solved by filling inner horns and “special outer horns” A™"™ —
A™, those whose final edges are complies of the 1-simplex y € Fun(E, 1, F) pre-composed
with some functor £y — F,_;. Such l-simplices represent (¢ o —)-cartesian cells so these
“special outer horn” lifting problems also admit solutions by Lemma VI.3.2.5. U

Proposition 4.2.7. If p: E — B is a cocartesian fibration and q: F — E is a cartesian fibration
between quasi-categories, then ) .
ILq: IL,F - B

is a cartesian fibration between quasi-categories. Moreover, 11, preserves cartesian functors,
restricting to define a functor

I1,: Cart(QCat) e — Cart(QCat) g.

Proof. By Proposition 4.2.2, f[pF —» B defines an isofibration between quasi-categories. Lemma
4.2.6 identifies a class of cartesian 1-arrows in II,F in the sense of Definition 2.2.1, which we
now describe explicitly. Recall from the construction of Proposition 4.2.2, that a 1-simplex
x: A! — IL,F in the fiber over b: A' — B corresponds to a 1-arrow

By —I L F

eb\' % /fl
E,

in Fun(Ey, F) that whiskers with ¢: F — E to define the lax cocone that restricts the lax cocone
associated to the comprehension construction along b. As observed previously, this compatibility
condition tells us that the quasi-categories F and F are the fibers of p: £ — B over the vertices
in b and the functor e,: Ey — F is the comprehension of 0. To form such a lift with codomain
f1: E1 — F, start by lifting b to the lax cocone

ZE
Ey —>—— FE

o e
E,
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under e;,: Fy — F; with nadir E associated with the comprehension construction, as displayed
in (3.2.4). Since f; is in the fiber of ﬁpq: ﬂpF — B over the codomain of b, we must have
qf1 = (¥. Now we can lift ¢ along the cartesian fibration ¢ to a g-cartesian cell with codomain
f o ep. This defines the (g o —)-cartesian cell .

Now if u: G — F is a cartesian functor from r: G — FE to q: F — F, then u is repre-
sentabily cartesian in the sense that v o —: Fun(X, G) — Fun(X,F) carries (r o —)-cartesian
1-arrows to (g o —)-cartesian l-arrows. Since uo—: qCat, ,q — qCat,  preserves the cartesian
I-arrows just identified, proving that ﬂp carries this map to a cartesian functor between cartesian
fibrations over B. O

Corollary 4.2.8. If p: E — B is a cocartesian fibration and q: F — FE is a cartesian fibration

between quasi-categories, then
I,q: II,F - B

is a cartesian fibration between quasi-categories. Moreover, 11, preserves cartesian functors,
restricting to define a functor

Cart(QCat) e —2— Cart(QCat) g.
Proof. By Proposition 4.2.5, the components

,F — 2 II,F

B

4

at an isofibration ¢: F — FE of the transpose 7: I, = ﬁp of the natural weak equivalence of
Theorem 3.1.3 are equivalences of isofibrations over B. If ¢ is a cartesian fibration, then Propo-
sition 4.2.7 proves that ﬁpq 1s a cartesian fibration, and since the notion of cartesian fibration is
equivalence-invariant, II,,¢ must be as well. L]

Theorem 4.2.9. For a cocartesian fibration p: E — B between quasi-categories, the pullback-
pushforward adjunction restricts to define an adjunction

*

p

—
Qcat/E 1 QCat/B

HZ’
Cart(QCat)e 1 Cart(QCat)s

~ 7
1

Proof. By Proposition 4.2.5, the adjoint functors p* = I1,, define an adjunction

*

p

—
QCat/E 1 QCat/B
~—

Iy
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By Proposition 2.2.5, the left adjoint restricts to a define a functor
p* : Cart(QCat)/B — @( QCat)/E.

By Corollary 4.2.8, the right adjoint also restricts to a functor IL,,: Cart(QCat) e — Cart(QCat) p.
Since the inclusion Cart(QCat) g — QCat g is not full, this is not quite enough to demonstrate
adjointness of the restricted adjunction: it remains to argue that the adjoint transpose of a carte-
sian functor is a cartesian functor.

To that end, let ¢: F — F and r: G — B be cartesian fibrations. A functor f: G — f[pq
over B is cartesian if and only if the square

¢ —1 qCat, ¢

l |-

carries r-cartesian arrows to representably g-cartesian arrows in qCat, /F> as described in Lemma

4.2.6. Fixing an 1-arrow arrow (: A — G over b: A! — B as below-left, the arrow f¢
transposes to the functor over E displayed below-right

At L qCat, colim™ (¢, 0 €b) — 4 F
b o—

l qu o eF, /
B — qCat, e E

By Proposition 3.2.3, the oplax colimit is equivalent to the fiber £}, and the functor ?Z represents
the whiskered lax cocone

(%
w S =

¥

—\plo\lc\ r
\/ﬁ/lA\'/

1 b

Now f is a cartesian functor if and only if the whiskered composite f(x is g-cartesian whenever

( is r-cartesian. Since Proposition 2.2.5 demonstrates that cartesian arrows are created by pull-

backs, this proves that f is a cartesian functor if and only if the transposed functor is cartesian:
E.—1 —F

p*r\’" n‘/q -
FE
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For use in sequels to this work, we note that the pushforward is a cosmological functor
between the co-cosmoi established in Proposition VIII.3.2.18.

Corollary 4.2.10. Let p: E — B be a cocartesian fibration. Then the pushforward construction
defines cosmological functors

I1,: OCat/e — QCat g and I1,: Cart(QCat) e — Cart(QCat) g,

which is to say that they are simplically enriched, preserve all simplicially enriched limits with
flexible weights, and preserve the isofibrations, considered as morphisms in the slice category.

Proof. The functor IT,: QCat /e — QCat g is the restriction of a Quillen right adjoint IT,,: sSet g —
sSet g. To prove that this defines a cosmological, it remains only to show that the adjunction
p* = 11, is simplicially enriched. This follows from Observation 2.2.6, which notes that the left
adjoint preserves tensors with simplicial sets. Lemma 2.2.7 observes that the simplicial enrich-
ment descends to the subcosmoi of cartesian fibrations. [

The argument given in the proof of Theorem 4.2.9 provides a characterization of the II,g-
cartesian 1-arrows in the cartesian fibration constructed from a cocartesian fibration p: £ — B
and a cartesian fibration ¢: F — F between quasi-categories that lift a specified arrow 5: A! —
B.

Lemma 4.2.11. If p: E — B is a cocartesian fibration and q: F — E is a cartesian fibration
between quasi-categories, then the cartesian 1-arrows x in 11,q: 11,F — B are those maps that
transpose to define functors that carry p-cocartesian lifts of B to q-cartesian lifts.

F
X
Al X > 11,F / l‘?
Ipq N l
B pﬁl p

AITB

Proof. By Theorem 3.1.3, E5 may be identified with the oplax colimit of the canonical lax co-
cone formed by taking a p-cocartesian lift of 5. From this perspective, the transposed functor
X: Eg — F acts by whiskering this p-cocartesian arrow. By the construction in the proof of
Theorem 4.2.9, the I1,g-cartesian lifts of 5 are those arrows for which this whiskered composite
is g-cartesian, as claimed. (]

4.3 Exponentiation

As is familiar in any locally cartesian closed category, the pullback and pushforward functors can
be used to construct exponentials in Cart(QCat) g, where the exponent is given by a cocartesian
fibration.
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Definition 4.3.1 (exponentials). For p: E — B either a cartesian or cocartesian fibration and
q: F — B an isofibration, define

(q: F— B)P:E-B € QCat g (4.3.2)

to be the image of ¢ under the composite functor

QCat/B p—*> QCat/E &) QCQT/B

Note that by the adjunctions X, + p* - IL,,, if r: G — B is also a cartesian or cocartesian
fibration, there are natural isomorphisms

Fung(G — B, (F — B)E_”B) =~ Fung(E xg G - B,F - B) = Fung(E — B, (F — B)G_”B)7

and the left-hand isomorphism still holds in the case where r: G — B is a mere functor, whose
domain need not even be a quasi-category.

Proposition 4.3.3. If p: E — B is a cocartesian fibration and q: F — B is a cartesian fibration,
then (4.3.2) is a cartesian fibration whose cartesian 1-arrows are those maps that transpose to
define functors that carry p-cocartesian lifts of b to q-cartesian lifts of b.

?, BE——B a//ﬂx\*F E,—* F,

\/M LA - N A

A—>B

Proof. The first statement follows from Corollary 4.2.8, while the characterization of cartesian
cells is given in Lemma 4.2.11. ]

Recall the function complexes constructed in Definitions 2.2.3 and 2.2.4.

Lemma 4.3.4. Let q: F — B be a cartesian fibration, let p: E — B be a cocartesian fibration,
and let m: A x B — B denote the projection, a bifibration. Then the isomorphism

Fung(F — B, (A x B — B)¥ ™ "8) = Fung(E — B, (A x B — B)F —B)
restricts to an isomorphism

Fung(F — B, (A x B — B)¥8) = Fung(E — B, (A x B — B)F —B)
between the function complexes in the quasi-category enriched categories Gart(QCat) g and

coCart(QCat) g, which is to say, cartesian functors between the cartesian fibrations on the left
transpose to define cartesian functors between the cocartesian fibrations on the right.
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Proof. By adjunction, the data of a map over B

(Ax B B)E—8

\/

is given by a single functor f: F xg E — A. By Proposition 4.3.3, f is a cartesian functor if and
only if for each g-cocartesian cell x: A' — F over b: A! — B, the induced functor

E, —X 5 AxB

"

AI—b>B

carries p-cartesian cells v: A' — E over b to m-cocartesian ones, these being those maps A! —
A x B whose component along the other projection A x B — A is invertible. In summary,
the functor f is cartesian if and only if for every cocartesian lift y and cartesian lift v of b, the
composite morphism

AL X B B, s FxgE —1 s A 0

5. Monadicity and comonadicity of cartesian fibrations

The 0-skeleton of a quasi-category B defines the “underlying set of objects” ob B, together with a
canonical inclusion ob B < B. By Proposition 2.2.5, pulling back along the inclusion ob B — B
induces a forgetful functor

Cart(QCat) g — Cart(QCat) .5 = [] QCat

obB

(E -+ B) - (Eb)beoni

whose codomain is isomorphic to the product of the quasi-categorically enriched categories
of quasi-categories, a cartesian fibration over a set being simply an indexed family of quasi-
categories. Our aim in this section is to construct left and right adjoints and prove that this
functor is monadic and comonadic in a suitable sense.

The adjoint functors are constructed as what we refer to as biadjoint functors of quasi-
categorically enriched categories: that is, we construct quasi-categorically enriched functors

L, R: Cart(QCat),,,8 — Cart(QCat) g

together with natural equivalences of function complexes that encode the adjoint transpose cor-
respondence. The right adjoint makes use of the exponentiation construction of §4.3 and the
Yoneda lemma is used to prove biadjointness. These tasks occupy §5.1.
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Any quasi-categorically enriched category K has a (typically large) quasi-categorical core
K := Ng.K defined by passing to the maximal Kan complex enriched core and then apply-
ing the homotopy coherent nerve. For example, the quasi-category qCat of quasi-categories
and functors is the quasi-categorical core of QCat. In §5.1 we also prove that biadjoint func-
tors of quasi-categorically enriched categories descend to adjoint functors between their quasi-
categorical cores.

In particular, this implies that the map of large quasi-categories of cartesian fibrations and
cartesian functors

Cart/g — Cart; o, = [ [ qCat
obB

admits both left and right adjoints. In §5.2, we prove first that this forgetful functor is comonadic
and then use comonadicity to prove that it is also monadic. To do so, we appeal to the comonadic-
ity theorem proven in §11.7 and recalled as Theorem 5.2.1 below. The monadicity of this forgetful
functor will be used in §6 to construct a “groupoidal reflection” functor for cartesian fibrations.

5.1 Adjoint functors

A functor U: K — L between quasi-categorically enriched categories gives rise to a functor
between the large quasi-categories defined by passing to the Kan complex enriched cores of
and £ and applying the homotopy coherent nerve construction. We frequently find it convenient
to construct adjoints to this functor of quasi-categories “at the point-set level” by producing the
structures axiomatized in the following definition:

Definition 5.1.1. A biadjunction of quasi-categorically enriched categories consists of:
* a pair of quasi-categorically enriched categories Cand £;
* a pair of simplicial functors F': £ — Kand U: K — £; and

* a simplicially-enriched natural equivalence
Funic(FL, K) ~ Fun,(L,UK)
of function complexes .

Proposition 5.1.2. If F: L — Kand U: K — L define a biadjunction of quasi-categorically
enriched categories, then the induced functors between the quasi-categorical cores K := N g, KC
and L := N g, L define an adjunction:

F

K 1 L
U

Proof. Reprising a construction from the proof of Theorem 1.6.2.1, we define simplicial cate-
gories coll(F, K) and coll(L, U) whose objects are ob K+ ob £ and which include I and L as full
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subcategories. Each of the function complexes from an object of K to an object of L are empty,
while for L € Land K € K, we define

FunCOH(F’]q(L, K) = FunK(FL,K) and FunCOH(&U)(L,K) = FU”L(L, UK)

The natural equivalence Funi(FL, K) = Fun,(L,UK) of the biadjunction gives rise to a
simplicial functor coll(F, K) — coll(£, U) under K + L that is bijective on objects and a local
equivalence of quasi-categories.

Passing to Kan complex enriched cores, this functor defines a Dwyer-Kan equivalence, and
thus yields an equivalence of quasi-categories upon passing to homotopy coherent nerves. Note
that the homotopy coherent nerve of the groupoid core of coll(F, K) is isomorphic to the quasi-
categorical collage of the underlying functor F': L — K constructed in Definition 2.2.8. Now
Corollary 2.2.12 demonstrates that F' - U as functors between the quasi-categories Kand L. [

Proposition 5.1.3. The functor Cart(QCat),g — Cart(QCat), ., admits a quasi-categor-
ically enriched right biadjoint defined by

Cart(QCat), .8 — Cart(QCat)

(Ev)peobs = T[,(Ey xB— B)%B~B

that is, an ob B-indexed family of quasi-categories (E;)con B is sent to the product in Cart(QCat)
of the cartesian fibrations (E, x B — B)*B~8,

Proof. Here b | B — B is the (groupoidal) cocartesian fibration represented by the vertex b € B,
sending an arrow in B with domain b to its codomain; see Example 1V.5.2.3. The fiber over a
vertex x € B, is the Kan complex b | z of maps from b to x in B. Since the product projection
m: E, x B — B is a bifibration, both cartesian and cocartesian, Proposition 4.3.3 implies that
(E, x B — B)™B~B i5 a cartesian fibration.

For another cartesian fibration ¢: F — B with fibers (F;)pcons, we will define a natural
equivalence of function complexes

Fung(F — B, ] (Es x B~ B)*®8) = T Fun(F,,E,)
beob B beob B

and so establish the claimed adjoint correspondence.
To begin, the universal properties of the product and exponential provide isomorphisms

Fung(F — B, J] (E, x B — B)"®~8) = T] Fung(F — B, (E, x B — B)"®"8)
beob B beobB

>~ ]] Funs(b 1B — B, (E,xB—B)f )
beobB

By Lemma 4.3.4, these isomorphisms restrict to the full sub quasi-categories spanned by the
cartesian functors. Hence,

Fung(F — B, J] (E»x B - B)*E~B)=~ T] Fung(b.B — B, (E, xB — B)F_”B)

bcobB bcob B
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By the dual of the Yoneda lemma, proven as Theorem IV.6.0.1, restriction along the element
1 — b ] B corresponding to the identity at b: 1 — B defines an equivalence

Fung(b | B — B, (E, x B — B)F —"8) =~ Fung(1 % B, (E, x B — B)F 8.

The proof is finished by the isomorphisms

Fung(1 % B, (E, x B — B)F —8) =~ Fung(F, — 1 > B, E, x B — B) = Fun(F,,E,). O

The construction of the left adjoint to Cart(QCat) g — Cart(QCat), g will make use of
the tensor of a cartesian fibration, namely B b — B, with a quasi-category, namely E,, described
in Observation 2.2.6 and Lemma 2.2.7.

Proposition 5.1.4. The functor Cart(QCat) g — Cart(QCat), g admits a quasi-categor-
ically enriched left biadjoint defined by

Cart(QCat), .,8 — Cart(QCat) B

(Eb)beobB — [[,EsxBlb—B

that is, an ob B-indexed family of quasi-categories (Ey)yconp is sent to the coproduct in Gart g
Po

of the cartesian fibrations E, x B | b "B +b B.

Proof. To make sense of this construction, note that the coproduct of cartesian fibrations over
B is again a cartesian fibration over B: since the horns are connected, each lifting problem of
Definition 2.2.1 is supported in a single component. It follows that a functor out of the coproduct
of cartesian fibrations is cartesian if and only if each of its legs is a cartesian functor.

For another cartesian fibration ¢: F — B with fibers (F;)pcons, we will define a natural
equivalence of function complexes

Fung( [ E»xBLb—B.F —B) = ][ Fun(E,Fy)
beob B beob B

and so establish the claimed adjoint correspondence.
To begin, the universal property of the coproduct provides the first isomorphism, while the
universal property of the tensor proven as Lemma 2.2.7 provides the second

Fung( [T E»xBLb—B,F—»B)= [[ Fung(E, xB|b—B,F—>B)

beob B beob B

~ T Fung(BLb— B,F — B)™.

beob B

By the Yoneda lemma, proven as Theorem IV.6.0.1, restriction along the element 1 — B | b
corresponding to the identity at b: 1 — B defines an equivalence

Funs(B L b — B,F —» B) =~ Fung(1 % B,F —» B) & F,.

341



E. RIEHL AND D. VERITY CARTESIAN EXPONENTIATION

This equivalence is respected by the cotensor (—)&» and the product, so we have the desired
equivalence

Fung( J] EsxBib — B,F = B) = [] Funi(Bib — B,F — B)® ~ [] Fun(E,F,).

beob B beob B beob B

]

5.2 Monadicity and comonadicity

A functor u: A — B between quasi-categories is comonadic if it is the left adjoint part of a
comonadic adjunction. This means that A is equivalent to the quasi-category of coalgebras
for the homotopy coherent comonad on B underlying the corresponding homotopy coherent ad-
junction derived from u and its right adjoint. The quasi-category of coalgebras is defined as a
particular flexible weighted limit of the homotopy coherent comonad. A few specific details of
this construction are needed in the proofs in §6.3 and these are reviewed there. To avoid an un-
necessary digression, we refer the reader §11.7 for the definition of these notions and omit them
from the current presentation.
Recall Theorem I1.7.2.7, presented here in the dual:

Theorem 5.2.1 (comonadicity I11.7.2.7). A functor u: A — B between quasi-categories is comonadic
if and only if:

(i) uw admits a right adjoint,
(i) A admits and u preserves limits of u-split cosimplicial objects, and
(iii) w is conservative, reflecting isomorphisms.
Conservative functors between quasi-categories might arise as follows:

Lemma 5.2.2. Let U : K — Lbe a functor of quasi-categorically enriched categories that reflects
equivalences in the sense that any O-arrow f: A — B in K whose image is an equivalence in L
is an equivalence in K. Then the corresponding functor U: K — L between quasi-categorical
cores is conservative.

Proof. We show that an equivalence f: A — B in a quasi-categorically enriched category
corresponds to an isomorphism in its quasi-categorical core. An equivalence in K is comprised
of the data enumerated in Example 4.1.2(iii), which is contained in the subcategory ¢.K C K. In
the homotopy coherent nerve K = N g, K this data gives rise to a pair of objects A and B, a pair
of 1-simplices f: A — B and f': B — A, and a pair of 2-simplices witnessing that f and f’
compose to identities. This is the data that defines an isomorphism in a quasi-category. [

Comonadic functors have the following property:
Theorem 5.2.3 (comonadicity and colimit creation II1.5.7). Let uw: A — B be a comonadic

functor between quasi-categories. Then u creates any colimits that B admits. O]
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In particular any quasi-category admits colimits of split simplicial objects®: a simplicial ob-
ject A" — B is split if it extends along the inclusion A — A% < A, that augments it with an
terminal object — note that A%’ = A® x 1 — and then adds an “extra degeneracy” map in each
dimension (see §1.5.3).

Theorem 5.2.4 (split simplicial objects define colimits 1.5.3.1). Any split simplicial object A —
B admits a colimit, whose colimit cone is given by the augmented diagram A% — B:

/Op
AP—— Ay - -+B

Combining these results, it follows that if a functor admits both left and right adjoints, its
monadicity can be leveraged to help establish its comonadicity, or conversely:

Proposition 5.2.5. A functor that admits both left and right adjoints is monadic if and only if it
is comonadic.

¢
VRN

A—uw—B
Nl

Proof. 1If u is comonadic, then u is conservative, verifying condition (iii) of the dual Monadicity
Theorem 5.2.1. We have already assumed that the left adjoint required by (i) exists. Finally,
Theorem 5.2.4 implies that B admits colimits of u-split simplicial objects, and then comonadicity
of u together with Theorem 5.2.3 then implies that A admits them as well and these are preserved
by u. This verifies (ii), and Theorem 5.2.1 then implies that u is also monadic. A dual argument
proves the converse implication. [

Theorem 5.2.6. The forgetful functor

u: Cart(qCat);s — Cart(qCat), e = | [ qCat

obB

is comonadic and hence also monadic.

Proof. We use Theorem 5.2.1 to prove comonadicity and then deduce monadicity from Propo-
sition 5.1.4 and Proposition 5.2.5. The right adjoint to u is constructed in Proposition 5.1.3
proving (i). Example VIIL6.1.7 and Remark VIIL.6.1.9 combine to prove that Cart,g admits and
Cart/g — qCat s preserves all limits. The functor u is the composite of this inclusion with
the projection functor qCat B = gCat /obB> Which also preserves all limits, being the homotopy
coherent nerve of a functor of co-cosmoi QCat /B — OCat /obB- This proves (ii). Proposition
2.2.2 and Lemma 5.2.2 assert that u: Cart /B — Cart /obB 18 conservative, proving (iii). O

8Furthermore, such colimits are absolute, that is preserved by any functor.
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6. Groupoidal reflection

In this section, we give a first application of the monadicity and comonadicity results of the
previous section. A cartesian fibration between quasi-categories is groupoidal if its fibers are
Kan complexes, rather than quasi-categories. In this section we construct a reflection to the fully
faithful inclusion of the quasi-category of groupoidal cartesian fibrations into the quasi-category
of cartesian fibrations:

invert

Cartfy 1 = Cartg

A different proof of this result will be appear in a sequel, making use of explicit fiberwise coin-
verters.

In §6.1, we study the relationship between the quasi-categorically enriched category of carte-
sian fibrations and its subcategory of groupoidal cartesian fibrations and establish a groupoidal
reflection functor in the “base case,” reflecting quasi-categories into Kan complexes. In §6.2, we
prove that the monadic and comonadic adjunctions of Theorem 5.2.6 restrict to define analogous
monadic and comonadic adjunctions for groupoidal cartesian fibrations. It follows that the large
quasi-categories Cart% and Cart g can be understood as quasi-categories of algebras for closely
related homotopy coherent monads acting on [], ., g Kan and ], ., g aCat respectively. In
§6.3, we exploit this presentation to construct an adjunction defining the reflection of a cartesian
fibration into a groupoidal cartesian fibration:

invert

Cartlp e T S Cartye

6.1 Reflecting quasi-categories into Kan complexes

Before we begin, we note that the notion of groupoidal cartesian fibration of quasi-categories
just defined agrees with the definition given in §1V.4.2, which declares that a cartesian fibration
p: E — B is groupoidal just when the quasi-category of functors fromany f: X — Btopisa
Kan complex; see X.12.2.3.

At the level of simplicially-enriched categories, the subcategory of groupoidal cartesian fi-
brations is defined by the pullback:

Cart® (QCat) 5" Cart(QCat) g (6.1.1)
| |
Cart® (QCat),ope = [[ Kan—— [] QCat = Cart(QCat), .8

obB obB

In §6.3, we construct a groupoidal reflection functor, by which we mean a left adjoint to the
inclusion

Cart* (qCat) g — Cart(qCat) g

as a functor between large quasi-categories. We begin by describing groupoidal reflection in the
case where B = 1.
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Theorem 6.1.2. The inclusion Kan — qCat admits both left and right adjoints

invert
TN
Ka @q Cat

core
and is monadic and comonadic.

Proof. The inclusion Kan — QCat is left adjoint to a functor core: QCat — Kan that carries a
quasi-category to the maximal sub Kan complex spanned by the isomorphisms. This adjunction
is simplicial with respect to the Kan complex enrichments of both Kan and QCat, the latter
obtained by applying the core functor to the function complexes, so this simplicially enriched
adjunction descends to provide a right adjoint to Kan — QCat.

The left adjoint can also be modeled at the point-set level. The quasi-category qCat is iso-
morphic to the homotopy coherent nerve of the Kan-complex enriched category of naturally
marked quasi-categories in the sense of Example 4.1.1. There is a simplicial Quillen adjunction

U
sSet&— 1 —sSet,
(—)*

connecting this simplicial model structure for quasi-categories to the Quillen model structure for
Kan complexes on simplicial sets. Applying Theorem 1.6.2.1, this provides the left adjoint to the
inclusion Kan < qCat. From this vantage point, we may apply Proposition VII.2.2.3 to see that
Kan is closed in QCat under flexible weighted limits, so we conclude that Kan — qCat creates
all limits.

The functor Kan — QCat reflects equivalences, so by Lemma 5.2.2 the inclusion Kan —
gCat is conservative. Now Theorem 5.2.1 implies that Kan — qCat is comonadic, and Propo-
sition 5.2.5 then implies that Kan — qCat is also monadic. ]

6.2 (Co)monadicity of groupoidal cartesian fibrations

We now argue that

Cart®(QCat) s — Cart*(QCat), o8 = [] Kan
obB

p
(E — B) = (Bb)beonB
admits left and right quasi-categorically enriched biadjoints, given by restricting those from the

non-groupoidal case, and that moreover the restricted adjunction is both monadic and comonadic
at the level of functors between underlying quasi-categories.
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Theorem 6.2.1. The quasi-categorical biadjoints to CGart(QCat) g — Cart(QCat) ., restrict
to groupoidal cartesian fibrations

Cart* (QCat) s—— Cart(QCat) g

| on (]

Cart® (QCat), o,,e— Cart(QCat) /18

and moreover these restricted adjunctions display the functor between the quasi-categorical
cores Carth — Cart/ oo = 11,08 Kan as both monadic and comonadic.

Proof. Proposition 5.1.4 defines L: Cart(QCat), ., — Cart(QCat) g to be the functor that
carries a family (Ep)peconp to

L((Ep)beobB) : H E, xBlb— B.

The fiber over x € obBis [ [, E;, x « | b. Since x | b is a Kan complex, it is clear that this fiber is
groupoidal if each E; is a Kan complex. Thus, we see immediately that L restricts to groupoidal
cartesian fibrations.

Proposition 5.1.3 defines R: Cart(QCat),.,8 — Cart(QCat) g to be the functor that car-
ries a family (Ej;)peons to

R((E)seons) := | [(E» x B — B)"E~8.

b

The fiber over x € ob B of this product of fibrations is isomorphic to the product of the fibers
of each (E, x B — B)"B~B over x, so it suffices to show that each of these fibers is a Kan
complex if E, is a Kan complex. By the bijection of Definition 4.3.1, a 1-simplex in the fiber of
(E, x B — B)*B~B over x: 1 — B corresponds to the displayed dashed map

Alsblo——blo——blB  "E,xB
l_l l_l l/
Al A B

i.e.,toamap A! x b x — E,. If each E; is a Kan complex, this map can be extended along the
inclusion A! < T from the 1-simplex into the free-living isomorphism. This proves that every
1-simplex in the fiber of (E, x B — B)*B~B is an isomorphism, which tells us that R restricts
to groupoidal cartesian fibrations.

By what is now a familiar line of argument, we apply Theorem 5.2.1 to prove that the re-
stricted adjunctions are comonadic, and then deduce monadicity from Proposition 5.2.5. The
required adjoints have already been constructed and Proposition 2.2.2 and Lemma 5.2.2 imply
that Car‘[gB — Car’[gr obB 18 conservative, so it remains only to establish condition (ii) of Theorem
5.2.1.
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The pullback of simplicial categories (6.1.1) is preserved by passing to the level of quasi-

categories:

Cartfg——— Cart g

=]

[T Kan—— ] gCat

obB obB
By the monadicity established in Theorems 5.2.6 and 6.1.2 and the dual of Theorem 5.2.3, both
the left-hand vertical and lower horizontal functors create all limits present in [ [, g gCat, which
is to say all limits, since by Proposition VII.6.2.1 qCat is complete. The lower inclusion is
replete up to isomorphism, so Kan — qCat defines an isofibration of large quasi-categories.
Thus, Lemma X.6.3.17 applies to tell us that Cart® (qCat) g is also complete and all limits are
preserved by the left-hand vertical functor.

Now Theorem 5.2.1 implies that Cartfy — Cart? g = [],,gKan is comonadic, and
monadicity follows from Proposition 5.2.5. ]

6.3 Groupoidal reflection

Our monadicity results, Theorems 6.2.1 and 5.2.6, tell us that the quasi-categories Cart,g and
Cart% are equivalent to the quasi-categories of algebras associated to closely related homotopy
coherent monads acting on Cart,q,s = [],,gdCat and Cart?, g = [],,5 Kan respectively.
In this section, we will use this result to lift the reflection functor invert: qCat — Kan from
quasi-categories to Kan complexes to a groupoidal reflection functor invert: Cart,g — Cart%
that is left adjoint to the inclusion.

To do this we make use of a convenient representation for adjoint functors that can be ex-
pressed in any 2-category, dual to the more familiar representation of the unit of an adjunction as
an absolute left extension diagram:

Lemma 6.3.1 (1.5.0.4). To define a left adjoint to a functor u: A — B is to define an absolute
left lifting of idp along w, in which case [ = u with unitn: idg = uf.
A O
f Zl
s/ g n )

B

B

Let _I denote the category indexing a cospan and write QCat™ for the simplicially enriched
category of cospans of quasi-categories, whose objects are cospans and whose 0-arrows are nat-
ural transformations

B (6.3.2)

al
C——~A B

N \"& s

C/—I>A/
g
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Definition 6.3.3. Transformations of the kind depicted in (6.3.2) between diagrams which admit
absolute left liftings give rise to the following diagram

B B
AN N
CT>A B C A B
Nw b N Ul
/ CITA/

(6.3.4)

C'—A

g

in which the triangles are absolute left liftings and the 2-cell 7 is induced by the universal property
of the triangle on the right. We say that the transformation (6.3.4) is left exact if and only if the
induced 2-cell 7 is an isomorphism. This left exactness condition holds if and only if, in the
diagram on the left, the whiskered 2-cell u\ displays v/ as the absolute left lifting of ¢’w through

f‘/
Our interest in these notions is on account of the following result:

Proposition 6.3.5 (I11.4.9). Consider any simplicial functor T: A — QCat” and any flexible
weight W: A — SSet. If each of the objects in the image of T admits an absolute left lifting
and each of the 0-arrows in the image of T is left exact, then the weighted limitim"' T' € QCat”
admits an absolute left lifting and the legs of the limit cone are left exact transformations. ]

By Lemma I1.6.1.8, the quasi-category of algebras construction, introduced in Definition
I1.6.1.7, is an instance of a flexible weighted limit. We will use Proposition 6.3.5 applied in a
larger Grothendieck universe to the quasi-categorically enriched category QCAT of large quasi-
categories to lift the absolute left lifting diagram

Kan
™

gCat gCat

whose left adjoint part defines the groupoidal reflection associated to the inclusion

Cart?, ;= | [ Kan — [ [ aCat = Cart, .5

obB obB

to these flexible weighted limits, defining an absolute left lifting diagram

Cart/y

invert i \[
7
R (/]

Cart)g =—=_Cart/g

the left adjoint being the desired groupoidal reflection functor.
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Theorem 6.3.6. There is a left adjoint to the inclusion

invert

Cartly 1L  Cartpg
~_ 7

defining the reflection of a cartesian fibration into a groupoidal cartesian fibration.

Proof. By Theorem 11.4.3.9, the adjunction

L

}/\
Cartg 1  [],gqaCat (6.3.7)

~_

defined in Proposition 5.1.4 extends to a homotopy coherent adjunction: a simplicial functor
Adj — OQCAT valued in the quasi-categorically enriched category of large quasi-categories
whose domain is the simplicial computad obtained by applying the nerve functor to the hom-
categories of the free 2-category containing an adjunction; see §II.3. The two objects of Adj,
called “—" and “+” are mapped to the quasi-categories Cart,g and [ [ , g qCat respectively. The
full subcategory Mnd — Adj on the object “+” defines the free homotopy coherent monad. In
this case, the data of the underlying homotopy coherent monad 7': Mnd — Adj — QCAT on
the object [ [, g qCat is given by a the map of objects + — [], g gCat and the map of function
complexes
T: A = Funy(+,+) = Fungear(] [ aCat, ] ] aCat),
obB obB
satisfying an appropriate simplicial functoriality condition. This functoriality condition implies
that the 0-arrows of Mnd, are indexed by the objects [n] € A,, are all finite composites of the
object [0], whose image
t :=T[0]: []aCat — J]aCat
obB obB
is the monad endofunctor defined by composing the left and right adjoints of (6.3.7).

To apply Proposition 6.3.5 we must extend the homotopy coherent monad 7’ to a homotopy
coherent monad on QCAT~. To do so, we argue that this homotopy coherent monad restricts
along [[,,gKan — ][, gdCat to define a homotopy coherent monad 7¢": Mnd — QCAT
on [[.,gKan in such a way that this map will define the component of a simplicial natural
transformation 7'#" = T'. To see this, note that [ [ , 5 Kan, the nerve of the simplicially enriched
category spanned by ob B-indexed families of Kan complexes, is a full sub quasi-category of
[ 1.5 aCat, the nerve of the simplicially enriched category spanned by ob B-indexed families
of quasi-categories, in the sense that it contains all of the n-simplices whose vertices are Kan
complexes, not mere quasi-categories. So to check that the data of the homotopy coherent monad
restricts to define a simplicial functor given by + — [] . g Kan and

T5: A, = Funyu(+,+) — FunQCAT(H Kan, H Kan),
obB obB
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it suffices to check this at the level of vertices [n] € A, which amounts to checking that the
monad ¢ of (6.3.7) restricts to define a monad t#" on groupoidal cartesian fibrations; this was
done in Theorem 6.2.1.

In this way we obtain a simplicial functor Mnd — QCAT? sending the object “+” to the
arrow [ [, g Kan < [],, g gCat. Pairing this with the identity simplicial natural transformation
we obtain a simplicial functor Mnd — QCAT - sending the object “+ to the cospan displayed
below-left

[L,,5 Kan [T Kan (6.3.8)

bB
[ I, ginvert ©
/m [

[,,s9Cat==]],, 5 qCat [ aCat=— [] qCat
obB obB
This cospan admits an absolute left lifting displayed above right, defining the left adjoint and unit
of an adjunction whose counit is invertible. In fact the entire diagram Mnd — QCAT - restricts
to the subcategory spanned by those cospans that admit absolute left liftings and those 0-arrows
that define left exact transformations between them. To see this, we need only argue that the
generating 0-arrow [0] in Mnd, the endofunctor of the monad, defines a left exact transformation.
That is, we must show that the endotransformation of (6.3.8) whose components are the functors

HobB Kan L) Hob B Kan HobB qcat —t> Hob B qcat

En - (u bex¢b> Es - (L[ bemb)
r€ob B r€ob B

beob B beobB

is left exact. This amounts to showing that the whiskered 2-cell

[T Kan—— ] Kan
obB

[1,,ginvert obB
/T " [ Jj

[] gCat==[] qCat —— [] qCat

obB obB obB

is invertible. This is the case because the process of freely inverting a family of quasi-categories
commutes up to equivalence with forming the product with the Kan complex x | b and with the
coproduct [ [,..; &-

In this way we obtain a homotopy coherent monad Mnd — QCAT~ valued in the subcat-
egory of cospans admitting absolute left liftings and left exact transformations between them.
There is a flexible weight W_: Mnd — SSet introduced in Definition I1.6.1.7 — the precise
details of which are not relevant here — so that the W_-weighted limit of a homotopy coherent
monad define its quasi-category of algebras, as characterized up to equivalence by the Monadicity
Theorem 5.2.1. By Theorems 6.2.1 and 5.2.6 the W_-weighted limit of the composite diagram
Mnd — QCAT~ defines the cospan displayed below and by Proposition 6.3.5 it therefore admits
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an absolute left lifting:

Cart’y

invert . < \[
Ve
PR ]

Cart/g == Cart/g

By Lemma 6.3.1, this absolute left lifting diagram defines the adjunction that constructs the
groupoidal reflection of a cartesian fibration. [
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