
Cactus Representations in Polylogarithmic Max-flow
via Maximal Isolating Mincuts

Zhongtian He
Princeton University

Shang-En Huang∗

Boston College
Thatchaphol Saranurak†

University of Michigan

Abstract

A cactus representation of a graph, introduced by Dinitz et al. in 1976, is an edge sparsifier
of O(n) size that exactly captures all global minimum cuts of the graph. It is a central com-
binatorial object that has been a key ingredient in almost all algorithms for the connectivity
augmentation problems and for maintaining minimum cuts under edge insertions (e.g. [Naor et
al. SICOMP’97], [Cen et al. SODA’22], [Henzinger ICALP’95]). This sparsifier was generalized
to Steiner cactus for a vertex set T , which can be seen as a vertex sparsifier of O(|T |) size that
captures all partitions of T corresponding to a T -Steiner minimum cut, and also hypercactus,
an analogous concept in hypergraphs. These generalizations further extend the applications of
cactus to the Steiner and hypergraph settings.

In a long line of work on fast constructions of cactus and its generalizations, a near-linear
time construction of cactus was shown by Karger and Panigrahi [SODA’09]. Unfortunately, their
technique based on tree packing inherently does not generalize. The state-of-the-art algorithms
for Steiner cactus and hypercactus are still slower than linear time by a factor of Ω(|T |) [Dinitz
and Vainshtein STOC’94] and Ω(n) [Chekuri and Xu SODA’17], respectively.

We show how to construct both Steiner cactus and hypercactus using polylogarithmic calls
to max flow, which gives the first almost-linear time algorithms of both problems. The con-
structions immediately imply almost-linear-time connectivity augmentation algorithms in the
Steiner and hypergraph settings, as well as speed up the incremental algorithm for maintaining
minimum cuts in hypergraphs by a factor of n.

The key technique behind our result is a novel variant of the influential isolating mincut
technique [Li and Panigrahi FOCS’20, Abboud et al. STOC’21] which we called maximal iso-
lating mincuts. This technique makes the isolating mincuts to be “more balanced” which, we
believe, will likely be useful in future applications.

∗Supported by NSF Grant No. CCF-2008422.
†Supported by NSF CAREER grant 2238138.

ar
X

iv
:2

31
1.

10
70

6v
1

 [c
s.D

S]
 1

7
N

ov
 2

02
3

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Techniques . 3

2 Preliminaries 5

3 Maximal Isolating Mincuts 6

4 Steiner Cactus Construction 10
4.1 Divide and Conquer Approach: Prior Works . 11
4.2 Our Divide and Conquer Framework via a Sequence of Splits 12
4.3 Computing a Good Split Collection . 16
4.4 Returning a Correct Cactus . 23

5 Steiner Hypercactus Construction 26
5.1 Maximal Isolating Mincuts on Hypergraphs . 27
5.2 Our Divide and Conquer Framework . 27
5.3 Computing a Good Split Collection . 29
5.4 Returning a Correct Hypercactus . 31
5.5 Proof of Lemma 5.5 . 33

6 Conclusion and Open Problems 35

A Omitted Proofs from Section 3 39
A.1 Proof of Lemma 3.2 . 39
A.2 Proof of Lemma 3.5 . 40

B Omitted Proofs from Section 4 40
B.1 Proof of Lemma B.1 . 40

C Proof of Maximal Isolating Mincuts on Hypergraphs 40

D Omitted Proofs from Section 5.2 44
D.1 Proof from Theorem 5.2 . 44

E Applications 45
E.1 Steiner Connectivity Edge Augmentation Problem 45
E.2 Hypergraph +1-Steiner-Connectivity Augmentation Problem 46
E.3 Incremental Algorithm for Hypergraph Mincuts . 46

1 Introduction

In a weighted undirected G = (V,E) with n vertices and m edges, a global minimum cut (or mincut,
for short) is a cut with minimum weight separating some pair of vertices. More than 40 years ago,
Dinitz et al. [DKL76] showed that, even though G may have as many as

(
n
2

)
distinct mincuts, there

exists a O(n)-size data structure called a cactus representation or simply a cactus of G that captures
all mincuts of G in a strong way as follows.

A cactus of G is a tuple (H,ϕ) where H is a graph with O(n) edges and ϕ : V (G)→ V (H) is a
mapping such that, for any vertex set A ⊂ V , a mincut in G separates A and V \A iff a mincut in H
separates ϕ(A) and ϕ(V \A). Hence, H preserves all mincuts of G. Furthermore, H and its mincuts
are highly-structured: H is a cactus graph1 with edge weights from {1, 2} and its mincut contains
either two edges of weight 1 from the same cycle, or an edge of weight 2. Precisely by the ability of
cactus to capture all mincuts via extremely simple structure, cactus has become the key ingredient in
almost all algorithms for the connectivity augmentation problems [Gab91a, NGM97, BK00, CLP22]
and for maintaining mincuts on graphs undergoing edge insertions [Hen97, DW98, GHT18]. Cactus
can also be viewed as one of the first graph sparsifiers, predating other notions such as spanners
[ADD+93], cut sparsifiers [BK96], and spectral sparsifiers [ST11].

Steiner cactus and hypercactus. To capture Steiner mincuts which are more general than
global mincuts, a generalization of cactus called Steiner cactus was introduced by Dinitz and Vain-
shtein [DV94].2 Recall that, for any vertex set T ⊆ V , a T -Steiner mincut is a cut with minimum
weight separating some pair of vertices in T . A T -Steiner cactus of G is a tuple (H,ϕ) where H is
a graph with O(|T |) edges and ϕ : T → V (H) is a mapping such that, for any A ⊂ T , a T -Steiner
mincut in G separates A and T \A iff a mincut in H separates ϕ(A) and ϕ(T \A). The graph H is
also a cactus graph with the same simple structure as in a normal cactus. Note that, when T = V ,
T -Steiner cactus of G is simply a cactus of G.

The notion of Steiner cactus can be placed nicely into a more modern concept of vertex sparsifiers
(also called mimicking networks) [HKNR98, Moi09, LM10, KR13, KR14]. The goal in this area is,
given a terminal set T ⊆ V , to construct a small graph H and a mapping ϕ such that, for every
A ⊂ T , mincutG(A, T \ A) = mincutH(ϕ(A), ϕ(T \ A)) where mincutG(X,Y) denotes the size
of minimum cuts separating the sets X and Y in G. Unfortunately, there is a lower bound of
|E(H)| = Ω(2|T |) [KR13], and perhaps the most prominent open problem in this area is, when
(1 + ϵ)-approximation is allowed, whether the bound |E(H)| = poly(|T |) is possible. Interestingly,
Steiner cactus implies that the linear bound |E(H)| = O(|T |) is actually possible without any
approximation when we restrict ourselves to the sets A ⊂ T separated by some T -Steiner mincuts.

Another generalization of cactus is called hypercactus. Cheng [Che99] (and later [FJ99]) showed
an existence of hypercactus (H,ϕ) where H is a hypergraph of linear size

∑
e∈E(H) |e| = O(n), yet,

for every set A ⊂ V , a mincut in G separates A and V \ A iff a mincut in H separates ϕ(A) and
ϕ(V \ A). Similar to cactus, H is highly structured: each mincut in H contains either two size-2
edges of weight 1 from the same cycle of size-2 edges, or a (hyper)edge of weight 2. This compact
data structure is perhaps even more surprising than cactus because the total size of a hypergraph
can be exponential and a hypergraph may contain exponentially many distinct mincuts.3

1A cactus graph is a graph where each edge appears in at most one cycle.
2A Steiner cactus was introduced as a core structure inside a more involved structure called carcass [DV94, DN95,

DV00]. The detailed proofs of the existence of Steiner cactus were given in [DN, Fle99, FF09]
3Consider a hypergraph G = (V,E) with a single hyperedge containing all vertices, every cut (S, V \S) is a mincut.

1

Both Steiner cactus and hypercactus naturally extend the reach of applications of cactus.
Cole et al. [CH03] used a Steiner cactus to speed up the algorithm for the uniform survivable
network problem. They exploited the fact that Steiner cactus can be efficiently maintained under
edge insertions between terminals. Hypercactus were used for hypergraph connectivity augmenta-
tion algorithms [Che99], and incremental algorithms for hypergraph mincuts [GK19].

Fast Algorithms. Because of the elegance and utility of cactus and its generalization, a long line
of work has been devoted on fast algorithms for constructing them. Historically, cactus construction
has been much more challenging than a more well-known problem of computing a single mincut
(e.g. [Kar93, Kar00, KW96, MW00]), as we need to capture the structure of all mincuts.

Karzanov and Timofeev [KT86] outlined the first algorithm that constructs a cactus of a graph
in Θ(n3) time. Their algorithm was parallelized by Naor and Vazirani [NV91] and refined by
Nagamochi and Kameda [NK94]. Later on, faster algorithms were developed [Gab91a, KS96, NNI00,
Fle99] where the latter two algorithms ran in Õ(nm) time. Finally, the line of work culminated in
a near-linear Õ(m)-time algorithm by Karger and Panigrahi [KP09].4

The state-of-the-art constructions for Steiner cactus and hypercactus are significantly slower.
Dinitz and Vainshtein [DV94, DV00] showed how to compute a T -Steiner cactus using Θ(|T |) max
flow calls, which is Ω(m|T |) time. Cole et al. [CH03] showed an Õ(m+ λG(T)n)-time algorithm on
unweighted graphs where λG(T) denotes the value of T -Steiner mincut, but in general λG(T) may
be big especially in weighted graphs. To construct a hypercactus of a hypergraph with total size
p =

∑
e∈E |e|, the only algorithm with explicit running time was by Chekuri and Xu [CX17], which

takes O(pn+ n2 log n) time.
To summarize, the fastest constructions for Steiner cactus and hypercactus are still slower than

linear time by a factor of Ω(|T |) and Ω(n), respectively. This suggests a natural question of how
fast one can compute them.

1.1 Our Results

We give a novel approach for constructing a cactus that generalizes to both Steiner cactus and
hypercactus using polylogarithmic calls to max-flows. Let MaxFlow(m) denote the running time
of solving max flow in a graph with m edges. Since MaxFlow(m) = m1+o(1) by [CKL+22], we
obtain the first almost-linear time algorithms of both problems. The Steiner cactus algorithm is
summarized below.

Theorem 1.1. There is a randomized Monte-Carlo algorithm that, given an undirected weighted
graph G with m edges and a terminal set T ⊆ V , the algorithm computes a T -Steiner cactus of G
in Õ(MaxFlow(O(m))) time w.h.p.

On hypergraphs, we even obtain an algorithm for computing a Steiner hypercactus, which natu-
rally generalizes both a hypercactus and a Steiner cactus (see Definition 4.1 for the formal definition).
The result is summarized below.

Theorem 1.2. There is a randomized Monte-Carlo algorithm that, given a weighted hypergraph G
with total size p =

∑
e∈E(G) |e| and a terminal set T ⊆ V , compute a T -Steiner hypercactus of G in

Õ(MaxFlow(O(p))) time w.h.p.

We note that if we consider set of hyperedges across a mincut, there are at most O(n2) distinct sets.
4Throughout the paper, Õ(·) hides polylog(n) terms and Ô(·) hides additional no(1) terms.

2

It is implicit in [FJ99, CX17] that a Steiner hypercactus admits polynomial time algorithms, but
their construction requires at least n calls to max flows, which takes at least Ω(pn) time. Even for
the more special problem of computing hypercactus, the best-known construction by [CX17] takes
Õ(pn) time.5 Theorem 1.2 gives the first almost-linear time construction.

As discussed above, a cactus and its generalizations are central objects in many algorithms.
Consequently, our almost-linear constructions immediately imply several applications. We defer the
definition of the problems and the proofs of these applications to Appendix E.

Corollary 1.3. There are randomized almost-linear time algorithms that can w.h.p. compute
• the optimal solution of the Steiner connectivity augmentation problem6, and
• the optimal value of the hypergraph +1-Steiner-connectivity augmentation problem.

Corollary 1.3 improved a polynomial algorithm for the hypergraph +1-connectivity by Cheng
[Che99] by speeding up it to almost-linear time and generalizing it to the Steiner version.

Lastly, we also improved the update time of the incremental algorithm for maintaining hyper-
graph mincuts from O(λn) [GK19] to of Ô(λ).

Corollary 1.4. There is an algorithm that, given an unweighted hypergraph G = (V,E) undergoing
hyperedge insertions, maintains a mincut in time Ô(λ) amortized update time where λ denotes the
mincut value at the end of the updates.

1.2 Techniques

Below, we explain why the two most promising techniques in the literature fail to solve our problems,
which motivates our new algorithmic tool called maximal isolating mincuts.

First Technical Barrier: Tree-packing Fails. Perhaps the most natural approach for devising
fast algorithms for both Steiner cactus and hypercactus is to extend the techniques of the only known
near-linear time algorithm by Karger and Panigrahi [KP09] for a normal cactus. However, their
algorithm relied on the tree packing technique [Gab91b, Kar00], which requires solving the so-called
2-respecting mincuts problem. Although they devised an ingenious way to deal with 2-respecting
mincuts, at least quadratic time is likely required for k-respecting mincuts for any k > 2.7

Now, in the Steiner and hypergraph settings, it turns out that one needs to compute 4-respecting
and O(log n)-respecting mincuts, respectively, because fast algorithms for tree packing in these
settings have worse quality by at least a factor of 2 [Meh88] and Ω(log n) [CS07], respectively.
Therefore, the tree-packing approach seems futile to us.

The same technical barrier was previously illustrated on the problem of computing a single
mincut. Karger’s [Kar00] near-linear time global mincut algorithm was based on tree-packing,
and it took 20 years before almost-linear algorithms for Steiner mincut and hypergraph mincut
[LP20, CQ21] were found using a very different technique, called isolating mincuts.

5Their result is based on the MA-ordering technique, which does not work well with Steiner mincuts.
6Very recently, Cen et al. [CHLP23] independently showed an almost-linear time algorithm for the Steiner con-

nectivity augmentation problem.
7Abboud et al. [AKL+21] devised a new technique for dealing with k-respecting mincuts using logO(k) n calls to

max flow. The algorithm, however, is based on the isolating mincuts technique, which also fails to solve our problems.
Furthermore, the exponential dependency on k makes their technique futile for hypergraphs where k = O(log n).

3

Second Technical Barrier: Minimal Isolating Mincuts Fails. The isolating mincuts tech-
nique was recently discovered by [LP20, AKT21]. They show that given a graph G = (V,E)
and a terminal set T ⊆ V , one can compute a t-mincut of T (i.e., a minimum cut separat-
ing t from T \ t) for all t ∈ T using logarithmic calls to max flow, instead of |T | many calls.
In fact, they showed how to compute a minimal t-mincut of T for all t ∈ T , i.e., the unique
mincut separating t from T \ t that is “closest” to t. These cuts are called the minimal isolat-
ing mincuts of T . The technique instantly became very influential and found many applications
[AKT21, LNP+21, CQ21, LP21, MN21, CLP22, LNPS22, LPS22, AKT22, AKL+21], many of which
crucially exploit the minimal property of these isolating mincuts.

Unfortunately, minimal isolating mincuts are ineffective for constructing a cactus: it cannot
even distinguish a cycle from a clique! More precisely, consider a clique K and a cycle C with n
vertices. Scale the weight edges so that the weighted degree of each node of the two graphs agrees.
All mincuts of K consist of n singletons cut, while all mincuts of C contain all

(
n
2

)
arcs of C. Now,

for every vertex set T , minimal isolating mincuts of T in both K and C are always a collection of
singleton cuts. That is, minimal isolating mincuts alone fail to distinguish the mincut structures
between the clique K and the cycle C.

Our New Tool: Maximal Isolating Mincuts. The above counter-example naturally suggests
we consider maximal isolating mincuts. That is, given a terminal set T , compute a maximal t-mincut
of T for all t ∈ T , which is the unique mincut separating t from T \ t that is “furthest” from t.

At first glance, maximal isolating mincuts seem unsuitable for almost-linear time algorithms
because it is not even clear whether these cuts admit a near-linear space representation. In contrast,
minimal isolating mincuts consist of disjoint vertex sets and so have linear size. For example, when
T = {s, t}, it is easy to see that the two maximal mincuts can overlap, and almost all vertices may
be in both cuts. Therefore, it is conceivable that maximal isolating mincuts of T requires Ω(n|T |)
space, quadratic in the worse case.

Perhaps surprisingly, we show that these cuts’ total size is linear and can also be computed using
polylogarithmic calls to max flow. We devote Section 3 to proving this structural result.

Let us reconsider the toy problem of “cycle vs. clique” above. Indeed, maximal isolating mincuts
can resolve this problem. Suppose we sample a terminal set T ⊂ V and then compute maximal
isolating mincuts T . While all the minimal isolating mincuts in the clique remain singleton cuts,
some maximal isolating mincuts will be non-singleton cuts in the cycle. So, in this simple example,
we can distinguish the two graphs.

Cactus via Maximal Isolating Mincuts. It turns out that maximal isolating mincuts are
powerful enough to capture all mincuts. By highly exploiting their structure, we show in Section 4
how to construct Steiner cactus using polylogarithmic maxflow calls. At a high level, our algorithm
significantly improves the divide-and-conquer approach by [CX17] with linear recursion depth to
only logarithmic. To achieve this, the high-level idea is, in the divide step, our maximal-isolating-
cut-based approach can split the graph such that every part has size smaller by a constant factor,
except at most one part that we guarantee that no more recursion is needed. (See Figure 2 for an
illustration.) Hence, the recursion depth is logarithmic. In contrast, the algorithm of [CX17] cannot
certify this and might need to recurse on the biggest part for Ω(n) rounds.

4

First Challenge in Hypergraphs: Defining Maximal Isolating Mincuts Let us discuss
the technical challenges in generalizing our techniques to hypergraphs. First, it is tricky even to
define the notion of maximal isolating mincuts for hypergraphs. A natural extension is a partition
of vertices (X,V \ X) that separates a specified terminal t ∈ X ∩ T from other terminals such
that |X| is maximized while the number of boundary edges |∂X| is minimized. However, the total
output size of maximal isolating mincuts can be quadratic under this definition. Hence, it is useless
for almost-linear time algorithms. For example, consider a hypergraph G = (V, {V }) with only one
single hyperedge containing all the vertices. Designate half of the vertices as terminals, i.e., T ⊂ V
and |T | = |V |/2. In this case, every maximal isolating mincut has size |V | − |T |+ 1 = Ω(|V |).

It turns out the “right” definition is the following tweak — we require that all mincuts (X,V \X)
the algorithm is considering must be connected at the X side, that is, after removing the boundary
edges ∂X, all vertices in X must still be connected. Under this definition, in Section 5.1, we show
that all nice structural results we had on graphs transfer to hypergraphs. In particular, we can
bound the total size of maximal isolating mincuts to be linear. As a sanity check, all maximal
isolating mincuts in the above example are single vertices under the new definition, thereby the
total output size becomes O(|V |).

Second Challenge in Hypergraphs: Computing Hypercactus The second significant chal-
lenge is because a hypercactus contains hyperedges of rank higher than two. Without very careful
treatment, our divide-and-conquer algorithms, including previous algorithms by [CX17], will split
these higher-rank hyperedges of rank r in the divide step into Ω(r) pieces. Now, in the conquer step,
the algorithm will need to merge them back and each merging step requires at least linear time (in
fact, one max flow call) because we need to perform some test to know the topology of the gluing
parts. This incurs the running time of Ω(pr) = Ω(pn) where p is the total size of the hypergraph,
which is too slow.

We completely bypass this difficulty showing that our divide-and-conquer algorithm simply
never splits these higher-rank hyperedges in a non-trivial way! This is done by again exploiting the
“right” definition of the maximal isolating mincuts described above. Compared with the algorithm
by [CX17], our final algorithm in Section 5.2 is arguably simpler as we do not perform the test
related to higher-rank hyperedges and runs in almost-linear time.

2 Preliminaries

Let G = (V,E,w) be an undirected, connected, and weighted graph with positive edge weights
w : E → R+. A cut is a partition (X,V \ X), when the context is clear we use X (or V \ X)
representing the cut (X,V \X) for brevity. For any subsets X,Y ⊆ V we define the value between
X and Y to be C(X,Y) =

∑
u∈X,v∈Y w(u, v). When Y = V \X we simply denote C(X,V \X) by

C(X). A nonempty subset X ⊂ V is said to be a (global) mincut if C(X) = minS:∅⊂S⊂V C(S). The
set of boundary edges incident to X is denoted by ∂X. For two disjoint subsets of vertices A and
B, a cut (X,V \X) separates A and B if X ⊆ A and Y ⊆ B.

We say two subsets of vertices X and Y ⊆ V are crossing if all of X ∩ Y , X \ Y , Y \X, and
V \ (X ∪ Y) are nonempty. The value function C satisfies submodularity and posi-modularity (see
[NI00]) on crossing subsets.

Lemma 2.1 ([NI00]). Let X,Y ⊆ V be subsets that are crossing. Then,

5

• (Submodularity) C(X) + C(Y) ≥ C(X ∩ Y) + C(X ∪ Y), and

• (Posi-modularity) C(X) + C(Y) ≥ C(X \ Y) + C(Y \X). □

Let X ⊆ V be any subset of vertices, we define the contracted graph G/X to be the graph
obtained from G by (1) contracting all vertices in X into one vertex, (2) replacing all multi-edges
with a single edge with the corresponding edge weight, and finally (3) removing all self-loops.

Steiner Mincuts and t-Isolating Cuts. Let T ⊆ V be a terminal vertex set of size at least 2.
For any proper subset A ⊊ T , an A-cut of T is a cut that separates A and T \ A. An A-mincut
of T is a minimum valued A-cut of T , denoted by the vertex set XA. Conveniently, for any vertex
t ∈ T we define a cut Xt to be t-isolating mincut of T if Xt is a {t}-mincut of T . A T -Steiner
mincut is defined to be a minimum valued A-mincut among all proper subsets A ⊊ T . The value
of a T -Steiner mincut on the graph G is denoted as λG(T).

A-mincuts of T are not necessarily unique. Fortunately, with the submodularity and posi-
modularity mentioned in Lemma 2.1, these A-mincuts behave similarly to global mincuts in the
sense that there is a unique minimal and maximal A-mincut of T .

Definition 2.2 (Maximal and Minimal A-Mincuts of T). We say that an A-mincut XA of T is
maximal (resp. minimal), if for any other A-mincut X ′

A of T , we have XA ⊇ X ′
A (resp. XA ⊆ X ′

A).

Isolating Mincuts. Given a graph G and a set of terminal vertex T , the isolating mincuts of T
is a collection of t-isolating mincuts that separates each single terminal vertex t ∈ T from T \ {t}.
Li and Panigrahi [LP20] gave an algorithm that computes a minimal isolating cut efficiently.

Theorem 2.3 ([LP20, Isolating Cut Lemma]). Given a graph G = (V,E) and any terminal set
T ⊆ V , there is an algorithm that returns the minimal t-isolating mincuts for all t ∈ T in O(log |T |·
MaxFlow(2n, 2m)) time.

The function MaxFlow(x, y) denotes the time needed for solving an st-maxflow instance with x
vertices and y edges. We assume that the function MaxFlow(x, y) is Ω(x + y), is non-decreasing,
and is superadditive.8

3 Maximal Isolating Mincuts

The maximal minimum isolating cut problem states that, given a graph G = (V,E) with n vertices
and m edges and a terminal set T , the goal is to obtain the maximal isolating mincut Xv for each
terminal v ∈ T . In this section, we give an efficient algorithm for solving the maximal isolating
mincuts problem in almost linear time, which summarizes as the following Theorem 3.1.

Theorem 3.1. There exists an algorithm that, given an undirected weighted graph G = (V,E) and
a terminal set T ⊆ V , in O(log |T | ·MaxFlow(3n, 4m)) time computes the maximal isolating mincut
of all terminals v ∈ T with respect to T .

8An integral function f(x, y) is said to be superadditive if for any x1, y1, x2, y2 ∈ N we have f(x1 + x2, y1 + y2) ≥
f(x1, y1) + f(x2, y2). The function is non-decreasing if both f(x+ 1, y) ≥ f(x, y) and f(x, y + 1) ≥ f(x, y) holds.

6

Key Insight. The crux of our maximal isolating mincut algorithm is an observation9 to any set
of three pairwise crossing mincuts to three disjoint subsets of T — their intersection is always an
empty set due to only posi-modularity but not submodularity.

To formally prove this, we first state a standard fact about posi-modularity in Lemma 3.2 (see
its proof in Appendix A.1). Then, we state the key observation as the Pairwise Intersection Only
Lemma below.

Lemma 3.2 (Disjoint & Posi-modularity). Let A,B ⊆ T be two nonempty subsets of terminals
with A ∩B = ∅. Let XA (resp. XB) be an A-mincut (resp. B-mincut) of T . Then, XA \XB is an
A-mincut of T , and XB \XA is a B-mincut of T .

Lemma 3.3 (Pairwise Intersection Only). Given a graph G, let A,B,C ⊆ T be three disjoint
nonempty subsets of terminals. Let XA, XB, XC ⊆ V be any A-mincut, B-mincut, and C-mincut
of T respectively. Then XA ∩XB ∩XC = ∅.

Proof. The proof is only interesting whenever the intersection of any two mincuts is non-empty
(i.e. crossing). Thus, without loss of generality, we assume that XA ∩XB ̸= ∅, XB ∩XC ̸= ∅, and
XC ∩XA ̸= ∅.

Define X ′
A = (XA \XB) \XC , X ′

B = (XB \XC) \XA and X ′
C = (XC \XA) \XB. These sets

are non-empty since A ⊆ X ′
A, B ⊆ X ′

B, and C ⊆ X ′
C . By posi-modularity (Lemma 3.2) we know

that X ′
A, X ′

B, and X ′
C are also A-mincut, B-mincut, and C-mincut of T respectively, and thus

(C(XA) + C(XB) + C(XC))− (C(X ′
A) + C(X ′

B) + C(X ′
C))︸ ︷︷ ︸

(LHS)

= 0. (⋆)

Assume for contradiction that X := XA ∩XB ∩XC ̸= ∅. We now claim that there is no edge
from X to XA \X. Note that with the assumption that G is connected, we have C(X,V \XA) > 0.
The claim implies that

C(XA) = C(XA \X)− C(XA \X,X) + C(X,V \XA) > C(XA \X),

which contradicts the fact that XA is A-mincut.
We shall prove the claim by two steps: (1) every edge in the graph contributes to non-negative

values to the left-hand side (LHS) of (⋆). Therefore, any edge that contributes to a positive amount
to LHS should not exist in G by Equation (⋆). (2) For any boundary edge (u, v) ∈ ∂X with u ∈ X
and v /∈ X, we have v /∈ XA ∪XB ∪XC , which implies the claim.

1. We consider the cases that e contributes to how many terms of C(X ′
A), C(X ′

B) and C(X ′
C).

Since X ′
A, X ′

B, and X ′
C are disjoint and an edge e incidents to two vertices, e contributes to

at most two of the three terms. There is nothing to prove if e contributes to 0 of them.

If e contributes to one of them, without loss of generality C(X ′
A). Then e contains some vertex

in X ′
A, and also some vertex v in V \ X ′

A = (V \ XA) ∪ XB ∪ XC . Therefore v is in either
V \XA, XB or XC , hence also contributes to either C(XA), C(XB) or C(XC) respectively.

Otherwise e contributes to two of them, without loss of generality C(X ′
A) and C(X ′

B), then e
contains some vertex u ∈ X ′

A and v ∈ X ′
B. By the definition of X ′

A and X ′
B, we have u ∈ XA,

u /∈ XB, v ∈ XB, v /∈ XA. So e also contributes to C(XA) and C(XB).
9A similar observation can also be found in Dinitz and Vainshtein [DV94, 3-Star Lemma].

7

2. We prove (2) using (1) by showing that the contribution to LHS is positive if u ∈ X and
v ∈ (XA ∪XB ∪XC) \X. Again we consider the cases that e contributes to how many terms
of C(X ′

A), C(X ′
B), and C(X ′

C). Note that e can not contribute to more than one of them since
X ′

A, X ′
B, and X ′

C are disjoint and one of the endpoints u ∈ X is in neither of them.

If e contributes to none of them, then we need to show that e contributes to at least one of
C(XA), C(XB), and C(XC). This claim is directly from the fact that X = XA ∩ XB ∩ XC ,
u ∈ X, and v /∈ X.

Otherwise, e contributes to one of them, without loss of generality C(X ′
A). By the definition

of X ′
A, we have v /∈ XB and v /∈ XC . Therefore e also contributes to C(XB), and C(XC).

Bounding the output size. Before we describe our algorithm, we emphasize that the total size
of all maximal v-isolating mincuts is O(n), as a consequence of Lemma 3.3:

Lemma 3.4. Let G be a graph and T be a set of terminals. For each v ∈ T , let Xv be any v-isolating
mincut. Then,

∑
v∈T |Xv| ≤ 2n.

Proof. Every vertex u ∈ V belongs to at most two isolating mincuts. Suppose by contradiction that
there exist three terminal vertices v1, v2, and v3 such that u ∈ Xv1 ∩ Xv2 ∩ Xv3 . By Lemma 3.3
we know that Xv1 ∩ Xv2 ∩ Xv3 = ∅, a contradiction. Hence, a counting argument shows that∑

v∈T |Xv| ≤ 2n.

We remark that for our purpose we apply Lemma 3.4 where Xv is the maximal v-isloating
mincut for all v ∈ T . Lemma 3.4 implies that the total output size is O(n). Thus, all maximal
v-isolating mincuts can be stored explicitly. Now, we are ready for introducing the algorithm.

A Divide and Conquer Algorithm. The existing algorithms [LP20, CQ21] for finding minimal
isolating mincuts use one-shot recursion by first computing O(log |T |) cuts on G. These cuts
partition the vertex set into O(|T |) subsets, and isolate every terminal from T . The minimal t-
isolating mincuts can then be obtained within each part (and contracting everything outside the
part). This does not work for us! The most evident reason is that the maximal t-isolating mincuts
may not be disjoint.

Instead of using one-shot recursion, we can also consider a divide and conquer algorithm that is
equivalent to the existing algorithms. The algorithm considers one cut at a time. Each cut splits
the terminal set (and the vertex set) into two parts, creating two subproblems. Each subproblem is
obtained by contracting all vertices on one side of the cut into a single vertex. The subsequent cuts
are now affecting both subproblems, splitting each subproblem into another two subproblems, and
so on and so forth.

Our algorithm solves the maximal isolating mincut problem using a divide and conquer approach
very similar to the algorithm described above, but with a slight twist. In our algorithm, every
subproblem is derived from G via contractions, and there will be at most one contracted vertex in
each subproblem. We call such a special vertex p the pivot of a subproblem. Notice that p = null
when the algorithm first enters the recursion, as there is no contracted vertex. Throughout the
execution, the algorithm recursively splits the terminal set T \ {p} arbitrarily into two halves
T \ {p} = A ∪ B. Then, the algorithm computes XA (the maximal A-mincut of T) and XB (the
maximal B-mincut of T) by solving two s-Maximal st-Mincut instances (which can be solved using
one st-MaxFlow and a linear time post processing).

8

We observe (via submodularity, see Lemma 3.5) that for each terminal v ∈ A, the maximal
v-isolating mincut Xv must be fully contained in XA, i.e., Xv ⊆ XA. Hence, in order to find out the
maximal v-isolating mincuts for all vertices v ∈ A, it is safe to contract everything outside XA and
recursively compute maximal isolating mincuts on the contracted graph GA := G/(V \XA). Notice
that the pivot p as well as all terminal vertices in B are outside of XA, so within the contracted
graph GA the contracted vertex pA shall be considered as a terminal vertex in the subproblem.

Similarly, the algorithm contracts everything outside XB which leads to the pivot vertex pB,
and recursively computes maximal isolating mincuts on G/(V \XB) too. This divide and conquer
procedure continues until the number of terminal vertices becomes a constant, where the maximal
v-isolating mincut can be computed for each vertex v ∈ T individually using a max-flow. The
algorithm is summarized in Algorithm 1.

Algorithm 1 Maximal isolating mincuts.
1: procedure MaxIsoMincut(G, T)
2: Call MaxIsoMincutWithPivot(G, T , null).
3: end procedure
4: procedure MaxIsoMincutWithPivot(G, T , p)
5: if |T | ≤ 4 then ▷ Base case.
6: Obtain the maximal v-isolating mincut Xv for each v ∈ T . ▷ Use MaxFlow.
7: else
8: Partition T \ {p} arbitrarily into two similarly sized sets A ∪B = T \ {p}.
9: Compute XA, the maximal A-mincut of T . ▷ Use MaxFlow.

10: Compute XB , the maximal B-mincut of T . ▷ Use MaxFlow.
11: Let GA ← G/(V \XA) where V \XA gets contracted to pA.
12: Let GB ← G/(V \XB) where V \XB gets contracted to pB .
13: Invoke MaxIsoMincutWithPivot(GA, A ∪ {pA}, pA).
14: Invoke MaxIsoMincutWithPivot(GB , B ∪ {pB}, pB).
15: end if
16: end procedure

Analysis We now prove the correctness and the runtime. As mentioned above, the correctness of
Algorithm 1 depends on a standard fact on submodularity on two nesting subsets (for completeness
see its proof in Appendix A.2):

Lemma 3.5 (Nesting & Submodularity). Let G be a graph and let T be the set of terminals.
Consider two nonempty subsets A and B of terminals such that A ⊆ B ⊊ T . Let XA (resp. XB) be
any A-mincut (resp. B-mincut) of T . Then, XA ∩XB is a A-mincut of T . Respectively, XA ∪XB

is a B-mincut of T .

Consider the recursion tree throughout executing Algorithm 1. We say that a subproblem is a
leaf if Algorithm 1 is executed for the subproblem and thus no further recursions are invoked.

Lemma 3.6 (Correctness). Fix a terminal vertex v ∈ T . There is a unique (leaf) subproblem where
the maximal isolating mincut for v is computed. Let X̂v be the cut returned at Line 6 for vertex v.
Then X̂v = Xv is the maximal v-isolating mincut on the graph G.

Proof. Fix v ∈ T . Since in each divide step, exactly one subproblem contains v so there will
be exactly one leaf subproblem where Line 6 is invoked for v. Clearly X̂v does not contain any

9

contracted vertex (since the only contracted vertex in the subproblem is the pivot.) Now, to show
that X̂v = Xv, it suffices to show that in each divide step, all vertices in Xv are not contracted.
Indeed, by submodularity in Lemma 3.5, suppose without loss of generality that v ∈ A then we
must have Xv ⊆ XA (otherwise XA is not a maximal isolating mincut of A since Xv ∪ XA is a
larger-sized isolating mincut of A.)

Lemma 3.7 (Runtime). MaxIsoMincut(G, T) runs in O(log |T | ·MaxFlow(3n, 4m)) time.

Proof. It suffices to bound the sum of graph sizes in all subproblems throughout the execution of
Algorithm 1. First of all, the maximum depth of the recursion tree is ⌈log |T |⌉ since in each recursive
call the number of non-pivot terminals is reduced to half. In addition, the number of subproblems
in each recursion depth i is at most min{2i, |T |}.

Now, we focus on a particular recursion depth i > 0. Let {(Gj , Tj , pj)} be all the subproblems
whose recursion depth is i. We observe that all terminals except pivot go to exactly one subproblem
so the subsets T ′

j := Tj \ {pj} are disjoint. Moreover, by Lines 11-12 we know that for each j,
removing the pivot pj from Gj it is exactly the maximal T ′

j -mincut of T on G.
Using the Pairwise Intersection Only Lemma (Lemma 3.3), we are able to conclude that every

vertex in the input graph G occurs in at most two subproblems at recursion depth i. Therefore,
the total number of vertices across all subproblems at depth i is

∑
j |V (Gj)| ≤ 2n+min{2i, |T |} ≤

2n + |T | ≤ 3n. To analyze the total number of edges across all subproblems at depth i, we notice
that each edge has at least one non-pivot endpoint. Thus, the total number of edges can be bounded
by the sum of all vertex degrees

∑
j |E(Gj)| ≤ 4m.

Finally, in each subproblem (G′, T ′), where the graph G′ has n′ vertices and m′ edges, the
algorithm computes the maximal A-mincut of T (denoted by XA) and the maximal B-mincut of T
(denoted by XB) by the following steps. First, the algorithm creates a flow graph G′

flow where the
source vertex s is obtained by merging all vertices in A and the sink vertex t is obtained by merging
all vertices in B. This graph has at most n′ vertices and at most m′ (undirected) edges since G′

is formed from the input graph G by a sequence of contraction. Then, the algorithm finds any
st-MaxFlow f within MaxFlow(n′,m′) time. Finally, the algorithm examines the residual graph
G

′(f)
flow in O(n′ +m′) time: XA is exactly the set of vertices that do not reach t and XB is exactly

the set of vertices that are not reachable from s.
Therefore, by summing up the runtime per recursion depth, we obtain an upper bound to the

desired total runtime O(log |T | ·MaxFlow(3n, 4m)).

Proof of Theorem 3.1. Theorem 3.1 follows directly by Algorithm 1, Lemma 3.6, and Lemma 3.7.

4 Steiner Cactus Construction

In this section, we apply the maximal isolating mincut algorithm from Section 3 to construct a
a Steiner cactus representation that succinctly represents all T -mincuts on a given graph G with
terminal set T using O(|T |) space.

Definition 4.1 (Steiner Cactus, see also [DV94, CX17]). Given a graph G and a terminal set T , a
T -Steiner cactus (H,ϕ) is a weighted cactus graph H with a mapping ϕ : T → V (H) such that (1)
edges in a cycle have weights λG(T)/2 and edges not in a cycle have weights λG(T), (2) an A-mincut
of T is a T -Steiner mincut if and only if a global mincut on H separates ϕ(A) and ϕ(T \ A).

10

We say that a node v ∈ V (H) in a cactus is non-empty if there exists a terminal t where ϕ(t) = v.
There may exist empty nodes in H. Notice that cactus and Steiner cactus representations of a graph
may not be unique.10 Our Steiner cactus algorithm is now summarized below as Theorem 4.2.

Theorem 4.2. Let G be a graph with n vertices and m edges. Let T be a set of terminals. There
exists a randomized Monte Carlo algorithm such that, with probability 1 − 8n−10, the algorithm
correctly computes a T -Steiner cactus in O((log4 n) ·MaxFlow(3n, 4m+ 8n log |T |)) time.

4.1 Divide and Conquer Approach: Prior Works

Chekuri and Xu’s algorithm [CX17] finds a linear-sized hypercactus representation that represents
all (global) mincuts on a hypergraph. This hypercactus representation degenerates to a cactus
representation on a normal graph and also in the Steiner setting. We now briefly describe their
framework in terms of constructing a T -Steiner cactus.

The main idea of Chekuri and Xu’s algorithm is to successively find T -splits — T -mincuts that
have at least two terminal vertices on both sides. After obtaining a T -split (X,V \ X), a simple
refinement conceptually decomposes the graph G into two graphs G1 and G2, where each of them
is obtained from a copy of G with all vertices from one side (either X or V \ X) are contracted.
Notice that the contracted vertices will be treated as terminals in the decomposed graphs, which
we call anchor vertices.

Definition 4.3. A split (or a T -split) of a terminal set T on a graph G is a T -mincut (X,V \X)
such that both X and V \X have at least two terminal vertices, i.e., |T ∩X|, |T \X| ≥ 2.

Definition 4.4 (Simple Refinement and Anchor Vertex). Fix a graph G = (V,E) and a terminal
set T . We say that {(G1, T1), (G2, T2)} is a simple refinement of G if G1 and G2 are graphs obtained
through a T -split (X,V \X) of G and a new anchor vertex 11 a as follows.

• G1 := G/(V \X) such that V \X gets contracted to a.

• T1 := (T ∩X) ∪ {a}.
• G2 := G/X such that X gets contracted to a.

• T2 := (T ∩ (V \X)) ∪ {a}.

Chekuri and Xu’s algorithm maintains a decomposition G = {(Gi, Ti)} (initialized with the input
graph {(G, T)}), iteratively finds a Ti-split to any graph (Gi, Ti) ∈ G, and replaces the graph Gi

with its simple refinements. Since each simple refinement creates an anchor vertex that appears in
both decomposed graphs, at any time, the decomposition G admits a decomposition tree.

Definition 4.5 (Decomposition). Fix a graph G and a terminal set T . A decomposition G =
{(Gi, Ti)} is a collection of graphs and terminal vertices obtained by performing an arbitrary se-
quence of simple refinements.

Finally, the algorithm halts when no splits exist in the current decomposition. In this case, the
decomposition is called a prime decomposition.

10See the work of Nagamochi and Kameda [NK94] for canonical cactus representations of a graph.
11In [CX17] the authors called these vertices marker vertices.

11

Definition 4.6 (Prime Decomposition). Fix a graph G and a terminal set T . We say that a
decomposition G = {(Gi, Ti)} is prime if each graph Gi does not contain a Ti-split.

In Chekuri and Xu’s algorithm, they add a post-processing step turning a prime decomposition
into a canonical decomposition (see also [Che99, Cun83]), where every mincut of G can be found in
exactly one graph from the canonical decomposition. Indeed, it is possible for some T -mincuts of G
not being preserved anymore in a prime decomposition. For example, if the algorithm decomposes a
graph using a T -split, then all the T -mincuts that cross with that split no longer exist in the simple
refinement. The only guarantee to any decomposition G = {(Gi, Ti)} is that every Ti-mincut in Gi

corresponds to some T -mincut in G (by “expanding” the anchor vertices with the terminal vertices
in T). Fortunately, all T -mincuts that the algorithm has missed in one divide and conquer step
belong to the same cycle on a cactus representation of T . In Section 4.4 we show that even without
the post-processing step, we are still able to efficiently glue the cactus of decomposed graphs (via
anchor vertices) such that a cycle on a cactus representation can still be constructed. Thus, all
T -mincuts are preserved.

However, iteratively finding splits and repeatedly invoking simple refinements have a worst
case Ω(m|T |) runtime, which is too slow. This worst case occurs when the splits used for simple
refinements were imbalanced. In the rest of the section, we resolve this issue via maximal isolating
mincuts, obtaining an algorithm for Steiner cactus in poly-logarithmic max-flow time.

4.2 Our Divide and Conquer Framework via a Sequence of Splits

Our divide and conquer algorithm is based on the idea of Chekuri and Xu [CX17], where the goal is to
output a prime decomposition through a series of simple refinements. However, in each subproblem,
instead of seeking one split at a time, our algorithm uses multiple splits in G and generates a good
decomposition (see Definition 4.8) with high probability. The guarantee of a good decomposition
leads to an O(log |T |) upper bound to the recursion depth, achieving a poly-logarithmic max-flow
runtime.

In the rest of this subsection, we formulate a divide and conquer framework (see Algorithm 2)
for computing a T -Steiner cactus. The implementation of this framework has to overcome two non-
trivial challenges, namely (1) computing a collection of splits that generates a good decomposition
(Lemma 4.10) and (2) merging the sub-cactus returned from the subproblems into a T -Steiner
cactus (Lemma 4.11). We overcome both challenges using our maximal isolating mincut algorithm
and describe the details in Section 4.3 and Section 4.4. By assuming Lemmas 4.10 and 4.11, we
establish a proof to Theorem 4.2 at the end of this subsection.

Preprocessing. To enable the power of the maximal isolating mincut algorithm, we rely on the
following two handy properties after preprocessing:

1. We may assume that we have already known the value of the Steiner mincut λG(T).
2. We may assume that for any two terminal vertices u and v ∈ T , there exists a T -Steiner

mincut that separates u and v.

These two assumptions can both be achieved using the isolating cut algorithm from Li and Pani-
grahi [LP20]. The first assumption can be made directly via an almost-linear time algorithm [CQ21]
that computes a T -mincut and its value. The second assumption can be made by preprocessing the
graph with a “λ-connected component algorithm” implicitly mentioned in Li and Panigrahi [LP21].

12

We summarize the second preprocessing step below in Lemma 4.7 and prove them in Appendix B.1
for completeness.

Lemma 4.7 (Preprocessing [LP21, run one step of Algorithm 4]). Given a graph G and a terminal
set T , there exists an algorithm such that, with probability 1−n−11 the algorithm outputs a partition
of T such that λ(u, v) = λG(T) if and only if u and v belongs to different parts. This algorithm
runs in O(log2 n ·MaxFlow(2n, 2m)) time.

Good Decomposition. Let us now consider decomposing the graph G using one or more splits at
a time in Chekuri and Xu’s algorithm. Suppose we have an ideal oracle that always finds a balanced
T ′-split where both sides contain at least 1

4 |T
′| terminal vertices in a graph G′ with terminal vertex

set T ′. Then, performing one simple refinement in each subproblem (G′, T ′) suffices to bound the
recursion depth by O(log |T |). Unfortunately, such an exemplary oracle does not always exist. In
an extreme scenario, consider a graph G and a terminal set T whose Steiner cactus representation
could be a star. Since all T -mincuts are trivial, there is even no split for T . Fortunately, if there is
no further split for T on G, then {(G, T)} itself is already a prime decomposition so this is a base
case in our divide and conquer algorithm. Motivated by this, we define the good decomposition that
suffices to bound the recursion depth as follows.

Definition 4.8 (Good Decomposition). Given a graph G and a set of terminal vertices T , a
decomposition G = {(Gi, Ti)} of G is said to be good with respect to T if G has the following
property. Let Ti be the set of terminal vertices in Gi. For all i except at most one special index i∗,
|Ti| ≤ 3

4 |T |+ 1, and there exists a Steiner cactus representation of Ti∗ in Gi∗ that is a star.

Induced Decomposition from a Collection of Disjoint Splits. Consider a collection of T -
splits S = {X1, X2, . . . , Xk} where the presented subsets in S are disjoint. The disjointness leads
to a robust procedure for performing lots of simple refinements to G using the T -splits from S in
any order. It is straightforward to check that the resulting decomposition is unique up to relabeling
the anchor vertices, and we call the result the decomposition induced by S on G.

Now, we formally establish sufficient criteria that our maximal isolating mincut algorithm will
achieve with high probability.

Definition 4.9 (Good Split Collection). Given a graph G and a set of terminals T , we say that a
collection of T -splits S = {Xi} is a good split collection if (1) for any i ̸= j we have Xi ∩Xj = ∅,
and (2) the decomposition induced by S is a good decomposition.

With the above Definition 4.9, we are able to summarize and highlight the first step in the
divide and conquer framework in Lemma 4.10 (proved in Section 4.3). The entire divide and
conquer algorithm is presented in Algorithm 2.

Lemma 4.10. Given a graph G = (V,E) and a set of terminals T , there exists a randomized Monte
Carlo algorithm such that, with probability 1− n−11, the algorithm returns a good split collection S
in O((log3 n) ·MaxFlow(3n, 4m)) time.

12In the hypergraph setting, we replace this procedure with StarOrBrittleCactus, see Section 5.4.

13

Algorithm 2 A divide and conquer framework that computes a T -Steiner cactus.
Require: a graph G = (V,E), a terminal set T .
Ensure: a T -Steiner cactus of G.
1: procedure ComputeSteinerCactus(G, T)
2: if |T | ≤ 3 then ▷ Either a triangle or a path.
3: return TrivialCactus(G, T).
4: else
5: Obtain S, a good collection of T -splits on G. ▷ See Lemma 4.10 and Section 4.3.
6: if S = ∅ then
7: return StarCactus(G, T).12 ▷ There will be two types of stars, see Section 4.4.
8: end if
9: Compute the decomposition G = {(Gi, Ti)} induced by S over G.

10: Obtain Hi ← ComputeSteinerCactus(Gi, Ti) for all i.
11: return MergeCactus(G, T , {Hi}). ▷ See Lemma 4.11 and Section 4.4.
12: end if
13: end procedure

Merging Cactus from Subproblems. The last piece for accomplishing the divide and conquer
algorithm is to merge the cactus returned from each subproblem. On the bright side, with the help
of anchor vertices, we do have the proximity of how two cactus should be combined. However, the
merging procedure is a bit subtle as we have to make sure that every T -Steiner mincut is preserved in
the combined cactus. We summarize the correctness and the runtime guarantee here in Lemma 4.11
and establish the details in Section 4.4.

Lemma 4.11. Fix a subproblem (G = (V,E), T) in Algorithm 2. Assume all splits generated from
the subproblems {(Gi, Ti)} derived from (G, T) are good, and each subproblem returns a correct Ti-
Steiner cactus of Gi. Then, the procedures TrivialCactus, StarCactus, and MergeCactus
returns a T -Steiner cactus of G in O(log |T | ·MaxFlow(2n, 2m)) time.

Now, with Lemmas 4.10 and 4.11, we are able to prove the main Theorem 4.2 by completing
the (relatively trivial) implementation details of Line 9 and analyzing its runtime.

Proof of Theorem 4.2. Let S = {X1, X2, . . . , Xℓ} be a good split collection returned from Line 5.
To obtain a decomposition G induced by S (Line 9), the algorithm first computes the induced
subgraphs G[Xi] for all i in linear time. Then, the algorithm simulates the simple refinement of
Xi by creating an anchor vertex ai for each split Xi, and for each edge (u, v) that across the split
u ∈ Xi but v /∈ Xi, the algorithm either adds a new edge from (u, ai), or adds the weight to an
existing edge (u, ai). Finally, the algorithm duplicates the graph G and contract each subset Xi into
a single anchor vertex ai, forming the last decomposed graph (Gℓ+1, Tℓ+1). The implementation of
Line 9 takes linear time O(|V (G)|+ |E(G)|) in total.

Runtime. Consider the recursion tree of subproblems from Algorithm 2. By definition of a
good decomposition, we know that the recursion depth satisfies the following recurrence relation:
MaxDepth(k) = MaxDepth(⌊34k⌋+ 1) + 1 whenever k > 3 and MaxDepth(k) = 0 whenever k ≤ 3.
By solving the recurrence relation we obtain MaxDepth(k) = O(log k).

14

Now, it suffices to bound the total subproblem sizes within the same recursion depth. We first
claim that the number of vertices that occur across all subproblems in the same recursion depth is
at most 2n using a potential method. For each subproblem (G, T) we define an invariant potential
Φ(G, T) := |V (G)|+ |T | − 4. Notice that in the case where at least one recursion step is performed
we must have |T | ≥ 3 and hence Φ(G, T) > 0. If {(G1, T1), (G2, T2)} is a simple refinement of G,
observe that

Φ(G1, T1)+Φ(G2, T2) = (|V (G1)|+|V (G2)|)+(|T1|+|T2|)−8 = (|V (G)|+2)+(|T |+2)−8 = Φ(G, T).

Thus, consider the induced decomposition {(Gi, Ti)} on a good split collection of size k, we know
that Φ(G, T) =

∑k+1
i=1 Φ(Gi, Ti). Therefore, the sum of all potentials within the same recursion

depth can be upper bounded by the root problem’s potential. Since in every subproblem we have
|T | ≥ 3, we conclude that the total number of vertices across all subproblems at any particular
recursion depth (or any collection of subproblems that are not related to each other) is at most
Φ(G, |T |) = n+ |T | − 4 ≤ 2n.

As a consequence, we also deduce that there are at most 4|T | − 9 subproblems in the recursion
tree, by noticing that the recursion tree is a branching tree with at most 2|T | − 4 leaf subproblems
(every leaf subproblem contains at least one anchor vertex and every vertex in V (G) \ T occurs in
exactly one leaf subproblem.)

To bound the total number of edges across all subproblems within the same recursion depth,
we observe that after computing an induced decomposition from a good split collection, the total
number of edges is increased by at most

∑ℓ
i=1 |V (Gi)| ≤ 2n (notice that we charge the number of

the newly generated edges in the last decomposed graph (Gℓ+1, Tℓ+1) to the edges across each split).
Hence, we know that at any recursion depth there are at most m+ 2n log |T | edges in total.

Finally, we add up the runtime needed per recursion depth. Fix any recursion depth, for
each subproblem (Gj , Tj), by Lemma 4.10 the runtime spent in Line 5 is at most O((log3 n) ·
MaxFlow(3|V (Gj)|, 4|E(Gj)|)), the runtime spent for Line 9 is linear in the graph size O(|V (Gj)|+
|E(Gj)|), and by Lemma 4.11 merging cactus takes O(log |Tj | ·MaxFlow(|V (Gj)|, |E(Gj)|)) time.
Hence, by denoting k = |T |, the runtime of Algorithm 2 is

O(log k)︸ ︷︷ ︸
recursion depth

· O((m+ 2n log k)︸ ︷︷ ︸
Line 9

+(log3 n) ·MaxFlow(3n, 4(m+ 2n log k)))︸ ︷︷ ︸
Line 3, Line 5, Line 7, and Line 11

= O(m log k + n log2 k + (log3 n) ·MaxFlow(3n, 4m+ 8n log k))

= O((log4 n) ·MaxFlow(3n, 4m+ 8n log k)).

Finally, note that we spent time for preprocessing the input graph by called Lemma 4.7 using
O(log2 n ·MaxFlow(2n, 2m)) time, but this is subsumed by the above bound.

Correctness. By Lemma 4.10, with probability 1−n−11 the returned collection is good in Line 5.
Throughout execution there are at most 4|T | − 9 ≤ 4n invocations to Lemma 4.10. Hence, with a
union bound we know that with probability 1− 4n−10 the collections of splits from all subproblems
are good. Now, by applying the union bound again to Lemma 4.11 we know that the returned cactus
is a T -Steiner cactus of G with probability at least 1−4n−10. Therefore, with another union bound
we know that with probability 1− 8n−10 Algorithm 2 correctly outputs a T -Steiner cactus.

15

4.3 Computing a Good Split Collection

In this subsection, we aim to prove Lemma 4.10. Specifically, we propose Algorithm 3, and then we
show that with probability at least 1−n−11, a good split collection can be computed in almost-linear
time via O(log2 n) maximal isolating mincut algorithms.

Algorithm Description. Algorithm 3 works as follows. The algorithm set up ⌈log |T |⌉ different
sample rates, namely 2−1, 2−2, . . . , 2−⌈log |T |⌉. For each sample rate 2−i, the algorithm samples each
terminal vertex with probability 2−i and forms a set Ti. Then, the algorithm computes the maximal
isolating mincuts for the set Ti, and keeps the maximal v-isolating mincut of Ti if the cut is a T -split
and its value equals to λG(T) (i.e., keeps only the non-trivial T -Steiner mincuts.) To ensure a high
probability result, we repeat the whole sampling procedure another Θ(log n) times. Let S be the
collection of splits that the algorithm has found so far.

Recall from Definition 4.9 that there are two cases where a split collection is considered to be
good: either we find a balanced split whose both sides have at least 1

4 |T | terminals, or we find a
collection of disjoint sets where the contracted graph (obtained by contracting all these sets) does
not contain a split anymore.

Once obtaining the collection of splits S, the algorithm checks if there exists any balanced split
by simply checking the size of each set in S. If there is such a balanced split, returning the split
itself is sufficient (Line 11). Otherwise, every set in S now contains either less than 1

4 |T | or more
than 3

4 |T | terminals. The algorithm discards all sets containing more than 3
4 |T | terminals and then

keeps the maximal subsets among the splits in the collection.
In the case where no balanced split is found, the algorithm does an additional post-processing

in Line 13-15. The purpose of this post-processing is to obtain a set of disjoint T -splits that satisfy
Definition 4.9. Specifically, in Line 13 the algorithm get rid of all subsets with only one terminal. In
Line 14 only maximal subsets are kept and in Line 15 the disjointness of these subsets are enforced.
This completes the description of Algorithm 3.

To simplify the correctness proof, we introduce the notion of irredundant T -Steiner cactus.

Definition 4.12. A T -Steiner cactus (H,ϕ) of G is said to be irredundant, if for every edge e on
H, the contraction H/e is no longer a T -Steiner cactus of G.

We remark that the irredundant cactus is somewhat similar to the notion of a normal cactus
defined in the work of Nagamochi and Kameda [NK94], except that we still allow tree edges in H.

Intuition of Correctness. The high probability correctness comes from case analysis to any
T -Steiner cactus of G. Let (H,ϕ) be any irredundant T -Steiner cactus of G. Define a balanced
edge-cut on H to be a minimum edge cut of H (either one edge or two edges in a cycle) such that
the number of terminals on both sides is between 1

4 |T | and 3
4 |T |. Our analysis depends on whether

or not a balanced edge-cut exists on H.13

Case 1: Balanced Cuts Exist. In the first case where there is a balanced edge-cut, the correct-
ness relies on the sparsest sampling rate 2−⌈log |T |⌉. In particular, we rely on a sampled terminal set
T ′ = {u, v, r} of exactly 3 vertices, where two corresponding nodes ϕ(u) and ϕ(v) are in the “larger

13The existence of a balanced edge-cut on H is equivalent to the existence of a balanced split on G. However, we
believe the proof is easier to see through if we analyze the algorithm’s behavior on H.

16

Algorithm 3 Computing a Good Split Collection
1: procedure GoodSplitCollection(G, T , λ := λG(T))
2: Initialize S ← ∅.
3: repeat the following procedure �12 · 1024e · lnn� times do
4: for i = 1, 2, . . . , �log |T |� do
5: Sample each terminal vertex with probability 2−i, denote the set by Ti.
6: X ←MaxIsoCut(G, Ti).
7: S ← S ∪ {X ∈ X | C(X) = λ}.
8: end for
9: end repeat

10: if there exists a balanced split X ∈ S where |T ∩X|, |T \X| ≥ 1
4 |T | then

11: return {X}. � A single balanced split.
12: else
13: S ← {Xi ∈ S | 2 ≤ |Xi ∩ T | ≤ 1

4 |T |}. � Keep only small T -splits.
14: S ← {Xi ∈ S | Xi
⊆ Xj for all i
= j}. � Obtain only the maximal subsets.
15: For each Xi ∈ S, set Xi = Xi \ ∪j<iXj . � Enforce disjointness to the subsets.
16: return S.
17: end if
18: end procedure

side” of the cut and the third corresponding node φ(r) is in the “smaller side” of the cut. Then, it is
possible to prove that with constant probability, the maximal r-isolating cut of T ′ contains the right
amount of terminal vertices — between 1

4 |T | and 3
4 |T | (the upper bound comes from Lemma 4.14).

Thus, a balanced split will be found in S with high probability because the sampling procedure
with the sparsest sampling rate is repeated O(logn) times. We formalize the first case here as
Lemma 4.13, and give an illustration in Figure 1.

Figure 1: When there is a balanced edge-cut on a T -Steiner cactus H of G, a balanced T -split on
G will be found with high probability.

Lemma 4.13. Let G be the graph with terminal set T and let (H,φ) be a T -Steiner cactus of G.
Suppose there is a balanced edge-cut on H. Then, with probability 1− n−11 there is a balanced split
in S returned from Algorithm 3.

To prove Lemma 4.13, we introduce a helper lemma that shows the benefit of having assump-
tion 2. That is, if we have sampled two vertices u and v in the “large side” and sampled a single

17

vertex r in the “smaller side” of a balanced split, then the maximal r-isolating cut of {u, v, r} has
to contain at most 1

2 |T | terminals.

Lemma 4.14. Let G be the graph with a set T of terminals that satisfies Assumption 2. Let r ∈ T
be a terminal such that any r-isolating mincut is a T -mincut. If we sample terminals u, v ∈ T −{r}
uniformly at random, then with probability at least 1/4, any {u, v}-mincut of {u, v, r} has at least
1
2 |T | terminals.

Proof. Let (H,ϕ) be a T -Steiner cactus of G. Recall that Assumption 2 states that any two
terminals u, v ∈ T can be separated by some T -mincut. This implies that ϕ(u) ̸= ϕ(v) as all
T -mincuts are preserved. From the assumption that r-isolating mincut is a T -mincut, we know
that ϕ(r) has degree 1 or has degree 2 within a cycle in H. Consider a specialized DFS traversal
of H starting from ϕ(r). Upon visiting a vertex from a cycle edge, the DFS traversal always tends
to choose any edge that leaves the cycle. Let (r, v1, v2, . . . , v|T |−1) be the unique permutation of T
where (ϕ(r), ϕ(v1), ϕ(v2), . . . , ϕ(v|T |−1)) is the order (subsequence) of visited vertices by the DFS
traversal, i.e. the pre-order. Notice that the DFS traversal only returns to ϕ(r) at the very end.
Then for any two indices i and j such that 1 ≤ i < j ≤ |T |, maximal r-isolating mincut of {vi, vj , r}
must not contain any vertices in {vi, vi+1, . . . , vj} and hence the result follows by counting the
fraction of pairs (at least 1/4) whose position in the permutation differs by at least 1

2 |T |.

Lemma 4.14 implies that with constant probability, the mincut of our concern is balanced. Now
we are ready to prove Lemma 4.13.

Proof of Lemma 4.13. Suppose there is a balanced edge-cut on H, i.e. a T -Steiner mincut (X,V \X)
where 1

4 |T | ≤ |X ∩ T | ≤
1
2 |T |. Consider the phase that Algorithm 3 samples each terminal vertex

with probability 2−⌈log |T |⌉, then with probability at least(1
2 |T |
2

)
· 1
4
|T |

(
1− 1

2⌈log |T |⌉

)|T |−3

·
(

1

2⌈log |T |⌉

)3

≥ |T |
3

32e

(
1− 2

|T |

)(
1− 1

2(|T | − 1)

)−3(1

2(|T | − 1)

)3

≥ 1

256e
.

there will be one sampled terminal r in X, and exactly two sampled terminals u and v in V \X. We
denote the event described above by E . When E happens, since (X,V \X) is a T -Steiner mincut,
we know that the maximal r-mincut of {r, u, v} must contain entire X, hence containing at least
1
4 |T | terminals. Now we will use Lemma 4.14 to prove that, conditioned on E , with probability at
least 1/4, the maximal r-mincut of {r, u, v} has at most 3

4 |T | terminals.
Indeed, conditioned on event E , the maximal r-mincut of {r, u, v} is disjoint to the minimal

{u, v}-mincut of {r, u, v} (otherwise it contradicts to Disjoint & Posi-modularity Lemma 3.2). Con-
sider the graph G/X with r′ being the contracted terminal vertex. Let T ′ := (T \ X) ∪ {r′} be
the contracted terminal set. Since X itself is a T -Steiner mincut, {r′} is a T ′-Steiner mincut on
G/X and hence the criteria of Lemma 4.14 are met. Therefore, by Lemma 4.14, with probability
at least 1/4, the minimal {u, v}-mincut of {r, u, v} on G contains at least 1

2 |T
′| ≥ 1

4 |T | terminals.
This implies that the maximal r-mincut of {r, u, v} contains at most 3

4 |T | terminals.

18

As a consequence, we know that with probability 1/(1024e), a balanced split will be found in one
sampling procedure. With repeating the sampling procedure for ⌈12 ·1024e · lnn⌉ times, Algorithm 3
returns a balanced split with probability at least 1− n−12 ≥ 1− n−11 as desired.

Case 2: No Balanced Cut. Now let us consider the second case where there is no balanced
edge-cut. An illustration for this case is provided in Figure 2. In this case, our algorithm should
be able to obtain lots of disjoint T -splits such that, after contracting smaller sides of all these
T -splits, the remaining graph (which could still be large) is guaranteed to have a star shaped
cactus representation. Not surprisingly, the center of this star can be traced back (by undoing the
contractions) to a centroid node on H, given the non-presence of a balanced edge-cut.

Recall that H is an irredundant T -Steiner cactus representation (H,ϕ) of G. A centroid v
is a node on H such that, every edge or cycle incident to v defines a T -Steiner mincut whose
corresponding mincut on H not containing v has at most 1

4 |T | terminals. We will soon prove
(in Lemma 4.16) that no balanced edge-cut on H implies a unique centroid node v on H. This
centroid node v naturally partitions T \ ϕ−1(v) into sets of terminals T1 ⊔ T2 ⊔ · · · ⊔ Tk, where for
each i, ϕ(Ti) belongs to the same connected component in H−v. Moreover, since (H,ϕ) is a cactus
representation for G, we know that for each Ti there exists a T -Steiner mincut that separates Ti

and T \ Ti. Let X ′
i be the maximal Ti-mincut of T , and define the collection S ′ = {X ′

i}.
Fix a particular i such that 1 ≤ i ≤ k, and consider sampling each vertex in T at the sampling

rate 2−⌈log |Ti|⌉. We can then prove (in Lemma 4.17) that, with constant probability, exactly one
terminal w ∈ Ti is sampled, together with at least one terminal from any two other subsets (namely
x ∈ Tj and y ∈ Tj′ , for some j ̸= j′ ̸= i ̸= j) being sampled.

The following lemma ensures that X ′
i can be precisely discovered by our maximal isolating

mincut algorithm, illustrated in Figure 2(b).

Lemma 4.15. Let v be a centroid node on H. Let w, x, y ∈ T be three terminals such that
ϕ(w), ϕ(x), and ϕ(y) belongs to distinct connected components in H − v. Let X be the maximal
w-isolating mincut of {w, x, y}, then the corresponding cut of X in H must not contain v.

Proof. Let Y be a mincut on H that corresponds to X. Suppose by contradiction that Y contains
v. But since ϕ(x), ϕ(y) /∈ Y , the cut value of Y would be at least 2λG(T), a contradiction to Y
being a mincut of H.

Notice that by Lemma 4.15, whenever the algorithm seeks the maximal w-isolating mincut of
this sampled terminal set, the algorithm obtains exactly the set X ′

i. Is the collection S ′ serves for
our purpose? Not really — S ′ may not be a good split collection (Definition 4.9). For example, some
mincut X ′

i ∈ S ′ may contain exactly one terminal vertex — simply removing these mincuts is an easy
fix. What’s worse, there could be two mincuts X ′

i and X ′
j that are not disjoint (e.g., Figure 2(a)).

Fortunately, an additional post-processing step can be further applied: whenever there exists X ′
i ∩

X ′
j ̸= ∅ (say i > j), we prune the larger indexed one by replacing X ′

i with X ′
i \ X ′

j . By posi-
modularity (Lemma 3.2), Ti ∩Tj = ∅ implies that X ′

j is still a Tj-mincut of T . It is straightforward
to check that at the end of the post-processing step we have obtained a pruned set S ′pruned = {Xi}
where Xi = X ′

i \ ∪j<iX
′
j and every Xi contains at least two terminal vertices.

The post-processing steps mentioned above correspond to Line 15 of Algorithm 3. We prove as
a corollary of Lemma 4.17 (Corollary 4.20) that the collection S returned by Algorithm 3 is exactly
the same as S ′pruned with high probability. At the end of the analysis, we prove in Lemma 4.23 that
S ′pruned is actually a good split collection.

19

Figure 2: An illustration of a cactus representation H. The colored regions correspond to S ′, which
is a collection of T -Steiner mincuts of G. (a) When there is no balanced edge-cut, there must be
a centroid node v on H. (b) If we sample three terminals w, x, y that are mapped into distinct
connected components in H − v, then the maximal w-mincut of {w, x, y} correspond to exactly the
connected component of H − v where w belongs to.

Formalizing the Proof to Case 2. The rest of this subsection devotes to formalize the high-level
idea described above. Let G be the graph with terminal set T and let (H,φ) be an irredundant
T -Steiner cactus of G. Assume that there is no balanced edge-cut on H. We first show that there
exists a unique centroid node on H.

Lemma 4.16. there exists a unique centroid node v on H whose all incident 1-edges and 2-edges
from the same cycle correspond to T -Steiner mincuts of at most 1

4 |T | terminals in the side not
containing v.

Proof. The existence of such a centroid node can be proved as follows. We first replace each cactus
cycle on H with a star (adding an additional node that represents the cactus cycle), forming a tree
H ′. We note that each edge on H ′ still represents a mincut on H. It is well-known that any tree
contains a centroid with respect to any vertex weight. Let v be any centroid node on the tree H ′

when empty nodes have weight zero and non-empty nodes have weight one. If v is a node on H,
then by definition v is a centroid node on H. Otherwise, if v is an additional node that represents a
cactus cycle, then since each incident edge of v on the tree H ′ corresponds to a mincut with at most
1
4 |T | terminals, one can obtain a balanced edge-cut on H greedily along the cactus cycle represented
by v, thereby a contradiction.

To show uniqueness, suppose by contradiction that there are two centroids u and v on H.
Consider any mincut on H that separates u and v. By the fact of being a centroid, the side of
this mincut not containing u (resp. not containing v) has at most 1

4 |T | terminals. Howerver, this
implies that the total number of terminals is at most 1

2 |T |, a contradiction.

Let T1
 T2
 . . .
 Tk be the partition of terminal vertices of T \ φ−1(v) where two terminal
vertices x and y belong to the same Ti if and only if φ(x) and φ(y) are in the same connected
component of H − v. For each i, let X ′

i be the maximal Ti-mincut of T on G, and let S ′ = {X ′
i} be

20

the collection of all these mincuts. We first establish the relation between the collection S ′ and the
mincuts computed from the algorithm:

Lemma 4.17. Let Ŝ be the collection of T -Steiner mincut right after the execution of Line 14.
With probability at least 1− n−11,

1. for all X ′
i ∈ S ′ such that |X ′

i ∩ T | ≥ 2, we have X ′
i ∈ Ŝ.

2. Ŝ ⊆ S ′.

We first establish the following fact and a helper claim:

Fact 4.18. Let X be any T -Steiner mincut. Consider any corresponding edge-cut that separates
ϕ(X ∩ T) and ϕ(T \ X) on H. Suppose that the centroid v belongs to the ϕ(X ∩ T) side of the
edge-cut, then |X ∩ T | > 1

4 |T |.

Proof. Since (H,ϕ) is a cactus representation of G, any minimum edge-cut of H must have one side
whose nodes are all within the same connected component of H−v14. The condition that v belongs
to the ϕ(X ∩ T) side implies that all nodes in ϕ(T \X) belong to the same connected component
of H − v. Now, using the assumption that v is a centroid node, we know that |T \X| ≤ 1

4 |T | and
hence |X ∩ T | ≥ 3

4 |T | >
1
4 |T |.

Proposition 4.19. Fix any X ′
i ∈ S ′, the maximal Ti-mincut of T . For any T -Steiner mincut

X ̸⊆ X ′
i but X ∩ Ti ̸= ∅, we must have |X ∩ T | > 1

4 |T |.

Proof of Proposition 4.19. Let TX = X ∩ T be the set of terminal vertices in X. Consider the
corresponding edge-cut on H that separates ϕ(TX) and ϕ(T \TX). The condition of the proposition
implies that v belongs to the ϕ(TX) side of the edge-cut. Using Fact 4.18 we obtain |TX | > 1

4 |T |.

Intuitively speaking, Proposition 4.19 validates Line 13-15 of Algorithm 3: any T -Steiner mincut
that is either crossing or containing some X ′

i ∈ S ′ will contain too many terminals and will be
removed. As a consequence, Line 13 protects X ′

i from being accidentally removed in Line 14 and
being “chopped” in Line 15. Now we formally prove Lemma 4.17.

Proof of Lemma 4.17.

Part 1. Fix an X ′
i ∈ S ′. We first notice that by Proposition 4.19, any T -Steiner mincut X that

is a superset of X ′
i has more than 1

4 |T | terminal vertices. Hence, such mincut X will be excluded
by executing Line 13 of the algorithm. Now it suffices to show that X ′

i will be found and appeared
in Ŝ with high probability.

Consider sampling terminal vertices with probability p := 2−⌈log |Ti|⌉. By Lemma 4.15, it suffices
to lower bound the probability of the event where (1) no other terminals in Ti is sampled and (2)
some terminals are sampled from at least two other sets. The following analysis further restricts
condition (2): we first form a partition T \ϕ−1(v) = Ti ⊔Q1 ⊔Q2 and compute the probability that
at least one terminal from each of Q1 and Q2 are sampled.

Indeed, since each part has a size at most 1
4 |T |, by a straightforward greedy algorithm, it is

possible to group all the parts except Ti into two large sets, whose sizes are between 1
4 |T | and

14This sentence even holds when v is not a centroid.

21

5
8 |T |

15. Let Q1 and Q2 be such two sets. We have T \ ϕ−1(v) = Ti ⊔ Q1 ⊔ Q2. Now it suffices
to prove that with constant probability, exactly one terminal is sampled from Ti and at least one
terminal is sampled from each of Q1 and Q2. By a standard probability argument, we know that
sampling exactly one terminal from Ti has a probability of at least 1/(2e). For each j ∈ {1, 2},
sampling at least one terminal from Qj has a probability at least:

1− (1− p)|Qj | ≥ 1−
(
1− 1

2|Ti|

)|Qj |
≥ 1− e−1/2. (|Qj | ≥ 1

4 |T | ≥ |Ti|)

Hence, the success probability per sampling at the particular scale is at least

1

2e

(
1− e−1/2

)2
≥ 0.02

By repeating the sampling procedure at least ⌈12 · (1/0.02) · lnn⌉ times, we know that Algorithm 3
obtains a T -Steiner mincut that separates Ti and T \ Ti with probability 1 − n−12. By applying
another union bound over all i we obtain the success probability 1− |T |n−12 ≥ 1−n−11 as desired.

Part 2. To show that Ŝ ⊆ S ′, assume by contradiction that there is X ∈ Ŝ but X /∈ S ′. By Line 7
of Algorithm 3, we know that X is a T -Steiner mincut. By Line 13, we know that 2 ≤ |X∩T | ≤ 1

4 |T |.
Using Fact 4.18, we know that there must exist a part Ti such that X ∩ T ⊆ Ti. This implies that
X ⊊ X ′

i. However, from Part 1 we knew that with probability 1 − n−12, X ′
i ∈ Ŝ. According to

Line 14, X will be removed from S so X /∈ Ŝ, a contradiction.

Recall that S ′pruned is defined by, first removing all X ′
i ∈ S ′ where |X ′

i ∩ T | = 1, and then
replace each X ′

i with Xi = X ′
i \ ∪j<iX

′
j . Since these steps are identical to Line 13 and Line 15 of

Algorithm 3, we obtain the following corollary.

Corollary 4.20. Suppose that Lemma 4.17 holds. Then, after the execution of Line 15, S = S ′pruned.

Proof. The post-processing that defines S′
pruned is exactly the same as Line 15.

Once we prove that with high probability, the returned collection S from Algorithm 3 is the
same as S ′pruned, we can put all our effort now proving that S ′pruned is exactly what we want for the
divide-and-conquer algorithm. That is, we aim to show that S ′pruned is a good split collection.

Proposition 4.21. Each Xi ∈ S ′pruned is a T -split.

Proof. First, Xi is a T -Steiner mincut by the definition Xi = X ′
i \ ∪j<iX

′
j and by posi-modularity

(Lemma 3.2). Moreover, since each Xi contains at least two terminal vertices so Xi is a T -split.

Lemma 4.22. Consider a particular pruned mincut Xi ∈ S ′pruned. Then, the mincut on H that
separates ϕ(Xi ∩ T) with ϕ(T \ Xi) is incident to v. That is, after the contraction of all Xi, the
contracted graph has a cactus that is a star shape with ≥ 4 leaves.

15The greedy strategy iteratively merges each subset to the smaller pile of two. In the end, the difference between
the two piles’ sizes is at most 1

4
|T |. Since the sum of the two sizes is at least 3

4
|T |, the smaller pile must have at least

1
4
|T | elements.

22

Proof. This is straightforward to check using the fact that H is irredundant. To bound the number
of leaves, we first deduce that |T | ≥ 5 — this is because at least one split is found and there is no
balanced split. Moreover, using Assumption 2, there can be at most one terminal being the center
of the star. Since each split contains strictly less than 1

4 |T | terminals, we conclude that the star
shape has at least 4 leaves.

Lemma 4.23. S ′pruned is a good split collection.

Proof. It suffices to check that S ′pruned = {Xi} satisfies Definition 4.9. By Proposition 4.21, we
know that all Xi are indeed T -splits. Furthermore, by the construction of Xi we know that for any
i ̸= j, Xi ∩Xj = ∅. Thus, condition (1) of Definition 4.9 is satisfied.

Now, since all T -Steiner mincuts in S ′pruned are disjoint, the decomposition {(Gi, Ti)} induced
by S is well-defined. Without loss of generality we may apply simple refinements to G in the order
of X1, X2, . . . , Xk. Let (G1, T1), . . . , (Gk+1, Tk+1) be the decomposed graphs16. By Lemma 4.22,
we know that there exists a cactus representation that is a star shape for the very last graph
(Gk+1, Tk+1). Therefore, by Definition 4.8, {(Gi, Ti)} is a good decomposition. This implies that
condition (2) of Definition 4.9 holds and S is a good split collection.

Proof of Lemma 4.10. The correctness of Lemma 4.10 follows from Lemma 4.13 and Lemma 4.23.
To analyze the runtime, we first note that Algorithm 3 involves O(log2 n) maximal isolating mincut
computations, which contributes a total of O((log3 n) · MaxFlow(3n, 4m)) time by Theorem 3.1.
Moreover, by Lemma 3.4 we know that the total size of subsets after Line 9 is at most O(n log2 n).

It is not hard to see that each of the remaining steps can be implemented in time linear to the
total size of the found mincuts, which is O(n log2 n): in Line 10 it suffices to scan through every
subset in S and count the number of terminals; similar analysis holds for Line 13. To implement
Line 14, it suffices to scan through all the subsets Xi ∈ S and mark the size of |Xi| at each
terminal vertex u ∈ T ∩ Xi. For each terminal vertex u, we simply select the largest sized Xi

that contains u and get rid of all the others. This step also take O(n log2 n) time. In Line 15, the
algorithm initializes a boolean array A and iterates through each set X1, X2, . . . , Xk. For each set
Xi, the algorithm checks for each vertex u ∈ Xi whether or not u has been set in A. If set, the
algorithm discard u from Xi. Otherwise, the algorithm marks A[u] ← true and keeps u in the set.
Thus, it takes only a linear scan for Line 15. In conclusion, the total runtime of Algorithm 3 is
O((log3 n) ·MaxFlow(3n, 4m)).

4.4 Returning a Correct Cactus

In this section, we prove Lemma 4.11. In particular, we will implement the procedures Trivial-
Cactus(G, T), StarCactus(G, T), and MergeCactus(G, T , {Hi}). Then, we will prove the
correctness and analyze the runtime. In this section, we assume that all the other divide and
conquer steps (especially a good split collection is returned from Line 5 of Algorithm 2) are correct.

Hollow 3-Stars vs 3-Cycle. A hollow 3-star is an induced subgraph on H that has 4 nodes
where an empty node connects to exactly 3 other nodes. Nagamochi and Kameda [NK94] pointed
out that if we replace this hollow 3-star induced subgraph with a 3-cycle (thereby removing the
center empty node) from H, the resulting graph preserves the same set of mincuts on H.

16Note that for 1 ≤ i ≤ k, we must have Ti ⊋ Ti: Ti contains exactly one more anchor vertex.

23

To ensure a correct cactus being returned, we implement the procedures of Algorithm 2 with
the following invariant:

Invariant 4.24. Let (H,ϕ) be the T -Steiner cactus returned by any subproblem (G, T). Then H is
irredundant, and does not contain a hollow 3-star as an induced subgraph.

Now, we start proving Lemma 4.11.

(Line 3) Trivial Cactus. Since |T | ≤ 3, by computing the mincut for every partition of T we
obtain a T -Steiner cactus in O(MaxFlow(n,m)) time. Notice that a returned cactus can be chosen
to satisify Invariant 4.24 as there are only O(1) ways to construct such a cactus.

(Line 7) Star Cactus. In this case, there is no T -split that is a T -Steiner mincut. Since |T | ≥ 4
when Line 7 is reached in Algorithm 2, we claim that there exists a star shaped T -Steiner cactus of
G.

Fact 4.25. Let G be a graph and T be a set of terminals with |T | ≥ 4. Suppose that every T -
Steiner mincut is trivial (i.e., a t-isolating mincut of T for some t ∈ T). Then, there exists (H,ϕ),
a T -Steiner cactus of G such that H is a star graph.

Proof. Let A ⊆ T be the subset of terminals t whose t-isolating mincut is a T -Steiner mincut.
Construct H as a star graph with A being the set of leaves. The rest vertices in T \ A (possibly
empty) are mapped to the center of H. Then H preserves all T -Steiner mincuts.

With the assumption 2, we know that there is at most one terminal vertex t whose t-isolating
mincut of T is not a T -Steiner mincut. Hence, after invoking one Isolating Cut Lemma (Theo-
rem 2.3) and checking the isolating mincut values, the StarCactus procedure is able to return
a T -Steiner cactus of G in O(log |T | ·MaxFlow(2n, 2m)) time. By assumption 2 and |T | ≥ 4, no
hollow 3-star can be formed and thus Invariant 4.24 holds.

(Line 11, Case 1.) Merging from a Balanced Split. There are two cases when Line 11 is
reached, depending on whether a balanced split is found or not. Suppose that a balanced split is
found so the good split collection contains exactly one T -split |S| = 1.

The MergeCactus procedure relies on the following useful observation.

Fact 4.26. Let (G, T) be a subproblem and let t ∈ T be an anchor vertex generated in some ancestor
problems. Let (H,ϕ) be any irredundant T -Steiner cactus of G. Then, the node ϕ(t) on H has either
degree 1 (a leaf), or degree 2 but in a cycle.

Proof. Since t is an anchor vertex, {t} is a T -Steiner mincut of G. Hence, there exists a mincut on
H that separates ϕ(t) with ϕ(T \ {t}). Since H is irredundant, the ϕ(t)-side of the mincut must be
a single node (i.e., ϕ(t) itself), and the statement follows.

Now, let us assume that the balanced split in a good split collection S decomposes the graph G
into two subproblems (G1, T1) and (G2, T2), with a shared anchor vertex a ∈ T1 ∩ T2. Let (H1, ϕ1)
and (H2, ϕ2) be the cactus returned from the two subproblems respectively.

Using Fact 4.26, there are only constantly many situations to be handled:

24

Leaf-Leaf Case. If both anchor nodes ϕ1(a) and ϕ2(a) have degree 1, say edge (x, ϕ1(a)) in H1

and edge (ϕ2(a), y) in H2, then the procedure forms the merged cactus by simply connecting
H1 and H2 with an edge (x, y) and then delete the anchor nodes ϕ1(a) and ϕ2(a). Notice
that Invariant 4.24 holds since (x, y) cannot be further contracted, and this operation does
not produce a hollow 3-star, simply because |T | ≥ 4.

Leaf-Cycle Case. If the anchor vertex a has degree 1 in one of the cactus and degree 2 in the
other, without loss of generality, edge (ϕ1(a), x) in H1, edge (ϕ2(a), y) and (ϕ2(a), z) in H2.
Then the procedure simply connects H1 and H2 with edges (x, y) and (x, z) and then deletes
the anchor nodes ϕ1(a) and ϕ2(a). Invariant 4.24 holds here too.

Cycle-Cycle Case. The last case is nontrivial. Now both anchor nodes ϕ1(a) and ϕ2(a) have
degree 2, say edges (ϕ1(a), x1) and (ϕ1(a), y1) in H1 and edges (ϕ2(a), x2) and (ϕ2(a), y2) in
Hj . We need to take care of the relation between these two cycles, as in this case there may
be missing T -Steiner mincuts. There will be three possible outcomes in the merged cactus,
and the algorithm has to identify the correct formulation.

1. The two cycles are separated from each other in the cactus, and there is an empty node
in the middle.

2. They form one larger cycle together, concatenated by edges (x1, x2) and (y1, y2).

3. They form one larger cycle together, concatenated by edges (x1, y2) and (y1, x2).

Test via Max-Flows. Fortunately, it is possible to distinguish the three cases mentioned above.
All we need to do is to obtain the mincut values between terminal sets {x1, x2} and {y1, y2}, and
between terminal sets {x1, y2} and {x2, y1} respectively. This can be done by running st-mincut
oracles on G with the terminal sets {x1, x2} (or {x1, y2}) contracted to s and {y1, y2} (or {x2, y1}
respectively) contracted to t. If none of them equals to the known value λG(T), then it is the
case (1). Otherwise, {x1, x2} or {x1, y2} is a T -Steiner mincut corresponding to case (2) and (3)
respectively. This can be done in O(MaxFlow(n,m)) time.

Correctness. Here we briefly prove that the combined cactus is indeed a T -Steiner cactus of G.
Let H ′ be some irredundant T -Steiner cactus of G. Let S = {X} and let a ∈ T1 ∩ T2 be the
anchor vertex. Since H ′ is irredundant, there is a unique mincut on H ′ that separates ϕ(X ∩ T)
and ϕ(T \X). It is straightforward to check that if X corresponds to a 1-edge-cut of H ′, then every
mincut in G is preserved in the subproblems already. If X corresponds to a 2-edge-cut on H ′, then
at least one anchor node ϕ1(a) or ϕ2(a) must be in a cycle in the returned cactus. In this case, the
above procedure recovers the cycle correctly. Invariant 4.24 holds for the cycle-cycle case too as no
new star can be formed.

(Line 11, Case 2.) Merging When There Is No Balanced Split. The other case when
invoking Line 11 is that no balanced split exists and thus a good split collection with one or more
splits is returned. Suppose that |S| = ℓ ≥ 1 and the graph is decomposed into ℓ + 1 subprob-
lems {(Gi, Ti)}, with the last subgraph (Gℓ+1, Tℓ+1) containing all the anchor vertices generated in
this recursion step. By Lemma 4.22 and the algorithm, the returned cactus from the subproblem
(Gℓ+1, Tℓ+1) must be a star graph of at least 4 leaves. Let Hcenter be this star graph.

25

The algorithm attaches each cactus Hi from other subproblems (Gi, Ti) to the star graph Hcenter

via the Leaf-Leaf Case or the Leaf-Cycle Case. Since no tests are required, this step can be
done in linear time O(|V (G)|+ |E(G)|). The correctness argument is the same as the balanced-split
case since we can view this process as sequentially merging two cactus at a time. For the same
reason, Invariant 4.24 holds too.

Conclusion in Runtime. We conclude that the bottleneck of the runtime happens whenever the
algorithm invokes the StarCactus procedure, which invokes one isolating cut algorithm and runs
in O(log |T | ·MaxFlow(2n, 2m)) time. All other operations require at most one max flow procedure
so MergeCactus takes up to O(MaxFlow(n,m)) time.

5 Steiner Hypercactus Construction

In this section, we generalize our algorithms in Sections 3 and 4 to hypergraphs; we give an almost-
linear time construction of a Steiner hypercactus representation that succinctly represents all Steiner
hyperedge mincuts. This is the first almost-linear time algorithm even for normal hypercactus
representation.

Preliminaries on (Steiner) Hypercactus Representation. A hypergraph G = (V,E) consists
of a vertex set V and a hyperedge set E where each edge e is a subset of vertices. Let n = |V |,m =
|E| and p =

∑
e∈E |e|. Given a subset of vertices X ⊆ V , the induced subhypergraph G[X] is defined

by removing all outside vertices V \ X and all the incident edges, i.e. G[X] = (X,EX) where
EX = {e ∈ E | ∀v ∈ e, v ∈ X}. Let T ⊆ V be a terminal vertex set. A T -Steiner cut is a cut of G
that separates T . A T -Steiner mincut is a minimum valued T -Steiner cut.

A hypercactus is a hypergraph that satisfies the following properties:

• H is connected.

• Every rank-2 edge on H is in at most one cycle, and this cycle must contain only rank-2 edges.

• For every hyperedge of rank r > 2, removing this hyperedge partitions H into exactly r
connected components, where each connected component is also a hypercactus.

Fleiner and Jordán [FJ99] showed that there exists a hypercactus graph H that represents all
T -Steiner hyperedge mincuts.

Definition 5.1 (Steiner Hypercactus, see also [FJ99]). Given a hypergraph G and a terminal set T ,
a T -Steiner hypercactus (H,ϕ) is a weighted hypercactus graph H with a mapping ϕ : T → V (H)
such that (1) edges in a cycle have weights λG(T)/2 and edges or hyperedges have weights λG(T),
and (2) an A-mincut of T is a T -Steiner mincut if and only if a global mincut on H separates ϕ(A)
and ϕ(T \ A).

Our Result. Our main result is an algorithm for constructing Steiner hypercactus for any hyper-
graphs using polylogarithmic maxflow calls.

Theorem 5.2. Let G be a hypergraph with n vertices, m edges and p total volume of edges. Let T
be a set of terminals. There exists a randomized Monte Carlo algorithm such that, with probability

26

1− 8n−10, the algorithm correctly computes a T -Steiner hypercactus in O(log4 n) ·MaxFlow(O(n+
m), O(p+ n log |T |)) time.

The rest of the section is organized as follows. In Section 5.1, we show that by carefully modifying
a definition of A-cuts in a subtle way, we can generalize our maximal isolating mincuts algorithm
from Section 3 to hypergraphs. Then, we present our divide-and-conquer algorithm for constructing
Steiner cactus in Section 5.2, generalizing our algorithm in Section 4.

5.1 Maximal Isolating Mincuts on Hypergraphs

To overcome the first challenge to fast algorithms for computing maximal isolating mincuts in
hypergraphs as discussed in Section 1.2, we carefully give a new definition of A-cuts of T in Def-
inition 5.3 with additional connectivity constraint. Then, we give a generalization of Theorem 3.1
in Theorem 5.4.

Definition 5.3. Let G = (V,E) be a hypergraph and T ⊆ V . For any proper subset of terminals
A ⊊ T , a cut X is A-cut of T if it satisfies the following conditions:

• The cut (X,V \X) separates A and T \A, with A ⊆ X.

• After removing the boundary edges ∂X, for any u ∈ X, there exists a path from u to some
vertex v ∈ A. That is, (G/A)[X] is connected.

We use the same terminology for related concepts. An A-mincut of T is a minimum valued
A-cut of T , denoted as XA. For any vertex t ∈ T , a cut Xt is t-isolating mincut of T if Xt is a
{t}-mincut of T . We say that an A-mincut XA of T is maximal (resp. minimal), if for any other
A-mincut X ′

A of T , we have XA ⊇ X ′
A (resp. XA ⊆ X ′

A).
By crucially exploiting Definition 5.3, we are able to generalize the maximal isolating mincuts

algorithm from Theorem 3.1 to hypergraphs.

Theorem 5.4. There exists an algorithm that, given an undirected weighted hypergraph G = (V,E)
and a terminal set T ⊆ V , in O(log |T |) ·MaxFlow(O(n + m), O(p)) time computes the maximal
v-isolating mincuts of T for all terminals v ∈ T .

The new definition of A-cuts leads to some inconveniences. For example, an A-mincut of T
may not be a (T \ A)-mincut of T in a hypergraph. Also, suppose XA and XB are A-mincut
and B-mincut, respectively, where A ⊆ B. In normal graphs, XA ∩XB would be an A-mincut by
Lemma 3.5, but in hypergraphs XA ∩ XB might not be A-mincut with respect to our definition
because (G/A)[XA ∩XB] might not be connected. Anyhow, this inconvenience is easy to deal with.

The technical reason why we need to work with this new definition is that it allows us to show
the hypergraph version of the Pairwise Intersection Only Lemma 3.3, which is the key to efficiency.
Given this lemma, we verify that all ideas in Section 3 indeed generalize to hypergraphs and prove
Theorem 5.4 in Appendix C. We need to reprove everything since we are working with the new
basic definition.

5.2 Our Divide and Conquer Framework

In this section, we finally give an almost-linear time construction for Steiner hypercactus, based
on the maximal isolating mincut algorithms for hypergraphs from Section 5.1. Let us describe our
algorithm.

27

Preprocessing. First, we preprocess the hypergraphs in the same way that we did for normal
graphs. After preprocessing in O(log2 n) ·MaxFlow(O(n+m), O(p)) time, we may assume that for
any two terminal vertices there is a T -Steiner mincut that separates them (see Lemma B.1.)

Modified Algorithm 2. Our main divide-and-conquer algorithm for Steiner hypercactus is based
on the same framework as Section 4.2. Recall that a hypergraph consisting of a single (weighted)
hyperedge containing all vertices is called a brittle. We modify Algorithm 2 to make it compute a
T -Steiner hypercactus as follows.

1. In Line 5, we called Algorithm 3 to return a good split collection. In Line 6 of Algorithm 3,
we now use the maximal isolating mincut algorithm on hypergraphs (Theorem 5.4) instead.

2. The hypercactus returned from the StarCactus procedure — the procedure now may return
a brittle instead of a star so we now call it StarOrBrittleCactus, which will be discussed
in Section 5.4.

3. The implementation of MergeCactus is changed and will be specified in Section 5.4.

Key Property: Never Split Higher-rank Hyperedges. As discussed in Section 1.2, the
second challenge to efficiently compute a Steiner hypercactus representation is because a hypercactus
contains hyperedges of rank more than two. Splitting these higher-rank hyperedges leads to slow
run time. Our key observation is that the Modified Algorithm 2 never splits these hyperedges in a
non-trivial way (proved at the end of the section).

Lemma 5.5. Consider any T -Steiner hypercactus (H,ϕ). Let e be an hyperedge on H of rank ≥ 3.
Then, the Modified Algorithm 2 above never finds a split such that e gets decomposed to at least two
smaller hyperedges with rank ≥ 3 in at least two subproblems.

Therefore, the algorithm never splits higher-rank hyperedges in a hypercactus. This motivates
us to define a good decomposition for hypergraphs in almost the same way as defined for normal
graphs (Definition 4.8), except that we treat brittles as a base case similar to stars.

Definition 5.6 (Good Decomposition for Hypergraphs). Given a hypergraph G and a set of ter-
minal vertices T , a decomposition G = {(Gi, Ti)} of G is said to be good with respect to T if G has
the following property. Let Ti be the set of terminal vertices in Gi. For all i except at most one
special index i∗, |Ti| ≤ 3

4 |T |+ 1, and there exists a Steiner cactus representation of Ti∗ in Gi∗ that
is a star or a brittle.

Now, the definition of a good split collection on a hypergraph is the same as Definition 4.9 on
normal graph. Similar to Section 4, there are two main steps in the analysis of the algorithms.

First, Lemma 5.7 summarizes the result that computes a good split collection on hypergraphs.

Lemma 5.7. Given a hypergraph G = (V,E) and a set of terminals T , there exists a randomized
Monte Carlo algorithm such that, with probability 1 − n−11, the algorithm returns a good split
collection S in O(log3 n) ·MaxFlow(O(n+m), O(p)) time.

Second, Lemma 5.8 summarizes the result for returning a correct hypercactus.

28

Lemma 5.8. Fix a subproblem (G = (V,E), T) in Algorithm 2. Assume all splits generated from
the subproblems {(Gi, Ti)} derived from (G, T) are good, and each subproblem returns a correct
Ti-Steiner hypercactus of Gi. Then, with probability 1 − n−11, the procedures TrivialCactus,
StarOrBrittleCactus, and MergeCactus returns a T -Steiner hypercactus of G in O(log |T |)·
MaxFlow(O(n +m), O(p)) time. The randomization comes only from the almost-linear time max-
flow algorithm.

With Lemma 5.7 and Lemma 5.8, we can prove our main result Theorem 5.2. Since the proof
goes in very similar way to the analogous theorem for normal graphs (Theorem 4.2), we defer the
proof to Appendix D. Now, we proceed to prove Lemma 5.7 and Lemma 5.8 in respective subsections.

5.3 Computing a Good Split Collection

Now we aim to prove Lemma 5.7 using the same approach as in Section 4.3. Specifically, we show
that Algorithm 3 also works for hypergraph.

Recall that H denotes a hypercactus. Motivated by Lemma 5.5, we observe that our algorithm
never decomposes a rank ≥ 4 hyperedge on H into two smaller hyperedges of rank ≥ 3. This leads
us to consider singular hyperedge cut only. Define a singular hyperedge cut (Q,V (H) \ Q) of H if
there exists hyperedge e ∈ H such that |Q ∩ e| = 1.

We call a mincut of H accessible if it is a singular hyperedge cut, or all edges across the boundary
are normal edges (either one edge or two edges in a cycle). Note that with Lemma 5.5, all T -Steiner
mincuts returned from Algorithm 2 correspond to accessible mincuts on H. Define a balanced edge-
cut on hypercactus H to be an accessible mincut of H such that the number of terminals on both
sides is between 1

4 |T | and 3
4 |T |. Again, to show correctness of Algorithm 3, our analysis depends

on whether or not a balanced edge-cut exists on H.

Case 1: Balanced Cuts Exist. In the first case where there is a balanced edge-cut, The proof
is exactly the same as normal graph, except that we need to plug in a hypergraph version of
Lemma 4.14.

Lemma 5.9. Let G be the hypergraph with a set T of terminals that satisfies Assumption 2. Let
r ∈ T be a terminal such that any r-isolating mincut is a T -mincut. If we sample terminals
u, v ∈ T − {r} uniformly at random, then with probability at least 1/4, maximal {r}-isolating
mincut of T ′ = {u, v, r} has at most 1

2 |T | terminals.

Proof. Let (H,ϕ) be a T -Steiner hypercactus of G. By Assumption 2 every vertex v ∈ T will be
mapped to different vertices in H. From the assumption that r-isolating mincut is a T -mincut,
we know that ϕ(r) is a leaf node on H, i.e. either has degree 1 (may connected to a normal
edge or a hyperedge) or has degree 2 within a cycle in H. Consider a specialized DFS traversal
of H starting from ϕ(r): where upon visiting a vertex from an cycle edge, the DFS traversal
always tends to choose any edge that leaves the cycle; upon first visiting a vertex from a specific
hyperedge, the DFS traversal will visit the other veritces in the hyperedge with arbitrary order. Let
(r, v1, v2, . . . , v|T |−1) be the a permutation of T where (ϕ(r), ϕ(v1), ϕ(v2), . . . , ϕ(v|T |−1)) is the order
(subsequence) of visited vertices by the DFS traversal, i.e. the pre-order. Then for any two indices
i and j such that 1 ≤ i < j ≤ |T |, we will show that maximal r-isolating mincut of {vi, vj , r} must
not contain any vertices in {vi, vi+1, . . . , vj} by Lemma 5.5 and hence the result follows by counting
the fraction of pairs (at least 1/4) whose position in the permutation differs by at least 1

2 |T |.

29

It remains to show that maximal r-isolating mincut of {vi, vj , r} is disjoint with {vi, vi+1, . . . , vj}.
There are three cases of the maximal r-isolating mincut cutting the hypercactus: (1) on a normal
edge (2) on cycle edges (3) on a hyperedge. The former two cases are identical to the normal graph.
For the third case, Lemma 5.5 implies that the maximal r-isolating mincut Xr contains either 1 or
|e| − 1 vertices of this hyperedge e (not 0 or all the vertices since it cuts through this hyperedge).
If Xr contains one node u in this hyperedge, then u is the first one visited by the DFS traversal
starting from root r. Therefore in this case, all the nodes in subtree rooted at u are not contained
in Xr except u, while the subtree contains the entire set {vi, vi+1, . . . , vj}, and hence imples the
claim. If Xr contains all nodes in this hyperedge except one node u, then the subtree rooted at u
are not contained in Xr, and again implies that the set {vi, vi+1, . . . , vj} is disjoint with Xr.

Lemma 5.10. Let G be the hypergraph with terminal set T and let (H,ϕ) be a T -Steiner hypercactus
of G. Suppose there is a balanced edge-cut on H. Then, with probability 1−n−11 there is a balanced
split in S returned from Algorithm 3.

Proof Sketch. By plugging in Lemma 5.9 into the proof of Lemma 4.13, we get the proof of
Lemma 5.10.

Case 2: No Balanced Cuts. In the second case there is no balanced edge-cut. Note that the
definition of irredundant T -Steiner hypercactus H is the same as Definition 4.12, since one can
never contract a hyperedge in H without losing Steiner mincuts.

Lemma 5.11. Let G be a hypergraph with terminal set T and let (H,ϕ) be an irredundant T -Steiner
hypercactus of G. Suppose there is no balanced edge-cut on H, then with probability 1 − n−11 the
following statements holds:

1. Either (1) there exists a unique centroid node v on H whose all incident 1-edges and 2-edges
from the same cycle corresponds to T -Steiner mincuts of at most 1

4 |T | terminals, or (2) there
exists a unique hyperedge e on H such that each connected component in H − e corresponds
to T -Steiner mincuts of at most 1

4 |T | terminals.

2. Define S ′pruned in the same way as in Section 4.3. Let S = {Xi} be the returned collection
of T -Steiner mincuts from Algorithm 3. Then S = S ′pruned. (Recall that S ′pruned contains all
T -Steiner mincuts for each component Ti described in part 1 as long as it contains at least 2
terminals).

3. Moreover, the mincut on H that separates ϕ(Xi) with the rest vertices is incident to v. That
is, after the contraction of all Xi, the contracted graph has a hypercactus that is a star shape
with ≥ 4 leaves or a brittle containing ≥ 4 nodes.

4. S is a good split collection.

Proof.

Part 1. For each hyperedge e ∈ H, replace e by a node v and a bunch of normal edges {(u, v) |
u ∈ e}, and denote this cactus as H ′. Then the uniqueness of centriod of H ′ follows the same proof
as Lemma 4.16.

There is no balanced edge-cut on H, then by the definition of balanced edge-cut there must be a
centroid node v on H ′ such that by removing v the cactus H ′ shattered into connected components.
Then centroid node v mapped to a node or a hyperedge in H, corresponds to (1) and (2) respectively.

30

Part 2. Let {Ti} be the partition of all terminal vertices (possibly excluding v if v is non-empty)
within each connected components. Then by the assumption where no balanced cut exists, we have
∪iTi = T \ {v}, ∀i, |Ti| ≤ 1

4 |T |. Similar to Lemma 4.15 (but now the “centroid” v could be either a
node or a hyperedge), if three terminal vertices w, x, y are sampled such that ϕ(w), ϕ(x), and ϕ(y)
belongs to three distinct connected component in H − v, then the maximal w-mincut of {w, x, y}
(denoted as Xw) has a corresponding mincut in H that is exactly the connected component W of
ϕ(w) in H − v.

It is straightforward to check from definition that any A-mincut of T will be corresponding to
an accessible mincut on H. By Lemma 5.5, our algorithm finds Xw, and it does not contain any
vertex outside ϕ−1(W).

Now, again by Lemma 5.5, the algorithm always finds accessible mincuts. Note that Fact 4.18
and Proposition 4.19 work for accessible mincuts. Thus, the algorithm ensures that Xw stays
maximal in Line 14.

The rest analysis about lower bounding the probability is the same as Lemma 4.17. Hence, with
desired probability the returned collection S contains all desired T -Steiner mincuts.

Part 3. By Part 2, S = S ′pruned. This is straightforward to check using the fact that H is
irredundant. The star case is proved in Lemma 4.22. To bound the number of nodes in the brittle,
recall that each split contains strictly less than 1

4 |T | terminals, so we conclude that the brittle has
at least 5 nodes.

Part 4. By Part 2, S = S ′pruned. If case (1) in Part 1 is true (i.e., there exists a unique centroid
node on H), then the arguments follow exactly the same as in normal graph. Otherwise, there exists
a unique hyperedge e on H such that each connected component in H − e corresponds to T -Steiner
mincuts of at most 1

4 |T | terminals. By Line 15 in Algorithm 3, condition (1) of Definition 4.9 is
satisfied.

Now, since all T -Steiner mincuts in S are disjoint, the decomposition {(Gi, Ti)} induced by S
is well-defined. Without loss of generality we may apply simple refinements to G in the order of
X1, X2, . . . , Xk. With this ordering, for each 1 ≤ i ≤ k, we have |Ti| ≤ |T ∩ Xi| + 1 ≤ 1

4 |T | + 1.
Moreover, by Part 3, we know that there exists a cactus representation that is a brittle shape for
the very last graph (Gk+1, Tk+1). Thus, by Definition 5.6, {(Gi, Ti)} is a good decomposition. This
implies that condition (2) Definition 4.9 holds and S is a good split collection.

Proof of Lemma 5.7. The correctness of Lemma 5.7 follows from Lemma 5.10 and Lemma 5.11. It is
straightforward to check (with the proof of Lemma 4.10) that the runtime of Modified Algorithm 3
is O(log3 n) ·MaxFlow(O(n+m), O(p)).

5.4 Returning a Correct Hypercactus

In this subsection, we prove Lemma 5.8. In particular, we implement the procedures TrivialCac-
tus(G, T), MergeCactus(G, T , {Hi}), and StarOrBrittleCactus(G, T). The first procedure
is exactly the same as stated in Section 4.4.

To ensure a correct hypercactus is returned, we implement the procedures of Algorithm 2 with
the following invariant:

Invariant 5.12. Let (H,ϕ) be the T -Steiner hypercactus returned by any subproblem (G, T). Then
H is irredundant and does not contain a hollow 3-star as an induced subgraph.

31

Star or Brittle Cactus. In this case, there is no T -split that is an accessible T -Steiner mincut.
Since |T | ≥ 4 when Line 7 is reached in Algorithm 2, we claim that there exists a star or brittle
shaped T -Steiner hypercactus of G.

Fact 5.13. Let G be a hypergraph and T be a set of terminals with |T | ≥ 4. Suppose that every
accessible T -Steiner mincut is trivial (i.e., a t-isolating mincut of T for some t ∈ T). Then, there
exists (H,ϕ), a T -Steiner hypercactus of G such that H is a star graph or a brittle.

This fact follows from the definition of accessible mincut. Let A ⊂ T be arbitrary subset with
size |A| = 2. To distinguish the star case and brittle case, we simply test the mincut value between
A and T \ A, which can be done in O(MaxFlow(n +m, p)) time. And contructing the star cactus
is the same as Section 4.4. The StarOrBrittleCactus procedure is able to return a T -Steiner
hypercactus of G in O(log |T |) ·MaxFlow(O(n+m), O(p)) time. By assumption 2 and |T | ≥ 4, no
hollow 3-star can be formed and thus Invariant 5.12 holds.

(Line 11, Case 1.) Merge from a Balanced Split. There are two cases when Line 11 is
reached, depending on whether a balanced split is found or not. Suppose that a balanced split is
found so the good split collection contains exactly one T -split |S| = 1.

The MergeCactus procedure rely on the following useful observation, which can be proved in
the same way as Fact 4.26.

Fact 5.14. Let (G, T) be a subproblem and let t ∈ T be an anchor vertex generated in some ancestor
problems. Let (H,ϕ) be any irredundant T -Steiner hypercactus of G. Then, the node ϕ(t) on H has
either degree 1, or degree 2 but in a cycle.

Now, let us assume that the balanced split in a good split collection S decomposes the graph G
into two subproblems (G1, T1) and (G2, T2), with a shared anchor vertex a ∈ T1 ∩ T2. Let (H1, ϕ1)
and (H2, ϕ2) be the cactus returned from the two subproblems respectively. Using Fact 4.26, there
are only a constant situations to be handled, depending on whether ϕ1(a) and ϕ2(a) are leaves
(connected to a normal edge), degree 1 nodes on brittle, or on cycle. The Leaf-Leaf Case, the
Leaf-Cycle Case, and the Cycle-Cycle Case are implemented in Section 4.4. In addition, we
only need to handle the following cases. Note that Invariant 5.12 still holds after these operations.

Brittle-Brittle Case. If both anchor nodes ϕ1(a) and ϕ2(a) have degree 1 and connected to
hyperedges in both G1 and G2, then we simply make a to be a normal node on hypercactus, and
connect G1 and G2 via a.

Leaf-Brittle Case. If both anchor nodes ϕ1(a) and ϕ2(a) have degree 1, while one connected
to a normal edge and the other connected to a hyperedge, say (x, ϕ1(a)) and hyperedge e where
ϕ2(b) ∈ e, then the procedure simply delete anchor vertex a and replace hyperedge e by hyperedge
(e ∪ {x}) \ {a}, which connects H1 and H2.

Cycle-Brittle Case. If one anchor node connects to a cycle and the other connects to a hyperedge,
say (x, ϕ1(a)), (y, ϕ1(a)) and hyperedge e where ϕ2(b) ∈ e, then we simply make a to be a normal
node on hypercactus, and connect G1 and G2 via a.

32

(Line 11, Case 2.) Merging When There Is No Balanced Split. The other case when
invoking Line 11 is that no balanced split exists and thus a good split collection with one or more
splits were returned. Suppose that |S| = ℓ ≥ 1 and the graph is decomposed into ℓ+1 subproblems
{(Gi, Ti)}, with the last subgraph (Gℓ+1, Tℓ+1) containing all the anchor vertices generated in this
recursion step. By part 3 of Lemma 5.11 and the algorithm, the returned cactus from the subproblem
(Gℓ+1, Tℓ+1) must be a star graph of at least 4 leaves, or a brittle. Let Hcenter be this graph.

The algorithm attaches each cactus Hi from other subproblems (Gi, Ti) to the center graph
Hcenter via Leaf-Leaf Case, Leaf-Cycle Case, and Leaf-Brittle Case if Hcenter is a star graph;
or via Leaf-Brittle Case, Cycle-Brittle Case, and Brittle-Brittle Case if Hcenter is a brittle.
Since no tests are required, this step can be done in linear time O(|V (G)|+ |E(G)|). The correctness
argument is the same as the balanced-split case, since we can view this process as sequentially
merging two cactus at a time. With the same reason, Invariant 5.12 holds too.

5.5 Proof of Lemma 5.5

In this section, we prove Lemma 5.5, the structural lemma that was crucial for our algorithm. First,
we shows that, although a hyperedge of rank r on a hypercactus implies 2r mincuts on G, almost
all of these mincuts on G have the same set of boundary edges.

Lemma 5.15. Let G = (V,E) be hypergraph and T be a terminal vertex set with |T | ≥ 4. Suppose
that there exists a brittle hypergraph H that is a T -Steiner hypercactus of G. That is, for every
proper subset A ⊊ T , there exists a T -Steiner mincut that separates A and T \A. Then, there exists
a unique set of hyperedges E′ ⊆ E such that, whenever |A| ≤ |T | − 2, E′ is the set of boundary
hyperedges to the maximal A-mincut XA of T , i.e. E′ = ∂XA.

Proof. It suffices to prove that: ∂Xa = ∂XA for all a ∈ A ⊂ T such that |A| ≤ |T | − 2, where
Xa (resp. XA) is the maximal a-isolating (resp. A-) mincut of T . We shall first prove a simpler
statement ∂Xa = ∂Xb for all a, b ∈ T .

For any a, b, c ∈ T , suppose Xab, Xac and Xbc are the maximal {a, b}-mincut, maximal {a, c}-
mincut and maximal T \ {b, c}-mincut of T respectively. By assumption, C(Xab) = C(Xac) =
C(Xbc) = λG(T).

Let Za = Xab ∩ Xac ∩ Xbc, Zb = (Xab \ Xac) \ Xbc, Zc = (Xac \ Xab) \ Xbc and Zabc =
(Xbc \ Xab) \ Xac. Then C(Za) = C(Zb) = C(Zc) = C(Zabc) = λG(T) by submodularity and posi-
modularity (Lemma 2.1). Next we use the proof method similar to Lemma C.6. That is, the
following invariant equality always holds.

(C(Xab) + C(Xac) + C(Xbc))− (C(Zb) + C(Zc) + C(Zabc))︸ ︷︷ ︸
(LHS)

= 0 .

Using the same argument with the proof of Lemma C.6, we have

1. For any hyperedge e, the total contribution of the weight e to the LHS of the equality is
non-negative.

2. For any hyperedge e connecting Xa such that e contributes 0 to the LHS of the equality, either
e contributes to none of C(Xab), C(Xac) and C(Xbc) , or e contributes to all of C(Zb), C(Zc),
and C(Zabc).

33

Let Xa be the maximal a-isolating mincut of T . First observe that Xa ⊆ Za, otherwise contra-
dicts to maximality of either Xab, Xac or Xbc by Nesting & Submodularity Lemma C.1. So Xa must
be the connected component in G[Za] connected to a, by the definition of maximal {a}-mincut of
T . Therefore ∂Xa = ∂Za.

For any edge e in ∂Za, it always contributes to either C(Xab), C(Xac) or C(Xbc). By property 2,
it will also contributes to all of C(Zb), C(Zc), and C(Zabc), furthermore by the equality, contributes
to all of C(Xab), C(Xac) and C(Xbc). Combining with the fact that C(Xab) = C(Za) = λG(T), we
have ∂Xab = ∂Za = ∂Xa.

Since a, b are arbitrary terminals in T , we also have ∂Xab = ∂Xb by swapping a and b in the
argument above. Therefore, for any a, b ∈ T , ∂Xa = ∂Xb and the statement follows.

After replacing b by A\{a} and using the same argument, we have ∂Xa = ∂XA for all a ∈ A ⊂ T
such that |A| ≤ |T | − 2.

Lemma 5.16. Consider a T -Steiner hypercactus (H,ϕ) of G. Let T ′ ⊆ T be a subset of T with
|T ′| ≥ 2. Let e be a hyperedge on H with rank ≥ 3. Then for all t ∈ T ′ such that the maximal t-
isolating mincut Xt of T ′ is a T ′-Steiner mincut, any corresponding mincut that separates ϕ(Xt∩T)
and ϕ(T \Xt) on H includes 0, 1, |e| − 1, or |e| nodes in e.

Proof. For any u ∈ e, let r(u) = ϕ−1(v) be a terminal vertex in G where v is some arbitrary fixed
node in the connected component of H connected to u when removing e. There exists such v with
non-empty pre-image by the definition of hypercactus. Let T̂0 = {r(u) | u ∈ e}, the hypercactus of
T̂0 is a brittle.

Suppose a contradiction there exists Xt to be a maximal t-isolating mincut of T ′, and mincut
(Q,V (H) \ Q) on H that separates ϕ(Xt ∩ T) and ϕ(T \ Xt), such that 2 ≤ |Q ∩ e| ≤ |e| − 2.
Let v ∈ e be the node in the same connected component with ϕ(t) when removing e from H.
Define T̂ = (T̂0 \ {r(v)}) ∪ {t}. Then, the hypercactus representation of T̂ is also a brittle. Let
A = {r(u) | u ∈ (Q ∩ e) \ {v}} ∪ {t} which is a subset of T̂ . Observe that the hyperedge e on H
itself must be the only mincut that separates ϕ(XA ∩ T) and ϕ(T \ XA) (resp. separates Q and
V (H) \Q). So, for consider any two vertices a, b such that their mapped vertices on H are in the
same connected component of H − e, we have a ∈ XA if and only if b ∈ XA. Respectively, a ∈ Xt

if and only if b ∈ Xt.
Now we have A ⊆ Xt since r(u) ∈ A implies that u ∈ (Q ∩ e) so there is some a ∈ Xt such that

ϕ(a) is in the same component of H − e with u, further implies that r(u) ∈ Xt. Now we claim that
Xt = XA. First, Xt does not contain other terminals in T̂ \A, so Xt ⊆ XA (otherwise, Xt ∪XA is
a larger sized (connected) A-mincut of T by submodularity). On the other hand, since A ⊆ Xt and
that XA does not contain any terminal in (T ′ \{t}) (otherwise, XA contains a terminal a ∈ T ′ \{t},
let u ∈ e be the node in the same connected component with ϕ(a) in H − e. Then, r(u) ∈ A ⊆ Xt,
which further implies that a ∈ Xt, contradicting to the fact that Xt separates a and t.) By the
same submodularity argument we have XA ⊆ Xt.

There exists w be a vertex in A other than t, since |A| ≥ 2. By Lemma 5.15 (|A| ≤ |e| − 2 =
|T̂ | − 2), ∂XA = ∂Xw where Xw is the maximal w-isolating mincut of T̂ , so ∂Xt = ∂XA = ∂Xw.
∂Xw separates w and t by definition, and ∂Xt = ∂Xw, contradicts to t and w are connected in
G[Xt].

Lemma 5.16 directly implies Lemma 5.5, since the splits used in the Modified Algorithm 2 are
maximal isolating mincuts of some terminal sets T ′ ⊆ T .

34

6 Conclusion and Open Problems

We develop a new approach based on maximal isolating cuts for computing the cactus representation
of all mincuts that gives the first almost-linear time algorithms for computing Steiner hypercactus,
which generalizes both Steiner cactus and hypercactus, each of which generalizes the standard cactus
for global edge mincuts.

A natural question is whether our framework works with even more generalized settings than
hypergraph connectivity, such as element connectivity. Let U ⊆ V be a set of terminals. An element
mincut between s and t is the smallest mixed cut C ⊂ (E ∪ (V − U)) whose removal disconnects s
and t. There exists a hypercactus representation that captures all global element mincuts as well
[FJ99] (in the same sense as Steiner cactus captures all Steiner mincuts). Given our result, one can
also hope that it admits an almost-linear time construction.

However, element cuts do not fall into the setting of symmetric submodular set functions. In-
stead, they are captured by a more general notion of bisubmodular set functions (see, e.g., [CQ21]).
To make our approach works, it seems we need to generalize the notion of posi-modularity for bisub-
modular set functions, but it is unclear how to come up with the right definition. More concretely,
what is the usable version of the Pairwise Insertion Only Lemma (Lemma 3.3) for element cuts?

Since cactus representation exists for arbitrary symmetric submodular set functions [FJ99], it is
also interesting whether there are algorithms with small query complexity for cactus construction.
Our algorithm carefully decomposes graphs into small pieces and works on each of them separately
so that the total running time is almost-linear. This approach that works on small pieces in parallel
does not seem to work with the setting for arbitrary symmetric submodular set functions where we
count the number of queries.

Acknowledgement

We thank the anonymous reviewers for their constructive suggestions.

References

[ADD+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–100, 1993. 1

[AKL+21] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Sara-
nurak, and Ohad Trabelsi. Breaking the cubic barrier for all-pairs max-flow: Gomory-hu
tree in nearly quadratic time. CoRR, abs/2111.04958, 2021. 3, 4

[AKT21] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for
gomory–hu tree in unweighted graphs. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1725–1737, 2021. 4

[AKT22] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF < APSP? Gomory-
Hu tree for unweighted graphs in almost-quadratic time. In 2021 IEEE 62nd Annual
Symposium on Foundations of Computer Science (FOCS), pages 1135–1146. IEEE, 2022.
4

35

[BK96] András A Benczúr and David R Karger. Approximating st minimum cuts in Õ(n2) time.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 47–55, 1996. 1

[BK00] András A Benczúr and David R Karger. Augmenting undirected edge connectivity in
O(n2) time. Journal of Algorithms, 37(1):2–36, 2000. 1, 46

[CH03] Richard Cole and Ramesh Hariharan. A fast algorithm for computing steiner edge
connectivity. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 167–176, 2003. 2

[Che99] Eddie Cheng. Edge-augmentation of hypergraphs. Math. Program., 84(3):443–465, 1999.
1, 2, 3, 12, 46

[CHLP23] Ruoxu Cen, William He, Jason Li, and Debmalya Panigrahi. Steiner connectivity aug-
mentation and splitting-off in poly-logarithmic maximum flows. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2023. 3

[CKL+22] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. arXiv
preprint arXiv:2203.00671, 2022. Appeared at FOCS’22. 2

[CLP22] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via
isolating cuts. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3237–3252. SIAM, 2022. 1, 4, 46

[CQ21] Chandra Chekuri and Kent Quanrud. Isolating cuts, (bi-)submodularity, and faster al-
gorithms for connectivity. In Nikhil Bansal, Emanuela Merelli, and James Worrell, edi-
tors, 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs,
pages 50:1–50:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 3, 4, 8, 12,
35, 40

[CS07] Joseph Cheriyan and Mohammad R Salavatipour. Packing element-disjoint steiner trees.
ACM Transactions on Algorithms (TALG), 3(4):47–es, 2007. 3

[Cun83] W.H Cunningham. Decomposition of submodular functions. Combinatorica, 3:53–68,
1983. 12

[CX17] Chandra Chekuri and Chao Xu. Computing minimum cuts in hypergraphs. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
1085–1100. SIAM, 2017. 2, 3, 4, 5, 10, 11, 12, 47

[DKL76] Efim A. Dinits, Alexander V. Karzanov, and Micael V. Lomonosov. On the structure of
a family of minimum weighted cuts in a graph. Studies in Discrete Optimization, pages
209–306, 1976. 1

[DN] Yefim Dinitz and Zeev Nutov. Cactus tree type models for families of bisections of a
set. 1

36

[DN95] Yefim Dinitz and Zeev Nutov. A 2-level cactus model for the system of minimum and
minimum+ 1 edge-cuts in a graph and its incremental maintenance. In Proceedings of
the twenty-seventh annual ACM symposium on Theory of computing, pages 509–518,
1995. 1

[DV94] Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a
graph and its incremental maintenance. In Frank Thomson Leighton and Michael T.
Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 716–725. ACM, 1994.
1, 2, 7, 10

[DV00] Yefim Dinitz and Alek Vainshtein. The general structure of edge-connectivity of a ver-
tex subset in a graph and its incremental maintenance. odd case. SIAM Journal on
Computing, 30(3):753–808, 2000. 1, 2

[DW98] Ye Dinitz and Jeffery Westbrook. Maintaining the classes of 4-edge-connectivity in a
graph on-line. Algorithmica, 20(3):242–276, 1998. 1

[FF09] Tamás Fleiner and András Frank. A quick proof for the cactus representation of mincuts.
2009. 1

[FJ99] Tamás Fleiner and Tibor Jordán. Coverings and structure of crossing families. Math.
Program., 84(3):505–518, 1999. 1, 3, 26, 35

[Fle99] Lisa Fleischer. Building chain and cactus representations of all minimum cuts from
hao–orlin in the same asymptotic run time. Journal of Algorithms, 33(1):51–72, 1999.
1, 2

[Gab91a] Harold N Gabow. Applications of a poset representation to edge connectivity and graph
rigidity. In [1991] Proceedings 32nd Annual Symposium of Foundations of Computer
Science, pages 812–821. IEEE Computer Society, 1991. 1, 2

[Gab91b] Harold N Gabow. A matroid approach to finding edge connectivity and packing ar-
borescences. In Proceedings of the twenty-third annual ACM symposium on Theory of
computing, pages 112–122, 1991. 3

[GHT18] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut
in polylogarithmic amortized update time. ACM Transactions on Algorithms (TALG),
14(2):1–21, 2018. 1

[GK19] Rahul Raj Gupta and Sushanta Karmakar. Incremental algorithm for minimum cut and
edge connectivity in hypergraph. In International Workshop on Combinatorial Algo-
rithms, pages 237–250. Springer, 2019. 2, 3, 47

[Hen97] Monika Rauch Henzinger. A static 2-approximation algorithm for vertex connectivity
and incremental approximation algorithms for edge and vertex connectivity. Journal of
Algorithms, 24(1):194–220, 1997. 1

[HKNR98] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Charac-
terizing multiterminal flow networks and computing flows in networks of small treewidth.
Journal of Computer and System Sciences, 57(3):366–375, 1998. 1

37

[Kar93] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In SODA, volume 93, pages 21–30. Citeseer, 1993. 2

[Kar00] David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM),
47(1):46–76, 2000. 2, 3

[KP09] David R Karger and Debmalya Panigrahi. A near-linear time algorithm for constructing
a cactus representation of minimum cuts. In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 246–255. SIAM, 2009. 2, 3

[KR13] Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations
of terminal cuts. In Proceedings of the twenty-fourth annual ACM-SIAM symposium on
Discrete algorithms, pages 1789–1799. SIAM, 2013. 1

[KR14] Arindam Khan and Prasad Raghavendra. On mimicking networks representing minimum
terminal cuts. Information Processing Letters, 114(7):365–371, 2014. 1

[KS96] David R Karger and Clifford Stein. A new approach to the minimum cut problem.
Journal of the ACM (JACM), 43(4):601–640, 1996. 2

[KT86] Alexander V Karzanov and Eugeniy A Timofeev. Efficient algorithm for finding all
minimal edge cuts of a nonoriented graph. Cybernetics, 22(2):156–162, 1986. 2

[KW96] Regina Klimmek and Frank Wagner. A simple hypergraph min cut algorithm. 1996. 2

[LM10] F Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsification.
In Proceedings of the forty-second ACM symposium on Theory of computing, pages 47–
56, 2010. 1

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 317–329, 2021. 4

[LNPS22] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak. Fair
cuts, approximate isolating cuts, and approximate gomory-hu trees in near-linear time.
arXiv preprint arXiv:2203.00751, 2022. 4

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 85–92. IEEE,
2020. 3, 4, 6, 8, 12, 40, 46

[LP21] Jason Li and Debmalya Panigrahi. Approximate gomory–hu tree is faster than n–1
max-flows. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1738–1748, 2021. 4, 12, 13, 40

[LPS22] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A nearly optimal all-pairs
min-cuts algorithm in simple graphs. In 2021 IEEE 62nd Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 1124–1134. IEEE, 2022. 4

38

[Meh88] Kurt Mehlhorn. A faster approximation algorithm for the steiner problem in graphs.
Information Processing Letters, 27(3):125–128, 1988. 3

[MN21] Sagnik Mukhopadhyay and Danupon Nanongkai. A note on isolating cut lemma for
submodular function minimization. arXiv preprint arXiv:2103.15724, 2021. 4

[Moi09] Ankur Moitra. Approximation algorithms for multicommodity-type problems with guar-
antees independent of the graph size. In 2009 50th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 3–12. IEEE, 2009. 1

[MW00] Wai-Kei Mak and DF Wong. A fast hypergraph min-cut algorithm for circuit partition-
ing. Integration, 30(1):1–11, 2000. 2

[NGM97] Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithm for optimally increasing
the edge connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997. 1

[NI00] Hiroshi Nagamochi and Toshihide Ibaraki. Polyhedral structure of submodular and
posi-modular systems. Discret. Appl. Math., 107(1-3):165–189, 2000. 5

[NK94] Hiroshi Nagamochi and Tiko Kameda. Canonical cactus representation for minimum
cuts. Japan Journal of Industrial and Applied Mathematics, 11(3):343–361, 1994. 2, 11,
16, 23

[NNI00] Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for cactus
representations of minimum cuts. Japan journal of industrial and applied mathematics,
17(2):245–264, 2000. 2

[NV91] Dalit Naor and Vijay V Vazirani. Representing and enumerating edge connectivity cuts
in rnc. In Workshop on Algorithms and Data Structures, pages 273–285. Springer, 1991.
2

[ST11] Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal
on Computing, 40(4):981–1025, 2011. 1

A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.2

If XA∪XB = V , then it implies that C(XA) = C(V \XA) = C(XB \XA) ≥ C(XB) = C(XA \XB) ≥
C(XA) since the complement of XA is a B-cut of T and the complement of XB is an A-cut of T .
Suppose that XA ∪XB ⊊ V . By posi-modularity we have

C(XA) + C(XB) ≥ C(XA \XB) + C(XB \XA).

Since A and B are disjoint, XA \ XB is an A-cut and XB \ XA is a B-cut. Hence, we have
C(XA \ XB) ≥ C(XA) and C(XB \ XA) ≥ C(XB). Combining with the posi-modularity we have
C(XA) = C(XA \XB) and C(XB) = C(XB \XA) as desired.

□

39

A.2 Proof of Lemma 3.5

By the submodularity of cut value function in Lemma 2.1,

C(XA) + C(XB) ≥ C(XA ∩XB) + C(XA ∪XB) .

Since both XA and XA ∩ XB are A-cuts and XA is A-mincut, we have C(XA) ≤ C(XA ∩ XB).
Similarly, both XB and XA ∪XB are B-cuts and XB is B-mincut implies C(XB) ≤ C(XA ∪XB).
Combining with the submodularity, we have C(XA) = C(XA ∩ XB) and C(XB) = C(XA ∪ XB).
Therefore, XA ∩XB is a A-mincut of T , and XA ∪XB is a B-mincut of T .

□

B Omitted Proofs from Section 4

B.1 Proof of Lemma B.1

We show how to perform preprocessing in hypergraph, which implies Lemma 4.7 as a corollary for
normal graph.

Lemma B.1 (Preprocessing). Given a hypergraph G and a terminal set T , there exists an algorithm
such that, with probability 1−n−11 the algorithm outputs a partition of T such that λ(u, v) = λG(T)
if and only if u and v belongs to different parts. This algorithm runs in O(log2 n) ·MaxFlow(O(n+
m), O(p)) time.

Proof. The algorithm is exactly the same as invoking one step in Algorithm 4 (CutThresholdStep
with post-processing) in [LP21] with the slightest modification. The algorithm works as follows.
The algorithm first computes λG(T), the value of T -Steiner mincut on G using Chekuri and Quan-
rud’s algorithm [CQ21]. Then, the algorithm samples each terminal vertex with different sampling
rates 2−i for all i = 0, 1, 2, . . . , 2−⌈log |T |⌉. For each sampled vertex set Ti from the sampling rate
2−i, the algorithm computes the minimal isolating mincut using the Isolating Cut Lemma [LP20],
and keeps only the mincut having the same value as λG(T). Repeat the sampling procedure for
Θ(log n) times for ensuring that with high probability, every vertex v obtains a minimal T -Steiner
mincut that contains v, as long as the size of this mincut is at most |T |/2. Let Tlarge be the set of
all terminal vertices that does not obtain such a mincut. Then these T -Steiner mincuts together
with Tlarge is a partition of T that we are looking for.

C Proof of Maximal Isolating Mincuts on Hypergraphs

In this section, we prove Theorem 5.4. First, we verify that The Nesting & Submodularity property
also holds in hypergraphs, and leads to the uniqueness of maximal and minimal A-mincuts of T in
a hypergraph.

Lemma C.1 (Nesting & Submodularity on Hypergraph). Let G be a hypergraph and let T be the
set of terminals. Consider two nonempty subsets A and B of terminals such that A ⊆ B ⊊ T .
Let XA (resp. XB) to be any A-mincuts (resp. B-mincuts) of T . Then, C(XA ∩ XB) = C(XA).
Respectively, C(XA ∪XB) = C(XB), and XA ∪XB is a B-mincut of T . □

40

The difference of Lemma C.1 with Lemma 3.5 in a normal graph is that we cannot say XA∩XB

is A-mincut of T but only their cut values are the same, since (G/A)[XA∩XB] may not be connected
and hence violates Definition 5.3.

The proof of Nesting & Submodularity Lemma is almost identical as in proof of Lemma 3.5
since the cut value function C also preserves submodularity in hypergraph, except that we need
to argue XA ∪ XB is a B-mincut of T which is straightforward to verify that (G/B)[XA ∪ XB]
is connected. Fortunately, Definition 5.3 does not affect the desired properties of maximal and
minimal A-mincuts.

Lemma C.2. For any A ⊆ T , there exists a unique maximal (resp. minimal) A-mincut of T .

Proof. Suppose by contradiction XA and X ′
A are two different maximal A-mincuts of T . By Nesting

& Submodularity Lemma C.1, XA ∪X ′
A is also a A-mincut of T , contradicting the maximality of

XA and X ′
A.

Suppose by contradiction XA and X ′
A are two different minimal A-mincuts of T . Again by

Nesting & Submodularity Lemma C.1, we have C(XA ∩ X ′
A) = C(XA). Suppose rA is the vertex

contracted from A in (G/A)[XA ∩ X ′
A]. Let Y be the connected component in (G/A)[XA ∩ X ′

A]
connected to rA, and X = Y ∪ A \ {rA} which is the corresponding set of vertices in G. Then the
boundary edges ∂X ⊆ ∂(XA ∩X ′

A). Therefore, C(X) ≤ C(XA ∩X ′
A) = C(XA) implies that X is a

also a A-mincuts of T , contradicting the minimality of XA and X ′
A.

The reason that we want (G/A)[XA] to be connected in A-mincut of T is because this definition
leads to Pairwise Intersection Only Lemma on hypergraphs. Recall that the proof of Lemma 3.3
in a normal graph aims to show that there is no edge between X = XA ∩XB ∩XC and XA \X,
contradicts to the connectivity of (G/A)[XA]. The proof for hypergraph is a bit different, since there
may exist a hyperedge connecting X and XA \X. Fortunately, we will show that these hyperedges
can only be cut edges of XA and hence removed by Definition 5.3 when we analyze the connectivity
of (G/A)[XA].

The Disjoint & Posi-modularity property also holds in a hypergraph, and serves as the key to
prove Pairwise Intersection Only Lemma on hypergraph. We need the definition of relaxed A-mincut
before showing the Disjoint & Posi-modularity for hypergraph.

Definition C.3. Let G = (V,E) be a hypergraph and T ⊆ V . For any proper subset of terminals
A ⊊ T , a cut X is a relaxed A-cut of T if it satisfies the first conditions of A-cut in Definition 5.3,
i.e., the cut (X,V \X) separates A and T \A, with A ⊆ X. A relaxed A-mincut of T is a minimum
valued relaxed A-cut of T .

Lemma C.4. Let G = (V,E) be a hypergraph and T ⊆ V . For any proper subset of terminals
A ⊊ T , the value of A-mincut equals the value of relaxed A-mincut.

Proof. The “≥” direction is straightforward. For the other direction the proof is similar to the
uniqueness of minimal A-mincut. We suppose a contradiction that there exists a relaxed A-mincut
XA such that C(XA) is strictly smaller than the value of A-mincut. Suppose rA is the vertex
contracted from A in (G/A)[XA ∩ X ′

A]. Let Y be the connected component in (G/A)[XA ∩ X ′
A]

connected to rA, and X = Y ∪ A \ {rA} which is the corresponding set of vertices in G. Then
the boundary edges ∂X ⊆ ∂(XA). Therefore, C(X) ≤ C(XA) which is smaller than the value of
A-mincut, contradicting the definition of A-mincut.

41

The proof of Disjoint & Posi-modularity Lemma is the same as the normal graph since the cut
value function C also preserves posi-modularity in a hypergraph.

Lemma C.5 (Disjoint & Posi-modularity). Let A,B ⊆ T be two nonempty subsets of terminals
with A ∩B = ∅. Let XA (resp. XB) be an relaxed A-mincut (resp. relaxed B-mincut) of T . Then,
XA \XB is a relaxed A-mincut of T , and XB \XA is a relaxed B-mincut of T . □

Lemma C.6 (Pairwise Intersection Only on Hypergraph). Given a hypergraph G, let A,B,C ⊆ T
be three disjoint nonempty subsets of terminals. Let XA, XB, XC ⊆ V be any A-mincut of T ,
B-mincut of T , and C-mincut of T respectively. Then XA ∩XB ∩XC = ∅.

Proof. The proof is only interesting whenever the intersection of any two isolating mincuts is non-
empty (i.e. crossing). Thus, without loss of generality, we assume that XA∩XB ̸= ∅, XB ∩XC ̸= ∅,
and XC ∩XA ̸= ∅.

Define X ′
A = (XA \XB) \XC , X ′

B = (XB \XC) \XA and X ′
C = (XC \XA) \XB. These sets

are non-empty since A ⊆ X ′
A, B ⊆ X ′

B, and C ⊆ X ′
C . By posi-modularity (Lemma C.5) we know

that X ′
A (resp. X ′

B and X ′
C) is relaxed A-mincuts (resp. B and C).

Assume for contradiction that X := XA ∩XB ∩XC ̸= ∅. We now aim to prove that there is no
path from X to X ′

A in the induced graph (G/A)[XA], which leads to a contradiction to Definition 5.3.
Similar as the proof for the normal graph, we consider the equality

(C(XA) + C(XB) + C(XC))− (C(X ′
A) + C(X ′

B) + C(X ′
C))︸ ︷︷ ︸

(LHS)

= 0 .

Note that X ′
A (resp. X ′

B and X ′
C) is relaxed A-mincut (resp. B and C) while XA (resp. XB and

XC) is A-mincut (resp. B and C), the equality still holds since Lemma C.4.
Next, it suffices to prove the following combinatorial property.

1. For any hyperedge e, the total contribution of the weight e to the LHS of the equality is
non-negative.

2. For any hyperedge e connecting X such that e contributes 0 to the LHS of the equality, either
e contributes to none of C(XA), C(XB) and C(XC), or e contributes to all of C(X ′

A), C(X ′
B)

and C(X ′
C).

To see why it is sufficient, by first property, no hyperedge contributes positive to LHS of the equality.
And by the second property, only these two kinds of hyperedges can be connecting to X. For the
first case, e contributes to none of C(XA), C(XB) and C(XC) means that e only contains vertex in X.
For the second case, e is not in the induced graph (G/A)[XA] by definition of induced subhypergraph
and hence X is not connected with XA \ X in the induced graph, contradicts to the connectivity
assumption in Definition 5.3. It remains to prove the two properties.

1. We further consider the cases that e contributes to how many terms of C(X ′
A), C(X ′

B) and
C(X ′

C). There is nothing to prove if e contributes to none of them.

If e contributes to one of them, without loss of generality C(X ′
A), then e contains some vertex

in X ′
A, and also some vertex v in V \ X ′

A = (V \ XA) ∪ XB ∪ XC . Therefore v is in either
V \XA, XB or XC , hence also contributes to either C(XA), C(XB) or C(XC) respectively.

If e contributes to two of them, without loss of generality C(X ′
A) and C(X ′

B), then e contains
some vertex in X ′

A and in X ′
B. So e also contributes to C(XA) and C(XB).

42

Otherwise e contributes to all the three terms C(X ′
A), C(X ′

B) and C(X ′
C), then it is direct to

see that e also contributes to C(XA), C(XB) and C(XC).

2. Similar to the proof of the first property, we consider the cases that e contributes to how many
terms of C(X ′

A), C(X ′
B) and C(X ′

C). This time e must contain some vertex in X.

If e contributes to none of them, the it also contributes to none of C(XA), C(XB) and C(XC)
since the total contribution is 0, which satisfies the claim.

If e contributes to one of them, without loss of generality C(X ′
A), then e contains some vertex

in X ′
A. Since e also contains vertex in X, it contributes to both C(XB) and C(XC), which

gives a positive total contribution to LHS. So this case cannot happen.

If e contributes to two of them, without loss of generality C(X ′
A) and C(X ′

B), then e contains
some vertex in X ′

A and in X ′
B. Since e also contains vertex in X, it contributes to all of

C(XA), C(XB) and C(XC), which also gives a positive total contribution to LHS. So this case
cannot happen.

Otherwise e contributes to all the three terms C(X ′
A), C(X ′

B) and C(X ′
C), which satisfies the

claim.

Bounding the output size. The total size of all maximal v-isolating mincuts on hypergraph is
also O(n), as a consequence of Lemma C.6. This results and its proof is the same as normal graph:

Lemma C.7. Let G be a hypergraph and T be a set of terminals. For each v ∈ T , let Xv be the
maximal v-isolating mincut. Then,

∑
v∈T |Xv| ≤ 2n. □

A Divide and Conquer Algorithm. The maximal isolating mincut algorithm is exactly the
same as Algorithm 1, and we shall reduce computing the max-flow and s-minimal (resp. maximal)
s-t mincut on hypergraph to compute the max-flow on normal graph.

Compute s-Maximal st-Mincut on a Hypergraph via Max-Flow. Given a hypergraph
G = (V,E), a source s and a sink t, the hypergraph can also be viewed as a bipartite graph
G′ = (U ′, V ′, E′) such that U ′ = V, V ′ = E and (u, e) ∈ E′ iff u ∈ e. The flow network in the
hypergraph G can be viewed as flow network in the bipartite graph G′, with vertex capacity on
e ∈ V ′. So we can compute the max-flow of G via computing the vertex capacity max-flow of graph
G′.

The s-maximal s-t mincut can be obtained by a post-processing of max-flow. The algorithm
first computes the s-t maxflow, and then examines the residue flow graph G

′(f)
flow: the s-minimal s-t

mincut is the set of vertices in U reachable from s, and the s-maximal s-t mincut can be obtained
by first computing X ⊂ U to be the set of vertices not reachable to t, then find the connected
component of the induced subhypergraph G[X] connected by s.

The correctness proof of Algorithm 1 follows the same proof of Lemma 3.6, by replacing the
Nesting & Submodularity Lemma using the hypergraph version Lemma C.1.

Lemma C.8 (Correctness). Fix a terminal vertex v ∈ T . There is a unique (leaf) subproblem where
the maximal isolating mincut for v is computed. Let X̂v be the cut returned at Line 6 of Algorithm 1
for vertex v. Then X̂v = Xv is the maximal v-isolating mincut on the hypergraph G. □

43

Lemma C.9 (Runtime). MaxIsoMincut(G, T) runs in time O(log |T |)·MaxFlow(O(n+m), O(p))
time on hypergraph G.

Proof. It suffices to bound the sum of graph sizes in all subproblems throughout the execution of
Algorithm 1. First of all, the maximum depth of the recursion tree is ⌈log |T |⌉ since in each recursive
call the number of non-pivot terminals is reduced to half. In addition, the number of subproblems
in each recursion depth i is at most 2i ≤ |T |.

Now, we focus on a particular recursion depth i > 0. Let {(Gj , Tj , rj)} (rj denote the pivot
vertex in hypergraph to avoid ambiguity) be all the subproblems whose recursion depth is i. We
observe that all terminals except pivot never goes to two subproblems so the subsets T ′

j := Tj \{rj}
are disjoint. Moreover, by Lines 11-12 we know that for each j, removing the pivot rj from Gj it is
exactly the maximal T ′

j -mincut of T on G.
Using the Pairwise Intersection Only Lemma on Hypergraph (Lemma C.6), we are able to

conclude that every vertex in the input graph G occurs in at most two subproblems at recursion
depth i. Therefore, the total number of vertices across all subproblems at depth i is

∑
j |V (Gj)| ≤

2n+ 2i ≤ 2n+ |T | ≤ 3n.
Next we bound the total volume of edges across all subproblems at depth i.

∑
j

∑
e∈E(Gj)

|e| =
∑
j

∑
e∈E(Gj)

∣∣{u ∈ e | u ∈ V (Gj)}
∣∣

≤
∑
j

∑
e∈E(Gj)

2
∣∣{u ∈ e | u ∈ V (Gj) \ {rj}}

∣∣
≤ 2

∑
u∈V (G)

2d(u)

= 4p .

The last inequality is because every vertex in the input graph G occurs in at most two subproblems
at recursion depth i.

Therefore, in each subproblem (G′, T ′), where the graph G′ has n′ vertices and m′ edges with
total volume p′, the algorithm computes maximal A-mincut (and B-mincut) of T in MaxFlow(O(n′+
m′), O(p′)) time. By summing up the runtime per recursion depth, we obtain an upper bound to
the desired total runtime O(log |T |) ·MaxFlow(O(n+m), O(p)).

Proof of Theorem 5.4. Theorem 5.4 follows directly by Algorithm 1, Lemma C.8, and Lemma C.9.

D Omitted Proofs from Section 5.2

D.1 Proof from Theorem 5.2

The proof is almost the same as Theorem 4.2, except that we need to bound the total volume of
hyperedges instead of only the number of normal edges.

44

Runtime. To analyze the total volume of edges and hyperedges across all subproblems within the
same recursion depth, we bound normal edges and hyperedges separately.

For normal edges (rank-2 edges), the argument is the same as Theorem 4.2. after computing
an induced decomposition from a good split collection, the total number of edges is increased by
at most

∑ℓ
i=1 |V (Gi)| ≤ 2n (notice that we charge the number of the newly generated edges in the

last decomposed graph (Gℓ+1, Tℓ+1) to the edges across each split). Hence, we know that at any
recursion depth there are at most m + 2n log |T | edges in total. Here n refers to the total number
of vertices in the input graph, and m refers to the total number of vertices in the input graph.

For hyperedges of rank larger than 2, we use a potential method similar to the vertices number
analysis of Theorem 4.2. Let E′ = {e ∈ E, |e| ≥ 3} to be the set of hyperedges and p′G :=

∑
e∈E′ |e| to

be the total volume of hyperedges. Define Φ(G) := 3p′G−6|E′(G)|. By definition p′G ≥ 3|E(G)| ≥ 0,
so Φ(G) ≥ 0. Consider the induced decomposition {(Gi, Ti)} on a good split collection of size k. By
definition of simple refinements, we know that Φ(G, T) =

∑k+1
i=1 Φ(Gi, Ti). Therefore, the sum of all

potentials within the same recursion depth can be upper bounded by the root problem’s potential.
Since the total volume of any subproblem p′G′ ≤ 3p′G′−6|E′(G′)| = Φ(G′) by definition, we conclude
that the total volume of hyperedges across all subproblems at any particular recursion depth (or
any collection of subproblems that are not related to each other) is at most Φ(G) ≤ 3p. Here p
refers to the total volume of hyperedges in the input graph.

Finally, we add up the runtime needed per recursion depth. Fix any recursion depth, for
each subproblem (Gj , Tj), by Lemma 5.7 the runtime spent in Line 5 is at most O((log3 n) ·
MaxFlow(O(|V (Gj)| + |E(Gj)|), O(pGj)), the runtime spent for Line 9 is linear in the graph size
O(|V (Gj)|+ pGj), and by Lemma 5.8 merging hypercactus takes O(log |Tj | ·MaxFlow(O(|V (Gj)|+
|E(Gj)|), O(pGj)) time. Hence, combining all the subproblems together and using the bound of total
volume of edges, the runtime of Algorithm 2 is O(log4 n) ·MaxFlow(O(n+m), O(p+ n log |T |)).

Correctness. By Lemma 5.7, with probability 1−n−11 the returned collection is good in Line 5.
By the same analysis in the proof of Theorem 4.2, we know that there are at most 4|T | subproblems.
Hence the algorithm makes at most 4|T | invocations to Lemma 5.7. With a union bound, we know
that with probability 1 − 4n−10 the collections of splits from all subproblems are good. Now, by
applying the union bound again to Lemma 5.8 we know that the returned hypercactus is a T -Steiner
hypercactus of G with probability at least 1−4n−10. Therefore, with another union bound we know
that with probability 1− 8n−10 Algorithm 2 correctly output a T -Steiner hypercactus. □

E Applications

E.1 Steiner Connectivity Edge Augmentation Problem

Given an unweighted undirected graph G, a terminal set T , and a target edge connectivity τ . The
goal of the Steiner connectivity edge augmentation problem is to find a set of edges to G whose
addition makes the value of a T -Steiner mincut to be at least τ .

In this subsection, we briefly describe how to solve the Steiner connectivity edge augmentation
problem, i.e., proving the first part of Corollary 1.3.

Corollary 1.3. There are randomized almost-linear time algorithms that can w.h.p. compute
• the optimal solution of the Steiner connectivity augmentation problem.

45

Cen et al. [CLP22] gives an algorithm that solves the edge connectivity augmentation problem,
which is a special case to the Steiner connectivity edge augmentation problem with T = V . Their
algorithm utilizes Isolating Cut Lemma [LP20] and constructs a special hierarchy of vertex subsets
called extreme set tree. With the extreme set tree, the algorithm follows the framework of Benczúr
and Karger [BK00] that solves the degree-constrained edge connectivity problem (DECA) given an
extreme set tree. The framework [CLP22, Section 3] consists of 3 phases:

1. Using external augmentation, transform the degree constraints β(v) to tight degree constraints
b(v) for all v ∈ V .

2. Repeatedly add an augmentation chain to increase connectivity to at least τ − 1.

3. Add a matching defined on the T -Steiner cactus if the connectivity does not reach τ .

Notice that the first two phases can be easily constructed in the Steiner case. The third phase
requires a computation of a T -Steiner cactus of G. By our new Steiner cactus algorithm (Theo-
rem 1.1), we are able to obtain an almost-linear time algorithm for DECA, and hence solving the
Steiner connectivity augmentation problem.

E.2 Hypergraph +1-Steiner-Connectivity Augmentation Problem

Given a hypergraph G = (V,E) and a terminal set T ⊂ V , the goal of the hypergraph +1-Steiner-
connectivity augmentation problem is to compute a minimum sized set E′ of rank-2 edges such that
λG∪E′(T) ≥ λG(T) + 1. The optimal value is defined to be the minimum possible |E′|. In this
subsection we briefly describe the proof to the second part of Corollary 1.3.

Corollary 1.3. There are randomized almost-linear time algorithms that can w.h.p. compute
• the optimal value of the hypergraph +1-Steiner-connectivity augmentation problem.

Cheng [Che99] provides a formula for computing the optimal value of the hypergraph +1-
connectivity augmentation problem, the value can be computed in linear time once we obtain a
cactus (for all global mincuts) of G. Below, we describe Cheng’s result in the Steiner setting, thus
solving the hypergraph +1-Steiner-connectivity augmentation problem:

Theorem E.1 ([Che99]). Given G be a hypergraph and T be a terminal sets, let H be the irredundant
T -Steiner hypercactus of G. Let αG(T) be the size of the largest hyperedge in H, and βG(T) be the
number of degree 1 nodes in H. Then the optimal value of +1-Steiner-connectivity augmentation is

max

{
αG(T)− 1,

⌈
βG(T)

2

⌉}
.

Therefore, with our new Steiner hypercactus algorithm (Theorem 1.2), the optimal value of the
hypergraph +1-Steiner-connecitivty augmentation problem can be solved in almost-linear time.

E.3 Incremental Algorithm for Hypergraph Mincuts

Given a sequence of (unweighted) hyperedges inserting to an initially empty hypergraph G, the
incremental hypergraph mincut problem requires the data structure to correctly maintain the λ(G)
subject to this sequence of insertions.

46

Gupta and Karmakar [GK19] gives an algorithm that solves the incremental hypergraph min-
cut problem in O(λn) amortized update time. In this subsection, we show that our hypergraph
cactus algorithm (Theorem 1.2) can be used for substituting the cactus construction step and thus
improving the amortized update time to the algorithm.

Corollary 1.4. There is an algorithm that, given an unweighted hypergraph G = (V,E) undergoing
hyperedge insertions, maintains a mincut in time Ô(λ) amortized update time where λ denotes the
mincut value at the end of the updates.

The algorithm by Gupta and Karmakar [GK19] proceeds in phases. A new phase starts whenever
λ(G) increases. Within a phase, they spend Tcactus + Õ(n +

∑
e |e|) time where the sum is over

all edges inserted in this phase. By using previous hypercactus construction of Chekuri and Xu’s
algorithm [CX17], they obtained an Õ(λ(G)n) amortized update time where λ(G) denotes the
mincut value after all the updates. Now, if we use our almost-linear time construction, the time
per phase is Ô(p) where p is the total size of the hypergraph at the end of the phase. After λ(G)
phases, the total update time is then Ô(pλ(G)), which implies Ô(λ(G)) amortized update time.

47

	1 Introduction
	1.1 Our Results
	1.2 Techniques

	2 Preliminaries
	3 Maximal Isolating Mincuts
	4 Steiner Cactus Construction
	4.1 Divide and Conquer Approach: Prior Works
	4.2 Our Divide and Conquer Framework via a Sequence of Splits
	4.3 Computing a Good Split Collection
	4.4 Returning a Correct Cactus

	5 Steiner Hypercactus Construction
	5.1 Maximal Isolating Mincuts on Hypergraphs
	5.2 Our Divide and Conquer Framework
	5.3 Computing a Good Split Collection
	5.4 Returning a Correct Hypercactus
	5.5 Proof of cor:brittle real corollary

	6 Conclusion and Open Problems
	A Omitted Proofs from sec:max isocut
	A.1 Proof of lem:disjoint-posi-modularity
	A.2 Proof of lem:steiner-modularity

	B Omitted Proofs from sec:steiner-cactus
	B.1 Proof of lem:preprocessing-hypergraph

	C Proof of Maximal Isolating Mincuts on Hypergraphs
	D Omitted Proofs from sec:divide and conquer hypergraph
	D.1 Proof from thm:steiner-hypercactus-main-hypergraph

	E Applications
	E.1 Steiner Connectivity Edge Augmentation Problem
	E.2 Hypergraph +1-Steiner-Connectivity Augmentation Problem
	E.3 Incremental Algorithm for Hypergraph Mincuts

