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Abstract

The maximal k-edge-connected subgraphs problem is a classical graph clustering problem
studied since the 70’s. Surprisingly, no non-trivial technique for this problem in weighted graphs
is known: a very straightforward recursive-mincut algorithm with Ω(mn) time has remained the
fastest algorithm until now. All previous progress gives a speed-up only when the graph is
unweighted, and k is small enough (e.g. Henzinger et al. (ICALP’15), Chechik et al. (SODA’17),
and Forster et al. (SODA’20)).

We give the first algorithm that breaks through the long-standing Õ(mn)-time barrier in
weighted undirected graphs. More specifically, we show a maximal k-edge-connected subgraphs
algorithm that takes only Õ(m ·min{m3/4, n4/5}) time. As an immediate application, we can
(1 + ε)-approximate the strength of all edges in undirected graphs in the same running time.

Our key technique is the first local cut algorithm with exact cut-value guarantees whose
running time depends only on the output size. All previous local cut algorithms either have
running time depending on the cut value of the output, which can be arbitrarily slow in weighted
graphs or have approximate cut guarantees.
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1 Introduction

We revisit a natural graph clustering problem of efficiently computing maximal k-edge-connected
subgraphs that has been studied since the 70’s [Tar72]. Given a (directed) graph G = (V,E), we
say that G is k-edge-connected if all the edge cuts have value at least k and, similarly, G is k-
vertex-connected if all vertex cuts have value at least k. The maximal k-edge-connected subgraphs
of G contains all subsets {V1, . . . , Vz} of V such that, for each i, the induced subgraph G[Vi] is
k-edge-connected and there is no strict superset V ′i ⊃ Vi where G[V ′i ] is k-edge-connected. The
maximal k-vertex-connected subgraphs of G is defined analogously.

It turns out that all the variants of these problems (whether the graph is weighted/unweighted or
directed/undirected) admit a very simple recursive-mincut algorithm: For the k-edge-connectivity
version, compute an edge cut (A,B) of value less than k by calling a global minimum cut subroutine
and return {V } if no such cut exists. Otherwise, recurse on both G[A] and G[B] and return the
union of answers of the two recursions. For the k-vertex-connectivity version, similarly compute a
vertex cut (A,S,B) of value less than k (where S separates A from B, i.e., E(A,B) = ∅). If such
cut exists, recurse on both G[A ∪ S] and G[B ∪ S]. The worst-case running time of this algorithm
on a graph with n vertices and m edges is Θ(n · Tmincut) = Ω(mn) where Tmincut = Ω(m) is the
time for computing minimum cuts.12

Surprisingly, the above straightforward algorithm has remained the fastest algorithm! Although
the problem has been studied since the 70’s, all known algorithms give a speed-up only when the
graph is unweighted and k is small enough. The classical depth-first-search algorithm [Tar72]
solves both maximal 2-edge-connected and 2-vertex-connected subgraphs problems in undirected
unweighted graphs in O(m) time. There was an effort to generalize this result to directed graphs
[ES80, Mak88, Jab16], but the algorithms still take Ω(mn) time. Henzinger et al. [HKL15] later
obtained Õ(n2)-time algorithms in directed graphs when k = 2. Then, Chechik et al. [CHI+17]
gave the first algorithm that breaks the O(mn) bound for any constant k. Their algorithm
takes Õ(m

√
mkO(k)) time for all variants of the problems. They also gave an improved bound

of Õ(m
√
nkO(k)) for computing maximal k-edge-connected subgraphs in undirected graphs. Both

bounds were then improved by Forster et al. [FNY+20] to Õ(m
√
mk3/2) and Õ(mk + n3/2k3), re-

spectively. Nonetheless, in weighted graphs where k can be arbitrarily large or even in unweighted
graphs when k ≥ m1/3/n1/6, the simple recursive-mincut algorithm remains the fastest algorithm
until now.

Our Results. We give the first algorithm that breaks through the long-standing Õ(mn)-time bar-
rier of the recursive-mincut algorithm in weighted graphs, in the case of maximal k-edge-connected
subgraphs in undirected graphs, which is the variant of the problem that receives attention in prac-
tice and several heuristics were developed [ZLY+12, AIY13]. Formally, our main result is as follows:

Theorem 1.1. There is a randomized algorithm that, given a weighted undirected graph G =
(V,E,w) where w ∈ ZE≥0 with n vertices and m edges and any parameter k > 0, computes the

maximal k-edge-connected subgraphs of G w.h.p. in O(m ·min{m3/4 log3.75 n, n4/5 log3.6 n}) time.

1Karger showed that [Kar00] it takes Tmincut = Õ(m) to compute minimum edge cuts in undirected graphs,

but the start-of-the-art for other variants are worse. For minimum edge cuts in directed graphs, Tmincut = Ô(m ·
min{n/m1/3,

√
n}) [CLN+22] and Tmincut = Õ(mk) if the graph is unweighted [Gab95]. For minimum vertex cuts,

Tmincut = Õ(mn) [HRG00] in both undirected and directed graphs and, if the graph is unweighted, we have Tmincut =

Ô(m) for undirected graphs [LNP+21] and Tmincut = min{Ô(n2), Õ(mk2)} for directed graphs [LNP+21, FNY+20].
2Throughout the paper, we use Õ(·) to hide polylog(n) factor and use Ô(·) to hide no(1) factor.
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It is known that the solution {V1, . . . , Vz}, the maximal k-edge-connected subgraphs of G, is
unique and forms a partition of V . Moreover, it precisely determines whether an edge has strength
at least k: each edge (u, v) ∈ E has strength at least k iff both u and v are inside the same subset
Vi ∈ {V1, . . . , Vz}. The edge strength introduced by Benczur and Karger [BK02] is a central notion
for graph sparsification and its generalization [FHHP19, CKN20, CCPS21]. [BK02] gave a near-
linear algorithm that underestimates the edge strength. Although their estimates are sufficient
for graph sparsification [BK02, CX18, FHHP19], these estimates do not give an approximation for
edge-strength of every edge; the estimate of some edge can deviate from its strength by even a
Ω(n1/3) factor. See Appendix D for the discussion.

The fastest known algorithm for computing exact edge strengths is again the recursive-mincut
algorithm which requires Õ(mn) time. No faster algorithm is known, even when a large approxi-
mation ratio is allowed. In contrast, Theorem 1.1 improves the state-of-the-art for approximating
edge strength by giving an (1 + ε)-approximation.

Corollary 1.2. There is a randomized algorithm that, given a weighted undirected graph, can
w.h.p. (1 + ε)-approximates the strength of all edges in Õ(m ·min{m3/4, n4/5}/ε) time.

Main Technical Contribution: Local Exact Algorithms in Weighted Graphs. The crit-
ical tool behind Theorem 1.1 is the first local cut algorithm that has an exact cut-value guarantee
and yet is fast in weighted graphs.

We generally refer to local cut algorithms as the algorithms that, given a seed vertex x, find a cut
S containing x with desirable properties, but only spend time close to the size of S and independent
of the size of the whole graph. For example, an influential line of work on local cut algorithms for
finding sparse cuts (e.g. [ST13, ACL06, OZ14, HRW20]) found wide-range applications, including
solving linear systems [ST14] and dynamic graph algorithms [NSWN17, SW19]. Unfortunately, all
these algorithms only have approximate guarantees.3 There is another class of algorithms initiated
in the area of property testing that checks whether there is a small cut S containing the seed x
whose cut size is at most k. These algorithms have running time exp(k) [YI10, OR11, YI12] and
can be improved to poly(k) [GR97, PR02, FNY+20, NSY19]. Although these algorithms found
interesting applications beyond property testing [FNY+20, CDK+21, JHSZ22], they are not useful
in weighted graphs because k can be arbitrarily large.

To summarize, all local cut algorithms in the literature are either approximate or run in time
proportional to the cut value k. Our key technique is an algorithm that bypasses both these
drawbacks.

To state our key tool, we need some notations. From now, all graphs G = (V,E,w) we consider
are undirected. For any edge set F ⊆ E, w(F ) =

∑
e∈F w(e) is the total weight of F . For any set

X ⊂ V , we write X = V \X.
Let δ(X) = E(X,X) denote the cut set of X and w(δ(X)) is denote the cut value of X. The

(unweighted) volume of X denoted by vol(X) = |E(X,V )| counts all edges incident to X. We say
that X is an extreme set if, for every strict subset Y ⊂ X, w(δ(Y )) > w(δ(X)). Equivalently, X is
the unique minimum cut in G/X, the graph after contracting X into a single vertex.

Definition 1.3. For any vertex x ∈ V , we say X is a (x, ν, σ, k)-set if x ∈ X, vol(X) < ν, |X| < σ,
and w(δ(X)) < k. If X is also an extreme set, then X is called an (x, ν, σ, k)-extreme set.

Intuitively, an (x, ν, σ, k)-set is a “small local cut” containing the seed vertex x that we want
to find. From now on we use ν to represent the volume of the small local cut and σ to represent

3If there is a cut S with conductance φ, these algorithms find a cut S′ with conductance φ′ where φ′ > φ.
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the number of vertices on the smaller side of the local cut. The key problem we consider is the
following:

Problem 1.4 (LocalKCut). Given a graph G = (V,E,w), a vertex x, and parameters ν, σ and
k, either find an (x, ν, σ, k)-set or return ⊥ indicating that no (x, ν, σ, k)-extreme set exists.

Note that when there is no (x, ν, σ, k)-extreme set but there exists an (x, ν, σ, k)-set, then we
allow returning either ⊥ or any (x, ν, σ, k)-set. Now, our key technical contribution is as follows:

Theorem 1.5. There are randomized algorithms with the following guarantees with high probability:

1. Given access to the adjacency lists G, Problem 1.4 can be solved in time O(νσ2 log2 n).

2. After O(mσ2 log2 n) preprocessing time on G, Problem 1.4 can be solved in time O(σ4 log n).

The most important guarantee of Theorem 1.5 is that its running time is independent from k.
Theorem 1.5 has an exact cut-size guarantee in the sense that there is no gap in k: it either returns
a (x, ν, σ, k)-set or reports that no (x, ν, σ, k)-extreme set exists. It is possible to strengthen the
guarantee of Theorem 1.5 to “either return an (x, ν, σ, k)-extreme set or report that no (x, ν, σ, k)-
extreme set exists”. We show such an algorithm in Appendix B. However, this algorithm is slower
and so we will not use it for proving Theorem 1.1. Hence, we defer it to the appendix.

We complement this algorithm with conditional lower bounds:

Theorem 1.6. Given the parameters x, ν, σ, k, checking whether an (x, ν, σ, k)-set exists is W[1]-
hard even when parameterized by σ. Moreover, assuming the OMv conjecture [HKNS15], there is no
algorithm that, given access to the adjacency lists and matrix of G (with no further preprocessing),
solves Problem 1.4 in O(σ2−Ω(1)) time.

The first statement in Theorem 1.6 notes that the notion of extreme sets in Problem 1.4 is crucial
for efficient algorithm; if we just want to check if an (x, ν, σ, k)-set exists, then it is unlikely that
there exists an algorithm with f(σ)nO(1) time where f is an arbitrary function (see the definition
of W[1]-hardness from Section 13.3 of [CFK+15]).

The second statement of Theorem 1.6 shows that the running time of Theorem 1.5 cannot be
improved beyond O(σ2−o(1)) if we only have access to the adjacency lists and matrix. Improving
the running time of Theorem 1.5 to Õ(σ2), or even Õ(σ) with non-trivial pre-processing, would
speed up the running time of Theorem 1.1 to Õ(mn2/3) and Õ(mn1/2), respectively. We leave this
as a very interesting open problem.

Key Technique: Local Random Contraction. The high-level message behind Theorem 1.5
is as follows: the famous random contraction technique by [Kar93] for computing global minimum
cut can be localized into local cut algorithms for detecting unbalanced extreme sets in weighted
graphs.

Applications of the random contraction technique to local cut algorithms appeared earlier in the
property testing algorithms by Goldreich and Ron [GR97] and also in [PR02]. However, it is unclear
a priori that their results extend to weighted graphs. This is because in setting of [GR97, PR02]
they have that (1) the graph is unweighted and has bounded degree, (2) the target cut X they want
to find is such that |δ(X)| < k and |X| = O(k), and (3) their stated running time was poly(k).
So the time bound inherently may depend on k. Some parts of the argument in [GR97] crucially
exploit that the graph is unweighted and does not carry on to our weighted setting. Our observation
is that the “local random contraction” technique still works in weighted graphs with the running
time bound independent from k.
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This shows an exciting aspect of the random contraction technique because, to our best knowl-
edge, there is an inherent dependency on k in all other techniques in the current literature for local
cut algorithms with exact cut-value guarantees. These techniques include local-search-based algo-
rithms with deterministic branching strategies [YI10, OR11, CHI+17], local-search-based algorithm
with randomized stopping points [FNY+20], and even the localized version of the Goldberg-Rao
flow algorithm [OZ14, NSY19].

We view Theorem 1.5 as the first step toward stronger local cut algorithms in weighted graphs
with exact cut-value guarantees. Because of the strong guarantee of these algorithms, we expect
many more applications. For example, strengthening Theorem 1.5 to work in directed graphs would
immediately generalize our main result, Theorem 1.1, to work in directed graphs.

Related Problems. The related problem of computing k-edge-connected components of a graph
G = (V,E) is to find the unique partition {V ′1 , . . . , V ′z′} of V such that, for every vertex pair (s, t)
in the same part V ′i , the (s, t)-minimum cut in G (not in G[V ′i ]) is at least k. The maximal
k-edge-connected subgraphs {V1, . . . , Vz} can be different from the k-edge-connected components
{V ′1 , . . . , V ′z}. Consider for example an unweighted undirected graph G′ where vertices s and t are
connected through three parallel paths (s, u1, t), (s, u2, t), and (s, u3, t). While s and t are in the
same 3-edge-connected component of G′, no two vertices are in the same maximal 3-edge-connected
subgraphs of G′.

We note that computing k-edge-connected components in an undirected graph G can be reduced
to computing all-pairs max flow in G, which can be done in Õ(n2) time using the recent algorithm
of [AKL+21]. This algorithm, however, does not solve nor imply anything to our problem of
computing maximal k-edge-connected subgraphs.

Organization. After giving a high-level technical overview in Section 2, we start by formally
describing the recursive mincut algorithm for finding the maximal k-edge connected subgraphs in
Section 3 as a warm-up for similar proofs. In Section 4, we show a local cut algorithm for Theo-
rem 1.5(1). We then use this local cut algorithm to obtain the maximal k-edge-connected subgraphs
in Õ(mm3/4) time in Section 5. This proves the first running time claimed in Theorem 1.1. In
Section 6, we give another local cut algorithm stated in Theorem 1.5(2) which is faster than the one
in Section 4 when the volume of the cut is high. Similar to Section 5, in Section 7, we apply this
local algorithm to obtain the maximal k-edge-connected subgraphs in Õ(mn4/5) time, completing
the proof of Theorem 1.1.

In Section 8 we show hardness for solving Problem 1.4, proving the Theorem 1.6. In Section 9,
we show an application of our main result to approximating edge strength, i.e., Corollary 1.2.

2 Overview of techniques

We say that X ⊂ V is a (x, ν, k)-set if X is a (x, ν, σ, k)-set except that we do not require that
|X| < σ. Similarly, X is a (x, σ, k)-set if we do not require that vol(X) < ν.

The Framework. Our algorithm is based on the framework of [CHI+17], so we start by ex-
plaining their ideas. Their first crucial observation is that the recursive-mincut algorithm can take
Ω(mn) time only when the recursion depth is Ω(n). This, in turn, happens when many cuts S
of value less than k found are highly unbalanced, say |S| = O(1). The main technical message of
[CHI+17] is that, given a sub-linear time algorithm for finding such unbalanced cuts S, one can
improve the O(mn) running time.
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More precisely, their reduction shows that, given a vertex x, if we can check whether there
exists a (x, ν, k)-set in O(ν) time, then the maximal k-edge-connected subgraphs can be computed
in O(m

√
m) time. In fact, their reduction works even if we slightly relax the algorithm guarantee to

“either report that (x, ν, k)-sets do not exists or return a (x,O(νk), k)-set”. Chechik et al. [CHI+17]
solves this relaxed problem in O(νkO(k)) time and Forster et al. [FNY+20] improved it to Õ(νk2)
time, which implies their final algorithms with running time of Õ(m3/2kO(k)) and Õ(m3/2k3/2),
respectively.4 Unfortunately, these algorithms are too slow when k is large.

We first observe that the reduction framework [CHI+17] can be adjusted so that it is compat-
ible with our local algorithm of Theorem 1.5 whose running time is independent from k. More
precisely, although the relaxed guarantee of “either report that (x, ν, k)-sets do not exists or re-
turn a (x,O(νk), k)-set” is not compatible with Problem 1.4, we show that local algorithms for
Problem 1.4 can still be applied to break the O(mn) barrier. The basic idea why algorithms for
Problem 1.4 is sufficient follows from the fact that if a graph is not k-edge-connected, then either
there must exist an (x, ν, k)-extreme set (not just an (x, ν, k)-set) for some vertex x, otherwise all
cuts of size less than k has volume at least ν, i.e., it is quite balanced, which is a good case for us
(see Lemma 5.2 for the formal proof).

Since the framework of [CHI+17] can be made compatible with local algorithms for Problem 1.4,
we now simply apply our local algorithms with running time Õ(νσ2) = Õ(ν3) from Theorem 1.5(1)
or Õ(σ4) from Theorem 1.5(2) and obtain our final algorithm with running time Õ(mm3/4) or
Õ(mn4/5), respectively. This concludes Theorem 1.1.

Local Cut Algorithms. First, we recall the equivalent view of the random contraction technique
based on minimum spanning trees (as observed in Karger’s original paper [Kar93]). Assume for a
moment that the input graph G = (V,E) is unweighted.

Define a random rank function r : E → [0, 1] where the rank r(e) of each edge e is an independent
uniform random number in [0, 1]. Let MSTr be the minimum spanning tree w.r.t. rank function r.

Lemma 2.1 ([Kar93]). For any minimum cut (S, S) in G, with probability Ω(1/n2),

r(e′) > r(e)

for all e′ ∈ E(S, S) and e ∈ MSTr \ E(S, S).5

Next, we sketch how to prove Theorem 1.5. Suppose that there is a (x, ν, σ, k)-extreme set S in
G. Our goal is to return some (x, ν, σ, k)-set. Note that S is the unique minimum cut of the graph
G/S by definition of an extreme set. By simply applying Lemma 2.1 to the graph G/S, which
contains at most σ vertices, we have the following:

Lemma 2.2. With probability Ω(1/σ2),

r(e′) > r(e) (1)

for all e′ ∈ E(S, S) and e ∈ G[S] ∩MSTr \ E(S, S).

4Their improved running time in undirected graphs used techniques and arguments that are specific to unweighted
graphs. So these techniques do not work in our setting.

5For readers familiar with Karger’s analysis, the ranks of edges correspond to the ordering of edge contraction.
This condition is equivalent to saying that after contracting until there are only two vertices left, the unique remaining
cut in the contracted graph is exactly the minimum cut (S, S).
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We say that the rank function r is nice with respect to a set S or S respects r when this condition
holds. We will generate Õ(σ2) many independent rank functions so that one of them is nice with
high probability by Lemma 2.2. Now, suppose that r is nice and suppose we run Prim’s minimum
spanning tree algorithm starting from the vertex x to grow a “partial” MST Tr ⊆ MSTr. We know
from Eq (1) that Tr must span S first before crossing the cut (S, S). At that point V (Tr) = S is a
(x, ν, σ, k)-set and we can return V (Tr).

Let X = V (Tr). Our algorithm is to simply return X whenever X is a (x, ν, σ, k)-set. We can
check this by maintaining vol(X), |X| and δ(X). If r is not nice, then X might not ever be a
(x, ν, σ, k)-set but we will just terminate whenever X is too big, i.e., vol(X) ≥ ν or |X| ≥ σ.

It is simple to maintain vol(X), |X| and δ(X) in Õ(ν) time given the access to the adjacency
lists of G. We can also maintain this information in Õ(σ2) time by using some simple pre-processing
on G (see Section 6 for details). Since there are Õ(σ2) many rank functions, the total running time
becomes Õ(νσ2) and Õ(σ4), respectively. This is how we obtain Theorem 1.5 when the graph is
unweighted.

Lastly, we remove the assumption that the graph is unweighted. We observe that only the
correctness of Lemma 2.1 and Lemma 2.2 is based on the fact that the graph is unweighted.
In weighted graphs, the rank function needed to be defined differently. Given a weighted graph
G = (V,E,w), if we treated G as an unweighted multigraph and generated an independent random
rank in [0, 1] for each edge, then Lemma 2.1 would work, but this simulation is too slow. What
we need is as follows: if an edge e has weight w(e), then we should define the rank r(e) to be
precisely the minimum of w(e) independent random numbers in [0, 1]. We derive this formula
explicitly (see Claim 4.6) and show that it can be computed efficiently and also numerically stable
(see Appendix A), which is the only place we need that the edge weights are integral. This allows
us to work in weighted graphs efficiently. This concludes the sketch of Theorem 1.5.

Conditional Lower Bounds. For the first statement of Theorem 1.6, we show that the t-clique
problem can be reduced to the strengthened version of Problem 1.4, i.e., the problem of checking
whether there exists a (x, ν, σ, k)-set for a given seed x ∈ V even when σ only depends on t. See
Section 8.3 for details. The similar reduction was shown in [FGK13] but in their reduction σ = Ω(n)
is quite big, since they work in unweighted graphs.

Next, we explain the proof of the second statement of Theorem 1.6 based on the OMv conjecture
[HKNS15]. In [HKNS15] they show that, assuming the conjecture, given a graph G = (V,E) with
n vertices and poly(n) preprocessing time on G, then given a query S ⊂ V , there is no algorithm
that checks whether S is an independent set in time n2−Ω(1). We will show how to use a subroutine
for Problem 1.4 to check if S is independent. Given S, imagine we artificially add a cycle CS
spanning S where every edge e ∈ CS has infinite weight. Let GS be the resulting graph. Let
σ = |S| + 1 and k = vol(S). Fix an arbitrary vertex x ∈ S. If S is not independent, then S is
an (x, σ, k)-extreme set in GS because |S| < σ, δ(S) < vol(S) = k, and any strict subset S′ ⊂ S
has infinite cut value. On the other hand, if S is independent, then there is no (x, σ, k)-set in GS .
Suppose for contradiction that there is a (x, σ, k)-set T . We have that T cannot cross S, otherwise,
T has an infinite cut value. Since x ∈ T , so S ⊆ T . But |T | ≤ σ − 1 = |S|, so T = S. Now, we
have δ(T ) = δ(S) = vol(S) = k because S is independent, which is contradiction. Lastly, note that
we can easily simulate the adjacency list and matrix of GS given those of G with just an additive
O(σ) overhead for any query set S which gets subsumed in O(σ2−ε) time. Therefore, given the
subroutine for Problem 1.4 with access to adjacency list and matrix of G with running time σ2−Ω(1),
we can then check if S is independent in n2−Ω(1), refuting the OMv conjecture.
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3 Preliminaries

We refer to the paragraph above the statement of Problem 1.4 for basic notations. Given a weighted
undirected graph G = (V,E,w) where w ∈ ZE≥0, G is k-edge-connected if global minimum cut value,
min∅6=S⊂V w(δ(S)) ≥ k. We give the proof of the following simple observation in the Appendix C.

Proposition 3.1. The maximal k-edge-connected subgraphs {V1, . . . , Vz} of any graph G are unique
and form a partition of V .

By Proposition 3.1, we will usually call our desired solution {V1, . . . , Vz} as maximal k-edge-
connected partition to emphasize that it forms a partition.

3.1 The Recursive-Mincut algorithm

In this subsection, we present a naive algorithm (see e.g. the appendix of [CKN20]) to find the
maximal k-edge-connected partition of the graph as it helps the reader to familiarize with the ideas
involved in our improved algorithm and serves as a warmup for the proofs that follow.

Suppose we have a cut in the graph G that is less than k, then any maximal vertex set k-
edge-connected should be contained on one side of the cut. Otherwise, we can separate the graph
induced on that vertex set with edges of weight at most k; thus, it is not k-edge-connected and
thus not maximal k-edge-connected.

Hence, a straightforward algorithm finds cuts of size less than k if they exist and recur on both
the graphs induced by the cut. If no cut of size less than k exists, then the graph is k-edge-connected,
and we add the remaining vertices to the partition, and we are done.

Algorithm 1: RecMincut (G,k)

Data: G = (V,E,w), k
Result: Maximal k-edge-connected partition of vertex set V

1 Compute minimum cut (S, V \ S) of graph G;
2 if w(S, V \ S) ≥ k then
3 return {V }
4 else
5 return RecMincut(G[S], k) ∪RecMincut(G[V \ S], k)

Lemma 3.2. The output of Algorithm 1 is the maximal k-edge-connected partition of G.

Proof. Let P be the output of the algorithm. Observe that the sets output by Algorithm 1 form a
partition of the vertex set V as no vertex is repeated and every vertex is included as the recursion
would eventually bottom out at least with singleton vertex, because each vertex is k-edge-connected
trivially.

Now, we argue that the subgraph induced on each set S ∈ P is a maximal k-edge-connected
subgraph. Indeed, G[S] k-edge-connected by how we stop the recursion. Next, we show the
maximality of S. Assume for contradiction a set T ⊃ S such that G[T ] is also k-edge-connected.
At the start of the algorithm, set T is contained in V . Let V ′ be the last set during the algorithm’s
run on G that contains T . So the minimum cut of G[V ′], of size less than k, separates the set T
into two parts. Hence, G[T ] also has a cut of size less than k, which contradicts our assumption
that G[T ] is k-edge-connected. Therefore, we conclude that G[S] is a maximal k-edge-connected
subgraph.

Lemma 3.3. Algorithm 1 takes at most Õ(mn) time.
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Proof. The recursion depth of Algorithm 1 is clearly at most n because each recursion reduces the
number of vertices in the largest subgraph by at least one.

We use the Karger’s algorithm from [Kar00] that takes a near-linear running time O(m log3 n)
to compute a minimum cut in the graph with m edges and n vertices. Since all the subgraphs at
a particular recursion depth are disjoint and have at most m edges in total. Let Gi be one of the
subgraph with mi edges and ni vertices. Hence, the total time to compute minimum cut on all the
subgraphs is

∑
iO(mi log3 ni) ≤

∑
iO(mi log3 n) ≤ Õ(m). So, the total running time over all the

recursion levels is at most Õ(mn).

4 Local algorithm for small volume cuts

The goal of this section is to prove Theorem 1.5 (1). We organize this section as follows. We
introduce the key subroutine, LocalPrim of our local algorithm in Section 4.1. Given a nice
rank function r with respect to an extreme set S (recall Lemma 2.2), LocalPrim would find an
(x, ν, k)-set. In Section 4.2 we introduce the idea of random rank function and prove Lemma 2.2
using the idea of random contraction from [Kar93]. From Lemma 2.2 we know that a random rank
function is nice with probability Ω(1/σ2). In Section 4.3, we give our local algorithm which repeats
the LocalPrim sub-routine with multiple random rank functions to amplify the probability of
finding a nice rank function, which then solves the Problem 1.4 with high probability and prove
Theorem 1.5 (1). Here, we restate the first part of the Theorem 1.5.

Theorem 4.1. There exists a randomized algorithm that solves Problem 1.4 with high probability
in time O(νσ2 log2 n) given the adjacency lists of the graph.

4.1 Local Prim Algorithm

In this sub-section, we introduce the key sub-routine required for our local algorithm. To this end,
we need to introduce some definitions. A rank function r : E → [0, 1] is a function that maps each
edge to a number in [0, 1]. We call r(e) the rank of edge e. Let MSTr(G) denote the minimum
spanning tree of G with respect to the rank function r.

As we are always interested in the value of the rank r(e) in comparision to other edges rather
than the absolute rank of an edge, in the rest of the paper we call the rank value as the rank in
short.

Definition 4.2 (Set respects rank function). Given a graph G = (V,E,w) and a rank function
r : E → [0, 1], a set S ⊂ V respects the rank function r if MSTr(G)∩E(S, S) = e′ and r(e′) > r(e)
for all e ∈ MSTr(G) ∩G[S].

In words, the set S respects r if the MSTr has only one edge e′ in intersection with the cut
δ(S), which makes MSTr∩G[S] a minimum spanning tree of G[S], and each edge of such minimum
spanning tree contained in G[S] should have rank lesser than the rank of edge e′. Recall the
discussion below Lemma 2.2. We say a rank function r is nice w.r.t. a set S iff S respects r.

This definition is very critical to the correctness of our algorithm. Note that the minimum
spanning tree used for analysis is with respect to rank function r. It can be very different from the
one computed using the weight function w.

We consider the following problem.

Problem 4.3 (LocalMST). Given a graph G = (V,E,w), a vertex x, a rank function r and
parameters ν, σ, k find a (x, ν, σ, k)-set S that respects the rank function r or return ⊥ if no such
(x, ν, σ, k)-set respecting r exists.
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We state the Local Prim algorithm that solves the Problem 4.3 and proves its correctness.

Algorithm 2: LocalPrim

Data: G = (V,E,w), x, ν, σ, k, r where r is a rank function r : E → [0, 1]
Result: (x, ν, σ, k)-set respecting r if exists else ⊥

1 X = {x};
2 while w(δ(X)) ≥ k and vol(X) < ν and |X| < σ do
3 Find the edge with minimum rank, e = (u, v) ∈ E(X,V \X) = δ(X);
4 Update X = X ∪ {v};
5 if w(δ(X)) < k then
6 return X
7 else
8 return ⊥

We expand the set X starting from the singleton vertex cut {x}. Since we only want the sets
that respect the rank function, we consider the cut edge (u, v) with minimum rank where u ∈ X
and v /∈ X, and expand X by setting X ← X ∪ {v}. We expand the set X along the edges with
minimum rank until we violate volume or cardinality constraints of the set X or find a set with
a cut size less than k. If there exists a (x, ν, σ, k)-set S that respects the rank function r, then
Algorithm 2 finds the minimal set such that no strict subset of it also respects the rank function r.
We prove it in the following lemma.

Lemma 4.4. If there exists a (x, ν, σ, k)-set S in G = (V,E,w) that respects a rank function r and
is minimal such that no strict subset respects r, then Algorithm 2 returns S and return ⊥ only if
no such respecting set S exists.

Proof. Let S′ be the set returned by the Algorithm 2. We claim S′ cannot contain a vertex not in
S. Since we start from X = {x} ⊂ S and so, to get a vertex not in S, we need to expand set X
along an edge from δ(S).

Let X be the current set before expanding along an edge from δ(S). If X ( S then there exists
an edge in δ(X) that is part of the minimum spanning tree of G[S] that has smaller rank than any
edge in δ(S) as S respects r. So X = S, before we can contract an edge from δ(S), but if X = S,
w(δ(X)) = w(δ(S)) < k as S is a (x, ν, σ, k)-set so LocalPrim terminates without expanding
along an edge from δ(S) and returns S. So S′ cannot contain a vertex outside S and thus S′ ⊆ S.
Since any subset of S is also (ν, σ)-set and according to the algorithm X always contains x. So we
only terminate when cut size is less than k and thus any set returned is a (x, ν, σ, k)-set.

It remains to prove that LocalPrim cannot return ⊥. Assume it returns ⊥. We only return
⊥ when we cannot find any (x, ν, σ, k)-set. However, since S respects r, expanding along minimum
ranked edges is nothing but applying Prim’s algorithm starting from x. According to the set
respecting rank function definition, we expand along all the edges of the minimum spanning tree in
G[S] without expanding the set X along any edge from δ(S) as they all have a higher rank, making
X = S. Thus LocalPrim either returns S as it exits the while loop or terminates early if it finds
a subset that also respects r but cannot return ⊥.

We now bound the running time of the LocalPrim algorithm.

Lemma 4.5. LocalPrim subroutine takes at most O(ν log ν) time.

Proof. Here, we describe how to implement LocalPrim. We create a dictionary D with an in-
variant that D = E(X,V \X) contains all the cut edges crossing X. Given this dictionary, we can
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obtain a minimum rank edge e = (u, v) ∈ E(X,V \ X) for Line 3 of Algorithm 2. This look-up
operation occurs at most |X| < σ times as we terminate whenever |X| ≥ σ.

Whenever we expand X ← X ∪ {v}, we update the dictionary by scanning through all edges
of v in O(1 + deg(v)) time. We delete from D all edges between v and X and insert into D all
edges between v and V \X. We also update the cut value of X while iterating over edges of v by
subtracting the weight of the edges that are already incident to X and adding the weight of the
edges that are not incident to X previously.

The total number of insertion and deletion operations is O(
∑

v∈X(1 + deg(v))) = O(σ + ν)
since we terminate whenever vol(X) ≥ ν or |X| > σ. Since each operation of the dictionary takes
logarithmic time, the total time is at most O((σ + ν) log ν) = O(ν log ν).

According to above Lemma 4.4 given there is a (ν, σ, k)-set S in graph G. If we find a rank
function r such that S respects r, then we can find a (ν, σ, k)-set by running LocalPrim with
input as any vertex x ∈ S using this rank function r in O(ν log ν) time.

The following sub-section will show how we construct the rank functions that help us find
(ν, σ, k)-sets.

4.2 Nice Rank Function

In this subsection, we show how to construct nice rank functions introduced above and explain how
it is related to the idea of using the randomized contraction technique of [Kar93] to find minimum
cuts.

Constructing a rank function respected by any particular set S is easy. However, we do not
know which subset is a (ν, σ, k)-extreme set, so we cannot explicitly construct a rank function that
is respected by an unknown extreme set. We come up with a distribution R over rank functions
and prove that any rank function chosen from this distribution is nice with good probability. The
key idea used in coming up with the distribution R is the idea of random contraction.

To understand the construction of R we need to look at the process of Karger’s random contrac-
tion from a different perspective. We begin with the process of how a random edge is sampled in
Karger’s mincut algorithm. It can be equivalently viewed as stated in the Lemma 6.2.1 of [KS96].

Claim 4.6 (Lemma 6.2.1 of [KS96]). If we choose a rank function that maps each edge e to
r(e) = 1− (1− t)1/w(e) computed by uniformly sampling a value t ∈ [0, 1] where w(e) is the weight
of the edge, then the probability of an edge e having the minimum rank among all edges equals

w(e)∑
e∈E w(e) .

For completeness, we give the proof of Claim 4.6 with respect to our formalism and defer the
proof to Appendix A. The rest of this section shows how a random rank function is a nice rank
function with good probability.

From Claim 4.6, we know that choosing an edge that has the minimum rank value (r(e)) among
all the edges simulates the process of picking an edge proportional to its weight. So Karger’s
random contraction [Kar93] algorithm is nothing but picking an edge with minimum rank r(e) and
contracting it. This process is the same as applying Kruskal’s algorithm on the graph G = (V,E,w)
with r as the weight function. So, the set of all edges contracted during the running of Karger’s
random contraction process form MSTr of the graph G.

In the following lemma, we prove that any (x, ν, σ, k)-extreme set respects a random rank
function described above with reasonable probability.
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Remark 4.7. Any (x, ν, σ, k)-set does not respect a random rank function with reasonable proba-
bility, and we need more structure for a set to respect a random rank function.

We define formally the distribution of the rank functions we sample from. For each edge e ∈ E
of the graph G = (V,E,w) we define a random variable Re with cumulative distribution function
(CDF) as Pr(Re ≤ t) = 1 − (1 − t)w(e). Distribution R is the joint probability distribution of
the random variables for all edges in E, R = (Re1 , Re2 , · · · ). Note that each Re is independent of
another edge’s random variable Rf when e 6= f . So, choosing a random rank function r from the
distribution R is nothing but each edge e ∈ E choosing a value according to Re which is the rank
value r(e) for that edge.

We now prove a key lemma that is crucial for proving the correctness of our local algorithm.

Lemma 4.8. Let r be a rank function sampled from the distribution R and S be any (x, ν, σ, k)-
extreme set in the graph G = (V,E,w) then the probability that S respects r is at least 2

σ(σ−1) .

Proof. We need to lower bound the probability that an extreme set S respects the rank function r.
Let G/S = (VS , ES , wS) be the graph which is obtained by contracting the set V \ S into a

single super node t. VS = S ∪ {t}. From definition of the (x, ν, σ, k)-extreme set (S, {t}) is the
unique minimum cut of G/S.

Using Karger’s random contraction algorithm on graph G/S, the probability of successful con-
tractions to find the minimum cut is at least 2

σ(σ−1) as number of vertices in the graph G/S are
bounded by σ.

As noted in Claim 4.6 sampling of an edge in Karger’s random contraction process can be
simulated using a rank function chosen from R restricted on the graph G/S i.e. considering only
the edges in G/S. So rank function r succeeds in finding the unique minimum cut (S, {t}) with
probability at least 2

σ(σ−1) i.e. all the vertices of the set S are contracted into a single node say s

and finally we have the cut ({s}, {t}) as it is the unique minimum cut.
Now we show that such a succeeding rank function chosen from R is respected by the set S in

graph G/S. Since the rank function, r should contract the whole S without contracting any edge
from the minimum cut δG/S(S). The MST of G/S with respect to the rank function r should cross

the minimum cut S in G/S only once and also should span G[S] before crossing the set S.
So we conclude that all edges in the minimum cut (S, {t}) of G/S have a higher rank than

the edges that belong to the spanning tree restricted to G[S]. So S respects r in G whenever the
random rank function finds the unique minimum cut in G/S.

Since probability of success of random contraction process finding minimum cut in G/S is at
least 2

σ(σ−1) , probability of S respecting random rank function is also at least 2
σ(σ−1) .

4.3 Local Subroutine for (ν, σ, k)-set

In the Section 4.1, we have seen how to find a (x, ν, σ, k)-set that respects a given rank function r by
using LocalPrim sub-routine. Section 4.2 showed that any (ν, σ, k)-extreme set respects a random
rank function with good probability. In this sub-section we combine both to give an algorithm that
solves Problem 1.4 and proves Theorem 1.5(1).

From Lemma 4.8 we know that a random rank function is respected by an (x, ν, σ, k)-extreme
set with Ω(1/σ2) probability. To find a rank function that is respected with high probability, we
need to independently repeat this process O(σ2 log n) times.

So the algorithm to solve Problem 1.4 would mainly be iterating over (O(σ2 log n)) many inde-
pendent random rank functions. Since the (x, ν, σ, k)-extreme set respects at least one random rank
function among O(σ2 log n) and so we are guaranteed to return a (x, ν, σ, k)-set by Lemma 4.4.
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We formalize the above argument and give an algorithm that solves Problem 1.4. We can fix
all the random rank functions ri, i ∈ [O(σ2 log n)] before the algorithm starts with out loss of
generality.

Algorithm 3: LocalKCut

Data: G = (V,E,w), x, ν, σ, k
Result: (x, ν, σ, k)-set or ⊥ if no (x, ν, σ, k)-extreme set exists

1 for i ∈ [O(σ2 log n)] do
2 X = LocalPrim(G, x, ν, σ, k, ri);
3 if X 6= ⊥ then
4 return X;

5 return ⊥;

Lemma 4.9. Algorithm 3 solves Problem 1.4 correctly with high probability.

Proof. From Lemma 4.8 we know that any (x, ν, σ, k)-extreme set should respect a random rank
function with probability at least 2

σ(σ−1) . If there exists an (x, ν, σ, k)-extreme set S, then S will

respect at least one of the Θ(σ2 log n) random rank function. The probability that none of them is
respected by S,

Pr(S does not respect any ri) ≤
(

1− 2

σ(σ − 1)

)Θ(σ2 logn)
≤ 1

nΘ(1)

Since there is a rank function that is respected by the (x, ν, σ, k)-extreme set. According to
Lemma 4.4 we find a (x, ν, σ, k)-set and we are done.

However if we do not find a (x, ν, σ, k)-set by any of the random rank functions then we know
that no (x, ν, σ, k)-extreme set existed and we are only wrong with negligible probability 1

nΘ(1) .

Lemma 4.10. Rutime of the Algorithm 3 is

T (LocalKCut) = O(σ2 log n) · T (LocalPrim). (2)

Proof. Each iteration of the for loop takes T (LocalPrim) time and so the total time taken by
LocalKCut is O(σ2 log n) · T (LocalPrim).

We now prove the Theorem 4.1 which is same as proving Theorem 1.5(1).

Proof of Theorem 4.1: From Lemma 4.5 we have T (LocalPrim) = O(ν log ν) which is at most
O(ν log n). According to Lemma 4.10, T (LocalKCut) = O(νσ2 log2 n). From Lemma 4.9 we
have the Algorithm 3 that solves Problem 1.4 with high probability in running time at most
O(νσ2 log2 n) proving Theorem 4.1.

Since any (ν, σ, k)-extreme set of volume at most ν cannot have more than ν vertices as they
need to be connected hence a trivial upper bound on the number of vertices contained in the set
would be at most ν. Substituting the trivial upper bound for number of vertices σ in Eq (2) we get
T (LocalKCut) = O(ν3 log2 n). We can now eliminate the parameter σ from Theorem 4.1, which
gives the following theorem.

Theorem 4.11. There exists a randomized algorithm given a graph G = (V,E,w), a vertex x and
parameters ν, k finds either a (x, ν, k)-set or guarantees that no (x, ν, k)-extreme set exists with high
probability in time O(ν3 log2 n).
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5 Õ(m1.75) algorithm for maximal k-connected partitions

In the previous section, we introduced the notion of small local cuts. We also gave a local algorithm
that finds small volume cuts whose cut size is smaller than a given parameter k. This section intro-
duces an algorithm that uses the local sub-routine to improve recursion depth and finds maximal
k-edge-connected partition in running time Õ(m1.75). Although this algorithm can be slower than
Õ(mn) when the graph is dense, in the next section, we introduce another algorithm that improves
the running time Õ(mn) for finding maximal k-edge-connected partitions.

The main goal of this section is to prove the first running time stated in Theorem 1.1. We
restate it here for completeness.

Theorem 5.1. There exists a randomized algorithm that takes a graph G = (V,E,w) with m edges
and n vertices and finds the maximal k-edge-connected partition with high probability in at most
O(m1.75 log3.75 n) time.

5.1 Global Algorithm using LocalKCut

Let us see how to use the LocalKCut subroutine described above to improve the recursion depth.
For the rest of this section, we omit the cardinality constraint σ. The main idea is to find as many
(ν, k)-sets as possible using LocalKCut. However, it might happen that removing a (ν, k)-set
might give rise to new extreme sets in the graph. So, at every stage, we maintain a list of candidate
vertices (L as given in MaximalPartition) which might be inside a (ν, k)-extreme set. We remove
all these extreme sets by using LocalKCut with input as vertices x from the candidate list, which
either finds a (ν, k)-set containing x or guarantees that no extreme set containing x exists.

Exhausting the candidate list ensures the residual graph has no small extreme sets, which would
imply a ν-balanced minimum cut. Let us prove this below.

Lemma 5.2. If there are no (ν, k)-extreme sets in the graph G = (V,E,w), then either

• minimum cut is at least k in which case graph G is k-edge-connected.

• minimum cut is less than k in which case it is ν-balanced.

Proof. The first part is trivial; if the graph’s minimum cut is at least k, it is k-edge-connected.
If the minimum cut of the graph is less than k and if every inclusion-wise minimal cut is ν-

balanced then we are done. Assume there exists an inclusion-wise minimum cut (A, A) that is not
ν-balanced. Without loss of generality vol(A) < ν. Because A is inclusion wise minimum cut,
A is the unique minimum cut in G/A. So A is a (ν, k)-extreme set which is contradiction. So
vol(A) ≥ ν. So every inclusion wise minimal cut has volume ≥ ν and so every minimum cut is
ν-balanced.

From above Lemma 5.2 we have proved that if there are no (ν, k)-extreme sets in the graph
and the graph is not k-edge-connected, then every minimum cut is ν-balanced and thus remove at
least ν volume from the graph. It only takes at most O(m/ν) recursion depth for the maximum
sized sub-graph to reduce to half the original volume m/2. Given the high-level overview of the
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algorithm, we now formally define and analyze it below.

Algorithm 4: kCutPartition

Data: G = (V,E,w), ν, σ, k, L,m
Result: k-cut partition of G

1 Ĝ = G;
2 R = {};
3 while There exists x ∈ L do

4 S = LocalKCut(Ĝ, x, ν, σ, k);
5 if S 6= ⊥ then
6 R = R∪ {S};
7 L = (L ∪ V (δĜ(S)) \ S;

8 Ĝ = Ĝ \ S;

9 else
10 L = L \ {x};

11 (A,B) = Mincut(Ĝ);
12 if λ(G) ≥ k then

13 R = R∪ {V̂ };
14 else if vol(Ĝ[A]) > m then

15 R = R∪ kCutPartition(Ĝ[A], ν, σ, k, V (δĜ(A)) ∩A,m)

16 else if vol(Ĝ[B]) > m then

17 R = R∪ kCutPartition(Ĝ[B], ν, σ, k, V (δĜ(B)) ∩B,m);
18 else
19 R = R∪ {A,B};
20 return R;

kCutPartition partitions the graph G = (V,E,w) using cuts of size less than k, but doesn’t
give us the maximal k-edge-connected partition. It reduces the problem to smaller-sized sub-graphs.
This is proved in the following Lemma 5.3.

Lemma 5.3. Let P be the maximal k-edge-connected partition of G and R be the result returned
by Algorithm 4. For all U ∈ P, ∃U ′ ∈ R such that U ⊂ U ′. In other words, P is a refinement of
the partition R. For all U ′ ∈ R, vol(G[U ′]) = vol(G)/2.

Proof. As seen in the proof of Lemma 3.2, any maximal k-edge-connected set of vertices U cannot
be separated by a cut of size less than k. Every cut used to partition the graph in kCutPartition
is of size less than k. Hence every maximal k-edge-connected set of G has to be strictly contained
in one set belonging to R.

Since we always recurse on the larger volume side of the minimum cut, the smaller side has less
than half the original volume. Any subgraphs formed by local cuts have volume less than ν, which
we later choose to be less than m/2. Thus all subgraphs have at most vol(G)/2.

Note that every maximal k-edge-connected set of the original graph is also a maximal k-edge-
connected set of the smaller sub-graph resulting from kCutPartition. Thus naturally, the algo-
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rithm for finding the maximal k-edge-connected partition is as follows.

Algorithm 5: MaximalPartition

Data: G = (V,E,w), k
Result: Maximal k-edge-connected partition of G

1 R = kCutPartition(G, ν(|E|), σ(|V |), k, V, |E|);
2 P = {};
3 for U ∈ R do
4 P = P ∪MaximalPartition(G[U ], k);

5 return P;

The size of the graphs for which we find the maximal k-edge-connected partition is at most
half the original volume. So, after at most O(logm) recursive applications of kCutPartition
we find every maximal k-edge-connected set U ∈ P . Since any graph that is k-edge-connected
cannot broken further by kCutPartition, or we end up with a single vertex which is trivially
k-edge-connected. In the following Lemma 5.4 we prove the correctness of the Algorithm 5.

Lemma 5.4. Algorithm 5 computes the maximal k-edge-connected partition of the graph G.

Proof. From Lemma 5.3, we have seen that any maximal k-edge-connected set is strictly contained
in one set of the partition returned by kCutPartition. However, according to the guarantee
of kCutPartition volume of each component is reduced by half of the original graph. Hence
every component has volume at most m/2i at a recursion depth of i. So any particular set S from
maximal k-edge-connected partition with vol(G[S]) ∈ [ m

2i+1 ,
m
2i

] is identified atleast at a recursion
depth of i+1, as none of the cuts break the set S and so after O(log n) depth each component either
has become k-edge-connected and so has become part of the partition P or the volume becomes 0
i.e., a singleton vertex which is trivially k-edge-connected.

5.2 Runtime analysis

In this subsection, we analyze the run time of the Algorithm 4 and then Algorithm 5.
We divide the running time of kCutPartition into two parts: the invocation of the local

subroutines and the invocations of the global minimum cut algorithm. For the first part, since we
only apply local subroutine with seed vertices from the candidate list L in graph kCutPartition.
We can bound the running time by bounding the number of vertices added to L. We start with
candidate list L = V initially as (ν, k)-extreme sets can contain any vertex in V .

Once a cut of size less than k is found (using either LocalKCut or Mincut), we remove
the smaller side from the graph Ĝ and find cuts in the residual graph. Because we are removing
some edges from the graph Ĝ, it can lead to the origin of new extreme sets that might not be
present before. So we need to update L to account for new extreme sets that might arise due to
the removal of the cut edges. It is unwarranted and time-consuming to iterate over all vertices to
find new extreme sets. Similar to the idea from [CHI+17], we prove that any new extreme sets
that arise due to the removal of an edge from the graph should contain at least one of the edge’s
endpoints. We add this vertex to the candidate list so that we can find a (ν, k)-set surrounding
this vertex if the new extreme set is (ν, k)-extreme set.

Claim 5.5. Any new extreme sets introduced in the graph by removing an edge must contain at
least one endpoint of that edge.

Proof. Let G be the graph before removing the edge e and H be the graph after removing. Removal
of an edge e may lead to the formation of new extreme set A only if it belongs to the cut edges of
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the new extreme set i.e., e ∈ δG(A) = δG/A(A). If it is an internal edge of the new extreme set, i.e.,

e ∈ G[A], then even before the removal of the edge, it is an extreme set, and hence it is not formed
by removing the edge e. If it belongs to G[A], it does not affect whether A is an extreme set or not
as we consider the graph G/A in deciding whether A is an extreme set. Since it is the cut edge of
the extreme set, then there exists an endpoint of the edge e in the set, proving the claim.

Once the candidate list is exhausted, we are sure (with high probability) that there are no
extreme sets in the residual graph; thus, we apply the global minimum cut to get a ν-balanced cut
and recurse on the larger side, as shown in Lines 15 and 17. We now bound the recursion depth of
kCutPartition in the below lemma.

Claim 5.6. Algorithm 4 has a recursion depth of at most O(m/ν) for a m edge graph.

Proof. At the end of the while loop, we have the guarantee that there are no (ν, k)-extreme sets,
which means from Lemma 5.2 we either have that the minimum cut is at least k in which case we
are done by adding the vertex set of the current graph to the R. Otherwise, the minimum cut is
ν-balanced. So the largest component is decreased by at least ν volume when a global mincut is
called. Since initially we have volume m, and at each recursion depth, we reduce the volume of the
maximum component by at least ν, so it only takes at most O(m/ν) recursion depth for the volume
of the largest component to be less than m/2. We stop the recursion once all the components are
of volume at most half the original volume by just adding both sides of the minimum cut to R.

We analyze the total running time of kCutPartition by separating the calls to LocalKCut
local subroutine from the remaining part of the kCutPartition.

Claim 5.7. Algorithm 4 invokes LocalKCut at most O(m) times during the running of the whole
algorithm i.e. over all O(m/ν) recursion levels.

Proof. Local subroutine LocalKCut is always invoked on vertices that belong to L. So it is
convenient to bound the number of vertices added to the candidate list during the whole algorithm
course.

We initially start with the L = V , the whole vertex set of size n. When each (ν, k)-set is
separated from Ĝ, we add the endpoints of the cut edges on the larger side to the candidate list.
From Claim 5.5, we know that any new extreme sets introduced due to removing cut edges should
contain endpoints of cut edges. Hence it is enough to check for (ν, k)-extreme sets just around
the cut edges endpoints. As per the guarantee of LocalKCut we find the (ν, k)-sets with high
probability if any (ν, k)-extreme sets exist. Since we are removing the (ν, k)-set from the graph,
the extreme set is not present in the residual graph.

Once a cut edge is removed from the graph, it cannot be part of any of the sub-graphs present
as a part of the later recursion. So every edge introduces a new vertex into list L, and no edge
becomes a cut edge again. Hence a trivial bound on the number of vertices added to the candidate
list is, at most, the number of edges. So total number of invocations of LocalKCut subroutine is
at most m+ n which is O(m).

Since number of invocations to LocalKCut isO(m), we can union bound the failure probability

over all the invocations of LocalKCut which is O(m)
nc still leading to a total error probability of

at most 1
poly(n) for sufficiently large constant c. Similarly, we can bound the error probability for

O(m/ν) invocations of the global mincut algorithm. Since the sizes of the graphs during O(m/ν)
invocations of the algorithm are at least Ω(nO(1)). If the error probability of global mincut algorithm
is at most 1

nc for some sufficiently large constant c then error probability over all the O(m/ν)
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invocations is at most 1
poly(n) as required. This proves that the error probability of Algorithm 4 is

at most 1
poly(n) .

Lemma 5.8. Algorithm 4 runs in time at most O(m1.75 log2.75 n) for an m edge n vertex weighted
graph.

Proof. From Claim 5.7 we have bounded the number of calls to the LocalKCut subroutine which
is at most O(mν3 log2 n) from Theorem 4.11.

At each recursion level of kCutPartition, we apply the global mincut algorithm on a graph
with edges less than m and vertices less than n. Hence we can trivially bound the run time due to
the global mincut being at most O(m/ν) ·O(m log3 n).

So the total run time of the kCutPartition is at most O(mν3 log2 n+ m2 log3 n
ν ). Optimizing

with ν = O((m log n)1/4) the run time of kCutPartition would be O(m1.75 log2.75 n).

Now, we analyze the running time of Algorithm 5.

Lemma 5.9. Algorithm 5 runs in time at most O(m1.75 log3.75 n) on a m edge n vertex weighted
graph.

Proof. From the guarantee of the Algorithm 4, we have that the volume of the graph induced
on each set that belongs to R is half the original volume. Hence the recursion depth of the
MaximalPartition subroutine is at most logm = O(log n).

Let us then bound the run time taken by MaximalPartition at every recursion level. The
volume of all the graphs induced on the partitioned sets is bounded by m. Let mi(< m/2), ni be
the number of edges and vertices in the ith graph induced on the partition of vertices after applying
kCutPartition subroutine. Because these form a partition of vertices of the original graph and
we only consider induced graphs on all these partitions

∑
i ni = n, total volume is bounded by m,

i.e.
∑

imi ≤ m.
Hence we have the following recurrence equation.

T (m) =
∑
i

T (mi) +O(m1.75 log2.75 n)

mi ≤ m/2 for all i

Since
∑

iO(m1.75
i log2.75 ni) ≤ O(m1.75 log2.75 n). Hence it takes O(m1.75 log2.75 n) at each re-

cursion level and there are at most O(log n) recursion level. Therefore the run time of the Maxi-
malPartition subroutine is at most O(m1.75 log3.75 n).

Proof of Theorem 5.1. From Lemma 5.4 we have Algorithm 5 that computes the maximal k-edge-
connected partition of the graph G = (V,E,w) with parameter k as input, which takes running
time at most O(m1.75 log3.75 n) from Lemma 5.9 proving Theorem 5.1.

6 Local algorithm for small cardinality cuts

The main goal of this section is to prove Theorem 1.5 (2). In this section, we only care about
(σ, k)-sets, small cardinality cuts of small cut size. However, they can have an arbitrarily high
volume when the degree of the vertices is large. Hence applying Algorithm 3 would lead to a large
running time. Thus we overcome this by doing additional book-keeping to find (σ, k)-sets in Õ(σ4)
time.

We describe the data structure called sorted adjacency list for book-keeping in Section 6.1 and
then use it to speed up the LocalKCut in Section 6.2.
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6.1 Sorted adjacency list

Given a graph G = (V,E,w) with a rank function r : E → [0, 1] undergoing edge deletions we
maintain adjacency lists of each vertex sorted according to rank. Along with a sorted adjacency
list, we also maintain an adjacency matrix to check whether an edge is present or not in the graph
in O(1) time. We initially start with empty adjacency lists L and empty adjacency matrixM, and
we can modify our data structure using the following operations.

• Insert (e = (u, v)):

1. Add edge to the adjacency matrix M.

2. Insert edge to adjacency lists of L[u],L[v]. As the list is sorted according to rank
and of size at most ∆, it takes at most O(log ∆) time.

• Delete (e = (u, v)):

1. Mark the edge deleted in adjacency matrix M.

2. We can store the pointer to edge e in the adjacency matrix thus we can find it
in O(1) time and can also delete in adjacency lists L[u],L[v] in O(1) time if we
maintain L[u],L[v] as doubly linked lists.

• NextEdge (X):

1. Return min{x ∈ X : min(L[x])} in O(|X|) time.

We construct the sorted adjacency list of the graph G with respect to a rank function r by
inserting (Insert) each edge into the data structure, which takes a total run time of at most
O(m log ∆) = O(m log n).

As seen in LocalKCut to boost the probability of finding the extreme sets, we repeat the
LocalPrim sub-routine O(σ2 log n) times with independent rank functions. So we will need to
individually maintain the above data structure for all the O(σ2 log n) rank functions.

It takes a total time O(m log n) · O(σ2 log n) = O(mσ2 log2 n) to construct the data structure
with respect to all rank functions. In the next subsection, we see how to use the data structure to
speed up LocalPrim.

6.2 Speedup LocalPrim

We will formalize how to use the sorted adjacency list below to improve the run time of LocalPrim.
We omit the volume constraint ν while expanding the set X in the algorithm, as we only care about
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small cardinality cuts. The rest of the algorithm remains the same.

Algorithm 6: LocalPrim

Data: G = (V,E,w), x, σ, k, r where r is a rank function r : E → [0, 1]
Result: (x, σ, k)-set respecting r if exists else ⊥

1 X = {x};
2 while w(δ(X)) ≥ k and vol(X) < ν and |X| < σ do
3 Find the edge with minimum rank, e = (u, v) ∈ E(X,V \X) = δ(X);
4 Update X = X ∪ {v};
5 if w(δ(X)) < k then
6 return X
7 else
8 return ⊥

In Claim 6.1, we analyze the running time of LocalPrim that uses the sorted adjacency list.

Claim 6.1. LocalPrim takes at most O(σ2) time using sorted adjacency list.

Proof. In each iteration of the while loop, we find the next edge to expand the set X along using
NextEdge, which takes O(|X|) time. Let v be the endpoint of the edge that is not in X. To
maintain w(δ(X)) we need to add the deg(v) (weighted degree) which takes at most O(1) time and
delete the weight of the edges that are incident on v from vertices currently present in X. So it
takes at most O(|X|) to compute the cut size after contracting v.

After expanding the set by including the vertex v, we need to delete the edges whose both
endpoints are in X as the next edge to expand set X should not be from the internal edges of set
X. After expanding set X with v, there are at most |X| many edges that are becoming internal
edges (edges whose both endpoints lie in X) and need to be deleted (Delete) from the data
structure. So it takes at most O(|X|) time.

So each iteration of the while loop takes O(|X|) time. As |X| ranges from 1 to at most σ the
total run time is at most O(σ2).

Note that we are modifying the sorted adjacency list data structure for a particular rank function
r. So we maintain a journal of the edits made to the data structure, which are at most O(σ2) as
we only delete the internal edges. Thus we can undo the changes once we have completed the
sub-routine LocalPrim. So it still takes O(σ2) time to run the sub-routine and maintains the
data structure intact.

Similar to LocalPrim, we modify LocalKCut to find small cardinality local cuts of small
cut size. Note that the LocalPrim we use here is the one for finding small cardinality cuts.

Algorithm 7: LocalKCut

Data: G = (V,E,w), x, σ, k
Result: (x, σ, k)-set or ⊥ if no (x, σ, k)-extreme set exists

1 for i ∈ [O(σ2 log n)] do
2 X = LocalPrim(G, x, σ, k, ri);
3 if X 6= ⊥ then
4 return X;

5 return ⊥;

From Lemma 4.10 we can conclude the following Theorem 6.2.
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Theorem 6.2. There exists a randomized algorithm given a graph G = (V,E,w), a vertex x and
parameters σ, k finds either a (x, σ, k)-set or guarantees that no (x, σ, k)-extreme set exists with high
probability in time O(σ4 log n).

Proof. Since the probability of finding the (σ, k)-set using LocalPrim is only dependent on number
of vertices in the set and it is at least 2

σ(σ−1) as seen in Lemma 4.8. Hence we can repeat the

LocalPrim subroutine O(σ2 log n) times to improve the probability thus taking a total run time
of O(σ4 log n).

This proves the Theorem 1.5(2).

7 Õ(mn0.8) algorithm for maximal k-connected partitions

We have seen in the Section 5 how a local subroutine LocalKCut is used to improve the recursion
depth and thus improve the run time, at least when the graph is sparse. However, Õ(m1.75) is still
high when m is in dense regime. Let us see an improved version of the above algorithm below by
using the fast LocalKCut from Section 6 and changing the parameter to σ instead of ν, with
the general framework of the algorithm remaining intact. This results in the second running time
claimed in Theorem 1.1. The main result that we prove in this section is the following theorem.

Theorem 7.1. There exist a randomized algorithm that takes a graph G = (V,E,w) with m edges
and n vertices and finds the maximal k-edge-connected partition with high probability in at most
O(mn0.8 log3.6 n) time.

7.1 Parametrize over n

In the previous local subroutine, we have parameterized over the volume of the local cut ν, thus
resulting in at most O(m/ν) recursion depth. When we parameterize over σ, we can change the
recursion depth, which would be at most O(n/σ). We formally prove it in the following lemma.

Lemma 7.2. Recursion depth of the kCutPartition using updated LocalKCut, LocalPrim
subroutine is at most n/σ.

Proof. At each level, when all the (σ, k)-extreme sets are removed and if the residual graph is still
not k-edge-connected, then the minimum cut found using Karger’s Mincut has at least σ vertices
on both sides. If not, we would find a (σ, k)-extreme set contradicting (with high probability) that
no (σ, k)-extreme set exists. Since the minimum cut is a σ-balanced cut, the number of vertices
in the large component reduces by at least σ. So, it takes at most O(n/σ) recursion depth to
reduce the number of vertices in the largest component to half its original size, i.e., n/2. Hence the
recursion depth of kCutPartition is at most O(n/σ).

7.2 Run time analysis

The analysis is very similar to that of the previous algorithm.

Lemma 7.3. The run time of kCutPartition is at most O(mn0.8 log2.6 n).

Proof. As proven in Claim 5.7 we invoke LocalKCut at most O(m) times, each of which takes
O(σ4 log n) time. So it takes O(mσ4 log n) time for the local subroutine calls.

The recursion depth of kCutPartition is at most O(n/σ) and the run time required for
applying Karger’s Mincut at each recursive level is at most O(m log3 n).
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We also need to account for the time taken to construct the data structure for all the O(σ2 log n)
rank functions which amount to at most O(mσ2 log2 n).

Hence the total runtime is O(mσ2 log2 n)+O(mσ4 log n)+O(m log3 n) ·O(nσ ). Optimizing with

σ = O((n log2 n)1/5) the total run time is at most O(mn0.8 log2.6 n).

Since MaximalPartition calls kCutPartition which breaks the graph into partition in
which each set is of size at most half of the original size. Hence recursion depth of MaximalPar-
tition is at most log n. With similar argument stated in Lemma 5.9 we conclude that the run
time taken to find maximal k-edge-connected partition is at most O(mn0.8 log3.6 n).

This proves the Theorem 1.1. Note that Õ(mn4/5) is an improvement over Õ(m1.75) in the
dense regime where m = Ω(n16/15).

8 Conditional lower bounds

As we have seen from the above sections, the main bottleneck in our framework to find maximal
k-edge-connected partitions is the sub-routine to find a set of cut size less than k having small
cardinality or volume. A natural question is “Can we improve the running time dependence on pa-
rameters ν, σ for these problems?”. In this section, we give lower bounds for problems LocalMST
and LocalKCut. We use the conjectured hardness of the OMv problem to give running time
lower bounds for these problems.

We state the OMv conjecture below. Let M be a boolean matrix of dimension n× n. We have
to compute the matrix-vector product of v1, · · · vn one after another in an online fashion. The naive
running time to compute the vector product of all the vectors would be O(n3). It is conjectured
that even after allowing a polynomial amount of pre-processing time, one cannot polynomially
improve over the naive running time.

Conjecture 8.1 (OMv Conjecture). There is no algorithm that computes matrix-vector products
of n vectors coming in an online fashion in a total time of n3−Ω(1) with an error probability of at
most 1/3.

In particular, we use the hardness of the independent set query problem proved in [HKNS15]
to give lower bounds to Problem 1.4 and Problem 4.3. More precisely, By combining Theorems 2.7
and 2.12 from [HKNS15], we obtain the following hardness result:

Theorem 8.2 ([HKNS15]). Assuming Conjecture 8.1, there is no algorithm that computes whether
any subset, S ⊂ V is independent or not in the graph G = (V,E,w) with error probability at most
1/3 in O(|S|2−Ω(1)) time even after allowing a polynomial pre-processing on the graph G.

The rest of the section is organized as follows. In Section 8.1 we prove the lower bound for the
cardinality-constrained small cut containing x, (x, σ, k)-LocalKCut problem. In Section 8.2 we
show that even the simple problem of cardinality-constrained small cut containing x and respecting
a given rank function r, (x, σ, k)-LocalMST cannot have a faster algorithm when only adjacency
list and matrix of graph G are given. Finally, in Section 8.3 we extend the NP-hardness reduction
given in [FGK13] to give W [1]-hardness albeit in the weighted case.

8.1 Lower bound for LocalKCut

Recall the (x, ν, σ, k)-LocalKCut problem.

Problem 1.4 (LocalKCut). Given a graph G = (V,E,w), a vertex x, and parameters ν, σ and
k, either find an (x, ν, σ, k)-set or return ⊥ indicating that no (x, ν, σ, k)-extreme set exists.
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We have given two different local algorithms in Section 4 and Section 6 respectively for different
parameter variations of LocalKCut that run in time Õ(νσ2) and Õ(σ4). We would prove a
conditional lower bound for (x, σ, k)-LocalKCut as stated below.

Theorem 8.3. Assuming Conjecture 8.1, there is no algorithm that, given access to the adjacency
lists and matrix of G (with no further preprocessing) solves (x, σ, k)-LocalKCut in O(σ2−Ω(1))
time.

Before proving the above theorem, we will first show the reduction that connects the problem
of finding the (σ, k)-extreme set to the problem of deducing whether a set is independent.

Given a graph G = (V,E,w) and a set S of size σ we can find the volume of S in O(σ) time.
Let k = volG(S), σ = |S|. Define a new graph GS = (V,E′, w′), which is an exact copy of G but
also has an additional weighted cycle consisting of all the vertices in S with each edge of weight
k + 1. If an edge of the newly added cycle already exists in E, then just increment the weight of
that edge by k+1 in w′ to keep GS simple graph. We replace the infinite value in the introduction
with k + 1 as it is enough to get the desired result. We prove the following equivalence:

Figure 1: Lowerbound for (x, σ, k)-LocalKCut

Lemma 8.4. E(S, S) �= φ in G iff S is (σ + 1, k)-extreme set in GS.

Proof. ( ⇐= ) If S is (σ + 1, k)-extreme set in GS then we have δGS
(S) < k from the definition

of (σ + 1, k)-extreme set. According to our construction of GS we have δG(S) = δGS
(S). Hence,

δG(S) = δGS
(S) < k = volG(S). Since, δG(S) < volG(S) we have E(S, S) �= φ.

( =⇒ ) If E(S, S) �= φ then δG(S) < k and |S| < σ + 1, hence S is a (σ + 1, k)-set. S is also an
extreme set in GS as it is unique minimum cut of GS/S as any other cut of GS/S would consist
an edge from the cycle of weight k + 1 and hence the weight of the cut is more than k.

Observation 8.5. For any x ∈ S, S is the only (x, σ + 1, k)-set in GS which is also extreme.

Observation 8.5 follows from the above construction of GS . Now, we prove the lower bound for
the problem of (x, σ, k)-LocalKCut.

Proof of Theorem 8.3. Assume for contradiction that there is an algorithm A that solves (x, σ, k)-
LocalKCut and runs in O(σ2−ε) time for some constant ε > 0. We can use this algorithm to find
whether a given set S is independent or not in running time O(σ2−ε) as follows.
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Given a set S to check whether it is independent or not in graph G, construct the graph GS
as described above in O(σ) time. Choose an arbitrary vertex x ∈ S and use A to find (σ + 1, k)-
set containing x in GS . According to the runtime guarantee of the algorithm, this takes at most
O((σ+1)2−ε) = O(σ2−ε) and finds whether there is a (x, σ+1, k)-set or return ⊥ if no (x, σ+1, k)-
extreme set exists.

If A returns a (x, σ+1, k)-set with any x ∈ S as input, then it has to be S from Observation 8.5.
If S is the (σ + 1, k)-set then S is not independent.

If A returns ⊥, then it implies that there is no (x, σ + 1, k)-extreme set in GS . From Obser-
vation 8.5, the only (x, σ + 1, k)-set is S which is also extreme. Since, A implies no (x, σ + 1, k)-
extreme set, there is no (x, σ + 1, k)-set which implies S is not a (x, σ + 1, k)-set. Since S contains
x and has size less than σ + 1, the only condition that violates is the cut size constraint, so
δG(S) = δGS

(S) ≥ k = volG(S). Hence S is independent.
So, we can compute whether S is independent or not in O(σ2−ε) time using A, which contradicts

Conjecture 8.1. Hence, our assumption that there exists a O(σ2−ε) algorithm for Problem 1.4 is
false for any constant ε > 0.

Although Theorem 8.3 rules out any polynomially faster algorithm than O(σ2) for any general σ.
It still does not rule out an algorithm that only works when the size of the set S is small compared
to the vertex set V . This is important because according to our parameters setting σ = Õ(n1/5).
So we have to rule out a better algorithm for Problem 1.4 even in this smaller parameter regime.
Below we give a strong lower bound, which rules out an algorithm that performs polynomially
better than O(σ2), even when we are guaranteed that the query set’s size, |S| = σ � n.

Theorem 8.6. Assuming Conjecture 8.1, there is no algorithm that, given access to adjacency
list and matrix of G (with no further preprocessing) solves Problem 1.4 in O(σ2−Ω(1)) even when
σ ≤ nγ for every constant γ ∈ [0, 1).

Proof. Let A be an algorithm that solves Problem 1.4 in O(σ2−ε) for some constant ε > 0 when
σ ≤ nγ . We can create an algorithm that solves independent set query problem polynomially faster
than O(|S|2) for set S of vertices in any graph of size n.

Given a graph G = (V,E), construct an arbitrary graph H = (VH , EH) of vertex set size
|VH | = n1/γ and embed the graph G on some arbitrarily chosen subset of n vertices in H which is
of size at most |VH |γ .

Given any set S ⊆ V in graph G construct the corresponding subset SH of vertices in H on
which graph G is embedded and add the cycle along the vertices SH with weight volG(S) + 1 as
constructed in Theorem 8.3. We can now use A for finding (σ+ 1, k)-extreme set in H because the
queried set S has size |S| ≤ n = |VH |γ . So as proved in Theorem 8.3 we can find whether the set
SH is an independent set or not in H which is the same as finding whether S is independent in G
in run time O(|S|2−ε) contradicting Conjecture 8.1.

8.2 Lower bound for LocalMST

Recall the problem of LocalMST. In this subsection, we give a lower bound for this problem.

Problem 4.3 (LocalMST). Given a graph G = (V,E,w), a vertex x, a rank function r and
parameters ν, σ, k find a (x, ν, σ, k)-set S that respects the rank function r or return ⊥ if no such
(x, ν, σ, k)-set respecting r exists.

In Section 4 we have seen an algorithm for solving Problem 4.3 which finds a (ν, σ, k)-set that
respects the rank function in O(ν log ν) time. In Section 6 we have seen another algorithm that
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finds a (σ, k)-set that respects a given rank function in O(σ2) time. Below we will show that even
this simple Problem 4.3 of finding a (x, σ, k)-set that respects the given rank function r cannot be
solved in run time polynomially better than O(σ2).

Again as in the previous lower bound, we will show that no algorithm solves Problem 4.3
polynomially faster than O(σ2) for any parameter range σ. We can use the same argument as in
Theorem 8.6 for proving the lower bound for any algorithm that only works in the smaller range
of parameter σ. We state the theorem below.

Theorem 8.7. Assuming Conjecture 8.1, given a graph G = (V,E,w) with adjacency lists and
matrix, parameters σ, k a vertex x ∈ V and a rank function r, there is no algorithm that solves
Problem 4.3 in time O(σ2−Ω(1)).

Given a graph G = (V,E,w) and a query set S, we create GS by adding a cycle of weight k+ 1,
where k = volG(S) as in the lower bound for LocalKCut. We define a rank function rS with
rank value 0 on the edges added as part of the cycle, and all other edges have rank 1. From the
construction, it is clear that S respects the rank function rS in GS as it has a spanning tree in
GS [S] where each edge has rank value 0 and any edge that belongs to cut E(S, V \ S) has rank
value 1 which is more than 0.

Proof of Theorem 8.7. Assume we have an algorithm A that solves Problem 4.3 in time O(σ2−ε)
for some ε > 0. Given any graph G we do no pre-processing and whenever we get a query set S we
construct GS and the corresponding rank function rS (implicitly).

Hence we can use the algorithm A on graph GS with any arbitrary x ∈ S and rank function rS
to find a (x, σ + 1, k)-set in O(σ2−ε) time, where σ = |S| and k = volG(S).

If A finds a (x, σ+1, k)-set respecting rS in GS then it has to be S, because from Observation 8.5
we know that S is the only (x, σ + 1, k)-set. Hence S is not an independent set.

Else A finds no set and confirms that S is independent. It only takes O(|S|2−ε) time thus
contradicting Conjecture 8.1. So no such algorithm A exists.

8.3 Lower bound for SmallLocalSeparation

[FGK13] proves Problem 8.8 is NP-complete when the graph is unweighted by giving a reduction
from Clique problem in regular graphs. We extend the theorem and prove that Problem 8.8 is
W [1]-hard for weighted graphs when parameterized by σ. It is important to note that Problem 8.8
has a stronger guarantee than the Problem 1.4. We call it SmallLocalSeparation.

Problem 8.8 (SmallLocalSeparation). Given a graph G = (V,E,w), parameters σ, k and a
vertex x ∈ V , either find a (x, σ, k)-set or guarantee that no such set exists.

It is worthwhile to note that the LocalKCut problem is a relaxation of the SmallLocalSep-
aration. Although in both problems we find a (x, σ, k)-set, the guarantee that we give when we do
not find such a set is weaker in LocalKCut as we are only ruling out (x, σ, k)-extreme sets, while
stronger in SmallLocalSeparation as we have to rule out all (x, σ, k)-sets. This relaxation is
crucial to the tractability of LocalKCut as we exploit the structure involved in extreme sets.

Lemma 8.9. Problem 8.8 is W [1]-hard in parameter σ.

At a high level, the proof directly extends from the NP-complete proof of Problem 8.8 in the
unweighted case in [FGK13], by replacing the base clique of dn nodes with a single vertex and
joining it to all the vertices of the original graph directly with edges of weight d. The base clique
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is needed in their construction to keep the graph unweighted, however, we chose to prove for the
weighted case at the cost of getting a better hardness i.e., proving W [1]-hard.

We know that t-Clique problem is W [1]-hard when parameterized by t, where t is the number
of vertices in the clique, even on d-regular graphs.

We define the construction of graph G′ from G that reduces t-Clique problem to Problem 8.8,
that is used in proving Lemma 8.9.

Let a d-regular unweighted graph G = (V,E) be the input of the k-Clique problem. The input
for SmallLocalSeparation G′ = (V ′, E′, w′) is constructed as follows. Vertex set V ′ consists of
the vertex x to be used as a terminal in SmallLocalSeparation, so we call it “terminal node”
and set of nodes corresponding to the vertices and edges of graph G, call them “vertex nodes” and
“edge nodes” respectively. Hence |V ′| = 1 + n+m. Add an edge of weight d from x to all vertex
nodes. Hence the degree of x would be dn. For every edge e = (u, v) ∈ E, add two edges, each of
weight one, from the edge node to the corresponding vertex nodes in V ′. Below we prove that the
graph G′ consists of a small local cut of size σ if and only if G has a t-clique and σ = poly(t) as
required for proving fixed-parameter intractability.

Figure 2: W [1]-hardness of SmallLocalSeparation

Lemma 8.10. Let σ = 2 + t+
(
t
2

)
= poly(t) and k = dn− 2

(
t
2

)
+ 1. (x, σ, k)-set exists in G′ iff a

clique of size t exists in G.

Proof. ( ⇐= ) Let S be a clique of size t in G. Construct the set S′ as follows. It consists of the
terminal node x, vertex nodes corresponding to the set S in V ′ and all the edge nodes corresponding
to the edges E(S, S). Since S is a clique in G, the size of S′ is 1+ |S|+ |E(S, S)| = 1+ t+

(
t
2

)
< σ.

The size of the cut δG′(S′) is the total number of edges going out of S′. The weight of the
cut edges incident on x is d(n − |S|) = d(n − t). The degree of vertex nodes excluding the edges
to the terminal node is d according to our construction. Hence, the total degree of vertex nodes
is d|S|. However, since all the edge nodes E(S, S) are included in the set S′, the degree to them
is subtracted. Since each such edge is counted twice because of both endpoints. The weight of
the cut edges due to vertex nodes is d|S| − 2|E(S, S)| = dt − 2

(
t
2

)
. Since all the edges from

edge nodes are inside the set S′ they do not contribute to cut edges. Hence, the cut size of S′ is
d(n− t) + dt− 2

(
t
2

)
= dn− 2

(
t
2

)
< k. This proves that S′ is a (x, σ, k)-set.

( =⇒ ) If there exists a (x, σ, k)-set S′ in G′, then it contains x by definition. Let Vo, Eo be the
vertex nodes and edge nodes present in the set S′. Vo cannot be empty as every edge node adds
a degree 2 and the cut size would be dn + 2|Eo|, which violates the cut size constraint. Hence,
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Vo 6= ∅. Assuming Eo = ∅. The cut size would be |δG′(Vo ∪ {x})| = d(n− |Vo|) + d|Vo| = dn which
violates the cut size constraint. Hence Eo 6= ∅.

There are three types of edges in G with respect to the vertex set Vo chosen, internal edges
EG(Vo, Vo), cut edges EG(Vo, V \ Vo) and external edges EG(V \ Vo, V \ Vo). (Note that we misuse
the notation Vo, what we meant is the corresponding vertex set in G.)

Adding an internal edge node to S′ would reduce the cut size by two, a cut edge node to S′

would not change the cut size, and an external edge node to S′ would increase the cut size by two.
Hence to reduce the cut size from dn to below k = dn−2

(
t
2

)
+ 1 we should add at least

(
t
2

)
internal

edges. To have |EG(Vo, Vo)| ≥
(
t
2

)
, the size of Vo must be at least t. Since the number of nodes in

the set S′ is bounded by 1 + t+
(
t
2

)
, the number of vertices in Vo cannot exceed t making it equal

to t. It implies |E(Vo, Vo)| =
(
t
2

)
. Thus the set of vertices corresponding to Vo in G have to induce

a clique of size t.

Given the above reduction, we can now prove the W [1]-hardness of the SmallLocalSepara-
tion. Observe that the set S′ is not extreme in G′ as the size of degree cut of any edge node is 2
which is less than the size of the cut δG′(S′). Hence, this hardness does not work for Problem 1.4.

Proof of Lemma 8.9. Given an instance of t-Clique, d-regular unweighted graph G = (V,E) and
a parameter t, we construct an instance of weighted graph G′ = (V ′, E′, w′) as shown above and
set parameters x, σ = poly(t), k.

From Lemma 8.10 any FPT algorithm in parameter σ for Problem 8.8 can be turned into
an FPT algorithm for t-Clique as σ = poly(t). Since t-Clique is W [1]-hard, Problem 8.8 is
W [1]-hard with parameter as σ.

9 Approximating edge strength

In this section we prove the Corollary 1.2.

Definition 9.1 (Edge Strength). The strength of an edge e = (u, v) in a graph G is the largest k
for which there exists a set S ⊆ V containing u, v such that G[S] is k-edge-connected.

Hence, if two vertices of an edge belong to the same set in the maximal k-edge-connected
partition then the edge has strength at least k. As we know, the maximum possible strength of
any edge is ∆ ≤ (n− 1)W = poly(n) where W is the maximum weight of an edge in the graph. As
any graph can be disconnected by removing n− 1 edges. Assuming that W is bounded by poly(n),
edge strength is also bounded by poly(n).

Lemma 9.2. Given a maximal k-edge-connected partition of vertices:

1. Strength of edge contained in a subgraph is at least k.

2. Strength of edge that is across two subgraphs is less than k.

Proof. Let R = {V1, V2, · · · } be the maximal k-edge-connected partition of vertices. First part
trivially follows from the definition.

Any edge e = (u, v) across two partitions cannot have a k-edge-connected component surround-
ing it. Assume for contradiction that a subgraph H exists which is k-edge-connected and containing
u, v both.

Since the edge is across two components in the maximal k-edge-connected partition, let Vi be the
component that contains the vertex u. Since H is k-edge-connected and G[Vi] is k-edge-connected,
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hence H ∪G[Vi] is also k-edge-connected which contradicts the maximality of the k-edge-connected
subgraph induced on Vi. Thus such a subgraph H does not exist. Hence the strength of any
inter-partition edge is less than k, proving the second part of the lemma.

Hence we approximate the strength of every edge followed by upper and lower bounding it in
an interval of (1 + ε).

Proof of Corollary 1.2: The maximum value of k for which a graph can be k-edge-connected is
bounded by poly(n). Hence divide the space in powers of (1+ ε) leading to O(1

ε log n) many values.
We invoke the subroutine given in Algorithm 5 with k taking all powers of (1 + ε). Using

Lemma 9.2, we can find upper and lower bounds to the strength of each edge up to a factor of
(1 + ε).

So the total runtime is at most Õ(m ·min(m3/4, n4/5)/ε).
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A Rank function and its guarantees

Proof of Claim 4.6. Let us start with a warm up first. Let e1, e2, e3 be three edges that sample
values x, y, z in [0, 1]. Then the probability of x being minimum among the three values x, y, z is

Pr(x = min(x, y, z)) =

∫ 1

0

∫ 1

x

∫ 1

x
dz dy dx =

1

3

Hence choosing the edge with a minimum rank among x, y, z is the same as choosing a uniform
edge. Now let us see how to extend this to edges with weights.

Since weights are integral, each edge now chooses as many samples as its weight, and we choose
the edge with the minimum random value as in warm-up. So similar to the warm-up, the probability
of a particular sample being minimum is

Probability of any sample value is minimum =
1∑

f w(f)

However, since each edge has multiple samples, we choose an edge e if any of its w(e) samples
of the edge are minimum. Hence the probability of choosing an edge e is

Probability of any w(e) samples being minimum =
w(e)∑
f w(f)

.
It is the same as choosing an edge with a weighted probability. Note that the number of random

samples needed to sample is
∑

f w(f), which can be very large when the weights are large.
We can overcome this problem by simulating the random distribution of the minimum of mul-

tiple random samples by sampling a single random variable. Let X = min(S1, S2, · · · , Sw) be the
random variable that is needed to be computed for an edge with weight w where Si are uniform
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random samples in [0, 1]. The cumulative density function of X is as follows.

Pr(X > t) = Pr(S1 > t and S2 > t and · · ·Sw > t)

= (1− t)w

Pr(X ≤ t) = 1− Pr(X > t)

= 1− (1− t)w

We can simulate the distribution of X for an edge with weight w as follows. Let R be a uniform
random variable in [0, 1]. Pr(R ≤ p) = p for any p ∈ [0, 1]. Defining Y = f(R) = 1 − (1 − R)1/w,
we have

Pr(R ≤ p) = p = Pr(Y ≤ 1− (1− p)1/w) (as Y = f(R))

Pr(Y ≤ t) = 1− (1− t)w (taking 1− (1− p)1/w = t)

Hence we have a new random variable Y whose cumulative density function is the same as that
of X and uses a single random sample by just plugging the single random sample R in the function
given, which is nothing but the inverse probability distribution of the random variable X.

We have shown that a random weighted edge can be sampled using the rank function. However,
we have considered a random sampling of a real value in the interval [0, 1] which is not possible
using a computer, so we need to discretize the space and sample a discrete value in [0, 1] which
results in a sampling error.

We show that dividing the space into very small discrete parts 1
poly(n) would bound the error

in the rank with high probability. Since the error in the rank of the edges is small, the probability
with which order of ranks of any two edges would change due to this error is small too. Bounding
the probability of error over all the pairs of edges we prove that the probability of order of rank of
edges changing due to discretizing the space [0, 1] is very small.

Let us first discretize the space [0, 1] into n10 parts and sample a number in t ∈ [0, n10] and
return t

n10 . Recall that we sample a uniform random value x ∈ [0, 1] and use the function r(e) =

1 − (1 − x)1/w(e). The error in the sample x due to discretizing the space is at most 1
n10 . Hence,

dx = 1
n10 .

dr(e)

dx
=

1

w(e)
· (1− x)

1
w(e)
−1

=
1− r(e)

w(e)(1− x)

≤ 1

1− x
(w(e) ≥ 1 and r(e) ∈ [0, 1])

≤ n3 (when x ≤ 1− 1
n3 )

dr(e) ≤ 1

n7

To bound the error in r(e) we ignore some range of the x, the probability of we coming up
with such an x is at most 1

n3 . This has to be true for the uniform samples chosen for all the edges
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which can be at most O(n2). Hence union bound over all those edges the probability of error in
r(e) exceeding over 1

n7 is at most m
n3 ≤ 1

n . Hence with high probability we can assume that error
in r(e) is very small due to discretizing the space.

We are not yet done, although the error in rank is small we have to bound the probability of
the event in which the order of the edges according to rank is changed due to the error in the rank
of the edges. We show that it occurs with very low probability. The high level idea is, because the
error in rank is small for another edge to change the order it has to fall in the range of the small
error and it occurs with very low probability.

Let e, f are two edges and we have proved above that error in r(e) is at most 1
n7 . For f to

change order with respect to e, r(f) has to lie in a range of 1
n7 of r(e). Hence we have to bound

the size of the domain for which the range is small. We have dr(f) ≤ c
n7 for some constant c.

dr(f)

dx
=

1

w(f)
· (1− x)

1
w(f)
−1

dx = w(f) · (1− x)
1− 1

w(f) · dr(f)

≤ c

n5
(1 ≤ w(f) ≤ n2)

Applying a union bound over all possible pairs of edges we have at most O(n4) pairs and thus
error probability is at most O(n4) · c

n5 ≤ c
n . Hence with high probability no pair of edges change

their order of rank due to discretizing the space.
So the total error probability of the event in which the error in rank is high or any pair of edges

swap their order due to the error in rank is at most O( 1
n). Thus we say that order of edges with

respect to rank does not change due to discretizing space with high probability. Since all we care
about is the order of the edges with respect to rank while choosing an edge to contract, the process
outputs a random edge with high probability.

B Local algorithm for minimal extreme set

From [CLP22] we know that all extreme sets in the graph form a laminar family. So all extreme
sets containing a particular vertex say x are contained in one another. So we define a minimal
k-extreme set containing a particular vertex x as follows.

Definition B.1 (Minimal (x, k)-extreme set). A k-extreme set S containing the vertex x is called
minimal (x, k)-extreme set if no strict subset of S containing x is a k-extreme set.

Note that this is guaranteed to exist if the graph G is not k-connected i.e., the minimum cut of
G is < k.

We can define minimal (x, ν, σ, k)-extreme set analogously. However, this may not be guaranteed
to exist as the volume of the k-extreme set need not be < ν or the cardinality need not be < σ.

Before we present an algorithm for finding the minimal (x, ν, k)-extreme set in case if it exists,
we need to observe some properties of the extreme sets that help us to prove the correctness of
the algorithm. From [CLP22] we know that the extreme sets in a graph form a laminar family.
Hence all extreme sets containing x are contained in one another. Out of all possible extreme sets
containing x let us consider those extreme sets that are (ν, σ, k)-extreme sets i.e. they satisfy the
volume, cardinality, and cut size constraints. If there exists at least one such extreme set containing

31



x, then there exists a rank function respected by that (x, ν, σ, k)-extreme set among the O(σ2 log n)
random rank functions. Hence we can find the set using an algorithm similar to Algorithm 3.

Cactus graph is a graph in which every edge of the graph belongs to at most one simple cycle.
From [DKL76] we know that all minimum cuts of a graph G can be represented in the form of a
cactus graph H where each vertex of the cactus maps to a disjoint set of vertices in the original
graph G and can also map to an empty set. Every cut induced in the cactus graph by the removal
of a single non-cycle edge or two cycle edges that are part of same cycle will induce a corresponding
cut in the original graph. Each such cut is minimum cut in the original graph. Cactus graph is
succinct representation of all minimum cuts of the original graph. When we have a unique minimum
cut in the graph, the cactus representation of minimum cuts of such a graph would be a single edge.
From [PK09] we know that cactus representation of the graph can be found in near linear time.
Hence we can check if a graph is having a unique minimum cut or not in near linear time. Let
isExtreme be the sub-routine to check if a graph is extreme set or not.

We formally define the problem as follows.

Problem B.2. Given a graph G = (V,E,w), parameters ν, σ, k and a vertex x ∈ V , find the
(x, ν, σ, k)-minimal extreme set or return ⊥ if no such set exists.

We will now present the local algorithm that solves Problem B.2. The algorithm is similar to
Algorithm 3 except that we also check if the returned set is extreme or not.

Algorithm 8: MinimalExtremeSet

Data: G = (V,E,w), x, ν, σ, k
Result: (x, ν, σ, k)-minimal extreme set or ⊥ if no (x, ν, σ, k)-extreme set exists

1 S = V ;
2 for i ∈ [O(σ2 log n)] do
3 X = {x};
4 while vol(X) < ν and |X| < σ do

5 if w(δ(X)) < k and isExtreme(G/X) and X ⊂ S then
6 S = X;
7 Break the while loop;

8 Find the edge with minimum rank ri, e = (u, v) ∈ E(X,V \X) = δ(X);
9 Update X = X ∪ {v};

10 if S 6= V then
11 return S;
12 else
13 return ⊥;

Lemma B.3. Algorithm 8 solves the Problem B.2 with high probability.

Proof. If there is no (x, ν, σ, k)-extreme set then the algorithm would not update S from V , we
return ⊥ at the end.

If there exists an (x, ν, σ, k)-extreme set S then as proved in Lemma 4.8, S would respect at least
one of the O(σ2 log n) random rank functions, say r∗. Thus set S would be one among the σ − 1
sets obtained using random contractions with respect to r∗. Since any other (x, ν, σ, k)-extreme set
strictly contains S as extreme sets form a laminar family. We would find S and return it without
being replaced by any other extreme set.

Lemma B.4. Algorithm 8 runs in at most Õ(νσ3) time.
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Proof. For each of the O(σ2 log n) rank functions, we perform σ many edge contractions and each
time we check whether the set is extreme or not, which takes near linear in the number of edges
present in G/X which is at most Õ(ν). It also takes O(ν log ν) for finding the minimum rank edges.
So in total it takes at most Õ(νσ) + O(ν log ν) = Õ(νσ) per rank function. Since we do not know
which rank function would be respected by the minimal extreme set, we have to run for every rank
function making the running time at most Õ(νσ3).

C Uniqueness of maximal k-edge-connected partition

The goal of this section is to mainly prove the Proposition 3.1.

Claim C.1. A maximal k-edge-connected subgraphs {V1, . . . , Vz} of any graph G is unique and
form a partition of V .

Proof. First we prove that the maximal k-edge-connected subgraphs form a partition. Any maximal
k-edge-connected subgraph H is always an induced subgraph of G. That is, H = G[S] for some
S ⊆ V . Otherwise, there is an edge e ∈ G[S] \ E(H) and H ∪ e is a strict supergraph of H that is
k-edge-connected, contradicting the maximality of H.

So if two maximal k-edge-connected graphs G[A], G[B] have intersection i.e., A ∩B 6= ∅. Since
both G[A] and G[B] are k-edge-connected hence G[A ∪ B] is also k-edge-connected as A ∩ B 6= ∅.
This contradicts that G[A] is maximal k-edge-connected. Hence the sets are disjoint. Each vertex
by itself is k-edge-connected hence, should belong to a maximal k-edge-connected subgraph. Thus
they form a partition.

Now we prove that it is unique. Assume for contradiction that there exists at least two such
partitions. Then there exists at least one vertex v such that it belongs to different sets in the
two maximal connected partitions. Again let A,B be the two sets from two different partitions
containing v and both G[A], G[B] are k-edge-connected. Using same argument as above we prove
that the partition is unique.

D Counter example for edge strength estimation

Benczur and Karger [BK02] gave an algorithm that provides estimates k̃e for the strength of edges
ke such that k̃e ≤ ke for all e ∈ E and

∑
e∈E

1
k̃e

= O(n). These estimates are obtained by running

Estimation(G, 1) sub-routine described in Lemma 4.9 of [BK02]. To get a c-approximation for
edge strengths, we need that k̃e ≥ ke

c . However, the second condition given above is different and
does not necessarily provide a good approximation guarantee. Below we give a counter example
where these estimates are off from the actual values by a large factor.

Consider the following counter-example: a lollipop graph G that has a path of length n− n1/3

connected to a clique of size n1/3. Note that G contains less than 2(n − 1) edges. Thus, the
procedure Estimation(G, 1) will assign the edge-strength estimate of all edges to 1. However, all
edges from the clique have strength at least n1/3. So the estimate of edge strength for the edges
inside the clique is off by a n1/3 factor.
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