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Abstract. One of the most famous conjectures in combinatorial opti-
mization is the four-thirds conjecture, which states that the integrality
gap of the subtour LP relaxation of the TSP is equal to 4

3
. For 40 years,

the best known upper bound was 1.5, due to Wolsey [Wol80]. Recently,
Karlin, Klein, and Oveis Gharan [KKO22] showed that the max entropy
algorithm for the TSP gives an improved bound of 1.5 − 10−36. In this
paper, we show that the approximation ratio of the max entropy algo-
rithm is at least 1.375, even for graphic TSP. Thus the max entropy algo-
rithm does not appear to be the algorithm that will ultimately resolve
the four-thirds conjecture in the affirmative, should that be possible.

1 Introduction

In the traveling salesman problem (TSP), we are given a set of n cities and the
costs cij of traveling from city i to city j for all i, j. The goal of the problem
is to find the cheapest tour that visits each city exactly once and returns to its
starting point. An instance of the TSP is called symmetric if cij = cji for all i, j;
it is asymmetric otherwise. Costs obey the triangle inequality (or are metric) if
cij ≤ cik + ckj for all i, j, k. All instances we consider will be symmetric and
obey the triangle inequality. We treat the problem input as a complete graph
G = (V,E), where V is the set of cities, and ce = cij for edge e = {i, j}.

In the mid-1970s, Christofides [Chr76] and Serdyukov [Ser78] each gave a
3
2 -approximation algorithm for the symmetric TSP with triangle inequality. The
algorithm computes a minimum-cost spanning tree, and then finds a minimum-
cost perfect matching on the odd degree vertices of the tree to compute a con-
nected Eulerian subgraph. Because the edge costs satisfy the triangle inequality,
any Eulerian tour of this Eulerian subgraph can be “shortcut” to a tour of no
greater cost. Until very recently, this was the best approximation factor known
for the symmetric TSP with triangle inequality, although over the last decade
substantial progress was made for many special cases and variants of the prob-
lem. For example, in graphic TSP, the input to the problem is an unweighted
connected graph, and the cost of traveling between any two nodes is the number
of edges in the shortest path between the two nodes. A sequence of papers led to
a 1.4-approximation algorithm for this problem due to Sebő and Vygen [SV14].
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In the past decade, a variation on the Christofides-Serdyukov algorithm has
been considered. Its starting point is a well-known linear programming relaxation
of the TSP introduced by Dantzig, Fulkerson, and Johnson [DFJ54], sometimes
called the Subtour LP or the Held-Karp bound [HK71]. It is not difficult to show
that for any optimal solution x∗ of this LP relaxation, n−1

n x∗ is a feasible point in
the spanning tree polytope. The spanning tree polytope is known to have integer
extreme points, and so n−1

n x∗ can be decomposed into a convex combination of
spanning trees, and the cost of this convex combination is a lower bound on the
cost of an optimal tour. In particular, the convex combination can be viewed
a distribution over spanning trees such that the expected cost of a spanning
tree sampled from this distribution is a lower bound on the cost of an optimal
tour. The variation of Christofides-Serdyukov algorithm considered is one that
samples a random spanning tree from a distribution on spanning trees given by
the convex combination, and then finds a minimum-cost perfect matching on
the odd vertices of the tree. This idea was introduced in work of Asadpour et
al. [Asa+17] (in the context of the asymmetric TSP) and Oveis Gharan, Saberi,
and Singh [OSS11] (for symmetric TSP).

Asadpour et al. [Asa+17] and Oveis Gharan, Saberi, and Singh [OSS11] con-
sider a particular distribution of spanning trees known as the maximum entropy
distribution. We will call the algorithm that samples from the maximum entropy
distribution and then finds a minimum-cost perfect matching on the odd degree
vertices of the tree the maximum entropy algorithm for the TSP. In a break-
through result, Karlin, Klein, and Oveis Gharan [KKO21] show that this approx-
imation algorithm has performance ratio better than 3/2, although the amount
by which the bound was improved is quite small (approximately 10−36). The
achievement of the paper is to show that choosing a random spanning tree from
the maximum entropy distribution gives a distribution of odd degree nodes in the
spanning tree such that the expected cost of the perfect matching is cheaper (if
marginally so) than in the Christofides-Serdyukov analysis. Note that [KKO21]
actually choose a tree plus an edge, thus working with x∗ instead of n−1

n x∗. Since
it is cleaner to analyze we will work with this version of the algorithm.

It has long been conjectured that there should be a 4/3-approximation algo-
rithm for the TSP based on rounding the Subtour LP, given other conjectures
about the integrality gap of the Subtour LP. The subtour LP is as follows:

min
∑

e∈E

cexe

s.t. x(δ(v)) = 2, ∀v ∈ V,

x(δ(S)) ≥ 2, ∀S ⊂ V, S �= ∅,

0 ≤ xe ≤ 1, ∀e ∈ E,

(1)

where δ(S) is the set of all edges with exactly one endpoint in S and we use
the shorthand that x(F ) =

∑
e∈F xe. The integrality gap of an LP relaxation

is the worst-case ratio of an optimal integer solution to the linear program to
the optimal linear programming solution. Wolsey [Wol80] (and later Shmoys
and Williamson [SW90]) showed that the analysis of the Christofides-Seryukov
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algorithm could be used to show that the integrality gap of the Subtour LP is
at most 3/2, and Karlin, Klein, and Oveis Gharan [KKO22] have shown that
the integrality gap is at most 3

2 − 10−36. It is well-known that the integrality
gap of the Subtour LP is at least 4/3, and it has long been conjectured that the
integrality gap is exactly 4/3. However, until the work of Karlin et al., there had
been no progress on that conjecture since the work of Wolsey in 1980.

A reasonable question is whether the maximum entropy algorithm is itself
a 4/3-approximation algorithm for the TSP; there is no reason to believe that
the Karlin et al. [KKO21] analysis is tight. Experimental work by Genova and
Williamson [GW17] has shown that the max entropy algorithm produces solu-
tions which are very good in practice, much better than those of the Christofides-
Serdyukov algorithm. It does extremely well on instances of graphic TSP, rou-
tinely producing solutions within 1% of the value of the optimal solution.

In this paper, we show that the maximum entropy algorithm can produce
tours of expected cost strictly greater than 4/3 times the value of the optimal
tour (and thus the subtour LP), even for instances of graphic TSP. In particular,
we show:

Theorem 1. There is an infinite family of instances of graphic TSP for which
the max entropy algorithm outputs a tour of expected cost at least 1.375 − o(1)
times the cost of the optimum solution.

The instances are a variation on a family of TSP instances recently introduced
in the literature by Boyd and Sebő [BS21] known as k-donuts (see Fig. 1). k-
donuts have n = 4k vertices, and are known to have an integrality gap of 4/3
under a particular metric. In contrast, we consider k-donuts under the graphic
metric, in which case the optimal tour is a Hamiltonian cycle, which has cost
n. The objective value of the Subtour LP for graphic k-donuts is also n; thus,
these instances have an integrality gap of 1. We show that as the instance size
grows, the expected length of the connected Eulerian spanning subgraph found
by the max entropy algorithm (using the graphic metric) converges to 1.375n
from below and thus the ratio of this cost to the value of the LP (and the optimal
tour) converges to 1.375. We can further show that there is a bad Eulerian tour
of the Eulerian subgraph such that shortcutting the Eulerian tour results in a
tour that is still at least 1.375 times the cost of the optimal tour.

It thus appears that the maximum entropy algorithm is not the algorithm
that will ultimately resolve the 4/3 conjecture in the affirmative, should that
be possible. While this statement depends on the fact that the algorithm uses a
particular Eulerian tour, all work in this area of which we are aware considers
the ratio of the cost of the connected Eulerian subgraph to the LP value, rather
than the ratio of the shortcut tour to the LP value. We also do not know of work
which shows that there is always a way to shortcut the subgraph to a tour of
significantly cheaper cost. Indeed, it is known that finding the best shortcutting
is an NP-hard problem in itself [PV84].

To our knowledge, our result implies that there is currently no candidate 4/3-
approximation algorithm for the TSP. Interestingly, earlier work of the authors
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Fig. 1. Our variant on the k-donut for k = 4, where k indicates the number of squares
of dashed edges. There are n = 4k vertices. The dashed edges have xe = 1

2
and the

solid edges have xe = 1 in the LP solution. All edges have cost 1, as this is a graphic
instance. We will refer to the outer cycle as the outer ring, and the inner cycle as the
inner ring.

[JKW23] gave a 4/3-approximation algorithm for a set of instances of the TSP
which includes these k-donuts.

Our work continues a thread of papers showing lower bounds on TSP approxi-
mation algorithms. Rosenkrantz, Stearns, and Lewis [RSL77] show that the near-
est neighbor algorithm can give a tour of cost Ω(log n) times the optimal, and
that the nearest and cheapest insertion algorithms can give a tour of cost 2− 1

n
times the optimal. Cornuéjols and Nemhauser [CN78] show that the Christofides-
Serdyukov approximation factor of 3

2 is essentially tight.
A full version of this paper can be found at https://arxiv.org/abs/2311.01950.

Some details are omitted from this version for space reasons.

2 k-Donuts

We first formally describe the construction of a graphic k-donut instance, which
will consist of 4k vertices. The cost function c{u,v} is given by the shortest path
distance in the following graph.

Definition 1 (k-Donut Graph). For k ∈ Z+, k ≥ 3, the k-donut is a 3-regular
graph consisting of 2k “outer” vertices u0, . . . , u2k−1 and 2k “inner” vertices
v0, . . . , v2k−1. For each 0 ≤ i ≤ 2k − 1, the graph has edges {ui, ui+1 (mod 2k)},
{vi, vi+1 (mod 2k)}, and {ui, vi}. See Fig. 1. We call the cycle of u vertices the
outer ring and the cycle of v vertices the inner ring.

For clarity of notation, in the rest of the paper we will omit the “mod 2k”
when indexing the vertices of the k-donut. Thus whenever we write uj or vj , it
should be taken to mean uj (mod 2k) or vj (mod 2k), respectively.

As noted by Boyd and Sebő [BS21], there is a half-integral extreme point
solution x of value 4k as follows, which we will work with throughout this note.

https://arxiv.org/abs/2311.01950
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Let x{ui,vi} = 1/2 for all 0 ≤ i ≤ 2k − 1, x{ui,ui+1} = x{vi,vi+1} = 1/2 for all
even i and x{ui,ui+1} = x{vi,vi+1} = 1 for all odd i.1 In the rest of the paper, we
will say a set S ⊆ V is tight if x(δ(S)) = 2, and S is proper if 2 ≤ |S| ≤ |V | − 2.
For a set of edges M , we’ll use c(M) =

∑
e∈M ce, and for an LP solution x, we

let c(x) denote the value of the LP objective function
∑

e∈E cexe. For S ⊆ V ,
we use E(S) to denote the subset of edges with both endpoints in S.

2.1 The Max Entropy Algorithm on the k-Donut

We now describe the max entropy algorithm, and in particular discuss what it
does when specialized to the k-donut. We will work with a description of the
max entropy algorithm which is very similar to the one used for half-integral
TSP in [KKO20]. In [KKO20], the authors show that without loss of generality
there exists an edge e+ with xe+ = 1. To sample a 1-tree2 T , their algorithm
iteratively chooses a minimal proper tight set S not containing e+ which is not
crossed by any other tight set, picks a tree from the max entropy distribution on
the induced graph G[S], adds its edges to T , and contracts S. [KKO20] shows
that if no such set remains, the graph is a cycle, possibly with multiple edges
between (contracted) vertices. The algorithm then randomly samples a cycle
and adds its edges to T . Finally the algorithm picks a minimum-cost perfect
matching M on the odd vertices of T , computes an Eulerian tour on M 
 T ,
and shortcuts it to a Hamiltonian cycle.3 We also remark that this algorithm
from [KKO20] is equivalent to the one used in [KKO21] as one lets the error
measuring the difference between the marginals of the max entropy distribution
and the subtour LP solution x go to 0 (see [KKO20,KKO21] for more details).

For ease of exposition, we work with the variant in which we do not use an
edge e+ and instead contract any minimal proper tight set which is not crossed.
The two distributions over trees are essentially identical, perhaps with the excep-
tion of the edges adjacent to the vertices adjacent to e+. The performance of
the two algorithms on graphic k-donuts can easily be seen to be the same as
k → ∞ since one can adjust the matching M with an additional cost of O(1)
to simulate any discrepancy between the two tree distributions. We show the
essential equivalence of these two versions of the max entropy algorithm in the
full version of the paper.

The reason we use this description of the algorithm is that when specialized
to k-donuts, Algorithm 1 is very simple and its behavior can be easily understood
without using any non-trivial properties of the max entropy algorithm. It first
adds the edges with xe = 1 to the 1-tree. Then, it contracts the vertices {ui, ui+1}
1 By slightly perturbing the metric, one could ensure that x is the only optimal solution

to the LP and thus the solution the max entropy algorithm works with. (Of course
then the instance is no longer strictly graphic.).

2 A spanning tree plus an edge.
3 Given an Eulerian tour (t0, . . . , t�, t0), we shortcut it to a Hamiltonian cycle by

keeping only the first occurrence of every vertex except t0 (for which we keep the
first and last occurrences). Due to the triangle inequality, the resulting Hamiltonian
cycle has cost no greater than that of the Eulerian tour.
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Algorithm 1. Max Entropy Algorithm (Slight Variant of [KKO20])
1: Solve for an optimal solution x of the Subtour LP (1).
2: Let G be the support graph of x.
3: Set T = ∅. � T will be a 1-tree
4: while there exists a proper tight set of G that is not crossed by a proper tight set

do
5: Let S be a minimal such set.
6: Compute the maximum entropy distribution μ of E(S) with marginals x|E(S).
7: Sample a tree from μ and add its edges to T .
8: Set G = G/S.
9: end while

10: � At this point G consists of a single cycle of length at least three, or two vertices
with a set of edges F between them with

∑
e∈F xe = 2.

11: if G consists of two vertices then
12: Randomly sample two edges with replacement, choosing each edge each time

with probability xe/2.
13: else
14: Independently sample one edge between each adjacent pair, choosing each edge

with probability xe.
15: end if
16: Compute the minimum-cost perfect matching M on the odd degree vertices of T .

Compute an Eulerian tour of T �M and shortcut it to return a Hamiltonian cycle.

to a single vertex for all odd i, and does the same for {vi, vi+1} (in other words,
it contracts the 1-edges). After that, the minimal proper tight sets consist of
pairs of newly contracted vertices {ui, ui+1}, {vi, vi+1} for odd i. Since each of
these pairs have two edges set to 1/2 between them, the algorithm will simply
choose one at random for each independently. After contracting these pairs the
graph is a cycle. It follows that:

Proposition 1. On the k-donut, the max entropy algorithm will independently
put exactly one edge among every pair {{ui, vi}, {ui+1, vi+1}} in T for every odd
i and exactly one edge among every pair {{ui, ui+1}, {vi, vi+1}} in T for every
even i.

We visualize these pairs in Fig. 2. The following claim is the only property we
need in the remainder of the proof:

Proposition 2. For every pair of vertices (ui, vi), 0 ≤ i ≤ 2k − 1, exactly one
of ui or vi will have odd degree in T , each with probability 1

2 . Let Oi indicate if
ui and ui+1 have the same parity. Then if i �= j and i, j have the same parity,
then Oi and Oj are independent.

Proof. We prove the first part of the claim when i is odd; the case where i is even
is similar. Since i is odd, the edges {ui, ui+1} and {vi, vi+1} are in T . Then, one of
the two edges {ui, vi} and {ui+1, vi+1} is added to T , and regardless of the choice,
ui and vi so far have the same parity. Finally, one edge in {{ui−1, ui}, {vi−1, vi}}
is added uniformly at random, which flips the parity of exactly one of ui, vi.
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Fig. 2. One edge among the pair of dotted edges inside each red cut will be chosen
independently. Then one edge among each pair of dotted edges in the cycle resulting
from contracting the red sets will be chosen independently. (Color figure online)

To prove the second part of the claim, we will only do the case that both
i and j are odd, as the other case is similar. To slightly simplify the notation
we assume i = 1 perhaps after a cyclic shift of the indices. Here the event O1

depends only on the choice of the edges among the pairs {{u0, u1}, {v0, v1}} and
{{u2, u3}, {v2, v3}}; recall the 1-tree picks one edge from each pair, independently
and uniformly at random. Similarly, Oj only depends on the independent choices
among {{uj−1, uj}, {vj−1, vj}} and {{uj+1, uj+2}, {vj+1, vj+2}}. The first choice
for O1 is independent of Oj if j �= 2k − 1, and the second is independent of Oj if
j �= 3. Since k ≥ 3 by definition of the k-donut, at most one of the independent
choices is shared among the two events O1, Oj . The proof follows by noticing
that even after fixing one of the pairs, O1 remains equally likely to be 0 or 1.

3 Analyzing the Performance of Max Entropy

We now analyze the max entropy algorithm on graphic k-donuts. We first char-
acterize the structure of the min-cost perfect matching on the odd vertices of T .
We then use this structure to show that in the limit as k → ∞, the approximation
ratio of the max entropy algorithm approaches 1.375 from below.

Proposition 3. Let T be any 1-tree with the property that for every pair of
vertices (ui, vi) for 0 ≤ i ≤ 2k − 1, exactly one of ui or vi has odd degree in T .
(This is Proposition 2).

Let o0, . . . , o2k−1 indicate the odd vertices in T where oi is the odd vertex in
the pair (ui, vi). Let M be a minimum-cost perfect matching on the odd vertices
of T . Define:
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M1 = {(o0, o1), (o2, o3), . . . , (o2k−2, o2k−1)}
M2 = {(o2k−1, o0), (o1, o2), . . . , (o2k−3, o2k−2)}

Then,
c(M) = min{c(M1), c(M2)}.

Proof. We will show a transformation from M to a matching in which every odd
vertex oi is either matched to oi−1 (mod 2k) or oi+1 (mod 2k). This completes the
proof, since then after fixing (o0, o1) or (o2k−1, o0) the rest of the matching is
uniquely determined as M1 or M2. During the process, we will ensure the cost of
the matching never increases, and to ensure it terminates we will argue that the
(non-negative) potential function

∑
e=(oi,oj)∈M min{|i−j|, 2k−|i−j|} decreases

at every step. Note that this potential function is invariant under any reindexing
corresponding to a cyclic shift of the indices.

So, suppose M is not yet equal to M1 or M2. Then there is some edge
(oi, oj) ∈ M such that j �∈ {i − 1, i + 1 (mod 2k)}. Without loss of generality
(by switching the role of i and j if necessary), suppose j ∈ {i+2, i+3, . . . , i+ k
(mod 2k)}. Possibly after a cyclic shift of the indices, we can further assume
i = 0 and 2 ≤ j ≤ k. Let ol be the vertex that o1 is matched to. We consider
two cases depending on if l ≤ k + 1 or l > k + 1.

Case 1: l ≤ k + 1. In this case, replace the edges {{o0, oj}, {o1, ol}} with
{{o0, o1}, {oj , ol}}. This decreases the potential function, as the edges previously
contributed j + l − 1 and now contribute 1 + |j − l|, which is a smaller quantity
since j, l ≥ 2. Moreover this does not increase the cost of the matching: We have
c{o0,o1} ≤ 2 and c{ol,oj} ≤ |j− l|+1, so the two new edges cost at most |j− l|+3.
On the other hand, the two old edges cost at least c{o0,oj} + c{o1,ol} ≥ j + l − 1,
which is at least |j − l| + 3 since j, l ≥ 2.

Case 2: l > k + 1. In this case, we replace the edges {{o0, oj}, {o1, ol}} with
{{o0, ol}, {o1, oj}}. This decreases the potential function, as the edges previously
contributed j +(2k − l+1) and now they contribute (2k − l)+ (j − 1). Also, the
edges previously cost at least j+(2k−l+1), and now cost at most (2k−l+1)+j.
Thus the cost of the matching did not increase. 
�

We now analyze the approximation ratio of the max entropy algorithm with-
out shortcutting.

Lemma 1. If A = T 
 M is the connected Eulerian subgraph computed by the
max entropy algorithm on the k-donut, then

lim
k→∞

E [c(A)]
c(OPT)

= lim
k→∞

E [c(A)]
c(x)

= 1.375,

where c(x) is the cost of the solution x to the subtour LP.

Proof. We know that the LP value is 4k. Since the k-donut is Hamiltonian, we
also have that the optimal tour has length 4k. On the other hand, c(A) = c(T )+
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c(M), where T is the 1-tree and M is the matching. Note that the cost of the 1-
tree is always 4k. On the other hand, we know that c(M) = min{c(M1), c(M2)}
from the previous claim. Thus, it suffices to reason about the cost of M1 and M2.
We know that for every i, c{oi,oi+1} = 2 with probability 1/2 and 1 otherwise,
using Proposition 2. Thus, the expected cost of each edge in M1 and M2 is 1.5.
Since each matching consists of k edges, by linearity of expectation, E [c(M1)] =
E [c(M2)] = 1.5k. This implies E [c(M)] ≤ 1.5k. This immediately gives an upper
bound on the approximation ratio of 4k+1.5k

4k = 1.375. In the remainder we prove
the lower bound.

For each i, construct a random variable Xi indicating if c{oi,oi+1} = 2.
By Proposition 2, the variables {X0,X2,X4 . . .} are pairwise independent and
the variables {X1,X3,X5 . . .} are pairwise independent. Thus, for M1, we
have Var(

∑k−1
i=0 X2i) =

∑k−1
i=0 Var(X2i) = k/4, so the standard deviation is

σ(
∑k−1

i=0 X2i) =
√

k/2. We define μ = E

[∑k−1
i=0 X2i

]
= k/2 to be the expected

value of
∑k−1

i=0 X2i.
Then, applying Chebyshev’s inequality for M1,

P

[
c(M1) ≥

(
3
2

− ε

)
k

]
= P

[
k−1∑

i=0

X2i ≥
(
1
2

− ε

)
k

]

≥ 1 − P

[∣∣∣∣
k−1∑

i=0

X2i − μ

∣∣∣∣ ≥ εk

]
≥ 1 − 1

4ε2k
.

Choosing ε = k−1/4 and applying a union bound (the same bound applies to
M2), we obtain the chance that both matchings cost at least 3

2k−k3/4 occurs with
probability at least 1 − 1

2
√
k
. Even if the matching has cost 0 on the remaining

instances, the expected cost of the matching is therefore at least (1− 1
2
√
k
)(32k −

k3/4) ≥ 3
2k − 2k3/4. Since the cost of the 1-tree is always 4k, we obtain an

expected cost of 11
2 k − 2k3/4 with a ratio of

E [c(T 
 M)] =
11
2 k − 2k3/4

OPT
=

11
2 k − 2k3/4

4k
≥ 11

8
− k−1/4,

which goes to 11
8 as k → ∞. 
�

4 Shortcutting

So far, we have shown that the expected cost of the connected Eulerian subgraph
returned by the max entropy algorithm is 1.375 times that of the optimal tour.
However, after shortcutting the Eulerian subgraph to a Hamiltonian cycle, its
cost may decrease. Ideally, we would like a lower bound on the cost of the tour
after shortcutting. One challenge with this is that the same Eulerian subgraph
can be shortcut to different Hamiltonian cycles with different costs, depending
on which Eulerian tour is used for the shortcutting. What we will show in this
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section is that there is always some bad Eulerian tour of the connected Eulerian
subgraph, whose cost does not go down after shortcutting. We highlight two
important aspects of this analysis:

1. In the analysis in Sect. 3, the matching was not required to be either M1 or
M2. Thus, we lower bounded the cost of the Eulerian subgraph for any pro-
cedure that obtains a minimum-cost matching. Here we will require that the
matching algorithm always selects M1 or M2. From Proposition 3, we know
one of these matchings is a candidate for the minimum-cost matching. How-
ever, there may be others. Therefore, we only lower bound the shortcutting
for a specific choice of the minimum-cost matching.

2. Similar to above, we only lower bound the shortcutting for a specific Eulerian
tour of the Eulerian subgraph. Indeed, our lower bound only holds for a small
fraction of Eulerian tours.

We remark that the max entropy algorithm as described in e.g. [OSS11,KKO21]
does not specify how a minimum-cost matching or an Eulerian tour is generated.
Therefore, our lower bound does hold for the general description of the algorithm.
Thus, despite the caveats, this section successfully demonstrates our main result:
The max entropy algorithm is not a 4/3-approximation algorithm.

In the rest of this section, for space reasons, we will only sketch the argument
for why shortcutting does not decrease the cost of the tour. The interested reader
is invited to see https://arxiv.org/abs/2311.01950 for the full details. At a high
level, we will consider Eulerian graphs resulting from adding M1 and construct
Eulerian tours whose costs do not decrease after shortcutting. We then do the
same for the graphs resulting from adding M2. These two statements together
complete the proof.

4.1 Bad Tours on M1

Recall M1 = {(o0, o1), (o2, o3), . . . , (o2k−2, o2k−1)}, where oi is the vertex in
{ui, vi} with odd degree in the 1-tree T . This creates graphs of the type seen in
Fig. 3. By doing case analysis on which edges are chosen in the tree, it can be
shown that the resulting Eulerian subgraph T 
 M1 consists of a collection of
circuits of length 2, 5, or 8 arranged in a circle. Note that doubled edges (circuits
of length 2) are never adjacent to one another on this circle, since they are only
created between vertices (oi, oi+1) for i even.

We now describe the problematic tours on such graphs, i.e. Eulerian tours
such that the resulting Hamiltonian cycle after shortcutting is no cheaper. For
intuition, a reader may want to first consider the bad tour in Fig. 3. We begin at
an arbitrary vertex t0 of degree 2 and pick an edge in the clockwise direction. We
now describe the procedure for picking the next vertex tk+1 given our current
vertex tk. If tk has degree 2 (or has degree 4 but is being visited for the second
time), there is no choice to make, as only one edge remains. So it is sufficient
to describe decisions on vertices tk of degree 4 visited for the first time. Note
that since tk has degree 4, it is at the intersection of two adjacent circuits. Let

https://arxiv.org/abs/2311.01950
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Fig. 3. On the left is an example Eulerian graph when M1 is added. The graph consists
of circuits of length 5 or 8 joined by doubled edges. On the right is the Hamiltonian
cycle resulting from shortcutting the adversarial Eulerian tour we construct here, in
which we always alternate the side of the circuit we traverse. One can check that every
shortcutting operation does not decrease the cost.

C denote the circuit in the clockwise direction adjacent to tk, and let C ′ denote
the circuit in the counterclockwise direction adjacent to tk. The next edge to
pick is determined by the following two rules:

1. Never traverse an edge in the counterclockwise direction. Therefore,
if C is a circuit of length 2, we immediately traverse one of its edges.

2. Alternate the visited side of adjacent circuits. Otherwise, C has length
5 or 8. For simplicity, suppose tk is on the outer ring; the case where tk is on
the inner ring is symmetric. Let eouter = {tk, u} and einner = {tk, v} be the
two edges in C adjacent to tk, where u is on the outer ring and v is on the
inner ring. Let e = {tj , tj+1} be the previous edge in the tour that was not
part of a circuit of length 2. Thus, j = k − 1, e = {tk−1, tk} if C ′ is of length
5 or 8, and j = k − 2, e = {tk−2, tk−1} if C ′ is of length 2. Now, if tj is on the
outer ring, we take einner. Otherwise, take eouter. The intuition here is that
if we visited the inner ring while traversing the last circuit of length greater
than 2, we now wish to visit the outer ring, and vice versa.

We call the resulting Eulerian tours B-tours because they are bad for the
objective function, even after shortcutting. Indeed, we can prove the following
lemma, which together with Lemma 1 demonstrates that the asymptotic cost of
the tour after shortcutting is still 11/8 times that of the optimal solution. We
omit the proof of Lemma 2 for space reasons, but we hope the intuition behind
the result can be seen by tracing through the example tour in Fig. 3.

Lemma 2. Shortcutting a B-tour on a graph T ∪ M1 to a Hamiltonian cycle
does not reduce the cost by more than 3.



A Lower Bound for the Max Entropy Algorithm for TSP 249

4.2 Bad Tours on M2

Recall that M2 = {(o2k−1, o0), (o1, o2), . . . , (o2k−3, o2k−2)}. It can be shown that
in this case, the structure of T 
 M2 is one large cycle with circuits of length 2
or 3 hanging off to create some vertices of degree 4 on the large cycle; see Fig. 4.
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Fig. 4. An example Eulerian graph when M2 is added. The graph consists of a single
long cycle, onto which cycles of length two and three are grafted. As in the case of
M1, one can see that the length of this Hamiltonian cycle is equal to the length of the
Eulerian tour that generated it.

We now describe B-tours in this instance. We will start at an arbitrary vertex
t0 on of degree 2 on the large cycle, and traverse an edge in clockwise direction.
As before, it suffices to dictate the rules for degree 4 vertices visited for the first
time. In this case, the only rule to produce a B-tour is: traverse the adjacent
edge in M2. Once again, we omit the proof of Lemma 3 for space reasons,
and we hope the intuition behind the result can be seen by tracing through the
example tour in Fig. 4.

Lemma 3. The cost of the Hamiltonian cycle resulting from shortcutting a B-
tour on T ∪ M2 is equal to the cost of T ∪ M2.

5 Conclusion

We demonstrated that the max entropy algorithm as stated in e.g. [OSS11,
KKO21] is not a candidate for a 4/3-approximation algorithm for the TSP.
This raises the question: what might be a candidate algorithm? The algorithm
in [JKW23] is a 4/3-approximation for half-integral cycle cut instances of the
TSP, which include k-donuts as a special case. However, it is not clear if the
algorithm can be extended to general TSP instances. One interesting direction
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is to find a modification of the max entropy algorithm which obtains a 4/3 or
better approximation on k-donuts.

It would also be interesting to know whether one can obtain a lower bound
for the max entropy algorithm which is larger than 11/8. While we have some
intuition based on [KKO20,KKO21] for why the k-donuts are particularly prob-
lematic for the max entropy algorithm4, it would be interesting to know if there
are worse examples.
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