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Abstract

Machine learning models often perform poorly
under subpopulation shifts in the data dis-
tribution. Developing methods that allow
machine learning models to better generalize
to such shifts is crucial for safe deployment
in real-world settings. In this paper, we de-
velop a family of group-aware prior (GAP)
distributions over neural network parameters
that explicitly favor models that generalize
well under subpopulation shifts. We design a
simple group-aware prior that only requires
access to a small set of data with group infor-
mation and demonstrate that training with
this prior yields state-of-the-art performanceÐ
even when only retraining the őnal layer of a
previously trained non-robust model. Group
aware-priors are conceptually simple, com-
plementary to existing approaches, such as
attribute pseudo labeling and data reweight-
ing, and open up promising new avenues for
harnessing Bayesian inference to enable ro-
bustness to subpopulation shifts.

1 INTRODUCTION

Distribution shifts, frequently occurring in real-world
data, have long plagued machine learning models
[Quiñonero Candela, 2009]. Empirical risk minimiza-
tion [ERM; Vapnik, 1998]Ðthe minimization of av-
erage training lossÐis known to generalize poorly un-
der distribution shifts. In particular, subpopulation
shiftsÐdue to attribute and class biasesÐcan cause
signiőcantly increased test error on certain popula-
tion groups, even if the average test error remains low
[Hashimoto et al., 2018]. In many applications, high
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accuracy on certain subpopulations/groups is essential,
and failure to generalize under subpopulation shifts can
have severe and harmful consequences [Barocas and
Selbst, 2016, Dastin, 2018].

In this paper, we focus on achieving group robust-
ness, increasing the worst-case test performance across
groups represented in the data, which is crucial for
building equitable and effective machine learning sys-
tems. A variety of approaches exist to tackle this
problem, including methods that explicitly optimize
for worst-case group performance [Sagawa et al., 2020],
approaches that identify neural network features that
lead to improved group robustness [Kirichenko et al.,
2023], and several techniques that rely on training
helper models used to identify shifts and reweighting
the data [e.g., Liu et al., 2021, Nam et al., 2022].

Unlike previous work, we approach group robustness
from a Bayesian perspective and present a general
approach to designing data-driven priors that favor
models with high group robustness. Under such priors,
performing Bayesian inference will lead to posterior
distributions over neural network parameters that allow
the model to őt the training data while also respecting
the soft constraints imposed by the prior distribution.

To demonstrate the usefulness of such priors, we con-
struct an example of a simple data-driven group-aware
prior (GAP) distribution over the parameters of a neu-
ral network designed to place high probability density
on parameter values that induce predictive models that
generalize well under subpopulation shifts. While ex-
act Bayesian inference with non-standard priors can
be challenging, we build on the approach presented in
Rudner et al. [2023] to őnd the most likely parameters
under the posterior distribution implied by the prior
and the data. We illustrate the process of training a
model with a group-aware prior in Figure 1.

Data-driven group-aware prior distributions allow for
probabilistically principled learning, are modular in
their ability to be applied to any likelihood function,
and are simple to implement. In our empirical eval-
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Figure 1: Training with a Group-Aware Prior (GAP). Step 1: Train a neural network with empirical risk
minimization (ERM). Step 2: Construct a group-aware prior by deőning a tractable joint distribution that places
high probability density on parameters that achieve high worst group accuracy. Step 3: Find the most likely
parameters under the posterior induced by the group-aware prior and the data.2

uation, we consider the realistic setting where only
a small set of data with group information is avail-
able and construct a simple example of a group-aware
prior. We then show that for established subpopula-
tion shift benchmarking tasks (i) őnetuning a previ-
ously trained model with a group-aware prior leads to
state-of-the-art results on all benchmarks and (ii) only
retraining the őnal layer of a previously trained model
with a group-aware prior leads to state-of-the-art results
on two of the benchmarks, and remains competitive on
the other.1 Excitingly, this probabilistic formulation
of group robustness opens up new routes for bringing
to bear the vast arsenal of Bayesian inference methods
to obtain even higher levels of group robustness.

To summarize, our key contributions are as follows:

1. We present a general framework for constructing
tractable data-driven priors to achieve group ro-
bustness under subpopulation shifts.

2. We design a simple group-aware prior (GAP) that
places high probability density on parameter values
that lead to high group robustness.

3. We show empirically that őnetuning a previously
trained model with this prior leads to state-of-the-
art results on standard benchmarking tasks.

4. We consider a more constrained setting in which
we freeze a previously trained network and only
retrain the őnal layer. We őnd that even in this
highly constrained setting, retraining only a few
hundred parameters with group-aware priors leads
to state-of-the-art results.

1Our code is available at https://github.com/
timrudner/group-aware-priors.

2 BACKGROUND

2.1 Learning as Probabilistic Inference

Consider supervised learning problems with N i.i.d.

data realizations D = {x
(n)
D , y

(n)
D }Nn=1 = (xD, yD) of in-

puts X ∈ X and labels Y ∈ Y with input space X and
label space Y . For supervised learning tasks, we deőne
a parametric observation model pY |X,Θ(y |x, θ; f) with
a neural network mapping, f(· ; θ), and a prior distri-
bution over the parameters, pΘ, (θ) with the goal of
inferring a posterior distribution from the data.

Since, by Bayes’ Theorem, the posterior under this
model is proportional to the joint probability density
given by the product of the likelihood of the parameters
under the data pY |X,Θ(yD |xD, θ) and the prior pΘ(θ),

pΘ|Y,X(θ | yD, xD) ∝ pY |X,Θ(yD |xD, θ)pΘ(θ),

the most likely parameters under the posterior are given
by the mode of pY |X,Θ(yD |xD, θ)pΘ(θ). Maximum a
posteriori (map) estimation seeks to őnd this mode,
θmap [Bishop, 2006, Murphy, 2013]. Under a likelihood
that factorizes across the data points given parameters
θ, the MAP optimization objective can be expressed as

Fmap(θ) =
∑N

n=1
log pY |X,Θ(y

(n)
D |x

(n)
D , θ) + log pΘ(θ).

Under Gaussian and categorical likelihood functions,
the log-likelihood term in the MAP optimization ob-
jective corresponds to a scaled negative mean squared
error (MSE) loss function and a negative cross-entropy

2All images in this paper are taken from https://
unsplash.com or https://www.istockphoto.com under un-
limited, perpetual, nonexclusive, worldwide license.
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loss function, respectively. Similarly, under Gaussian
and Laplace priors, the log-density of the prior is pro-
portional to L2 regularization and L1 regularization,
respectively. We will use this probabilistic perspective
to obtain a tractable optimization objective that allows
incorporating data-driven priors designed to improve
the group robustness of neural networks into training.

2.2 Subpopulation Shifts

We consider classiőcation problems on data (x, y) ∈
X × Y, where we assume that the data consists of
several groups (subpopulations) g ∈ G, which are often
deőned by a combination of a label y ∈ Y and spurious
attribute a ∈ A (sometimes called environment). The
attribute a ∈ A may or may not be available during
training. For instance, in CelebA hair color prediction
[Liu et al., 2015], the labels are ‘blond’ and ‘brown’,
and the groups are ‘non-blond women’ (g1), ‘blond
women’ (g2), ‘non-blond men’ (g3), and ‘blond men’
(g4) with proportions 44%, 14%, 41%, and 1% of the
data, respectively; the group g4 is the minority group,
and gender serves as the attribute (spurious feature).

We assume that the training data comes from a mixture
of group-wise distributions ptrain =

∑

g∈G αgpg, where
α ∈ ∆|G| (group weights summing to 1) and pg are dis-
tributions over elements of the group g ∈ G. We speak
of subpopulation shift when the test data comes from
a differently weighted distribution ptest =

∑

g∈G βgpg,
where the weighting β ∈ ∆|G| is not known at train-
time. This leads to the natural goal of maximizing
worst group test accuracy (WGA), that is, the low-
est accuracy across groups G represented in the test
data. We follow the shift taxonomy proposed in Yang
et al. [2023], and our benchmarking datasets exhibit
combinations of all of the following three shifts.

Spurious correlations are present when a label y is cor-
related with an attribute a in the training distribution
but not in the test distribution. For instance, it was
shown that thoracic X-ray images contain spurious cor-
relations between labels and attributes such as patient
age, scanning position, or text font, which may not be
present in the test data [Heaven, 2021, DeGrave et al.,
2021].

An attribute shift is present when the distribution of an
attribute a for a speciőc label y and context combina-
tion differs between the training and test distributions.
For instance, MultiNLI has a high prevalence of nega-
tion words (‘no’, ‘never’)Ðone of the attributes.

A Class shift is present when the distribution of classes
differs between the training and test distributions. For
example, in the CelebA dataset, the ‘blond’ class in the
training set constitutes 15% of the training examples
but a larger fraction in the test set.

3 RELATED WORK

Subpopulation shifts are omnipresent in real-world ap-
plications, which has led to a large body of literature
concerned with reducing the adverse effects of spurious
correlations, attribute shifts, and class shifts on model
performance through more robust models.

Ensuring robustness to subpopulation shifts is a long-
standing challenge in machine learning. A broad range
of methods has been developed to mitigate different
types of subpopulation shifts, including data reweight-
ing [Idrissi et al., 2022], data augmentation [Zhang
et al., 2018], domain-invariant feature learning [Ar-
jovsky et al., 2020, Li et al., 2018], and (sub-)group
robustness methods [Sagawa et al., 2020, Liu et al.,
2021, Nam et al., 2022, Zhang et al., 2022, Kirichenko
et al., 2023]. Several methods designed to achieve high
worst group accuracy build on the distributionally ro-
bust optimization (DRO) framework [Rahimian and
Mehrotra, 2022], where worst-case accuracyÐinstead
of average case accuracyÐis explicitly maximized dur-
ing training [Ben-Tal et al., 2013, Hu et al., 2018, Oren
et al., 2019, Zhang et al., 2020]. Notably, GroupDRO
[Sagawa et al., 2020] has become a standard baseline
for group robustness.

Group Labeling Models. In most real-world set-
tings, obtaining group information is expensive and
only feasible for a small number of data points. To
emulate real-world settings where only a small number
of training data with group information is available,
existing methods have used the validation sets of bench-
marking datasets to achieve high worst group accuracy.
Nam et al. [2022] and Sohoni et al. [2022] train group
labeling models on group-labeled validation data, gen-
erate group labels for the training dataset, and then
train a second model on the full dataset using the gen-
erated group labels. In contrast, our proposed method
does not require training a group labeling model and
instead only requires reweighting the validation set
during group-robustness őnetuning to obtain state-of-
the-art performance, outperforming all group labeling
techniques.

Last-Layer Retraining. A particularly simple and
efficient approach to improving group robustness in
settings with limited group label availability is deep
feature reweighting [DFR; Kirichenko et al., 2023],
which őrst őnetunes a neural network using expected
risk minimization (ERM) on a training dataset without
group information and then retrains the last layer on a
group-balanced reweighting dataset using ERM regu-
larized with an L1-norm between the current and the
previously őne-tuned last-layer parameters (see also
Izmailov et al. [2022], Qiu et al. [2023], and Le et al.
[2023] for follow-up works). This work is notable for
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its marked simplicity and low complexity compared
to related methods, as it only requires last-layer re-
training on a validation set to reach state-of-the-art
performance on some benchmarks and competitive per-
formance on other benchmarks. We present results
for our method in the setting where we only retrain
the őnal layer with a validation set and show that it
outperforms DFR on a majority of benchmarking tasks.
While Kirichenko et al. [2023] showed that DFR leads
to worse performance when group-robustness őnetun-
ing on the full network, we őnd that group-robustness
őnetuning the full network with our method leads to
signiőcant improvements over last-layer retraining, re-
sulting in state-of-the-art results.

Data-driven Priors. Prior distributions encode
prior information about random variables, but design-
ing informative prior distributions over neural network
parameters is challenging in practice due to the limited
interpretability of neural networks. To address this
challenge, previous work has proposed data-driven pri-
ors by pertaining neural networks and using the trained
parameters to specify priors for related downstream
tasks. For example, Shwartz-Ziv et al. [2022] propose
to reshape the loss surface using data-driven priors.
These informative priors are learned from the source
taskÐsimilar to the pre-training paradigmÐand lead
to improved transfer generalization. Taking an alterna-
tive route, Rudner et al. [2023] propose function-space
empirical Bayes, deriving an optimization objective
that allows approximating the most likely parameters
under posteriors (i.e., the maximum a posteriori esti-
mate) computed from sophisticated data-driven priors
and use it to learn models with improved uncertainty
quantiőcation. We use the optimization objective pro-
posed in Rudner et al. [2023] to perform maximum a
posteriori estimation with group-aware priors.

Generalization and Parameter Perturbations.
Prior work on improving generalization of neural net-
works, notably Sharpness-Aware Minimization [SAM;
Foret et al., 2021] and Stochastic Weight-Averaging
[SWA; Izmailov et al., 2018], has attempted to im-
prove model performance by őnding ŕatter minima of
the loss landscape. The underlying idea is that mini-
mizing a loss under different types of perturbations to
the neural network parameters will steer the learned
neural network parameters into regions of parameter
space where small perturbations to the parameters do
not lead to signiőcant increases in the training loss and
ultimately lead to learned parameters that correspond
to ŕat loss minima, which in turn have been related to
improved generalization.

4 GROUP-AWARE PRIORS

In this section, we őrst deőne a general family of group-
aware priors. Then, we use this framework to develop
a simple and scalable instantiation of a group-aware
prior. Finally, we describe how to apply the maximum
a posteriori estimation procedure proposed in Rudner
et al. [2023] to use this prior to train a neural network.

4.1 A Family of Group-Aware Priors

We begin by specifying the auxiliary inference prob-
lem. Let x̂ be a set of context points x̂ = {x̂1, ..., x̂M}
with corresponding context labels ŷ = {ŷ1, ..., ŷM},
and let Ẑ be a Bernoulli random variable denoting
whether a given set of neural network parameters in-
duces predictions with some desired property (e.g.,
high uncertainty on certain evaluation points, high
accuracy on evaluation points with a certain group at-
tribute, etc.). We deőne an auxiliary likelihood function
p̂Ẑ |Θ(ẑ | θ; f, pX̂,Ŷ )Ðwhich denotes the likelihood of
observing a yet-to-be-speciőed outcome ẑ under p̂Ẑ |Θ

given θ and pX̂,Ŷ Ðand a prior over the model param-
eters, pΘ(θ). For notational simplicity, we will drop
the subscripts going forward except when needed for
clarity. By Bayes’ Theorem, the posterior under this
model and observation ẑ is given by

p̂(θ | ẑ; f, pX̂,Ŷ ) =
p̂(ẑ | θ; f, pX̂,Ŷ )p(θ)

p̂(ẑ | θ; f, pX̂,Ŷ )
. (1)

To deőne a family of data-driven priors that place
high probability density on neural network parameter
values that induce predictive functions that achieve
high group robustness, we deőne a speciőc Bernoulli
auxiliary observation model p̂Ẑ |Θ in which Ẑ = 1 de-
notes the outcome of ‘achieving group robustness’ and
p̂(ẑ = 1 | θ; f, pX̂,Ŷ ) denotes the likelihood of ẑ = 1
given θ and pX̂,Ŷ . We can now deőne a general fam-
ily of group-aware priors by specifying the Bernoulli
observation model

p̂(ẑ = 1 | θ; f, pX̂,Ŷ ) = exp(−λEpX̂,Ŷ
[c(X̂, Ŷ , θ)])

p̂(ẑ = 0 | θ; f, pX̂,Ŷ ) = 1− p̂(ẑ = 1 | θ; f, pX̂,Ŷ ),
(2)

where c : X × Y × R
P → R≥ is a ‘cost’ function and

λ > 0 is a scaling parameter. By specifying an auxiliary
dataset with D̂ = ẑ = {1, ..., 1} and a distribution pX̂,Ŷ

we obtain a posterior p̂(θ | ẑ; f, pX̂,Ŷ ), the distribution
over neural network parameters that we would infer if
we observed outcomes ẑ = {1, ..., 1} under the likeli-
hood deőned above. As with every Bayesian method,
the quality of this posterior is determined by the qual-
ity of the observation model p̂Ẑ |Θ, the data, and the
prior. Therefore, if the observation model is poor, so
will be the posterior. As a result, the main challenge
in designing useful group-aware priors is to construct
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an observation modelÐthat is, a cost function cÐthat
is as well-speciőed as possible. The better speciőed
the observation model, the more useful the data-driven
prior will be. Below, we present a speciőc instantiation
of a group-aware prior by proposing a simple cost func-
tion, paired with a suitable set of context points and
context labels.

4.2 A Simple Group-Aware Prior

To specify a practically useful group-aware prior, we
need two ingredients: (i) We need to specify the distri-
bution pX̂,Ŷ for which observing ẑ = {1, ..., 1} would
be most informative, and (ii) we need to specify a cost
function c whichÐfor suitably chosen pX̂,Ŷ Ðis a good
proxy for group robustness on unknown test points.
Both (i) and (ii) are generally challenging and could
be tackled with sophisticated methodsÐfor example,
by learning tailored generative models or handcraft-
ing complex cost functions. However, to demonstrate
the usefulness of group-aware priors, we instead limit
ourselves to őxed, prespeciőed distribution pX̂,Ŷ and a
very simple cost function.

First, to specify a useful context distribution pX̂,Ŷ , we
assume that we have access to at least a small dataset,
Dval, with group information and simply upsample the
dataset to create a distribution

pX̂,Ŷ =
∑

g∈G
αgpg (3)

with αg = α̃g/
∑

g∈G α̃g and α̃g = (|Dval|/|D
g
val|)

γ ,

where |Dval| is the number of data points in Dval, |D
g
val|

is the number of data points from group g in Dval, and
γ ≥ 1 is a scaling parameter. The larger the hyperpa-
rameter γ, the stronger rare groups will be upweighted.
The smaller |Dg

val| as a fraction of |Dval|, the larger αg

will be.

Second, to specify a useful cost function, we deőne

c(x̂, ŷ, θ) =̇ ℓ(ŷ, f(x̂; θ + ρϵ(θ))) (4)

where ρ > 0 is a scaling parameter and ℓ is a cross-
entropy loss function for classiőcation tasks and a mean-
squared error loss function for regression tasks. ϵ(θ)
is a worst-case perturbation to the model parameters
proposed in Foret et al. [2021] and given by

ϵ(θ, x̂, ŷ) =̇ ⊥
∇θℓ(ŷ, f(x̂; θ))

∥∇θℓ(ŷ, f(x̂; θ))∥2
, (5)

where ⊥ is the stop_gradient operator. The intiution
for this cost function is simple: we know that achieving
low loss tends to correspond to good generalization, but
given that the context dataset hasÐby assumptionÐ
few data points from rare groups, generalizing to test
points from these groups is difficult. To design a cost

function that leads to a data-driven prior with high
probability density on parameters that enable good
generalization to points from rare groups, we add a
worst-case perturbation deőned to lead to a maximum
increase in the loss, as proposed in Foret et al. [2021].

Unfortunately, the full posterior p̂(θ | ẑ; f, pX̂,Ŷ ) is in-
tractable, since the parameters θ appear non-linearly in
c. However, taking the log of the analytically tractable
joint density p̂(ẑ | θ; f, pX̂,Ŷ )p(θ), we obtain

log p̂(ẑ | θ; f, pX̂,Ŷ ) + log p(θ)

∝ −EpX̂,Ŷ
[ℓ(Ŷ , f(X̂; θ + ρϵ(θ)))] + log p(θ)

=̇J (θ, pX̂,Ŷ ),

(6)

with proportionality up to an additive constant inde-
pendent of θ. This implies that

argmaxθ p̂(θ | ẑ; f, pX̂,Ŷ ) = argmaxθ J (θ, pX̂,Ŷ ),

that is, maximizing the analytically tractable expres-
sion J (θ, pX̂,Ŷ ) with respect to θ is mathematically
equivalent to maximizing the posterior p̂(θ | ẑ; f, pX̂,Ŷ ).
Next, we will show how to use this insight to train
neural networks with this prior.

4.3 Maximum A Posteriori Estimation

To train a neural network with data-driven group-aware
priors, we follow the approach described in Rudner
et al. [2023] and derive a tractable objective function
for neural network training with group-aware priors
that alows us to őnd the most likely neural network
parameters under the posterior distribution,

p(θ | yD, xD, ẑ; f, pX̂,Ŷ ) =
p(yD |xD, θ)p̂(θ | ẑ; f, pX̂,Ŷ )

p(yD |xD, ẑ; f, pX̂,Ŷ )
.

(7)

To do so, we use two insights: (i) that maximum
a posteriori estimation only requires an analytically
tractable function proportional to the log-joint distri-
bution log(p(yD |xD, θ)p̂(θ | ẑ; f, pX̂,Ŷ )) and (ii) that
that the group-aware prior p̂(θ | ẑ; f, pX̂,Ŷ )Ðwhich is
itself an analytically intractable posterior distributionÐ
is proportional to the analytically tractable function
J (θ, pX̂,Ŷ ). Noting that by taking the logarithm of the
posterior in Equation (7), we get

log p(θ | yD, xD; f, pX̂,Ŷ )

∝ log p(yD |xD, θ) + log p̂(θ | ẑ; f, pX̂,Ŷ )

∝ log p(yD |xD, θ) + J (θ, pX̂,Ŷ ),

(8)

which we can write in the form of a standard optimiza-
tion objective

F(θ) =̇
∑N

n=1
log p(y

(n)
D |x

(n)
D , θ)+J (θ, pX̂,Ŷ ),
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where log p(y
(n)
D |x

(n)
D , θ) is a data-őt term and

J (θ, pX̂,Ŷ ) is a regularization term that favors param-
eter values that have a high level of group robustness.
For a Gaussian prior p(θ) = N (θ;µ, τ−1

θ ), we have
log p(θ) ∝ − τθ

2 ∥θ − µ∥22, where µ could be any set of
prior mean parameters, the őnal minimization objective
takes the simple form

L(θ) =
∑N

n=1
ℓ(y

(n)
D , f(x

(n)
D ; θ)) +

τθ
2
∥θ − µ∥22

+ λEpX̂,Ŷ
[ℓ(Ŷ , f(X̂; θ + ρϵ(θ)))],

(9)

which we can compute via simple Monte Carlo estima-
tion as

L̂(θ) =̇
∑N

n=1
ℓ(y

(n)
D , f(x

(n)
D ; θ)) +

τθ
2
∥θ − µ∥22

︸ ︷︷ ︸

standard L2-regularized loss

+
λ

S

∑S

s=1
ℓ(ŷ(s), f(x̂(s); θ + ρϵ(θ)))

︸ ︷︷ ︸

robustness regularization

,

(10)

where (x̂(s), ŷ(s)) ∼ pX̂,Ŷ . This objective is amenable
to optimization with stochastic gradient descent.

4.4 Practical Considerations

Deconstructing Loss Components. The optimiza-
tion objective of Equation (10) contains two distinct
terms: (i) The standard L2-regularized loss is computed
on the training set and does not require any group la-
bels. The robustness regularization is evaluated on the
context distribution pX̂,Ŷ sampled from the validation
set. Deőning pX̂,Ŷ requires group labels to upweight
the data as shown in Equation (3). Lastly, it is worth
noting that only the robustness regularization incorpo-
rates a perturbation of the parameters. This reŕects
that we would like the prior to favor ŕatter minima that
speciőcally improve generalization to minority groups.

Hyperparameters. The optimization objective in
Equation (10) has three additional hyperparameters,
compared to training with L2-regularized ERM. The
parameter λ governs the strength of the empirical prior,
the parameter ρ governs the strength of the parameter
perturbation, and the parameter γ governs how strongly
the distribution is reweighted.

Computational Complexity. The objective requires
two additional forward passes on the M points sampled
from the context distribution: one to compute epsilon
and one to compute the loss under the parameter per-
turbation. In practice, this slowdown in training speed
is not a problem since we only ever train for a handful
of epochs, as detailed in Appendix A.

5 EMPIRICAL EVALUATION

Our experimental evaluation has two moving pieces: (i)
datasets and (ii) last-layer retraining versus full őnetun-
ing on the group-labeled validation set. We outline the
datasets we use, prior benchmark we compare to (in-
cluding current state-of-the-art), and our experimental
setup and show that our method achieves new SOTA or
is competitive with the best methods. We also discuss
the components that go into our designed prior and
provide ablation studies to show their impact.

5.1 Datasets

We evaluate our method on both image classiőcation
and text datasets that are commonly used to bench-
mark the performance of group robustness methods.

Waterbirds. Waterbirds is a binary image classiő-
cation problem generated synthetically by combining
images of birds from the CUB dataset [Wah et al.,
2011] and backgrounds from the Places dataset [Zhou
et al., 2018]; the class corresponds to either land- or
waterbird. 73% of images correspond to the majority
group (waterbirds on water), 22% are landbirds on
land and a sharply pronounced minority group of 1%
landbirds on water, as well as 4% waterbirds on land.
The distribution of backgrounds (land/water) on the
validation and test sets is balanced.

CelebA. We consider a binary classiőcation problem
(‘blond vs. non-blonde hair color’) with gender serving
as the spurious feature. 94% of images with the blond
labels show females. Models were trained on pixel
intensities at the top of each image into a binary ‘blonde
vs. not-blonde’ label. No individual face characteristics,
landmarks, keypoints, facial mapping, metadata, or any
other information was used for training.

MultiNLI. MultiNLI is a text classiőcation problem
where the task is to classify the relationship between a
given pair of sentences as a contradiction, entailment,
or neither. In this dataset, the presence of negation
words (e.g., ‘never’) in the second sentence is spuriously
correlated with the ‘contradiction’ class.

5.2 Baselines

We consider seven baseline methods that make different
assumptions about the availability of group attributes
at training time. Empirical risk minimization (ERM)
represents conventional training without any proce-
dures for improving worst group accuracy. Just Train
Twice [JTT; Liu et al., 2021] is a method that de-
tects the minority group examples on train data, only
using group labels on the validation set to tune hyper-
parameters. Correct-n-Contrast [CnC; Zhang et al.,
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Table 1: Worst group and average accuracy on the test set of our method against a variety of other baselines in
recent literature. We follow Sagawa et al. [2020] and reweigh the test accuracy for each group based on their
proportion in the training data. The Group Info column details whether a method uses group labels in the
training and validation dataset and whether it uses an auxiliary group labeling model. Accuracies of our method
are estimated over ten trials. For a description of the baselines methods, see Section 5.2. We report the standard
error of the mean, which sometimes requires adjusting the error bars of other baselines. The best-performing
method is highlighted in gray and bolded, and the second-best-performing method is only bolded.

Method
Group Info Waterbirds CelebA MultiNLI

Tr. Val. Aux. Worst Average Worst Average Worst Average

ERM N N N 74.9±1.0 98.1±0.0 46.9±1.3 95.3±0.0 65.9±0.1 82.8±0.0

JTT N Y Y 86.7 93.3 81.1 88.0 72.6 78.6

CnC N Y Y 88.5±0.2 90.9±0.1 88.8±0.5 89.9±0.3 Ð Ð

SSA N Y Y 89.0±0.3 92.2±0.5 89.8±0.8 92.8±0.1 76.6±0.4 79.9±0.5

DFR N Y N 92.9±0.1 94.2±0.2 88.3±0.5 91.3±0.1 74.7±0.3 82.1±0.1

SUBG Y Y N 89.1±0.5 Ð 85.6±1.0 Ð 68.9±0.4 Ð

G-DRO Y Y N 91.4 93.5 88.9 92.9 77.7 81.4

GAP Last Layer N Y N 93.2±0.2 94.6±0.2 90.2±0.3 91.7±0.2 74.3±0.2 81.9±0.0

GAP All Layers N Y N 93.8±0.1 95.6±0.1 90.2±0.3 91.5±0.1 77.8±0.6 82.5±0.1

2022] detects the minority group examples similarly to
JTT and uses a contrastive objective to learn represen-
tations robust to spurious correlations. Group DRO
[Sagawa et al., 2020] uses group information to train on
a worst group loss objective and is a commonly used
baseline. Deep Feature Reweighting [DFR; Kirichenko
et al., 2023], uses a network őnetuned with ERM and
performs last-layer feature reweighting. SUBG [Idrissi
et al., 2022] is carefully tuned ERM on a random sub-
set of the data where the groups are equally repre-
sented. Finally, Spread Spurious Attribute [SSA; Nam
et al., 2022] attempts to fully exploit the group-labeled
validation data with a semi-supervised approach that
propagates the group labels to the training data.

All baselines use pretrained models (a ResNet-50, pre-
trained on ImageNet1K for Waterbirds and CelebA,
and a pretrained BERT model for MultiNLI), and all
of them őnetune the entire network except for DFR,
where őnetuning is only performed on the last layer
(after full-parameter ERM training).

5.3 Experimental setup

For all experiments, we import a pretrained model and
őnetune all layers of the network using ERM on the
target training dataset. For vision datasets, we őnetune
a ResNet-50 [He et al., 2016] pretrained on ImageNet
[Russakovsky et al., 2015] for 30 epochs. For language
datasets, we use pretrained BERT [Devlin et al., 2019]
and őnetune for őve epochs. We assume that the val-
idation dataset Dval is group-annotated, and we use
85% of it to sample the context distribution pX̂,Ŷ ; the

remaining 15% are reserved for hyperparameter tun-
ing. The total size of the validation datasets is 19,867
(out of 202,599) for CelebA, 1,199 (out of 11,788) for
Waterbirds, and 82,462 (out of 412,349) for MultiNLI.
In all cases, we heavily upweight the minority groups
in the robust regularization term with γ = 4, 1.5, and
2 for Waterbirds, CelebA, and MultiNLI, respectively.
We use adversarial perturbations of the parameters in
the robust regularization term with strength ρ = 0.15
for Waterbirds and CelebA and ρ = 0.1 for MultiNLI.
We use the same conőgurations for last-layer and full-
network training. For further details, see Appendix A.

5.4 Results

Table 1 presents our results. GAP achieves state-of-
the-art performance for all three benchmarking tasks,
demonstrating the value of optimizing with even a very
simple data-driven prior. In particular, on Waterbirds
and MultiNLI, GAP improves both worst-group and
average accuracy even when compared to methods that
require training data with group labels or use an auxil-
iary model to create attribute labels. For CelebA, GAP
improves the worst group accuracy over all baselines,
with only marginally lower average accuracy.

Perhaps most remarkably, we achieve state-of-the-art
and close-to-state-of-the-art performance even when
only retraining the last layer using group-labeled valida-
tion data. In particular, GAP applied to the last layer
outperforms DFR, another method that only requires
last-layer reőtting, on the Waterbirds and CelebA)
tasks, and is competitive to DFR on MultiNLI.
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Table 2: Ablation on Adversarial Perturbation. We
ablate the scaling parameter ρ in the GAP robust-
ness regularizer (last-layer retraining only). GAP uses
ρ = 0.15 for Waterbirds and CelebA and ρ = 0.1 for
MultiNLI. The ρ = 0 setting indicates no parameter
perturbation. Means and standard errors are estimated
from ten trials.

ρ
Waterbirds CelebA MultiNLI

Worst Average Worst Average Worst Average

GAP 93.2±0.2 94.6±0.2 90.2±0.3 91.7±0.2 74.3±0.2 81.9±0.0

0 92.7±0.2 94.8±0.1 83.2±0.8 94.1±0.1 74.0±0.2 82.2±0.0

5.5 Ablation Studies

While the group-aware prior constructed in Section 4.2
is relatively simple, it adds several additional degrees of
freedom. Most notably, it involves a scaled parameter
perturbation, as can be seen in the robust regularizer
of Equation (10), meant to favor ŕatter minima and
better generalization to minority groups. Furthermore,
the expected cost function is computed under a context
distribution, which we construct by upweighting minor-
ity groups in the data as per Equation (3). Below, we
show the impact of these design choices in two ablation
studies (for further details, see Appendix A).

Ablation on Parameter Perturbation. Table 2
compares the performance of GAP (last-layer retrain-
ing only) with and without the perturbation of the
parameters in the robustness regularization term. As
expected, optimizing against a worst-case perturbation
in the parameters leads to a small decrease in aver-
age accuracy, which is largely compensated for by a
signiőcant gain in worst group accuracy.

Ablation on Context Distribution. We have de-
signed the context distribution pX̂,Ŷ to upweight the mi-
nority groups (see Equation (3) and the paragraph fol-
lowing it). In Table 3, we compare different exponential
weighting schemes from a completely group-balanced
setting (γ = 1) to very strong upweighting (γ = 4)
for Waterbirds (for last-layer retraining). Stronger
upweighting of minority groups beyond the balanced
setting is beneőcial for improved worst-case accuracy.

6 Discussion

We presented a simple probabilistic framework for learn-
ing models that are robust to subpopulation shifts using
group-aware prior distributions. Our empirical evalua-
tion has shown that a probabilistically principledÐand
yet simpleÐprior distribution over neural network pa-
rameters reŕecting group robustness desiderata, is able
to achieve state-of-the-art performance on standard

Table 3: Ablation on Context Distribution. We ab-
late the upweighting strength in the context distribu-
tion pX̂,Ŷ , for exponential upweighting schemes with
γ ∈ {1, 2, 4} on the Waterbirds dataset using GAP
(last-layer retraining). Means and standard errors are
estimated from three trials for γ ∈ {1, 2} and ten trials
for γ = 4.

Upweight Strength
Waterbirds

Worst Average

Balanced (γ = 1) 90.8±0.6 95.8±0.4

Moderate (γ = 2) 93.1±0.5 95.1±0.3

Strong (γ = 4) 93.2±0.2 94.6±0.2

benchmarking tasks without the need for any pseudo-
labeling routineÐeven in the highly constrained setting
of only retraining the last layer. This is achieved with
minimal computational overhead and implementation
complexity since, as we showed in Equation (9), MAP
estimation with the simple group-aware prior can be
reduced to adding an additional regularization term to
the ERM optimization objective.

Flexibility: We have presented a very simple őrst exam-
ple of a group-aware prior, which has already proven to
be effective at improving robustness to subpopulation
shifts. However, we are not limited to such simple
priors. We have derived a general family of group ro-
bustness priors parameterized by a cost function and
a context distribution, each of which can be speciőed
using sophisticated models that satisfy group robust-
ness desiderata. For example, a more sophisticated
context distribution pX̂,Ŷ could be deőned by learning
a generative model or by using a larger dataset without
group information in conjunction with a learned group
labeling model.

Complementarity: As noted above, methods proposed
in related workÐsuch as learned group labeling models,
including those that do not require any group labels
[e.g., Pezeshki et al., 2023], and data reweighting
schemesÐcomplement the framework presented in this
paper.

Full Bayesian Inference: While we used MAP estima-
tion to őnd the most likely parameters under the pos-
terior, the probabilistic formulation of learning group
robustness via uncertainty-aware priors lends itself to
Bayesian inference and, as such, opens up routes for
bringing to bear the vast arsenal of Bayesian infer-
ence methods. Inferring full posterior distribution us-
ing group-aware priors can improve generalization via
Bayesian model averaging Wilson and Izmailov [2020]
and lead to more reliable uncertainty estimation Rud-
ner et al. [2023].
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Supplementary Material

Appendix A Experimental Details

Neural Network Architecture and Optimization. We follow the precedents set by Sagawa et al. [2020],
Yang et al. [2023], and others. That is, all image datasets use a pre-trained ResNet-50 [He et al., 2016], and
language datasets use a pre-trained BERT [Devlin et al., 2019]. Images are resized and cropped in the center to
224x224 pixels. For image datasets, we use SGD with momentum 0.9. For language datasets, we use AdamW
with default parameters [Loshchilov and Hutter, 2017]. Table 4 shows the hyperparamenters we use for the
ERM-training step and Table 5 (last-layer) resp. Table 6 (all-layer) show the hyperparameters we use for the
őne-tuning stage. We note that in the őne-tuning step with group-aware prior, we use a portion of the validation
set for both terms of the loss in Equation (10), i.e. both terms are evaluated on points from the context set,
which is chosen to be the validation dataset in our case. In principle, we could use the training set for the őrst
term in Equation (10), as it does not require group labels, but we have chosen to evaluate both terms on the
context distribution for simplicity.

Parameters for Ablation Studies. For Table 2, we use the hyperparameters detailed in Table 5 and set
the relevant parameter to its ‘trivial’ realization. That is, we set ρ = 0. In this ablation study, we average our
results over ten trials. For Table 3, we also use a ‘trivial’ parameter choice γ = 1, but also investigate results
under different strengths of upweighting. In this study, we estimate our mean and standard errors from three
trials, except for when the parameter choice coincides with our parameter choice from Table 5 (e.g. γ = 4), in
which case we use ten.

Table 4: Table of Hyperparameter Choice for Initial ERM Finetuning. For all of our experiments that
use a pretrained network őne-tuned on the target task with ERM, we detail the hyperparameters used. Initial LR
means the inital learning rate input into the learning rate scheduler. Note that α is the minimum multiplier value
for adjusting the learning rate for the cosine decay scheduler.

Hyperparameter Waterbirds CelebA MultiNLI

Epochs 30 5 3

Initial LR 0.005 0.005 0.00002

LR Scheduler Cosine Decay Cosine Decay Linear Decay

α 0.01 0.001 Ð

Batch Size 128 128 32

Weight Decay 0 0 0.01
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Table 5: Table of Hyperparameter Choice for Last-Layer Retraining. For our experiments involving
last-layer retraining on our group-aware prior, we detail the hyperparameters used. Epochs speciőcally indicate
the number of epochs we re-train our last layer on, and does not include the previous ERM őne-tuning steps.
Initial LR means the inital learning rate input into the learning rate scheduler. Note that α is the minimum
multiplier value for adjusting the learning rate for the cosine decay scheduler. The parameters λ, γ, and ρ are
hyperparameters speciőc to our method.

Hyperparameter Waterbirds CelebA MultiNLI

Epochs 40 20 5

Initial LR 0.001 0.0001 0.00004

LR Scheduler Cosine Decay Cosine Decay Linear Decay

α 1 1 Ð

Batch Size 128 128 32

Weight Decay 0 0 0

λ 1 30 10

γ 4 1.5 2

ρ 0.15 0.15 0.1

Table 6: Table of Hyperparameter Choice for All-Layer Finetuning. For our experiments involving
all-layer őnetuning on our group-aware prior, we detail the hyperparameters used. Epochs speciőcally indicate
the number of epochs we őnetune the entire network on, and does not include the previous ERM őne-tuning
steps. Initial LR means the inital learning rate input into the learning rate scheduler. The parameters λ, γ, and
ρ are hyperparameters speciőc to our method.

Hyperparameter Waterbirds CelebA MultiNLI

Epochs 40 10 1

Initial LR 0.001 0.0001 0.000005

LR Scheduler Linear Decay Linear Decay Linear Decay

Batch Size 128 128 32

Weight Decay 0 0 0

λ 15 200 10

γ 4 4 4

ρ 0.15 0.1 0.1
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Appendix B Method Details

We deőne a general family of group-aware priors by specifying a Bernoulli observation model

p̂(ẑ = 1 | θ; f, pX̂,Ŷ ) = exp(−λEpX̂,Ŷ
[c(X̂, Ŷ , θ)])

p̂(ẑ = 0 | θ; f, pX̂,Ŷ ) = 1− p̂(ẑ = 1 | θ; f, pX̂,Ŷ ),
(B.1)

where c : X × Y × R
P → R≥ is a ‘cost’ function and λ > 0 is a scaling parameter.

To deőne a speciőc member of this family of priors, we specify a cost function

c(x̂, ŷ, θ) =̇ ℓ(ŷ, f(x̂; θ + ρϵ(θ, x̂, ŷ))) (B.2)

where ρ > 0 is a scaling parameter, ℓ is a cross-entropy loss function for classiőcation tasks and a mean-squared
error loss function for regression tasks, and ϵ(θ, x̂, ŷ) is a worst-case perturbation to the model parameters
proposed in Foret et al. [2021] and given by

ϵ(θ, x̂, ŷ) =̇ ⊥
∇θℓ(ŷ, f(x̂; θ))

∥∇θℓ(ŷ, f(x̂; θ))∥2
, (B.3)

where ⊥ is the stop_gradient operator.

It is worth brieŕy noting the implications of using the stop_gradient operator in a prior probability density
function. Since the perturbation ϵ(θ, x̂, ŷ) is a function of θ, it would normally be differentiable with respect to θ,
which would affect the gradient of the robustness regularization term in the őnal objective given in Equation (10).
Since we apply the stop_gradient operator, ϵ(θ, x̂, ŷ) is treated as a constant for the purposes of gradient
computation. Since the gradients of the robustness regularization term with respect to θ are therefore different
when the stop_gradient operator is applied, this implies that the application of the stop_gradient operator
implicitly changes the prior probability density function. To see how the application of the stop_gradient

operator changes the prior probability density function, we őrst note that the gradient of the cost function without
the stop_gradient operator in ϵ(θ, x̂, ŷ), evaluated at parameters θt, is given by

∇θℓ(ŷ, f(x̂; θ + ρϵ̃(θ)))|θ=θt =
d(θ + ϵ̃(θ))

dθ

∣
∣
∣
∣
θ=θt

∇θℓ(ŷ, f(x̂; θ))|θ=θt+ϵ̃(θt) (B.4)

= ∇θℓ(ŷ, f(x̂; θ))|θ=θt+ϵ̃(θt)
+

dϵ̃(θ)

dθ

∣
∣
∣
∣
θ=θt

∇θℓ(ŷ, f(x̂; θ))|θ=θt+ϵ̃(θt), (B.5)

where

ϵ̃(θ) =̇
∇θℓ(ŷ, f(x̂; θ))

∥∇θℓ(ŷ, f(x̂; θ))∥2
. (B.6)

In contrast, with the stop_gradient operator in ϵ(·), the gradient of the cost function, evaluated at θt is given by

∇θℓ(ŷ, f(x̂; θ + ρϵ(θ, x̂, ŷ)))|θ=θt = ∇θℓ(ŷ, f(x̂; θ))|θ=θt+ϵ(θt)
, (B.7)

that is, it does not contain the term dϵ̃(θ)
dθ

|θ=θt∇θℓ(ŷ, f(x̂; θ))|θ=θt+ϵ̃(θt).

In order to obtain this gradient when using the perturbation function ϵ̃(θ) (which does not use the stop_gradient
operator), we need to include an additive term in the cost function whose gradient is equal to dϵ̃(θ)

dθ
∇θℓ(ŷ, f(x̂; θ)).

To obtain this term, all we need to do is to take the integral of dϵ̃(θ)
dθ

∇θℓ(ŷ, f(x̂; θ)) with respect to θ:

A(θ) =̇ −

∫
dϵ̃(θ)

dθ
∇θℓ(ŷ, f(x̂; θ)) dθ. (B.8)

This integral exists for all evaluation points for which ϵ̃(·) and ℓ(ŷ, f(x̂; ·)) are differentiable with respect to θ.
While this integral may be analytically intractable, we do not need to compute it unless we want to compute
the value of the prior probability density for a given parameter conőguration, and since we only need the prior
density for optimization, we can simply use the stop_gradient operator to compute the desired gradients.
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Appendix C Dataset Details

Below, we provide information about each of the datasets used in our empirical evaluation. All images used in
this manuscript are illustrative only (i.e., they differ from the actual images in the datasets used in this paper)
and are taken from https://unsplash.com (for birds) and https://www.istockphoto.com (for people) under
unlimited, perpetual, nonexclusive, worldwide license.

C.1 Vision Data

Table 7: Summary of Vision Dataset Properties.

Waterbirds
g1 g2 g3 g4

Example Image

Group Description Landbird on Land Landbird on Water Waterbird on Land Waterbird on Water
Class Label 0 0 1 1
Attribute Label 0 1 0 1
Group Label 0 1 2 3
# Training Data 3,498 184 56 1,057
# Validation Data 467 466 133 133
# Test Data 2,255 2,255 642 642

CelebA
g1 g2 g3 g4

Example Image

Group Description Non-blonde Woman Non-blonde Man Blonde Woman Blonde Man
Class Label 0 0 1 1
Attribute Label 0 1 0 1
Group Label 0 1 2 3
# Training Data 71,629 66,874 22,880 1,387
# Validation Data 8,535 8,276 2,874 182
# Test Data 9,767 7,535 2,480 180
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C.2 Language Data

Table 8: Summary of Language Dataset Properties.

Multi-Genre Natural Language Inference (MultiNLI) corpus

g1 g2 g3

Example Text

(P): if residents are
unhappy, they can put
wheels on their homes
and go someplace else,

she said.

(P): within this conŕict
of values is a clash about

art.

(P): there was something
like amusement in the old

man’s voice.

(H): residents are stuck
here but they can’t go

anywhere else.

(H): there is no clash
about art.

(H): the old man showed
amusement.

Group Description
Contradiction without

Negations
Contradiction with

Negations
Entailment without

Negations

Class Label 0 0 1

Attribute Label 0 1 0

Group Label 0 1 2

# Training Data 57,498 11,158 67,376

# Validation Data 22,814 4,634 26,949

# Test Data 34,597 6,655 40,496

g4 g5 g6

Example Text

(P): in 1988, the total
cost for the postal service

was about $36.

(P): yeah but even even
cooking over an open őre
is a little more fun isn’t

it.

(P): that’s not too bad.

(H): the postal service
cost us citizens almost
nothing in the late 80’s.

(H): i like the ŕavour of
the food.

(H): it’s better than
nothing.

Group Description
Entailment with

Negations
Neutral without

Negations
Neutral with
Negations

Class Label 1 2 2

Attribute Label 1 0 1

Group Label 3 4 5

# Training Data 1,521 66,630 1,992

# Validation Data 613 26,655 797

# Test Data 886 39,930 1,148
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