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ABSTRACT

Recent advances in machine learning (ML) identifying areas favorable to hydrothermal systems
indicate that the resolution of feature data remains a subject of necessary improvement before ML
can reliably produce better models. Herein, we consider the value of adding new features or
replacing other, low-value features with new input features in existing ML pipelines. Our previous
work identified stress and seismicity as having less value than the other feature types (i.e., heat
flow, distance to faults, and distance to magmatic activity) for the 2008 USGS Geothermal
Resource Assessment; hence, a fundamental question regards if the addition of new but partially
correlated features will improve resulting models of hydrothermal favorability. Therefore, we add
new maps for shear strain rate and dilation strain rate to fit logistic regression and XGBoost
models, resulting in new 7-feature models that are compared to the old 5-feature models. Because
these new features share a degree of correlation with the two least informative features from the
2008 assessment (i.e., stress and seismicity), we also consider replacement of the two lower-value
features with the two new features, creating new 5-feature models.

Adding the new features improves the predictive skill of the new 7-feature model over that of the
old 5-feature model, but that improvement is not statistically significant because the new features
are correlated with the old features and, consequently, the new features do not present considerable
new information. However, the new 5-feature XGBoost model has greater predictive skill with
known positives than the old 5-feature and new 7-feature models. The improved performance of
the new 5-feature model over the new 7-feature model is due to the lower-dimensional feature
space of the new 5-feature model than that of the new 7-feature model. In higher-dimensional
feature space, relationships between features and the presence or absence of hydrothermal systems
are harder to discern (i.e., the 7-feature model likely suffers from the “curse of dimensionality”).
Hence, the production of the best ML models for geothermal resource assessments is dependent
upon thoughtful feature engineering and selection, consideration to which ML algorithms perform
well with relatively few examples, and, perhaps, dimensionality reduction.
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1. Introduction

The U.S. Geological Survey (USGS) produces periodic national geothermal resource assessments
(White and Williams, 1975; Muffler, 1979; Reed, 1983; Williams and DeAngelo, 2008; Williams
et al., 2008; Williams et al., 2009). The most recent moderate- to high-temperature conventional
geothermal energy assessment of naturally occurring hydrothermal systems was completed in 2008
and relied upon expert decisions in an otherwise data-driven modeling process (Williams and
DeAngelo, 2008; Williams et al., 2008; Williams et al., 2009). More recently, the USGS has been
preparing for the next round of geothermal resource assessments by developing machine learning
(ML) tools that use purely data-driven approaches and minimize the dependency on expert
decisions by comparing the assessment results from 2008 to new results from ML approaches that
have used the same input data (Mordensky et al., 2022, 2023). Herein, we evaluate if the addition
of new data into those data-driven approaches gives improved predictions.

In the 2008 assessment, the western United States was gridded in to 725,442 2-km-by-2-km cells
in which 278 cells (< 0.04% of the domain) were labeled as positive, because they contain
identified hydrothermal systems (see Mordensky and DeAngelo [2023] for additional details). The
remainder of the cells were classified as unlabeled. Cells that were known to not contain a
hydrothermal system were classified as negative, but in practice, these labels were rarely assigned.
Because conventional hydrothermal systems are sparse, classification of all cells would result in
most unlabeled cells being negative (i.e., hydrothermal systems are few and far between). Each
cell had five corresponding features used as input to predict hydrothermal favorability (i.e., heat
flow, distance to nearest Quaternary fault, distance to nearest Quaternary magmatic activity,
maximum horizontal stress, and seismic event density).

To compare the results from the 2008 assessment with results from modern data-driven ML
strategies, Mordensky et al. (2023) used the same data as the 2008 assessment with seven ML
approaches of increasing complexity to fit seven ML models of hydrothermal favorability. These
approaches addressed challenges related to using positive-unlabeled examples (i.e., no negatives)
and extreme class imbalance (i.e., an extremely high ratio of areas without hydrothermal systems
to sites with hydrothermal systems; roughly 2,600:1). Because ML algorithms produce output that
is not always directly comparable, a quantile-to-quantile transform was used for comparison
between methods. In particular, the normal score transform was used to produce maps of
hydrothermal favorability (e.g., Fig. 1). Mordensky et al. (2023) concluded that the best
performing approach used XGBoost with a training strategy that downsampled testing and
validation data (but not the training data) to the expected natural occurrence of hydrothermal
systems (i.e., Single XGBoost in Mordensky et al. [2023]).
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Figure 1. Hydrothermal favorability maps (Mordensky et al., 2023) from logistic regression and XGBoost using
a training strategy that downsampled the testing and validation data (but not the training data) to the
expected natural occurrence of hydrothermal systems to address class imbalance. The base map has been
made using data from Natural Earth.

Mordensky et al. (2023) compared seven measures of feature importance to evaluate which input
features were most important for making reliable hydrothermal favorability maps. Although some
features ranked as comparatively unimportant across the different approaches (e.g., maximum
horizontal stress and seismic event density), a key conclusion suggested that the resolution of even
the most important features detrimentally influenced model performance (e.g., the most important
feature, heat flow, was a smooth interpolated surface that did not represent the finer-scale natural
geological conditions that control hydrothermal circulation). Mordensky et al. (2023) hypothesized
that including additional and improved features would improve model performance.

We seek to understand how the selection of features affects the performance of ML models. In this
study, we test the hypothesis from Mordensky et al. (2023) that supplementing the existing feature
set with new features (i.e., shear strain rate and dilation strain rate) from Zeng (2022) will improve
model performance. We then investigate how replacing seismic event density and stress, the least
important features identified in Mordensky et al. (2023), with shear strain rate and dilation strain
rate impacts model performance.

2. Methods

In order to evaluate how changes to predictive skill resulting from the addition or replacement of
input features varies between different structures of supervised ML, we select two ML approaches.
Both approaches use the training strategy that addresses the positive-unlabeled classifications and
extreme class imbalance through downsampling the testing and validation data but not the training
data to the expected natural frequency of hydrothermal systems (see Mordensky et al., 2023). We
select XGBoost (Chen and Guestrin, 2016) with downsampling because this approach was the best
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performing model-strategy pair in Mordensky et al. (2023). We also select logistic regression
(Berkson, 1944, 1951) for comparative purposes, because logistic regression was the simplest
algorithm used in Mordensky et al. (2023).

In the remainder of this section, we describe the different data set combinations used to fit the
models, briefly review hyperparameter optimization, discuss the normal score transformation
needed to evaluate and compare model predictions, and outline the measures of feature importance
used in this study.

2.1 Data Sets

For both logistic regression and XGBoost, we train models using three different data sets (Table
1). The first, hereafter referred to as the old 5-feature model, uses the same data as Mordensky et
al. (2023). These original 5 data sets are made available in Mordensky and DeAngelo (2023). The
second, termed the new 7-feature model, augments the data used in Mordensky et al. (2023) with
post-2008 maps of shear strain rate and dilation strain rate from Zeng (2022) with a resolution of
0.1 degrees and re-sampled to the same grid spacing as Mordensky and DeAngelo (2023). The
third model, termed the new 5-feature model, replaces the least important features identified by
Mordensky et al. (2023) (i.e., maximum horizontal stress and seismic event density) with the two
features (i.e., shear strain rate and dilation strain rate) from Zeng (2022).

Table 1. Feature sets in each model type (old S5-feature, new 7-feature, new 5-feature).

Old 5-Feature New 7-Feature New 5-Feature
Heat flow Heat flow Heat flow
Distance to nearest fault Distance to nearest fault Distance to nearest fault
Distance to nearest magmatic Distance to nearest magmatic Distance to nearest magmatic
activity activity activity
Maximum horizontal stress Maximum horizontal stress
Seismic event density Seismic event density
Shear strain rate Shear strain rate
Dilation strain rate Dilation strain rate

Due to an incomplete overlap of the data from Zeng (2022) and the 725,442 cells used in
Mordensky et al. (2023), we discard 15,642 unlabeled cells (i.e., 2.2% of the study area in
Mordensky et al., 2023) at the most southern extent of the western United States. Hence, the
models in this study are fit from 709,800 cells, but all the original 278 known geothermal systems
(e.g. positive cells) are retained.

We focus description of the feature data on the differences in the distributions of feature values
between the positive and unlabeled cells using a two-sample t-test and the Pearson and the
Spearman correlations. Before inspecting the statistical difference between labeled distributions
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or correlation coefficients, the input data are standardized (i.e., mean = 0, standard deviation = 1)
to convert feature values to the same unitless scale of similar magnitude.

2.2 Hyperparameter Optimization and Evaluating Performance

Evaluating the performance of models trained from positive-unlabeled data with extreme class
imbalance has no best practice and remains an ongoing field of research. Requiring a metric by
which to optimize hyperparameters (i.e., to tune model parameters that improve the predictive skill
of a model), we follow the same hyperparameter optimization routine summarized in Mordensky
et al. (2023). Hence, the hyperparameters (positive class weight, max depth, number of estimators,
and learning rate; see Chen and Guestrin, 2016) are optimized to maximize the F1 score (Equation
1) by treating unlabeled examples as having negative labels in 120 train-test splits, in which 80%
of the data are used for training and 20% of the data are used for testing, on the USGS
supercomputer referred to as DENALI (Falgout et al., 2021).

True Positives
F1 Score = (1)

True Positives + % (False Positives + False Negatives)

The F1 scores and confusion matrices for positive-unlabeled data (see Table 2) reported herein are
from these 120 train-test splits. However, we acknowledge that the F1 score remains poorly suited
to evaluate the performance of models trained from positive-unlabeled data because the F1 score
penalizes unlabeled positives predicted as positive; hence, there are no reliable false positives.
Therefore, in order to surmount challenges in evaluating models fit from positive-unlabeled data
with extreme class imbalance, we follow the same practices for the evaluation of positive-
unlabeled models presented in Mordensky et al. (2023) by comparing the distributions of
predictions for known positives. In this method, the predictions of a model are normal score
transformed before separating the predictions for the positive examples from the predictions for
the unlabeled examples. The separation of the distributions allows for an examination of how
different the predictions for positive labels are from the predictions for the larger set of unlabeled
cells, which retain a nearly standard normal distribution (i.e., a distribution with mean = 0 and a
variance = 1). Assuming the models have predictive skill, the positive labeled cells should have a
distribution of predictions spanning a higher range of values than that of the unlabeled cells; hence,
higher normal score transformed predictions for the positive labels result in a greater distinction
between the positive labeled and unlabeled examples and indicate better model performance. We
examine the distributions of predictions using cumulative distribution functions.

Table 2: Layout for positive-unlabeled confusion matrices. Rows correspond to labeled classifications. Columns
correspond to predictions.

Predicted Negatives Predicted Positives

Unlabeled | Negative Predictions from Unlabeled Examples | Positive Predictions from Unlabeled Examples

Positives Negative Predictions from Positive Labels Positive Predictions from Positive Labels
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2.3 Feature Importance

We evaluate the relative importance of each of the input features in making predictions by using
model-agnostic (i.e., not approach-specific) measures (i.e., F1 score sensitivity, Receiver
Operating Characteristic/Area Under the Curve [ROCAUC] sensitivity, and SHapely Additive
exPlanation [SHAP] values) and model-gnostic (i.e., approach-specific) measures (i.e.,
coefficients for logistic regression and weight, gain, cover, and F score for XGBoost). Additional
detail on these measures of feature importance are available in Mordensky et al. (2023).

3. Results

In this section, correlation between the input features is analyzed and predictions for hydrothermal
favorability from the different models are presented through difference maps. Then, model
performance is evaluated in terms of F1 scores, confusion matrices, and cumulative distribution
functions of hydrothermal favorability for the known positives. Lastly, feature importance is
summarized. Optimal hyperparameters are provided in Appendix A.

3.1 Data Sets

The distribution of feature values generally share two distinct qualities: 1) all features have distinct
distributions of values between unlabeled and positive cells; and 2) each feature correlates
moderately with at least one other feature.

The mean values between the unlabeled and positive examples are significantly different at p <
0.001 for every feature by measure of a two-sample t-test. Differences between the distributions
of hydrothermal favorability for known positive and unlabeled examples are strongest where peaks
in the distribution are distinct (Fig. 2). Where the distributions are most distinct, it can be inferred
that the corresponding feature has value for separating known positive examples from unlabeled
examples. By this measure, heat flow has the greatest difference between positive and unlabeled
cells, followed by, in order, distance to nearest fault, shear strain rate, distance to nearest magmatic
activity, maximum horizontal stress, seismic event density, and dilation strain rate.
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Figure 2. Histograms of standardized features. Red (right axis) represents the distribution of examples with
positive labels. The numbers in the upper right of each feature pane provide the p-value from a two-
sample t-test with a null hypothesis assuming that distributions for the known positive and unlabeled
examples are indifferent. Blue represents the distribution of unlabeled examples (left axis). Purple
appears when the distributions for the two classes overlap. The upper S features are the features used in
Mordensky et al. (2023) and used to train the old 5-feature model. The bottom two features are data from
Zeng (2022) and contribute toward the new 7-feature and 5-feature models.

All features share moderate correlation (i.e., an absolute correlation coefficient > 0.29) with at
least one other feature (Fig. 3); yet, none of the features have a strong correlation with the presence
of a hydrothermal system. That is, the absolute Pearson and Spearman correlation coefficients
between the labels and any feature remain < 0.02 in the first columns of the correlation tables in
Fig. 3. Heat flow shares an absolute correlation coefficient > 0.29 with the greatest number of other
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features (i.e., distance to fault, distance to magmatic activity, maximum horizontal stress, and
dilation strain rate). Distance to fault and distance to magmatic activity share the greatest absolute
correlation (i.e., a Pearson correlation coefficient = 0.63). Seismic event density has an absolute
correlation coefficient > 0.29 with the fewest number of other features (i.e., only with shear strain
rate).

a) Pearson Correlation Coefficient b) Spearman Correlation Coefficient
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Figure 3. a) Pearson and b) Spearman correlation coefficients for label and feature pairs. Stronger red and
blue colors represent stronger positive and negative correlations, respectively.

3.2 Model Predictions

A comparison of the resulting favorability maps reveals that the XGBoost predictions are more
strongly affected by the addition or substitution of the new features from Zeng (2022) than the
logistic regression predictions (Fig. 4). The greatest changes between the X GBoost approaches are
in the Great Basin and Rio Grande Rift, whereas the greatest changes between the approaches with
logistic regression are focused along the San Andreas Fault. The changes in predictions between
the XGBoost approaches appear more granular than changes in predictions between the
approaches using logistic regression.
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Figure 4. Difference maps comparing hydrothermal favorability from the models fit by different feature sets
(see Table 1). Red shows areas with increased favorability for raw model predictions (given on a 0 to 1
scale). Blue shows areas with decreased favorability for raw model predictions. White means no
difference between the model predictions. All difference maps use the same scale (-0.25 to 0.25 on the
scale of raw model predictions) to allow for easier comparison between plots. The base map has been
made using data from Natural Earth.

3.3 Model Performance

The relative performance of the models is similar when evaluating the confusion matrices (Table
3) and F1 scores (e.g., median F1 scores < 0.04 with a possible range of zero to one; Fig. 5); yet
the predictions from new 5-feature XGBoost and old 5-feature XGBoost have a statistically
significant difference in distributions at p = 0.06, whereas the differences in predictions from the
different logistic regression models are not statistically significant at a p < 0.20 (Table 4).
Likewise, the predictions for known positives from the new XGBoost models have higher mean
and median values than the old-5-feature XGBoost model (Table 5) with the new 5-feature model
having the highest predictions for known positives relative to predictions for the unlabeled cells

(Fig. 6).
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Table 3. Confusion matrices of training and testing data across 120 train-test splits. The bold values represent
mean values. Unbolded values represent one standard deviation. See Table 2 for the layout of the
positive-unlabeled confusion matrices. The different feature sets are defined in Table 1.

Logistic Regression

Old 5-Feature New 7-Feature New 5-Feature
Training | 669,175+ 382 2,141 + 382 667,969 + 384 3,347 + 384 667,866 =409 3,450 &= 409
207 £1 14+2 202+£2 19+2 204 £2 17+2
Testing | 38,081 =24 123 £24 38,011 £ 27 193 £27 38,086 £ 27 198 +£27
52+1 3+1 51+1 4+1 51+1 4+1
XGBoost
0Old 5-Feature New 7-Feature New 5-Feature
Training | 669,721 + 359 1,595 + 359 668,830 = 586 2,486 + 586 668,579 + 642 2,737+ 642
202+3 19+3 198 + 4 23+4 190 £ 5 31+£5
Testing | 38,112 +23 92 +23 38,0862 + 36 142 +£ 36 38,046 + 40 158 £ 40
53+1 2+1 53+1 2+1 53+1 2+1
F1 Scores
0.12
0.10
o
o
0.08 o o
o
g 0.06
@ —
s
0.04
0.02 - I
0.00 i
LR LR LR XG8 XGB XG8
s old 7 New S New 5 old 7 New 5 New
Maodel

Figure 5. Box-and-whisker plots of F1 scores for test data for each ML approach from the 120 train-test splits.
The logistic regression F1 scores are blue, and the XGBoost F1 scores are red. Boxes extend from the
first quartile (Q1) to the third quartile (Q3) with a notch and line at the median. The whiskers extend 1.5
times the inter-quartile range (i.e., 1.5 X [Q3 — Q1] while F1 score > 0). Flier points are individual points
with values beyond the whiskers.
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Table 4. Probability that the distributions of predictions for known positives from the models fit by different
feature sets (see Table 1) do not have different means when using a two-sample t-test.

Logistic Regression p-value XGBoost p-value
Old 5 vs New 7 0.22 Old5vsNew 7 0.38
New 5 vs New 7 0.53 New 5 vs New 7 0.33
Old 5 vs New 5 0.54 Old5vsNew 5 0.06

Table 5. Mean and median values of the distributions of normal score transformed predictions for known
positive examples (shown in Fig. 6). The mean value of transformed predictions for all examples is zero.
The different feature sets are defined in Table 1.

Logistic Regression Mean Median XGBoost Mean Median

Old 5 132 1.25 Old 5 1.64 1.57
New 7 133 1.23 New 7 1.68  1.64
New 5 1.30 1.27 New 5 .72 1.74

Certainty of Predicting Known Positives

Lo Predictions for Unlabeled Examples
—— Positive Predictions from Old 5-Feature Logistic Regression

E‘ --~- Positive Predictions from New 7-Feature Logistic Regression
3 Al Positive Predictions from New 5-Feature Logistic Regression
g " | — Positive Predictions from Old 5-Feature XGBoost
2 --- Positive Predictions from New 7-Feature XGBoost
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E
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@
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1 <2 [ 2 a
Normal Score Transformed Favorability

Figure 6. Comparing normal score transformed predictions for unlabeled (light blue) and known positive (blue
for logistic regression and red for XGBoost) examples from the different models fit by using different
feature sets (see Table 1).

3.4 Feature Importance

Several measures of feature importance are used to identify the value of each feature. In all cases
(i.e., the old-5, new-7, and new-5 feature sets), heat flow and distance to nearest fault are the most
important features (Fig. 7). One of the two new features (i.e., shear strain rate) has an intermediate
magnitude of importance like that of distance to nearest magmatic activity, whereas the other new
feature (i.e., dilation strain rate) has importance arguably similar to that of the original two least
important features from the 2008 assessment (i.e., maximum horizontal stress and seismic event
density).
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Figure 7. Feature importance from the 120 train-test splits using the different approaches. The measures of
feature importance were 0-to-1 min-max normalized using the data within the interquartile range
multiplied by 1.5 (i.e., by removing the flier points from the box-and-whisker plots in Appendix B before
normalization) because some measures of feature importance would appear as having nearly no
importance due to extreme outliers if the flier points had been retained. Solid lines connect the median
value of the median measures of feature importance per approach and feature. Dashed lines span
features not used in that approach. Colors correspond to the approach they depict as defined along the
left y-axis. Abbreviations: LR: Logistic regression, XGB: XGBoost, ROCAUC: Area Under the Receiver
Operating Characteristic Curve, SHAP: SHapely Additive explanation.

4. Discussion

In this section, we demonstrate that, while adding new features can be beneficial to model
predictions, models may perform better with fewer features. The impact of adding new features on
model performance is dependent upon several factors (e.g., the number of features already used to
fit the model, the correlation between the new and existing features, the correlation between the
new features and labels, the number of examples available for training).
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Although the XGBoost models do not perform better with respect to the F1 scores (Fig. 5), the
XGBoost models consistently outperform the logistic regression models when the distributions of
predictions for the unlabeled and known positive examples are examined (Fig. 6); these results are
consistent with Mordensky et al. (2023), who identified XGBoost as a better performing
supervised ML algorithm when working with geothermal data sets that have positive-unlabeled
data with few positives and extreme class imbalance. With consideration for the limitations of the
F1 score when working with extreme class imbalance in positive-unlabeled data, in which all the
unlabeled cells (and thereby, some potentially unlabeled positive cells) are treated as negatives to
the effective detriment of the F1 score (see Equation 1), we emphasize the performance of a model
by the confidence in its prediction of known positives (e.g., relatively higher predicted values for
known positives than unlabeled examples; Fig. 6).

4.1 Effects Adding Replacing Features

XGBoost is better at adapting its fit to the new data than logistic regression (Figs. 4, 6; Table 4)
because of its greater algorithmic architectural complexity (i.e., being a non-linear, boosted, tree-
based algorithm; Chen and Guestrin, 2016). Likewise, the relative insensitivity of logistic
regression to the changing feature sets stems from the simplicity of the linear algorithm (Berkson,
1944, 1951). More specifically, not all the information presented in the new features is novel as
evidenced by the degree of correlation between the new and pre-existing features (Fig. 3). With
the novel information being a nuanced component of the newly added data, XGBoost is better
suited, to adapt its fit to this new nuanced information because of its non-linear, boosted, tree-
based architecture than logistic regression. Consequently, logistic regression is unable to adapt its
fit of the new models as ably as XGBoost.

Both new XGBoost models outperform the old XGBoost model, but, contrary to the idea that more
input data gives better models, the new 5-feature model outperforms the new 7-feature model even
though the 7-feature model is given all of the 5-feature input features and more. The improvement
in predictive ability of the new 7-feature model over the old 5-feature model (Fig. 6) demonstrates
that the new features contained valuable information for predicting hydrothermal resources. This
conclusion is not unexpected, but the increase in performance was not statistically significant
(Table 4). Yet, by removing the two least important features of the old 5-feature model (i.e.,
maximum horizontal stress and seismic event density; Fig. 7) from the new 7-feature model, the
new 5-feature model develops a statistically significant improvement at p = 0.06 when predicting
known positives relative to the old 5-feature model (Fig. 6; Table 4).

4.2 The Curse of Dimensionality

Increasing the predictive skill by removing less informative features suggests more features do not
necessarily result in better models. Instead, these results demonstrate that models produced from
geothermal data like that used in Williams and DeAngelo (2008) and Mordensky et al. (2023) are
extremely susceptible to a phenomenon known as the curse of dimensionality, a term first
introduced by Richard E. Bellman (Banks and Fienberg, 2003). In short, the curse of
dimensionality is when the sequential addition of new features leads to a model that does a worse
job at making predictions due to the intrinsic properties of ML algorithms and strategies.
Technically, the curse of dimensionality means that by increasing the complexity of the feature
space in which models fit decision boundaries, Euclidean distances become decreasingly effective
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for properly fitting decision boundaries between classes. Practically, the curse of dimensionality
means that, for a fixed number of labeled examples, the predictive skill of any model first increases
as new features are added, but after a certain number of features are added, the predictive skill of
the resulting model begins to deteriorate (Fig. 8; Hughes, 1968). Hence, even if new features bear
novel, otherwise useful information, the resulting model may not have better performance despite
the novel information contained therein. Instead, the increased dimensionality of the feature space
may produce a poorer performing model.

Predictive Skill

Number of Features

Figure 8. Number of features versus model performance. As the number of features is increased, model
performance increases up to a specific number of features and, thereafter, performance decreases as new
features are added per a given number of labels (modified from Figure 3 in Hughes, 1968). Additional
labels allow models to fit using additional features without detrimental impact to model performance
(curve series a through e [light blue to dark blue], which assume features of equal informative value).
More informative features also allow models to fit using additional features without detrimental impact
to model performance (e.g., this figure assumes curve f[red] has more informative features than curve a
[blue], thereby allowing curve f [red] to fit using more features with higher performance than curve a
[blue] per equal number of labels).
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The increased performance of XGBoost resulting from removing features (e.g., maximum
horizontal stress and seismic event density) is a bit unanticipated, because the curse of
dimensionality is usually identified when fitting with hundreds or even thousands of features (e.g.,
features engineered from spectral data; see generally Verleysen and Frangois [2005]).
Additionally, tree-based algorithms, particularly boosted tree-based algorithms, like XGBoost, are
generally more resilient to the curse of dimensionality than other forms of supervised learning
(e.g., support-vector machines and artificial neural networks) because tree-based algorithms do not
rely on a distance metric, and therefore Euclidian distances, to generalize (see generally Kuhn and
Johnson, 2020).

One possible explanation for the seemingly premature commencement of the curse of
dimensionality resides with how few labeled examples (i.e., 278) there are for these data. On the
scale of most ML applications, having 278 labeled examples to fit a model would be considered
relatively insufficient. Indeed, Mordensky et al. (2023) noted evidence of too few labeled examples
with these data from observed decreasing model performance with increasing algorithmic
complexity (i.e., with support-vector machines and artificial neural networks not performing as
well as XGBoost). This principal observation suggested that the algorithmic complexity of
support-vector machines and artificial neural networks was too great to produce models with so
few labeled examples without resulting in performance-limiting bias.

The consistently moderate absolute correlation between the features (Fig. 3) is likely another factor
contributing to the seemingly premature commencement of the curse of dimensionality. The
moderate correlation between features means no one feature adds solely unique information.
Hence, the addition of a new correlated feature increases the dimensionality of the feature space
without maximizing the potential additive value of that feature.

4.3 What Can Be Done to Minimize the Curse of Dimensionality?

The improved performance of the new 5-feature model over the new 7-feature model (Fig. 6; Table
4) emphasizes the detrimental impact additional features, even if somewhat informative, might
impart on model performance when working with data that have as few labeled examples as these
geothermal data. In these circumstances, more features do not lead toward better predictions
without careful forethought and analysis, because each new feature is inherently costly to model
performance.

Although an obvious solution to the curse of dimensionality is to identify more labeled examples,
there are only a limited number of known hydrothermal systems, with the process of labeling more
examples being expensive if not impractical; instead, it may be more feasible to remove less
informative features. Alternatively, geothermal ML studies could benefit from dimensionality
reduction (e.g., principal component analysis with truncation through removing less informative
components) as a solution to reduce the number of features while retaining much of the
informational value of the original data given the physical underpinnings that contribute to the
correlation between many of the geothermal features (e.g., heat flow and distance to nearest
magmatic activity; Fig. 3).

Another practical means to offset the curse of dimensionality is to engineer highly informative
features (e.g., as depicted by the red curve in Fig. 8). Heat flow and distance to faults remain the
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most important features across the three XGBoost models (Fig. 7); this suggests that the new
features derived from Zeng (2022) might not be the best data to differentiate between locations
favorable to hydrothermal systems. It is possible that some aspects of the Zeng (2022) strain data
(i.e., the broad strain values that change slowly with respect to distance) are incompatible with
predicting hydrothermal systems, which are small and discrete. Producing better geothermal
predictions is dependent upon engineering features with specific consideration toward the
modeling framework (e.g., with consideration for grid resolution).

The USGS geothermal assessment team is working to engineer new, more informative features for
the purpose of better predicting geothermal energy favorability and estimating resource potential.
For example, where past heat flow maps combine conductive and convective components,
DeAngelo et al. (2023) separated these signals by constructing a map of conductive heat flow and
estimating the magnitude of hydrothermal convection at individual thermal gradient measurement
wells. A second example of where input features can be improved is related to how fault data are
used. Even though geothermal scientists have postulated fault intersection complexity controls
hydrothermal upflow (e.g., Curewitz and Karson, 1997; Faulds and Hinz, 2015; Jolie et al., 2021),
fault features that are typically used are distance to faults regardless of structural complexity (e.g.,
Williams and DeAngelo, 2008).

Perhaps the greatest opportunity for engineering highly informative features is with seismic data.
Domain knowledge establishes a link between hydrothermal systems with some form of seismic
expression (i.e., the presence of a hydrothermal system should influence seismic behavior in some
form; e.g., Mordensky et al., 2019). The low absolute correlative relationships between seismicity
and the other features (Fig. 3) suggests that this link would substantiate novel information to a
model; yet, the low feature importance of seismic event density (Fig. 7) indicates that the feature
is uninformative. That is, quantifying seismic events greater than M3 within 4 km is not an
informative use of seismic data for predicting hydrothermal systems with logistic regression and
XGBoost. Hence, we should ask: 1) how we can use seismic data differently so that seismic data
may be more informative; and 2) is there another supervised ML algorithm we should consider
that would make better use of this feature?

4.4 A Bias Toward More Easily Identified Systems

The label and feature data bias the models to predict more commonly identified types of
hydrothermal systems more favorably than less commonly identified types of hydrothermal
systems. Herein, we detail these biases.

The use of binary classification biases the predictions for hydrothermal systems toward more easily
identified hydrothermal systems. In reality, every hydrothermal system is a unique combination of
geological conditions, and every hydrothermal system differs by size, chemistry, and geologic
characteristics. No two hydrothermal systems are identical. Hence, some systems are more obvious
to identify than others; however, traditional binary ML classification treats every known
hydrothermal system as being equal (i.e., a positive). By labeling all known hydrothermal systems
as the same value, a model is trained to place greater emphasis on the more commonly known
types of hydrothermal systems (i.e., the easier systems to identify).
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The feature data also risk biasing positive predictions toward more easily identified hydrothermal
systems. An underlying challenge to using ML to predict hydrothermal favorability is that every
input feature is also a model based on limited input data. Any sampling biases from the collection
of this limited input data propagate through the ML methods. For example, a heat flow map is an
interpolated surface based on limited data, and heat flow measurements are likely preferentially
made in areas where hydrothermal systems are suspected. Consequently, areas with known
hydrothermal systems may be rich with data complexity, whereas areas without known
hydrothermal systems may have sparse data and interpolation algorithms may oversimplify heat
flow across the relatively undersampled areas.

5. Conclusion

In this study, we show that the addition of two new and arguably improved features (i.e., shear
strain rate and dilation strain rate) to the machine learning (ML) approaches from Mordensky et
al. (2023) result in only small improvements for models of hydrothermal favorability, because the
new features are less important than several of the features used for the previous models. We
demonstrate that the simple addition of new features may be a less effective strategy than
replacement of relatively uninformative features with improved features due to the curse of
dimensionality. We also demonstrate the choice of ML algorithm (e.g., logistic regression versus
XGBoost) plays a deciding role regarding how and to what extent new data sets inhibit or augment
the performance of new models. To substantially improve hydrothermal favorability predictions,
we need to identify and engineer features that provide new information to our models (e.g.,
information that is uncorrelated with existing data, but is correlated with hydrothermal
convection), choose ML algorithms that are resistant to the curse of dimensionality, and consider
modeling frameworks that harness the informational value of high-resolution data (e.g., by using
finer-resolution grids or abandon grids entirely).
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Appendix A — Hyperparameters

The selected hyperparameters for all three dataset combinations (Table A1) are within one standard
deviation of their corresponding equivalents for the same algorithm.

Table Al. Average hyperparameters (+ 1 standard deviation) from 120 train-test splits using different feature
sets. Weight corresponds to positive class weight. C corresponds to inverse regularization strength. n
Estimators corresponds to the number of estimators (i.e., trees). Max depth refers to the maximum depth
of the estimators.

Logistic Regression Weight C

Old 5 303+84 0.16+0.34

New 7 333+86 0.07+0.23

New 5 319+87 0.12+0.31

XGBoost Weight  Max Depth n Estimators Learning Rate
Old 5 205+ 18 2+1 63 £20 0.22+0.10
New 7 206 +20 3+1 63+£19 0.21 £0.09
New 5 211 +£19 2+1 68 £21 0.25+0.10
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Appendix B — Feature Importance

Figures B1 — B6 provide the distribution of relative feature importance from the 120 train-test
splits min-max normalized from 0 to 1 for the different training strategy-algorithm approaches.
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New 7-Feature Logistic Regression
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Old 5-Feature XGBoost
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New 7-Feature XGBoost
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New 5-Feature XGBoost
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