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Abstract

We present numerical results from a parameter study of the standing accretion shock instability (SASI),
investigating the impact of general relativity (GR) on the dynamics. Using GR hydrodynamics with GR gravity,
and nonrelativistic (NR) hydrodynamics with Newtonian gravity, in an idealized model setting, we vary the initial
radius of the shock, and by varying its mass and radius in concert, the proto-neutron star compactness. We
investigate four compactnesses expected in a post-bounce core-collapse supernova (CCSN). We find that GR leads
to a longer SASI oscillation period, with ratios between the GR and NR cases as large as 1.29 for the highest-
compactness suite. We also find that GR leads to a slower SASI growth rate, with ratios between the GR and NR
cases as low as 0.47 for the highest-compactness suite. We discuss implications of our results for CCSN

simulations.

Unified Astronomy Thesaurus concepts: Stellar accretion (1578); General relativity (641); Hydrodynamical
simulations (767); Shocks (2086); Core-collapse supernovae (304)

1. Introduction

Since the discovery of the standing accretion shock
instability (SASI; Blondin et al. 2003), which many two- and
three-dimensional simulations performed to date have demon-
strated becomes manifest during a core-collapse supernova
(CCSN) in the post-shock accretion flow onto the proto-
neutron star (PNS), groups have made efforts to understand its
physical origin and its effects on the supernova itself. The SASI
is characterized in 2D by a large-scale “sloshing” of the
shocked fluid, and in 3D by additional spiral modes (Blondin &
Mezzacappa 2007). It is now generally accepted that turbulent
neutrino-driven convection plays a major role in re-energizing
the stalled shock (e.g., see Burrows et al. 2012, 2019; Hanke
et al. 2013; Murphy et al. 2013; Abdikamalov et al. 2015;
Couch & Ott 2015; Lentz et al. 2015; Melson et al.
2015a, 2015b; Radice et al. 2015, 2018; Roberts et al. 2016;
Miiller et al. 2017, 2019; O’Connor & Couch 2018a; Summa
et al. 2018; Vartanyan et al. 2019, 2022; Yoshida et al. 2019;
Miiller & Varma 2020; Powell & Miiller 2020; Stockinger et al.
2020; Matsumoto et al. 2022; Nakamura et al. 2022). The same
simulations that led to the above conclusion also generally
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exhibit the SASI, with outcomes ranging from convection-
dominated flows to SASI-dominated flows, as well as flows
where neither dominates. The three-dimensional simulations of
O’Connor & Couch (2018a), Summa et al. (2018), and
Matsumoto et al. (2022) have reported strong SASI activity
—and in some cases, SASI-aided explosions. A more precise
determination of the relative role played by these two
instabilities in the explosion mechanism, on a case-by-case
basis (i.e., for different progenitor characteristics; e.g., see
Scheck et al. 2008; Hanke et al. 2012, 2013; Couch &
O’Connor 2014; Fernandez et al. 2014; Abdikamalov et al.
2015; Fernandez 2015; Melson et al. 2015a), will require
advances in current three-dimensional models to include full
general relativity (GR), rotation, magnetic fields, and the
requisite neutrino interaction physics with realistic spectral
neutrino kinetics, all at high spatial resolution. It is also
important to note that, while convection-dominated and SASI-
dominated scenarios may lie at the extremes of what is
possible, it is not necessary for one or the other instability to be
dominant in order to play an important role—specifically, for
the more complex cases where neither dominates, it would be
very difficult to determine precisely the relative contribution
from these two instabilities.

Several studies have concluded that the SASI is an
advective-acoustic instability, in which vortical waves gener-
ated at the shock advect to the surface of the PNS, which in
turn generate acoustic waves that propagate back to the shock
and further perturb it (Foglizzo et al. 2006, 2007; Lam-
ing 2007, 2008; Yamasaki & Yamada 2007; Foglizzo 2009;
Guilet & Foglizzo 2012). This perturbation generates more,
stronger, vortical waves, which advect to the PNS surface, thus
creating a feedback loop that drives the instability. An
alternative explanation for the SASI is the purely acoustic
mechanism, in which acoustic perturbations just below the
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shock travel around the post-shock region and constructively
interfere with each other, generating stronger acoustic pertur-
bations and thereby feeding the instability (Blondin &
Mezzacappa 2006). A recent study (Walk et al. 2023) suggests
that the acoustic mechanism may play a particularly important
role in the SASI when rotation is included, implying that the
origins of the SASI excitation may depend on conditions
between the shock and the PNS.

Other numerical studies focus on particular aspects of this
instability, such as the hydrodynamics of the SASI (Ohnishi
et al. 2006; Sato et al. 2009; Iwakami et al. 2014), spiral modes
(Blondin & Shaw 2007; Iwakami et al. 2008; Fernandez 2010),
the spin-up of the possible remnant pulsar (Blondin &
Mezzacappa 2007), the effect of nuclear dissociation (Fernan-
dez & Thompson 2009), saturation of the instability (Guilet
et al. 2010), the generation and amplification of magnetic fields
(Endeve et al. 2010, 2012), the relative importance of the SASI
and convection in CCSNe (Cardall & Budiardja 2015), the
generation of, and impact on, gravitational waves by the SASI
(Kotake et al. 2007, 2009; Kuroda et al. 2016, 2017;
Andresen 2017; Andresen et al. 2017, 2019; Hayama et al.
2018; O’Connor & Couch 2018a; Mezzacappa et al.
2020, 2023; Drago et al. 2023), and the effects of rotation
(Yamasaki & Yamada 2005; Yamasaki & Foglizzo 2008;
Buellet et al. 2023; Walk et al. 2023). Some of these studies
included sophisticated microphysics, such as realistic equations
of state (EoSs) and neutrino transport; however, with the
exception of Kuroda et al. (2017), none of these studies solved
the general relativistic hydrodynamics (GRHD) equations,
instead solving their nonrelativistic (NRHD) counterparts,
some with an approximate relativistic gravitational potential.
It has been demonstrated that GR effects are crucial to include
in CCSN simulations (Bruenn et al. 2001; Lentz et al. 2012;
Miiller et al. 2012; O’Connor & Couch 2018b), yet the SASI
itself has not been fully investigated in the GR regime. A recent
paper (Kundu & Coughlin 2022) does analyze steady-state
accretion through a stationary shock onto compact objects in a
Schwarzchild geometry and compares with Newtonian solu-
tions, and posits that GR may have a non-negligible impact on
the SASI. They find that, for conditions expected in exploding
CCSNe, the freefall speed is of order v ~ 0.2¢ (with c the speed
of light), and the differences between the GR and NR solutions
are on the order of 10%. For conditions expected in failed
CCSNe (i.e., supernovae where the shock is not revived, in
which case the freefall speed can be v ~ 0.66¢), the differences
can be larger.

The timescales that likely influence the SASI depend on
signal speeds associated with advective and acoustic modes in
the region between the shock and the PNS surface (Blondin &
Mezzacappa 2006; Foglizzo et al. 2007; Miiller 2020).
Motivated in part by Dunham et al. (2020) and Kundu &
Coughlin (2022), we expect SASI simulations to behave
differently depending on whether or not the treatment of the
hydrodynamics and gravity are general relativistic. Indeed,
Dunham et al. (2020) presented GR steady-state solutions and
presented preliminary results from GR SASI simulations, but
did not compare results from NR and GR simulations.
Specifically, we expect both advective and acoustic modes to
be influenced by the different post-shock structure in the GR
case relative to the NR case.

This leads to our main science question: How does a general
relativistic treatment of hydrodynamics and gravity affect the
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oscillation period and growth rate of the SASI? To begin to
address this, we present the first comparison of the SASI in
both a nonrelativistic and a general relativistic framework,
using an idealized model with four compactnesses, meant to
span the range of conditions expected in CCSN simulations.
We focus our attention on the linear regime and characterize
the SASI by its growth rate and oscillation period, as was done
in Blondin & Mezzacappa (2006). To capture both the linear
regime of the SASI and its transition to the nonlinear regime,
we perform our assessment via seven axisymmetric numerical
simulations using GRHD and GR gravity, with the PNS
represented by a point mass and gravity encoded in a
Schwarzchild spacetime metric. To better assess the impact
of GR, we also perform simulations using the same parameter
sets but with NRHD and Newtonian gravity, again with the
PNS represented by a point mass, but in this case gravity is
encoded in the Newtonian potential. We will often use “NR” to
refer to the case of Newtonian gravity and NRHD.

We use a system of units in which ¢ = G =1 and also make
use of the Einstein summation convention, with Greek indices
running from O to 3 and Latin indices running from 1 to 3.

2. Physical Model
2.1. Relativistic Gravity: Conformally Flat Condition

We use the 3+1 decomposition of spacetime (see, e.g.,
Banyuls et al. 1997; Gourgoulhon 2012; Rezzolla &
Zanotti 2013, for details), which, in the coordinate system
x = (¢, x'), introduces four degrees of freedom: the lapse
function, a/(x), and the three components of the shift vector,
B'(x). We further specialize to the conformally flat condition
(CFC; Wilson et al. 1996), effectively neglecting the impact of
gravitational waves on the dynamics. This is a valid
approximation when the CCSN progenitor is nonrotating
(Dimmelmeier et al. 2005), as is the case for our simulations.
The CFC forces the components of the spatial three-metric,
% (x), to take the form

Vi = P Yijs » (1)
where 1 (x) is the conformal factor and the 7, are the
components of a time-independent, flat-space metric. We
choose an isotropic spherical-polar coordinate system, as it is

appropriate to our problem and is consistent with the CFC; the
flat-space metric is

i (r, 0):=diag(1, r?, r* sin®0), )

and the lapse function, conformal factor, and shift vector take
the form given in Baumgarte & Shapiro (2010):

_ o 1 — RSc/r
a(t, r, 0, ¢) = a(r):= 1T Re/r T Rer 3)
¢(I’ r, 97 QD) :w(”)zl +RSC/r’ (4’)
B, r, 0, ) = B'(r):=0, )

where r > Rg. is the isotropic radial coordinate measured from
the origin and Rgs.:=M/2 is the Schwarzchild radius in
isotropic coordinates for an object of mass M. The line element
under a 3+1 decomposition in isotropic coordinates takes the
form

ds? = —a? di* + ~; dx' d. (6)
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We note here that the proper radius, R(r), corresponding to the
coordinate radius, r > Rs., is defined by

R(r):= j;:s Jmdr' =r — Rszc/r
+ 2 Ry lOg (r/RSc) Z, )

where we used Equations (1) and (2) with 1 given by
Equation (4). Under the CFC, the square root of the
determinant of the spatial three-metric is
V7 =8 7 = r?siné. (8)
Our choice of isotropic coordinates is consistent with our
implementation of general relativistic hydrodynamics in the
CFC approximation. Our comparison of the Newtonian and
general relativistic results is conducted within this gauge. (In
practice, the hydrodynamics equations in the Newtonian limit
in the isotropic gauge are identical in form to the standard

Newtonian hydrodynamics equations, and we were able to run
our NR simulations with our Newtonian hydrodynamics code.)

2.2. Relativistic Hydrodynamics

We solve the relativistic hydrodynamics equations of a
perfect fluid (i.e., no viscosity or heat transfer) in the Valencia
formulation (Banyuls et al. 1997; Rezzolla & Zanotti 2013), in
which they take the form of a system of hyperbolic
conservation laws with sources. Under our assumption of a
stationary spacetime, the equations can be written as

1 .
U+ — F)=as, )
G a Y o

where U:=U(t, r, 0, ¢) is the vector of evolved fluid fields,

D pW
U:[sj] - ph W2y, , (10)
T phW*—p—pW

Fi:=F{(U) is the vector of fluxes of those fields in the ith
spatial dimension,

DV
F' = P} , an
St — D!
and §:=S(U) is the vector of sources,
0
S = %P”‘ ;v — ol (T + D), a |, (12)
—a”187 9, «

where D is the conserved rest-mass density, §; is the
component of the Eulerian momentum density in the jth spatial
dimension, and 7:= E — D, with E the Eulerian energy density.
The component of the fluid three-velocity in the jth spatial
dimension is denoted by v/, and W := (1 — viy) /2 is the
Lorentz factor of the fluid, both as measured by an Eulerian
observer. The relativistic specific enthalpy as measured by
an observer comoving with the fluid; i.e., a comoving observer,
is h:=1+4 (e + p)/p, where p is the baryon mass
density, e is the internal energy density, and p is the thermal
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pressure, all measured by a comoving observer. Finally,

Pl=ph W?viv +p~Y with ~Y the inverse of Yijs 1.€.,

Wikfykj = 6"]-. See Rezzolla & Zanotti (2013) for more details.
We close the hydrodynamics equations with an ideal EoS,

pe) = ([T = De, (13)

where I' € (1, 2] is the ratio of specific heats. For this study,
we set I'=4/3. We further assume the EoS is that of a
polytrope; i.e.,

p(p) =K p, (14)

where K > 0 is the polytropic constant, whose logarithm can be
considered a proxy for the entropy, S; i.e., S o log (p/p"). The
constant K takes different values on either side of a shock, in
accordance with physically admissible solutions. Equation (14)
is consistent with Equation (13) through the first law of
thermodynamics for an isentropic fluid.

2.3. Nonrelativistic Hydrodynamics

Under the 3+1 formalism of GR and the CFC, the effect of
gravity is encoded in the metric via the lapse function, the
conformal factor, and the shift vector, whereas with Newtonian
gravity, the metric is that of flat space and the effect of gravity
is encoded in the Newtonian gravitational potential, ®,

O(r) = —M. 15)
r
Of course, the NRHD equations can be recovered from the
GRHD equations by taking appropriate limits; i.e., v'v; < 1, p,
ek p, and ® <1, and setting a~ang:=1+P and =
1—®/2.
In the case of Newtonian gravity and NRHD, we solve

1

0;U + 8,-(ﬁ F) =S, (16)
r Nej
where
o
D PV
v=|s(=| : (17)
E e+ —pviy
pv
Fi = P; , (18)
(E + p)'
and
0

1.
S = EP’kaﬁik—p@-@, (19)

5/ 9@

where P¥:= p vi v/ + p 7V and we assume @ is due only to the
point-source PNS,

O(r) = —Mexs (20)
r
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3. Steady-state Accretion Shocks

We take initial conditions for our simulations from steady-
state solutions to Equations (9) (GR) and (16) (NR). To
determine the steady-state solutions, we assume the fluid
distribution is spherically symmetric and time-independent.
Following Blondin et al. (2003), we consider a stationary
accretion shock located at r = Ry, with a PNS mass Mpys, PNS
radius Rpns, and a constant mass accretion rate M > 0. We
assume a polytropic constant ahead of the shock,
K =2 x 10"[(erg cm3) /(g cm—3)*/3], chosen so that the
pre-shock flow is highly supersonic (all of our models have a
pre-shock Mach number greater than 15). Given that our
steady-state solutions have constant entropy between the PNS
surface and the shock, they are convectively stable. This
enables us to isolate the SASI and study its development.

3.1. Relativistic Steady-state Solutions

Focusing on the equation for D, we find (temporarily
defining v=v"),

a W x dn r’pv = —M. 1)

Manipulation of the equations for D and 7 in Equation (9)
yields the relativistic Bernoulli equation,

ahW=5, (22)

where B > 0 is the relativistic Bernoulli constant. At spatial
infinity, the fluid is assumed to be at rest and the spacetime
curvature negligible, so ., =W, =1. Further, at spatial
infinity, we assume the fluid to be cold; i.e., (e + p)/p < 1, so
that A.,=1 and B, = 1. Because B is a constant, B =1
everywhere.

Given K, Equations (14), (21), and (22) (with B = 1) form a
system of three equations in the three unknowns, p, v, and p.
From initial guesses vy = —+/2 Mpns/r, py = —M /(47 1% w),
and p, = K pg, the first two of which are obtained from the
Newtonian approximation at a distance r > Ry, for highly
supersonic flow, we define dimensionless variables u;:=p/ po,
Uy:=v /vy, and u3:=p/po. These are substituted into the system
of equations, which are then solved with a Newton—Raphson
algorithm to determine the state of the fluid everywhere ahead
of the shock. To join the pre- and post-shock states of the fluid
at r = Ry, we apply the relativistic Rankine—Hugoniot jump
conditions (i.e., the Taub jump conditions, Taub 1948) to
obtain p, v, and p just below the shock. Once the state of the
fluid just below the shock is found, the polytropic constant for
the post-shock fluid is computed with Equation (14) and the
same system of equations is solved for the state of the fluid
everywhere below the shock.

3.2. Nonrelativistic Steady-state Solutions

The steady-state solution method for the nonrelativistic case
(taken from Blondin et al. 2003) follows a procedure similar to
that used in the relativistic case, except we begin from the NR
equations for mass density and energy density,

L

Vi

O p+ (7 pv) =0, (23)
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NE+ = OLJTE+pvl=—pvio @, (24)

Nal

where E:=¢ + % P v v/, From these, and making the same
assumptions as in the relativistic case, we arrive at a system of
two equations for the three unknowns, p, v=v’, and p,

Ar 2 pv = —M, (25)
1
> v + hng + @ = Bag, (26)

with hyg =h — 1 = (e + p)/p being the nonrelativistic
specific enthalpy and Byr the nonrelativistic Bernoulli
constant. Following Blondin et al. (2003), we set Byg = 0.
As in the GR case, we close this system with Equation (14).

In the nonrelativistic limit, a~ 1+ ® and W ~ 1 + % viv;
substituting these into Equation (22) yields, to leading order,
1 4+ Bng, in agreement with Equation (26).

3.3. Comparison of NR and GR Steady-state Solutions

For the two lower-compactness cases (see Equation (33))
(e.g., see Bruenn et al. 2013; Melson et al. 2015b; Burrows
et al. 2020), Figure 1 shows steady-state accretion shock
solutions as functions of coordinate distance r. (It should be
noted that, in Figures 1 and 2, for additional information, the
steady-state solutions are plotted from the shock all the way
down to r=3km. For our numerical simulations, the inner
boundary is placed at Rpys € {20, 40} km, which then defines
the compactness of our models.)

In general, the magnitudes of the density, velocity,
and pressure just below the shock decrease as the shock radius
increases (e.g., see Equations (1)—(3) in Blondin et al. 2003).
From the top right panel of Figure 1, it can be seen that the
velocities in the GR and NR cases agree well near the shock
and deviate from each other for smaller radii, with the velocity
being smaller in the GR case than in the NR case. The top left
and bottom left panels show that the densities and pressures in
the GR case are larger than their NR counterparts at smaller
radii. The slope of the NR density profile matches expectations
of p(r) o< =3 (Blondin et al. 2003), but the GR density profile
deviates noticeably from this as the inner boundary is
approached. From the bottom right panel, it can be seen that
the lapse function and its Newtonian approximation begin to
deviate from each other near r =40km, with the degree of
deviation increasing for smaller radii.

For the two higher-compactness cases (e.g., see Liebendorfer
et al. 2001; Walk et al. 2020), Figure 2 shows steady-state
accretion shock solutions as functions of coordinate distance r.
The profiles show the same trends as those in Figure 1,
although in this case the trends are more pronounced. One
notable difference is that the location of the largest deviation in
the velocity between the NR and GR cases occurs further in,
near » = 12 km. Another notable feature of both Figures 1 and
2 is that the fluid velocity in the GR case is consistently slower
than that in the NR case, in agreement with Kundu &
Coughlin (2022).

We compare our numerical results with an estimate provided
by Miiller (2020), which provides an analytic estimate of the
oscillation period of the SASI, T,,, based on the assumption
that the SASI is an advective-acoustic cycle, in which a fluid
parcel advects from the shock to the PNS surface in time 7,4,
which generates acoustic waves that propagate from the PNS
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Figure 1. Post-shock, steady-state solutions for GR (solid) and NR (dashed) equations as functions of coordinate distance r € [3 km, Rg,] for three models having the
same accretion rate of 0.3 M, s !, the same PNS mass of 1.4 M., and shock radii 120 km (blue), 150 km (orange), and 175 km (green). For this PNS mass, the
Schwarzchild radius is ~1 km. Quantities defined just ahead of the shock are denoted with a subscript “1.” The top left panel shows the comoving baryon mass density
normalized to its value just ahead of the shock, the top right panel shows the radial component of the fluid three-velocity normalized to its value just ahead of the
shock, the bottom left panel shows the comoving pressure normalized to the Newtonian ram pressure just ahead of the shock, p, vZ, and the bottom right panel shows
the lapse function (solid) and the Newtonian approximation to the lapse function (dashed), 1 + @, with ® the Newtonian gravitational potential, normalized to their
values at the shock.
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Figure 2. Post-shock, steady-state solutions for GR (solid) and NR (dashed) equations as functions of coordinate distance r € [3 km, Rg,] for three models having the
same accretion rate of 0.3 M, s~ ', one having a PNS mass of 1.8 M, and a shock radius of 70 km (blue), and the other two having PNS mass 2.8 M, and shock radii
60 km (orange) and 70 km (green). For the 2.8 M., PNS models, the Schwarzchild radius is ~2.1 km. Quantities defined just ahead of the shock are denoted with a
subscript “1.” The top left panel shows the comoving baryon mass density normalized to its value just ahead of the shock, the top right panel shows the radial
component of the fluid three-velocity normalized to its value just ahead of the shock, the bottom left panel shows the comoving pressure normalized to the Newtonian
ram pressure just ahead of the shock, p, vZ, and the bottom right panel shows the lapse function (solid) and the Newtonian approximation to the lapse function
(dashed), 1 4+ @, with ® being the Newtonian gravitational potential, normalized to their values at the shock.

surface to the shock in time 7,.. We modify that formula to relativistic counterparts,

include the effects of GR by including the metric factor, which

1nvol\{es the conformal factor and. coqverts t.he radial Rexs [T dr Ra [T dr

coordinate increment to the proper radial distance increment, Toa & Tad + Tac = f e + f —r 27
Rsn 0 Rpns +

and by replacing the nonrelativistic signal speeds with their
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Figure 3. Ratio of radial GR acoustic signal speed to radial NR acoustic signal speed (solid), ratio of angular GR acoustic signal speed to angular NR acoustic signal
speed (dashed), and ratio of radial GR advective signal speed to radial NR advective signal speed (dotted), plotted as functions of 7 for all models. Lower-compactness
models are shown in the top panel, and higher-compactness models are shown in the bottom panel. All signal speeds have been multiplied with the appropriate scale

factors.

where Ay and X/ are the radial signal speeds of matter and
acoustic waves, respectively. Using our metric, the signal
speeds are (Rezzolla & Zanotti 2013)

it turns around (Hansen et al. 2004). We delay the specification
of R,. until Section 5.

In Figure 3, we plot \;O% /ARNR\GR /NONR “and \RGR /\5NR
as functions of 7, defined as

NR
= = yr, 28
A=Y @9 00) = (r — Roxs)/(Ray — Res). (32)
Ny = e (7 = ) e T =) v = DI S (29)

s

where c; is the sound-speed and the second equality in each
expression is the nonrelativistic limit. For 1D problems, this
expression depends only on the steady-state values of ¢; and v".
We also compare our results with an estimate based on the
assumption that the SASI is a purely acoustic phenomenon. We
define a time, T, as the time taken by an acoustic perturbation
to circumnavigate the post-shock cavity at a characteristic

radius R, assuming v/ < ¢ /7?2,

Toe =27 Ryc/(hg \%), (30)

where

for all of our models. In all cases, the signal speeds are slower
in the GR case. This difference is accentuated in the higher-
compactness models and for smaller radii.

The growth rate of the SASI depends on the steady-state
conditions below the shock; however, obtaining an analytic
estimate for this is difficult, and although there have been
efforts to explain the physics governing the growth rate
assuming nonrelativistic models (e.g., Blondin & Mezza-
cappa 2006; Foglizzo et al. 2007; Laming 2007, 2008;
Foglizzo 2009; Guilet & Foglizzo 2012), an analytic estimate
remains an open question and no estimate exists for a GR
model. Here, we aim to compare the NR and GR growth rates
with numerical simulations.

0 «
AL = p
1 — vy ¢

s

is the acoustic wave speed in the # dimension (Rezzolla &
Zanotti 2013) and Ay is the scale factor in the 6 dimension. The
expression for T, is inspired by the Lamb frequency, which
relates the frequency of an acoustic wave to the radius at which

S 00— D) + oy — v 2

— v D) — vl — DI} =Vt e/, 31)

We emphasize that our goal is to characterize the SASI in
terms of its period and growth rate, and to compare their GR
and NR values. Determining its physical origin, whether it be
advective-acoustic or purely acoustic, is beyond the scope of
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Table 1
Model Parameters
Model Mpns Rens R 3
M) (km) (km)
M1.4_Rpns070_Rshl.50e2 1.4 70 150 0.4
M1.4_Rpns040_Rshl.20e2 1.4 40 120 0.7
M1.4_Rpns040_Rshl.50e2 1.4 40 150 0.7
M1.4_Rpns040_Rshl.75e2 1.4 40 175 0.7
M1.8_Rpns020_Rsh7.00el 1.8 20 70 1.8
M2.8_Rpns020_Rsh6.00el 2.8 20 60 2.8
M2.8_Rpns020_Rsh7.00el 2.8 20 70 2.8

Note. Model parameters chosen for the seven models. All models were run with both GR and NR.

this study. The rough estimates provided by Equations (27) and
(30) are merely intended as points of reference for our
numerically determined values.

4. Simulation Code and Setup

We perform our simulations with thornado,® an open-
source code under development, aiming to simulate CCSNe.
thornado uses high-order discontinuous Galerkin (DG)
methods to discretize space and strong-stability-preserving
Runge—Kutta (SSP-RK) methods to evolve in time. For
details on the implementation in the nonrelativistic case,
see Endeve et al. (2019) and Pochik et al. (2021); for the
relativistic case, see Dunham et al. (2020) and S. J. Dunham
et al. (2024, in preparation). All of our simulations use the
HLL Riemann solver (Harten et al. 1983), a quadratic
polynomial representation (per dimension) of the solution
in each element, and third-order SSP-RK methods for
time integration (Gottlieb et al. 2001) with a time step
At:= CCFmein,-e“ ) Axi/l)\i|, where Ccp =0.5 is
the CFL number, k the degree of the approximating polynomial
(in our case, k=2), Ax' the mesh width in the ith dimension,
A’ the fastest signal speed in the ith dimension, and d the
number of spatial dimensions (Cockburn & Shu 2001).

Two important aspects of successful implementations of the
DG method are mitigating spurious oscillations and enforcing
physical realizability of the polynomial approximation of the
solution. To mitigate oscillations, thornado uses the minmod
limiter and applies it to the characteristic fields (see, e.g.,
Shu 1987; Pochik et al. 2021). For the interested reader, we set
the Bryp parameter for the limiter, defined in Pochik et al.
(2021), to 1.75 for all runs. thornado also uses the troubled-
cell indicator described in Fu & Shu (2017) to decide on which
elements to apply the minmod limiter; for the threshold of that
indicator, we use the value 5 x 107>, To enforce physical
realizability of the solution in the NR case, thornado uses
the positivity limiter described in Zhang & Shu (2010), and in
the GR case, it uses the limiter described in Qin et al. (2016); for
the thresholds of both limiters, we use the value 10713,

The hydrodynamics in thornado has recently been
coupled to AMReX,” an open-source software library for
block-structured adaptive mesh refinement and parallel com-
putation with MPI (Zhang et al. 2019); however, our
simulations are all performed on a uni-level mesh.

Our computational domain, D, is defined for all models as
D = [Rpns, 1.5 Ry, (t = 0)] x [0, «]. The radial extent allows

 hups: //github.com/endeve /thornado

" htps:/ /github.com/AMReX-codes /amrex

us to determine whether or not the SASI has become nonlinear,
which we define to be when any radial coordinate of the shock
exceeds 10% of the initial shock radius. All simulations are
evolved sufficiently long to achieve ten full cycles of the SASI.
In some cases, the shock exceeds our threshold of nonlinearity
before completing ten full cycles; in those cases, we only use
data from the linear regime.

The PNS is treated as a fixed, spherically symmetric mass in
order to maintain a steady state, and we ignore the self-gravity
of the fluid. Because the largest accretion rate we consider is
0.5M_ s, and because this lasts for a maximum of 550 ms in
our 2D models, the most mass that would accrete onto the PNS
is 0.275 M. Therefore, it would provide a subdominant
contribution to Mpys in our simulations.

We consider models with three free parameters: the mass of
the PNS, Mpys, the radius of the PNS, Rpys, and the initial
radius of the shock, Ry,. We also varied the mass accretion rate,
M, but found the oscillation periods and growth rates to be
insensitive to this parameter, and we do not discuss
these models further; all following discussion is for models
with an accretion rate M = 0.3 M, s~'. Our choice of
parameters is motivated by the physical scale of CCSNe; the
ranges of our parameter space are informed by models from
Liebendorfer et al. (2001), Bruenn et al. (2013), Melson et al.
(2015b), Burrows et al. (2020), and Walk et al. (2020), and can
be found in Table 1. We also classify our simulations by their
compactness, &, which we define as (O’Connor & Ott 2011)

M/M,

=— (33)
Rpns/ (20 km)

In our model-naming convention, we first list whether
the model used GR or NR along with the dimensionality
(1D or 2D), followed by the mass of the PNS in Solar
masses, the radius of the PNS in kilometers, and finally
the shock radius in kilometers; e.g., the 2D GR model with
Mpns =14 M, Rpns =40km, and Ry, = 150km is named
GR2D_M1.4_Rpns040_Rshl.50e2. If we compare an NR
model with a GR model having the same parameters, we may
drop that specification from the model name. If no confusion
will arise, we may also drop the dimensionality.

The inner radial boundary corresponds to the surface of the
PNS. To determine appropriate inner-boundary conditions in
the GR case, we assume D and 7 follow power laws in radius;
from the initial conditions, we extrapolate D and 7 in radius
using a least-squares method with data from the innermost five
elements on the grid to determine the appropriate exponents.
The radial momentum density interior to Rpys 1S kept fixed to
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Figure 4. Relative deviation of the shock radius from its initial location vs. #/7,4 for different radial resolutions dr for model GR1D_M1.4_Rpns040_Rshl.20e2

(top panel) and model GR1D_M2.8_Rpns020_Rsh6.00el (bottom panel).
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Figure 5. Maximum, at each snapshot,
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of the absolute value of the normalized time derivative of the mass
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density vs. #/7,q for model

GR1D_M1.4_Rpns040_Rshl.20e2 (top panel) and model GR1D_M2.8_Rpns020_Rsh6.00el (bottom panel).

its initial value. We leave the outer radial boundary values fixed
to their initial values for all fields. In the polar direction, we use
reflecting boundary conditions at both poles. For the inner-
boundary conditions in the nonrelativistic case, we assume
p(r) oc r~3 and E(r) ox r—*, the latter of which follows from
our assumption of px r3, Equations (13) and (14), the
assumption of I' = 4/3, and the assumption of a small velocity
at the PNS surface.

For the £ € {0.4, 0.7} models, we enforce a radial resolution
of 0.5 km per element for all runs, which we found necessary
for the shock in an unperturbed model to not deviate by more
than 1% over 100 advection times. This is shown in the top
panel of Figure 4, which plots the relative deviation of the

shock radius from its initial position as a function of #/7,4 for
runs with different radial resolutions for model GR1D_M1.4_
Rpns040_Rshl.20e2. These results suggest that the steady
state is not maintained if the radial resolution is too coarse; e.g.,
greater than about 1 km.

For the £ € {1.8, 2.8} models, we enforce a radial resolution
of 0.25km per element for all runs in order to maintain the
same radial resolution of the pressure scale height, p |dp/dr |,
as in the ¢ € {0.4, 0.7} models, while also ensuring that the
shock does not deviate from its initial location by more than
1%. This can be seen in the bottom panel of Figure 4, which
plots the same quantity as the top panel, but for model
GR1D_M2.8_Rpns020_Rsh6.00el.
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To verify that our chosen angular resolution of 64 elements
(~2°8) is sufficient to resolve the angular variations of the
fluid, we run two additional simulations of model
NR2D_M2.8_Rpns040_Rshl.20e2, one with 128 angular
elements and one with 256 angular elements. From those runs,
we extract the best-fit values for the growth rates and
oscillation periods (see Section 5) and find them to not
significantly differ from those of the run with 64 angular
elements.

Our simulations are initialized with the steady-state solutions
discussed in Section 3, and we take extra care to minimize
initial transients. The initial conditions we obtain come from
solving Equations (14), (21), and (22) in the GR case, and
Equations (14), (25), and (26) in the NR case, which are not
exact solutions of our discretized equations, so transients will
be present when simulations are initialized with these solutions.
To mitigate the effects of the transients, the fields are set up in
1D with the method described above and then evolved for 100
advection times, which was experimentally determined to be of
sufficient duration to quell any transients. We verify that the
system has achieved a steady state by plotting, in Figure 5, the
maximum, at each snapshot, of the absolute value of the
normalized time derivative of the mass density versus #/7,q for
model GR1D_M1.4_Rpns040_Rshl.20e2 (top panel) and
model GR1D_M2.8_Rpns020_Rsh6.00el (bottom panel);
other models exhibit similar behavior. For example, in the top
panel, it can be seen that the model settles down after
approximately 35 advection times, followed by two slight
increases near 45 and 50 advection times, then it settles down
until we end the simulation after 100 advection times. We
attribute the two slight increases to limiters activating when the
shock crosses an element boundary.

The relaxed 1D data is mapped to 2D, a perturbation to the
pressure is applied (see below), and the system is evolved. The
initial relaxation in 1D removes numerical noise and allows for
a smaller perturbation amplitude, leading to a longer-lasting
linear regime, which makes for a cleaner signal.

We seed the instability by imposing a pressure perturbation
onto the steady-state flow below the shock,

p(r,0) =p@r) + op(r, ), (34)

with p(r) being the steady-state pressure at radius r, and where
ép(r, 0)/p(r) is defined in a scale-independent manner as

_ _ 2
0 o exp(__Eﬂ__Eﬂﬁl—)COSQ, (35)

p(r) 20

with 7 defined in Equation (32), and where 7. =0.75 and
0 =0.05. The perturbation is not allowed to extend into the
pre-shock flow. We opted to perturb the post-shock flow as
opposed to the pre-shock flow after having tried various pre-
shock and post-shock perturbations and finding that pre-shock
perturbations generate noise when they cross the shock front,
thus creating a noisy signal and making it more difficult to
extract quantities of interest. Similarly, we choose a Gaussian
profile because the smoothness of the profile generates less
noise than, e.g., a top-hat profile. The cos 6 factor is meant to
excite an {=1 Legendre mode of the SASI. While this
perturbation method does not exactly mimic the hydrody-
namics inside a CCSN, it is sufficient to study the SASI in the
linear regime.

Dunham et al.

5. Results and Discussion

Here, we discuss our analysis methods and compare the
SASI growth rates and oscillation periods for our seven models
in GR and NR.

5.1. Analysis Methods

To extract SASI growth rates from our simulations, we
follow Blondin & Mezzacappa (2006) and expand a quantity
affected by the perturbed flow, A(z, r, §), in Legendre
polynomials,

A, r, 0) = i Gy(t, r)Ps(cos 0), (36)
=0

where we normalize the P, such that
[ R = b, (37)
with &y the Kronecker delta function. Then,
Gy(t, r):= f_ll A(t, r, 0)Py(cos B)d (cos 0)
= j; " A(t, r, 0)Py(cos 0) sin 0 db. (38)

After experimenting with several quantities, we decided to use
the quantity proposed by Scheck et al. (2008),

i(v”(t, r, 8)sinf), (39)

A(t, r, 0) :=
@ r.6) sinf 00

where v is the fluid velocity in the polar direction as measured
by an Eulerian observer, having units of rad s~ ! With Gy, we
compute the power in the fth Legendre mode, H,(t), by
integrating over a shell below the shock, bounded from below
by r, = 0.8 Ry, and from above by r, = 0.9 Ry,,

Hewy = 77 7 [ 1Gete, NP [ (172 sin 6 dr df dip

= 4n ["1Ge(t, NPV dr.
(40)

For the Newtonian runs, ¥ =1. We experimented with
different values of r, and 7, and found that a thin shell just
below the shock gave the cleanest signal.

To extract the SASI growth rate and oscillation period from
H,, we begin by fitting the simulation data to the function
(Blondin & Mezzacappa 2006)

Fi(t) = F e*¥!sin? (2% t+ 5), (41)

where w is the growth rate of the SASI, T is the oscillation
period of the SASI, F is an amplitude, and ¢ is a phase offset.
We fit the data to the model using the Levenberg—Marquardt
nonlinear least-squares method (e.g., see Moré 1978), provided
by scipy’s curve_fit function, which also provides an
estimate on the uncertainty of the fit via the diagonal entries of
the covariance matrix; we use this to define the uncertainty in
the growth rate. The temporal extent over which we perform
the fit is defined to begin after one SASI oscillation and to end
after seven SASI oscillations, where, for simplicity, we use
Equation (27) to define the period of one SASI oscillation.
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Figure 6. Amplitudes of Fourier transforms of Equation (42), normalized by their largest values, as functions of 7' in ms, where T is the inverse of the frequency
returned by the FFT. The compactness of each model is shown in the bottom of its respective panel. NR results are shown in blue, and GR results are shown in orange.

The period we report is obtained by performing a Fourier
analysis: We integrate the lateral flux in the radial direction,
Ff,’:ﬁpv’w;xahwzl\gﬁpv’ve, (42)
from r, to r;, (defined as in the computation of the H,), integrate
the result over S?:={(0, p) € R?0 € [0, 7], ¢ € [0, 2m)},
and then take the Fourier transform of that result using the
fft tool from scipy. From the result, F; (T), we define the
period of the SASI as the value of T corresponding to the peak
of the Fourier amplitudes, and we define the uncertainty in the
period as the full width at half maximum of the Fourier
amplitudes. The FFT is computed over the same time interval
as the aforementioned fit. (We do not use the period returned
from curve_fit because, for some models, pollution from
higher-order modes spoils the ability of our fitting function to
capture the /=1 mode.)

5.2. Overall Trends

Here, we discuss trends that appear across our models. We
summarize our results in Table 2, which lists the model, the
best-fit oscillation period and uncertainty, the best-fit growth
rate and uncertainty, the product of the best-fit growth rate and
best-fit oscillation period, the period assuming an advective-
acoustic mechanism, T,, (estimated using Equation (27)), and
the period assuming a purely acoustic mechanism, T,
(estimated using Equation (30)). When using Equation (30),

10

we choose the characteristic radius R,. to be 0.85 R,, which is
the midpoint of the shell in which we compute the power.

As a first general trend, we see that, for a given PNS radius,
the oscillation period increases as the shock radius increases, as
seen clearly in the second column of Table 2. This is expected,
for as the shock radius increases, the waves supported by the
fluid must traverse a larger region, and therefore each cycle will
take longer. As a second general trend, we observe that, for a
given PNS radius, the growth rate decreases as the shock radius
increases.

5.3. Impact of GR

Next, we discuss the impact of GR on the oscillation period
and the growth rate.

5.3.1. Oscillation Period

First, we discuss how the oscillation period varies with PNS
compactness and shock radius. In Figure 6, we plot the
amplitudes of the Fourier transform of Equation (42), Fgr,
versus T for four models, where T is defined as the inverse of
the frequency determined by the FFT. No windowing was
applied when computing the FFT of the signal.

We see that the difference in the optimal period, 7' (defined
as the T associated with the largest Fourier amplitude),
between NR and GR increases with increasing compactness,
with the GR period being consistently longer than the NR
period. This can be explained by differences in the structure of
the post-shock solutions; in particular, the signal speeds, which
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Figure 7. SASI oscillation period in ms as a function of PNS compactness (dimensionless) and shock radius in km, as determined by the FFT (see text for details). NR
results are shown in open squares and GR results are shown in solid squares, with different colors corresponding to different compactnesses.

Table 2

Results
Model T+ AT w+ Aw wT T T

(ms) (ms)~! (ms) (ms)

NR_M1.4_Rpns070_Rsl.50e2 25.5566 4+ 21.1850 0.0631 £ 0.0011 1.6123 20.9559 36.6791
GR_M1.4_Rpns070_Rsl.50e2 30.3854 4+ 21.5598 0.0603 =+ 0.0009 1.8313 22.6462 37.4293
NR_M1.4_Rpns040_Rsl.20e2 24.6398 + 15.6904 0.0733 4+ 0.0011 1.8054 20.8348 26.2646
GR_M1.4_Rpns040_Rsl.20e2 27.2758 + 16.6796 0.0578 4+ 0.0011 1.5758 23.6236 26.9372
NR_M1.4_Rpns040_Rsl.50e2 37.3656 + 23.4864 0.0409 + 0.0005 1.5291 34.3279 36.6791
GR_M1.4_Rpns040_Rsl.50e2 42.9166 £ 22.4149 0.0360 £ 0.0004 1.5461 38.6747 37.4293
NR_M1.4_Rpns040_Rsl.75e2 51.5463 + 29.2280 0.0300 4+ 0.0003 1.5468 47.7212 46.0841
GR_M1.4_Rpns040_Rsl.75e2 58.6525 + 28.1381 0.0265 4 0.0003 1.5540 53.5372 46.8924
NR_M1.8_Rpns020_Rs7.00el 9.8537 £ 5.1860 0.1524 £+ 0.0039 1.5016 9.2361 10.3138
GR_M1.8_Rpns020_Rs7.00el 12.0565 4 4.6944 0.1031 £ 0.0022 1.2429 12.6159 10.9053
NR_M2.8_Rpns020_Rs6.00el 6.1939 + 3.7227 0.2910 4+ 0.0085 1.8027 5.2343 6.5656
GR_M2.8_Rpns020_Rs6.00el 7.5296 4 2.5224 0.1365 £ 0.0042 1.0282 8.6607 7.2635
NR_M2.8_Rpns020_Rs7.00el 7.9137 £4.2711 0.1897 4+ 0.0054 1.5014 7.4177 8.2693
GR_M2.8_Rpns020_Rs7.00el 10.2013 + 3.0563 0.0954 £+ 0.0026 0.9735 12.1099 9.0178

Notes. Oscillation periods, growth rates, and their uncertainties for all fourteen models having the same accretion rate of 0.3 M, s '. The uncertainties for the growth
rates are defined as the square roots of the diagonal entries of the covariance matrix corresponding to the growth rate. The uncertainties for the oscillation period are
defined as the full width at half maximum values of the Fourier amplitudes (see Figure 6). The fourth column shows the product of the best-fit growth rate multiplied
by the best-fit oscillation period. The fifth column shows the estimate for the period assuming an advective-acoustic origin of the SASI (Equation (27)), and the sixth
column shows the estimate for the period assuming a purely acoustic origin of the SASI (Equation (30)), where we use R,. = 0.85 Ry, the midpoint of the shell in

which we compute the power (see Section 5).

are shown in Figure 3. Both the radial acoustic and advective
signal speeds, as well as the angular acoustic signal speed, are
consistently smaller in GR. Because of this, the period is longer
for a given model when GR is used, regardless of whether the
SASI is governed by an advective-acoustic or a purely acoustic
cycle.

In Figure 7, we plot the SASI period, as provided by the
Fourier analysis, versus initial shock radius for all of our
models.

The NR and GR models follow the same general trends. For
£=0.4,0.7, 1.8, and 2.8, we find that the ratio Tgr/Txg is 1.19,
<1.15, 1.22, and <1.29, respectively.

11

For the £=0.4, 0.7, 1.8, and 2.8 models, the relative
differences between Tgr and the advective-acoustic estimate,
Equation (27), are 0.21, <0.22, 0.10, and <0.12, respectively.
For those same models, the relative differences between Tgr
and the purely acoustic estimate, Equation (30), are 0.29,
<0.14, 0.05, and <0.17, respectively.

5.3.2. Growth Rate

Next, we discuss how the growth rate varies with PNS
compactness and shock radius. In Figure 8, we plot the power
in the first Legendre mode, H;, during the linear regime, as a
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Figure 9. SASI growth rate in ms~ ' as a function of shock radius in km, as determined by the fit to Equation (41) (see text for details). NR results are shown in open
squares and GR results are shown in solid squares.

sufficient for characterizing the evolution as being in the linear
regime.

We see a clear trend in the growth rate: the GR
models display a slower SASI growth rate when compared

function of time in milliseconds for the same models as in
Figure 6.

For all models displayed here, the shock deviates from
spherical symmetry by less than 10%, which we consider
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Figure 11. SASI cycle efficiency as a function of shock radius in km. NR results are shown in open squares and GR results are shown in solid squares.

to their NR counterparts. In Figure 8, it can be seen that the
growth rate for the £ = 0.4 model is practically unaffected by
GR, while all the larger compactness models show non-
negligible effects of GR. This effect is a function of shock
radius, with a smaller shock radius leading to a larger
difference in the NR and GR growth rates. This effect is
drastically enhanced when looking at the £ =2.8 models. In
these models, the power in the £ = 1 mode is some five orders
of magnitude lower in the GR case by the end of the
simulation (see Figure 8), which is the result of a factor-of-
two difference in the growth rate along with exponential
growth for approximately ten SASI cycles. The effects of GR
can also be seen in Figure 9, which plots the growth rate for
all models as a function of Rg,.
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Again, in all cases, the growth rate is slower for the GR
models and the difference between GR and NR growth rates
increases with decreasing shock radius and increasing PNS
mass—i.e., under more relativistic conditions—the ratio
becoming as small as 0.47.

In Figure 10, we plot H; as a function of ¢ for all models (left
panels) and as a function of #/T for all models (right panels).
We note that for an exponentially growing £/=1 mode,
H; x exp(wt); the gain in one cycle is |Q] = exp(wT) (e.g.,
see Janka 2017). Here, we simply refer to wT = In|Q)] as the
SASI efficiency. (When interpreting the right panels, one
should note that 7 is different for each model.)

These figures demonstrate that the SASI cycle efficiency is
approximately constant for a given physical model (NR or GR)
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and compactness. This can be seen by, for example, first
looking at the top left panel of the left figure in Figure 10 and
noting that the curves all grow at different rates, and then
comparing this to the top left panel of the right figure, where
the curves are brought much closer together when plotted
against 7/T. Further, all the NR models and the £ € {0.4, 0.7}
GR models reach about the same total power of ~10*-10%°
after ten oscillations, while the £ € {1.8, 2.8} GR models reach
a maximum of ~1023, demonstrating that GR modifies both the
oscillation period and the growth rate, but modifies them in
such a way as to keep the SASI efficiency roughly constant for
each of these groupings of models.

The SASI efficiency is further illustrated in Figure 11, which
plots the efficiency for all of our models. It can be seen that the
SASI efficiency of the NR models takes on values between 1.5
and 1.8, regardless of compactness. The GR models follow the
same trend for lower compactnesses, but as the compactness
increases, the SASI efficiency drops.

6. Summary, Conclusion, and Future Work

We examined the effect of GR on seven idealized,
axisymmetric models of the SASI by performing a parameter
study in which we systematically varied the initial shock
radius, along with the mass and radius of the PNS; i.e., the
compactness of the PNS. We compared these runs by
measuring the growth rate and oscillation period of the SASI
for all models, which were run once with NRHD and
Newtonian gravity and once with GRHD and GR gravity.
We set up our simulations to excite a clean /=1 Legendre
mode, computed the power of the SASI in that mode within a
thin shell just below the shock, and following Blondin &
Mezzacappa (2006), we fit the resulting signal to
Equation (41). From the fits, we computed the growth rates
and their uncertainties, and using the FFT, we computed the
oscillation periods and their uncertainties.

For all models, we found that the period of the SASI in the
GR case is longer than that of the SASI in the NR case. For the
£=0.4, 0.7, 1.8, and 2.8 models, we find ratios, Tr/Txg, Of
1.19, <1.15, 1.22, and <1.29, respectively. We explained these
differences as resulting from differences in the post-shock flow
structure for the GR and NR setups. For all models, we found
that the growth rate is slower when GR is used, and
significantly slower for the £ = 1.8 and £ =2.8 models, with
the ratio between the GR and NR cases, wer/wnr, as low as
0.47. We found that both the growth rate and the oscillation
period are practically independent of the accretion rate for the
range of parameter space we considered.

The connection between our results and the results from
realistic CCSN simulations can be made by considering the
trends across all of the models considered here. First, our
results suggest that CCSN simulations based on Newtonian
hydrodynamics and Newtonian gravity may fail to predict
correctly the growth rate of the SASI and its period of
oscillation as conditions below the shock become increasingly
relativistic; i.e., increased PNS compactness and decreased
shock radius. Under such conditions, the growth rate in the
Newtonian case may be overestimated by a factor of two, or
more, relative to the GR case. Additionally, the period may be
underestimated by about 20%. Second, as the conditions we
considered became increasingly relativistic, the SASI growth
rate continued to increase (Figure 9) and its period continued
to decrease (Figure 7). Thus, our studies provide theoretical
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support for the conclusions reached in the study of the SASI
development in higher-mass progenitors (see, e.g., Hanke
et al. 2013; Matsumoto et al. 2022), where the timescales for
the development of convection may be long and where the
SASI, able to develop on shorter timescales, is able to provide
support to the stalled shock, potentially sustaining neutrino
heating, and in turn, the development of neutrino-driven
convection, with all of their anticipated benefits for generating
an explosion.

Given the substantial impact of GR we find in our
simulations, we stress the importance of GR treatments in
any future studies aiming to understand the SASI in a CCSN
context.

Our results also suggest that CCSN simulations based on
Newtonian hydrodynamics and Newtonian gravity may fail to
predict correctly the emission of gravitational waves by the
SASI (in particular, its frequency and amplitude), a primary
target of gravitational wave astronomy given its anticipated
existence in that part of frequency space where current-
generation gravitational wave detectors such as LIGO and
VIRGO are most sensitive. In addition, efforts to discern
between contributions from different SASI modes—e.g.,
sloshing and spiral—may be affected, as well.

In light of the results presented here, further analysis is well
motivated. Our assumption of axisymmetry will need to be lifted,
because the SASI is known to have non-axisymmetric modes
(Blondin & Mezzacappa 2007; Blondin & Shaw 2007; Fernan-
dez 2010, 2015). A full three-dimensional comparison of the
SASI in NR and GR, such as the one performed here for
axisymmetry, should be conducted. Further analyses may also
include adding a third type of model that uses NRHD and a GR
monopole potential, similarly to what is done in several CCSN
simulation codes (e.g., Rampp & Janka 2002; Kotake et al. 2018;
Skinner et al. 2019; Bruenn et al. 2020), in order to discern
whether the use of an effective potential to capture the stronger
gravitational fields present in GR is able to better capture the
SASI growth rate and subsequent evolution. Of course, even if it
does, nothing can replace a true GR implementation, as we have
done here, and as must be done in future CCSN models.
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