
ar
X

iv
:2

20
7.

07
43

8v
3

 [c
s.D

S]
 2

7
A

pr
 2

02
3

Dynamic Matching with Better-than-2 Approximation in

Polylogarithmic Update Time

Sayan Bhattacharya∗1, Peter Kiss†1, Thatchaphol Saranurak2, and David Wajc‡3

1University of Warwick
2University of Michigan, Ann Arbor

3Google Research

April 28, 2023

Abstract

We present dynamic algorithms with polylogarithmic update time for estimating the size of
the maximum matching of a graph undergoing edge insertions and deletions with approximation
ratio strictly better than 2. Specifically, we obtain a 1 + 1

√

2
+ ǫ ≈ 1.707 + ǫ approximation in

bipartite graphs and a 1.973 + ǫ approximation in general graphs. We thus answer in the
affirmative the value version of the major open question repeatedly asked in the dynamic graph
algorithms literature. Our randomized algorithms’ approximation and worst-case update time
bounds both hold w.h.p. against adaptive adversaries.

Our algorithms are based on simulating new two-pass streaming matching algorithms in the
dynamic setting. Our key new idea is to invoke the recent sublinear-time matching algorithm
of Behnezhad (FOCS’21) in a white-box manner to efficiently simulate the second pass of our
streaming algorithms, while bypassing the well-known vertex-update barrier.

∗Supported by Engineering and Physical Sciences Research Council, UK (EPSRC) Grant EP/S03353X/1.
†Work done in part while the author was visiting Max-Planck-Institut für Informatik
‡Work done in part while the author was at Stanford University.

http://arxiv.org/abs/2207.07438v3

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Our Techniques . 2
1.3 Further Related Work . 3

1.3.1 Concurrent work . 3

2 Preliminaries 3
2.1 Previous building blocks . 4
2.2 New algorithmic primitive: Robust Approximately Maximal Matchings 5

3 Algorithms on Bipartite Graphs 5
3.1 Two-Pass Streaming Algorithm . 5
3.2 Dynamic Algorithm . 8

4 Algorithms on General Graphs 9
4.1 Two-Pass Streaming Algorithm . 9
4.2 Dynamic Algorithms . 12

4.2.1 Breaking the barrier of two in polylog time 12
4.2.2 New time/approximation tradeoffs . 13

5 AMMs against Adaptive Adversaries 15
5.1 From kernels to AMMs . 15
5.2 Periodic kernels and AMMs . 16
5.3 Robust dynamic AMMs . 17

6 Conclusion and Future Directions 18

A Proofs of basic building blocks 18
A.1 Proof of Proposition 2.1 . 18
A.2 Proof of Proposition 2.6 . 21

B Proof of Lemma 4.6 21
B.1 Building blocks . 21
B.2 The algorithm . 23

C Omitted Proofs from Section 4.1 26

D Omitted Proofs of Section 5 27

1 Introduction

The maximum matching problem is a cornerstone of combinatorial optimization and theoretical
computer science more broadly. (We recommend [DP14] for a brief history of this problem.) The
study of this problem and its extensions has contributed foundational advances and concepts to
the theory of computing, from the introduction of the primal-dual method [Kuh55], impact on
polyhedral combinatorics [Edm65a], and the advocacy for polynomial-time computability as the
measure of efficiency (in static settings) [Edm65b].

The maximum matching problem has also been intensely studied in dynamic settings. Here, the
graph undergoes edge updates (insertions and deletions), and we wish to approximate the maximum
matching, while spending little computation time between updates, referred to as update time.
Polynomial update time is trivial to achieve by running exact static algorithms (e.g., [Edm65b])
after each update. However, intuitively, such minor changes to the graph should allow for much
faster algorithms, with possibly even exponentially smaller, polylogarithmic update times.

The first sublinear (i.e., o(m) = o(n2)) update time dynamic matching algorithm was given 15
years ago by Sankowski [San07], who used fast dynamic matrix inversion to maintain the maximum
matching size in update time O(n1.495), recently improved to O(n1.407) [BNS19]. Unfortunately,
a number of fine-grained complexity results rule out fast, and even sublinear-in-n update time
[AVW14, HKNS15, AD16, Dah16, KPP16] for (exact) maximum matching size estimation. This
motivates the wealth of work on computing approximate matchings dynamically.

The first polylogarithmic update time dynamic matching algorithm is due to an influential work
of Onak and Rubinfeld [OR10], who gave a (large) constant approximation in polylog update time.
This was later improved by Baswana et al. [BGS15] to a 2-approximation in logarithmic update time,
later improved to constant time by Solomon [Sol16]. Numerous other algorithms achieving a 2- or
(2+ǫ)-approximation in polylog update time were subsequently developed, with expected amortized
update time improved to worst-case w.h.p.,1 and oblivious randomized algorithms improved to
advsersarially-robust ones, and then to deterministic ones [BHN16, ACC+18, CS18, BFH19, BK19,
BDH+19, CZ19, Waj20, BK21, Kis22].2

A complementary line of work studied better-than-two-approximate dynamic matching, pro-
viding a number of small polynomial (even sublinear in n) update times for approximation ratios
below the natural bound of 2 achieved by inclusionwise maximal matchings. This includes (1 + ǫ)-
approximate algorithms with Oǫ(

√
m) = Oǫ(n) update time [GP13, PS16],

(
3
2 + ǫ

)
-approximate

algorithms with Oǫ(4
√
m) = Oǫ(

√
n) update time [BS15, BS16, GSSU22, Kis22] and a number of

tradeoffs between approximation in the range (3/2, 2) and sublinear-in-n polynomial update times
[BLM20, Waj20, BK21, BK22, RSW22].3

This state of affairs leaves open a key question, repeatedly raised in the literature [BHN16,
BS16, CS18, BLM20, Waj20, BK22, LMSVW22] and first posed by Onak and Rubinfeld in their
aforementioned groundbreaking work [OR10]:

How small can [approximation factors] be made with polylogarithmic update time? [...]
Can the approximation constant be made smaller than 2 for maximum matching?

1An algorithm has amortized update time f(n) if every sequence of t updates starting from an empty graph takes
at most t · f(n) update time. If each operation takes at most f(n) time, it has worst-case update time f(n).

2An algorithm works against an adaptive adversary if its guarantees hold even when future updates depend on
the algorithm’s previous output. We also say that such an algorithm is adversarially robust, or robust for short. The
importance of robustness for static applications has motivated a recent concentrated effort to design robust dynamic
algorithms for myriad problems (see, e.g., discussions in [NS17, BKM+22, Waj20, BK21, CK19, FMP+18]).

3Throughout the paper, we use Oǫ(·) to suppress poly(1/ǫ) factors and Õ(·) to suppress poly(log n) factors.

1

1.1 Our Results

We resolve the question of polylogarithmic update time better-than-two-approximate dynamic
matching algorithms in the affirmative, for the value version of the problem. That is, letting µ(G)
denote the maximum matching size in G, we maintain an estimate ν that is α < 2 approximate,
i.e., it satisfies ν ≤ µ(G) ≤ α · ν at every point in time. Our main result is the following.

Theorem 1.1. For every ǫ ∈ (0, 1), there exists a randomized (1.973 + ǫ)-approximate dy-
namic matching size estimation algorithm with poly(log n, 1/ǫ) worst-case update time. Both
the algorithm’s approximation ratio and update time hold w.h.p against an adaptive adversary.

For bipartite graphs, we obtain a stronger approximation guarantee of 1 + 1√
2
+ ǫ ≈ 1.707 + ǫ.

Secondary results. Our approach is versatile, and yields the following generic reduction.

Theorem 1.2. For any α > 1.5, a dynamic α-approximate matching algorithm with update time tu

implies a dynamic
(
α− Ω

((
1− 6

(
1
α − 1

2

))2))
-approximate matching size estimator with update

time Õ(tu).

Very recently, Behnezhad and Khanna [BK22] presented new dynamic matching algorithms
trading off approximations α ∈ (1.5, 2] and small polynomial update times. Applying Theorem 1.2
to their algorithms, we obtain improved approximation for dynamic matching size estimation, within
the same update time up to polylog factors.

To obtain our main results, we design several 2-pass semi-streaming algorithms (see Section 1.3),
including a deterministic (1 + 1/

√
2 + ǫ)-approximate algorithm on bipartite graphs. This matches

the prior state-of-the-art [KN21, Kon18] up to an ǫ term, while removing the need for randomization.

1.2 Our Techniques

We take the following high-level approach to prove Theorem 1.1: (1) compute a maximal (and hence
2-approximate) matching M1, and (2) augment M1 if it is no better than 2-approximate, using the
myriad short augmenting paths M1 must have in this case. This approach is common in many
computational models, including the 2-pass semi-streaming model (see Section 1.3). Implementing
this approach in a dynamic setting, however, faces several challenges. The first challenge if we want
robust algorithms with low worst-case update times is that no robust (near-)maximal matching
algorithms with worst-case Õǫ(1) update time are known. Of possible independent interest, we
resolve this first challenge in Section 5, by leveraging the robust fast matching sparsifiers of [Waj20].

The more central challenge when trying to implement the above approach is that the search for
augmenting paths requires us to find many (disjoint) edges between matched and unmatched nodes
in M1. In a (multi-pass) streaming setting, this can be done by computing a large (b-)matching in the
bipartite graph induced by edges in V (M1)×V (M1). In a dynamic setting, however, this requires us
to deal with vertex updates, which are notoriously challenging in the context of dynamic matching,
and all algorithms to date require reading all Ω(n) edges of each updated vertex [LMSVW22].

To overcome the above key challenge, we first note that we do not need to handle vertex updates
individually, but may instead process these in batches of Θ(ǫn) vertex updates, building on the
periodic recomputation and sparsification techniques common in the literature (see Proposition 2.1).
Our main observation is that these batches of vertex updates, which need to be handled if we
wish to maintain the b-matchings from the second pass of our semi-streaming algorithms, can be

2

implemented in Õǫ(n) time using the sublinear-time algorithm of Behnezhad [Beh22]. This leads
to an amortized Õǫ(n)/(ǫn) = Õǫ(1) additive overhead in the update time (easily deamortized),
implying our main result. This approach is versatile, and similarly underlies our secondary results.

1.3 Further Related Work

Having discussed the rich literature on the dynamic matching problem above, we do not elaborate
on it further here. We do, however, highlight some connections to the literature on matching in
other computational models that is closely related to our work.

Streaming Matching. In the (semi-)streaming model, an n-node graph is revealed in a stream,
edge by edge, and we wish to compute a large matching using only (optimal) Õ(n) space. A line of
work studying the problem of computing an approximately-maximum weighted matching [FKM+05,
McG05, ELSW13, CS14, PS18, GW19] culminated in a (2 + ǫ)-approximation [PS18, GW19]. For
unweighted graphs, lower bounds are known [GKK12, Kap13, Kap21], but it remains a major open
question whether one can break the barrier of 2-approximation achievable by a trivial maximal
matching algorithm. Striving for better approximation (and insights to break this barrier), several
works designed algorithms using multiple passes over the stream [McG05, KT17, FS22, EHM16,
AG13, EKS09, FMU22, EKS09, AG13, AJJ+22]. For 2 passes, the state-of-the-art approximation
ratios are 1.857 [FS22], and 1 + 1√

2
≈ 1.707 for bipartite graphs using the randomized algorithms

of [Kon18, KN21], with the best prior deterministic bound being 12
7 ≈ 1.714 [EHM16].

Sublinear-Time Matching. Computation of large matchings in sublinear time has also been
the subject of great interest. In regular bipartite graphs, a maximum matching can be computed
in Õ(n) time [GKK09, GKK10, GKK13]. In general graphs with bounded-degrees, it was known
how to achieve a (2 + ǫ)-approximation in sublinear time [NO08, ORRR12, PR07, YYI12]. This
was recently improved to a Õ(n) time algorithm for any general graph [Beh22]. As discussed in
Section 1.2, we use this latter algorithm in a white-box manner to obtain our main result.

1.3.1 Concurrent work

Independently and concurrently, Behnezhad [Beh23] (in a work in the same conference) obtained the
same main qualitative result as ours: a better-than-two-approximate polylogarithmic time dynamic
matching size estimation algorithm. The basic approach to achieve this qualitative result is the same
in both papers: Simulate the second pass of a two-pass streaming algorithm using the sublinear-
time algorithm of [Beh22], together with batched computation. The quantitative differences in the
papers’ approximation ratios are due to the two-pass streaming algorithms used—our new maximal-
b-matching-based algorithms here, and an algorithm inspired by [KMM12] in [Beh23]. We note that
[Beh23] also achieves (3/2 −Ω(1))-approximate size estimation algorithm in time O(

√
n) (the best

update times for (3/2 + ǫ)-approximate explicit matching [BS15, BS16, GSSU22, Kis22]). This
result also uses the high-level approach of batched computation using sublinear-time algorithms,
building on a new characterization of tight examples for the 3/2-approximate matching sparsifiers
(EDCS) of [BS15].

2 Preliminaries

Our input is a graph G on n nodes V , with an initially empty edge set E, undergoing edge updates
(insertions and deletions). Our objective is to approximate the maximum matching size µ(G)
well, while spending little update time (computation between updates). In addition, we want our

3

algorithms to work in the strictest settings: against an adaptive adversary (i.e., their guarantees
hold for any update sequence), and with small worst-case update time guarantees.

Matching theory basics. A matching is a vertex-disjoint subset of edges. A maximal matching
is an inclusionwise-maximal matching. A maximum matching is a matching of largest cardinality.
In a weighted graph with edge weights we ∈ R, a maximum weight matching is a matching M of
largest total weight, w(M) :=

∑
e∈M we. An augmenting path P with respect to a matching M is a

simple path starting and ending with distinct nodes unmatched in M , with the edges alternatingly
outside and inside M . Setting M ← M

⊕
P , where

⊕
denotes the symmetric difference, referred

to as augmenting M along P , increases the cardinality of M by one. A b-matching with capacities
{bv}v∈V is a collection of multi-edges F of E (that is, edges of E may appear multiple times in F)
with no vertex v having more than bv multi-edges in F . A fractional matching x : E → R≥0 assigns
non-negative values to edges so that each vertex v has fractional degree

∑
e∋v xe at most one. In

bipartite graphs, the existence of a fractional matching of size k implies the existence of an integral
matching of cardinality ⌈k⌉. In general graphs, this fractional relaxation has a maximum integrality
gap of 3/2, attained by a triangle graph with values xe = 1/2 for each edge e.

Notation: Let V (M) denote the set of all endpoints of edges in a matching M , and let V (M) :=
V \ V (M). For any disjoint vertex sets A,B ⊆ V , we let G[A,B] denote the bipartite subgraph
induced by the edges in G with one endpoint in A and another in B. Finally, for any subset of
edges E′ ⊆ E, we let G[E′] denote the subgraph of G induced by E′.

2.1 Previous building blocks

A ubiquitous paradigm in the approximate dynamic matching literature is periodic recomputation,
introduced by Gupta and Peng [GP13]. This approach is particularly useful in conjunction with
sparsification techniques. We will use the vertex sparsification technique introduced by Assadi et
al. [AKL19] in the context of stochastic optimization, and adapted to dynamic settings by Kiss
[Kis22]. Combined, these approaches yield the following “reduction” from dynamic matching algo-
rithms with immediate queries to ones with slower query time.

Proposition 2.1. Let ǫ ∈ (0, 1) and α ≥ 1. Suppose there exists an algorithm A on a dynamic
n-node graph G with update time tu, that, provided µ(G) ≥ ǫ · n, supports tq-time α-approximate
size estimate queries w.h.p. Then, there is another algorithm A′ on G that always maintains an
(α+O(ǫ))-approximate estimate ν ′ in Õǫ(tu + tq/n) update time. Moreover if the update time of A
is worst-case, so is that of A′, and if A works against an adaptive adversary, then so does A′.

The above proposition, implicit in prior work, serves as a useful abstraction, and so we provide a
proof of this proposition for completeness in Appendix A. As discussed in Section 1.2, this reduction
is one of the crucial ingredients that allows us to bypass the vertex-update barrier.

Another key ingredient we use is the sublinear-time (approximate) maximal matching algorithm
of Benhezhad [Beh22], whose guarantees are captured by the following proposition (see Appendix A).

Proposition 2.2. Let ǫ ∈ (0, 1/2). Using Õǫ(n) time and Õǫ(n) adjacency matrix queries w.h.p. in
an n-node graph G, one can compute a value ν which approximates µ̃, the size of some maximal
matching in G, within additive error ǫn. Namely, µ̃ ≥ ν ≥ µ̃− ǫn.

A simple combination of propositions 2.1 and 2.2 (with tq = Õǫ(n)) immediately yields (yet)
another Õǫ(1)-time (2 + ǫ)-approximation algorithm. As we will show, these propositions are also
useful ingredients for breaking the barrier of 2-approximation within the same update time.

4

2.2 New algorithmic primitive: Robust Approximately Maximal Matchings

To make our algorithms robust against adaptive adversaries we need an algorithm for maintaining
approximately-maximal matchings (AMM), which are defined as follows.

Definition 2.3 ([PS16]). A matching M is an ǫ-approximately maximal matching (ǫ-AMM) in
graph G if M is maximal in some subgraph obtained by removing at most ǫ · µ(G) nodes of G.

Observation 2.4. If M is an ǫ-AMM in G, then |M | ≥ 1
2 (1− ǫ) · µ(G) =

(
1
2 − ǫ

2

)
· µ(G).

Peleg and Solomon [PS16] showed how to maintain an ǫ-AMM quickly in bounded-arboricity
(i.e., globally sparse) graphs. In Section 5 we show how to maintain such matchings quickly in
arbitrary graphs, proving the following.

Lemma 2.5. For any ǫ ∈ (0, 1), there exists a robust dynamic algorithm that w.h.p. maintains an
ǫ-AMM in worst-case update time Õǫ(1).

A well-known fact is that a maximal matching that is close to 2-approximate must admit many
length-three augmenting paths (see e.g., [KMM12, Lemma 1]). Our interest in AMMs is in part
motivated by the following slight generalization of this fact.

Proposition 2.6. Let ǫ > 0 and c ∈ R and let M be an ǫ-AMM in G such that |M | ≤
(
1
2 + c

)
·µ(G).

Then M admits a collection of at least
(
1
2 − 3c− 7ǫ

2

)
· µ(G) node-disjoint 3-augmenting paths.

3 Algorithms on Bipartite Graphs

In this section we illustrate our techniques for the special case of bipartite graphs, for which we
obtain an improved approximation ratio of 1 + 1√

2
+ ǫ ≈ 1.707 + ǫ.

3.1 Two-Pass Streaming Algorithm

Here we present our deterministic 2-pass streaming algorithm. We first compute an approximately-
maximal matching M1 from the first pass.4 Then, in the second pass, we compute a maximal
b-matching M2 in the graph between matched and unmatched vertices, with capacities k and ⌊k ·b⌋,
respectively, where we set the parameters k ∈ Z and b ∈ R later. Finally, we output an estimate
(1− δ) · |M1|+ (δ/k) · |M2| where δ = 1/b. Our pseudocode is given in Algorithm 1.

Algorithm 1 Bipartite Two-Pass Streaming Algorithm

1: M1 ← (ǫ/8)-AMM in G computed from first pass

2: assign each vertex v capacity bv =

{
k v ∈ V (M1)

⌊k · b⌋ v 6∈ V (M1)

3: M2 ← maximal b-matching in G[V (M1), V (M1)] computed from second pass
4: Output (1− δ) · |M1|+ (δ/k) · |M2|.

First, we prove that the above algorithm’s output estimate corresponds to a matching in G.

Observation 3.1. We have that µ(G[M1 ∪M2]) ≥ (1− δ) · |M1|+ (δ/k) · |M2|.
4We suggest to the reader to think of M1 as a maximal matching (i.e., ǫ = 0). We relax M1 to be an (ǫ/8)-AMM

since this will be useful in our dynamic implementation that works against adaptive adversaries.

5

Proof. Since G is bipartite, by the integrality of the bipartite fractional matching polytope, to prove
that G′ := G[M1 ∪ M2] contains a large matching witnessing the desired inequality, it suffices to
prove that G′ contains a fractional matching ~x of value

∑
e xe = (1− δ) · |M1|+(δ/k) · |M2|. Indeed,

such a fractional matching is obtained by assigning edge values

xe =

{
1− δ e ∈ M1

δ/k e ∈ M2 \M1.

This is indeed a fractional matching, since each vertex v has bounded fractional degree,
∑

e∋v xe ≤ 1:
every vertex v ∈ V (M1) has one incident M1 edge and at most k many incident M2 edges, and so∑

e∋v xe ≤ (1 − δ) + (δ/k) · k = 1, while every vertex v 6∈ V (M1) has no incident M1 edge and has
at most k · b incident M2 edges, and so

∑
e∋v xe ≤ k · b · (δ/k) ≤ 1.

By Observation 3.1, Algorithm 1 outputs a valid estimate for the matching size, ν ≤ µ(G). It
remains to prove that ν provides a good approximation of µ(G). For this, we require the following.

Lemma 3.2. Let M be a maximal b-matching in a bipartite graph G = (L ∪ R,E), with positive
integral capacities bv = ℓ for all v ∈ L and bv = r for all v ∈ R. Then

|M | ≥ µ(G) · ℓ · r
ℓ+ r

.

Proof. Fix a maximum matching M∗ in G. Next, we define the subset of matched nodes in M∗

that are also saturated in M . That is, if dM (v) is v’s degree in M , we let

L∗
sat := {u ∈ L ∩ V (M∗) | dM (u) = ℓ}

R∗
sat := {v ∈ R ∩ V (M∗) | dM (v) = r}.

Let α := |L∗
sat|/|M∗| and β := |R∗

sat|/|M∗| denote the fraction of M∗ edges with a saturated L and
R node, respectively. Since M is a maximal b-matching in G, each edge has at least one saturated
endpoint, and so α+ β ≥ 1. By double counting the edges of M , relying on α+ β ≥ 1, and noting
that α · r + (1− α) · ℓ attains its minimum of 2 ℓ·r

ℓ+r at α = r
ℓ+r , we obtain the claimed inequality.

|M | = 1

2

(∑

v∈L
dM (v) +

∑

v∈R
dM (v)

)

≥ 1

2


 ∑

v∈L∗

sat

dM (v) +
∑

v∈R∗

sat

dM (v)




=
1

2
· (|M∗| · α · ℓ+ |M∗| · β · r)

≥ 1

2
· µ(G) · (α · ℓ+ (1− α) · r)

≥ µ(G) · ℓ · r
ℓ+ r

.

We are now ready to bound the approximation ratio of Algorithm 1.

Lemma 3.3. For any ǫ ∈ (0, 1), Algorithm 1 with b = 1+
√
2 and k ≥ 8

ǫb run on bipartite graph G
computes a (1 + 1√

2
+ ǫ) ≈ (1.707 + ǫ)-approximation to µ(G).

6

Proof. Fix a maximum matching M∗ in G. Next, for i ∈ {0, 1, 2}, let M∗
i denote the edges of M∗

with i endpoints matched in M1. By definition, and since |M1| = 1
2 · |V (M1)|, we have that

|M1| = |M∗
2 |+ (1/2) · |M∗

1 |. (1)

Furthermore, since M1 is an ǫ′-AMM in G for ǫ′ = ǫ/8, we have that |M∗
0 | ≤ ǫ′ ·µ(G), since at most

ǫ′ · µ(G) nodes of G must be removed from G to make M1 maximal, and at least one endpoint of
each M∗

0 edge must be removed to achieve the same effect. But then, since M∗
0 ,M

∗
1 ,M

∗
2 partition

M∗, whose cardinality is |M∗| = µ(G), this implies that

|M∗
1 |+ |M∗

2 | ≥ (1− ǫ′) · µ(G). (2)

Now, by Lemma 3.2, since M∗
1 is a matching in graph G′ := G[V (M1), V (M1)] and k ≥ 1

ǫ′b , we have

|M2| ≥ µ(G′) · k · ⌊kb⌋
k + ⌊kb⌋ ≥ ⌊kb⌋

b+ 1
· |M∗

1 | ≥
kb(1− ǫ′)

b+ 1
· |M∗

1 |. (3)

Combining equations (1), (2) and (3), we obtain the following lower bound on our output estimate.

(1− δ) · |M1|+ (δ/k) · |M2|
(1),(3)

≥ (1− δ) · (|M∗
2 |+ (1/2) · |M∗

1 |) + (δ/k) · kb(1− ǫ′)
b+ 1

· |M∗
1 |

= (1− 1/b) · |M∗
2 |+

(
1− 1/b

2
+

1− ǫ′

b+ 1

)
· |M∗

1 |

≥ (|M∗
1 |+ |M∗

2 |) ·min

{
1− 1/b,

1− 1/b

2
+

1− ǫ′

b+ 1

}

(2)

≥ (1− ǫ′) · µ(G) ·min

{
1− 1/b,

1− 1/b

2
+

1− ǫ′

b+ 1

}

≥ (1− 2ǫ′) · µ(G) ·min

{
1− 1/b,

1− 1/b

2
+

1

b+ 1

}

= (1− 2ǫ′) · (2−
√
2) · µ(G),

where the last equality follows by our choice of b = 1 +
√
2.

Thus, combining with Observation 3.1, and using that ǫ′ = ǫ/8 < 1/8, we find that the output

matching size estimate ν := (1− δ) · |M1|+ (δ/k) · |M2| is indeed a
(
1 + 1√

2
+ ǫ

)
-approximation.

ν ≤ µ(G) ≤ ν ·
(

1

(2−
√
2) · (1− 2ǫ′)

)
≤ ν ·

((
1 +

1√
2

)
· (1 + 4ǫ′)

)
≤ ν ·

(
1 +

1√
2
+ ǫ

)
.

Remark 3.4. A direct extension of the tight example of [KN21] proves that this analysis is tight,
up to the exact dependence on ǫ.

Observation 3.1 implies a 2-pass streaming algorithm for computing a (1+ 1√
2
+ ǫ)-approximate

maximum matching: simply store G[M1 ∪M2] and output a maximum matching in this subgraph
by the stream’s end. The space used in the first and second passes are Õ(n) and Õ(nkb) = Õ(n/ǫ),
respectively. More interestingly for our goals, we show in the next section that Lemma 3.3 can be
used to obtain a dynamic approximation of the same quality, in polylogarithmic update time.

7

3.2 Dynamic Algorithm

In this section, we show how to (approximately) implement Algorithm 1 in polylogarithmic update
time in a dynamic setting.

Theorem 3.5. Let ǫ ∈ (0, 1). There exists a robust dynamic algorithm A with worst-case update
time tu = Õǫ(1) w.h.p. and query time tq = Õǫ(n) that outputs w.h.p. a value ν ∈ [µ(G)/(1 + 1√

2
+

ǫ), µ(G)]. That is, it answers (1 + 1√
2
+ ǫ) approximate matching size estimate queries.

Proof. The dynamic algorithm A is based on Algorithm 1. Let ǫ′ = ǫ/12. Throughout the updates,
Algorithm A simply maintains an (ǫ′/8)-AMM in G, denoted by M1, invoking Lemma 2.5. This
immediately implies the desired update time of tu = Õǫ(1).

We now describe how Algorithm A responds to a query about the maximum matching size. To
answer this query, the algorithm considers a new auxiliary graph G∗ = (V ∗, E∗), which is defined
as follows. Set b = 1 +

√
2. For each u ∈ V (M1), create k := ⌈ 8

ǫ′b⌉ copies of the node u in

G∗. Next, for each v ∈ V (M1), create ⌊k · b⌋ copies of the node v in G∗. Finally, for every edge
(u, v) ∈ G

[
V (M1), V (M1)

]
, create an edge in G∗ between every pair (u∗, v∗) of copies of the nodes

u, v. Note that there is a one-to-one mapping between maximal matchings in the new graph G∗

and maximal b-matchings in G
[
V (M1), V (M1)

]
.

We emphasize that our dynamic algorithm A does not explicitly maintain the auxiliary graph
G∗. When we receive a query about the maximum matching size in G, we explicitly construct only
the node-set V ∗ of G∗, based on the matching M1. This takes only Oǫ(n) time since |V ∗| = Oǫ(n).
We can, however, access the edges of G∗ by using adjacency matrix queries: there exists an edge
(u∗, v∗) in G∗ iff there exists an edge (u, v) between the corresponding nodes in G.

At this point, we invoke Proposition 2.2 with G = G∗ and precision parameter e′′ = (ǫ′)3. This
gives us a value ψ, which is an estimate of |M2|. We now return ν := (1− 1/b) · |M1|+(1/bk) ·ψ as
our estimate of µ(G). Clearly, this entire procedure for answering a query takes Õǫ(n) time. It now
remains to analyze the approximation ratio. Towards this end, we again appeal to Proposition 2.2.
This proposition asserts that the value ψ satisfies

|M2| ≥ ψ ≥ |M2| − ǫ′′ · |V ∗| ≥ |M2| − (ǫ′)2 · 16n ≥ |M2| − ǫ′ · µ(G), (4)

Therefore, our estimate ν satisfies that ν ′ ≥ ν ≥ ν ′ − ǫ · µ(G), where

ν ′ := (1− 1/b) · |M1|+ (1/bk) · |M2|. (5)

Now, by Lemma 3.3 and our choice of k = ⌈ 8
ǫ′b⌉ and b = 1 +

√
2, we have that ν ′ ≤ µ(G) ≤

ν ′ ·
(
1 + 1√

2
+ ǫ

)
, from which we obtain that ν ≤ ν ′ ≤ µ(G) and moreover

µ(G) ≤ ν ′ ·
(
1 +

1√
2
+ ǫ′

)
≤ (ν + ǫ′ · µ(G)) ·

(
1 +

1√
2
+ ǫ′

)
≤ ν ·

(
1 +

1√
2
+ ǫ′

)
+ 3ǫ′ · µ(G).

Rearranging terms, and using that ǫ′ = ǫ/16 ≤ 1/12, we have that

ν ≤ µ(G) ≤ ν ·
(
1 +

1√
2
+ ǫ′

)
/(1− 3ǫ) ≤ ν ·

(
1 +

1√
2
+ ǫ

)
· (1 + 4ǫ) ≤ ν ·

(
1 +

1√
2
+ 16ǫ′

)
.

That is, since ǫ′ = ǫ/16, the estimate ν output after a query is
(
1+ 1√

2
+ ǫ

)
-approximate, w.h.p.

Combining Theorem 3.5 and Proposition 2.1, we obtain our result for bipartite graphs.

8

Theorem 3.6. For any ǫ ∈ (0, 1), there exists a (1+ 1√
2
+ ǫ) ≈ (1.707+ ǫ)-approximate randomized

dynamic bipartite matching size algorithm with Õǫ(1)-update time. The algorithm’s approximation
ratio holds w.h.p. against an adaptive adversary.

Remark 3.7. By the same approach as the recent dynamic weighted matching framework of [BDL21]
restricted to bipartite graphs, Theorem 3.6 implies a

(
1+ 1√

2
+ ǫ) robust approximation for weighted

bipartite matching with the same update time, up to an exponential blowup in the dependence on ǫ.5

4 Algorithms on General Graphs

In this section we present our main result: a robust dynamic algorithm maintaining a (2 − Ω(1))-
approximation to the size of the maximum matching in a general graph in worst-case Õǫ(1) update
time. As with our algorithm for bipartite graphs, we start with a two-pass semi-streaming algorithm
in Section 4.1, and then show how to approximately implement it dynamically in Section 4.2.1.
Finally, in Section 4.2.2 we show that our approach allows us to improve the approximation of any
algorithm with approximation ratio in the range (1.5, 2].

4.1 Two-Pass Streaming Algorithm

The key challenge in extending Algorithm 1 and its analysis to non-bipartite graphs is its reliance
on the integrality of the fractional matching polytope in bipartite graphs. This allowed us to focus
on proving the existence of a large fractional matching, which guarantees the existence of a large
integral matching of (at least) the same size. For general graphs this argument fails, and so instead
we search for length-three augmenting paths (3-augmenting paths, for short) with respect to our first
matching, M1, by computing some large b-matching M2 in the edge set V (M1)×V (M1). The main
difficulty with this approach in general graphs is that both the endpoints of an edge (u, v) ∈ M1

might get matched (in M2) to the same node w, and the resulting triangle w − u− v −w does not
help us in any way to create a 3-augmenting path involving the edge (u, v) ∈ M1.

We overcome this difficulty using random bipartitions (see Algorithm 2). As before, in the first
pass we compute an (ǫ/4)-AMM M1 in the input graph G.6 Next, we define the following random
bipartition (L,R) of the node-set V . For each matched edge (u, v) ∈ M1, we arbitrarily include one
of its endpoints in L and the other in R. Next, for each unmatched node v ∈ V (M1), we include
the node v in into one of L and R chosen uniformly at random. Subsequently, we assign a capacity
bv := 1 to all nodes v ∈ V (M1) and a capacity bv := b to all nodes v ∈ V (M1), for some integer b
to be chosen later. Let B = (V,E2) be the bipartite subgraph spanned by edges with a single node
matched in M1 and endpoints in opposite sides, i.e.,

E2 := {(u, v) ∈ E | u ∈ V (M1), v ∈ V (M1), |{u, v} ∩ L| = |{u, v} ∩R| = 1}).

In the second pass, we compute a maximal b-matching M2 in B w.r.t. the capacities {bv}. Finally,
we return the maximum matching in the subgraph G[M1 ∪M2].

5This extension is not obtained by using the framework of [BDL21] directly, as the latter requires explicit dynamic
matchings. Nonetheless, their arguments can be extended to the value version of the problem.

6As with the bipartite Algorithm 1, we suggest the reader think of M1 as being maximal for now (i.e., ǫ = 0).

9

Algorithm 2 General Two-Pass Streaming Algorithm

1: M1 ← (ǫ/4)-AMM computed from first pass
2: for edge (u, v) ∈ M1 do
3: s(u) ← ℓ and s(v) ← r

4: for vertex w ∈ V (M1) do
5: s(w) ∼ Uni{ℓ, r}
6: let L ← {v | s(v) = ℓ} and R ← {v | s(v) = r}

7: Assign each vertex v capacity bv =

{
1 v ∈ V (M1)

b v ∈ V (M1).

8: let B ← (V,E2), for E2 = {(u, v) ∈ E | u ∈ V (M1), v ∈ V (M1), |{u, v}∩L| = |{u, v}∩R| = 1}).
9: M2 ← maximal b-matching in B computed from second pass

10: Output maximum matching in G[M1 ∪M2]

Intuition: The intuition behind Algorithm 2 is as follows: if M1 is only roughly 2-approximate,
then many 3-augmenting paths exist in G w.r.t. M1, by Proposition 2.6. Now, a constant fraction of
these (specifically, a quarter) “survive” the random bipartition and have their extreme edges belong
to B. Now, for each augmenting path u′ − u − v − v′ that survives, either an augmenting path
containing u − v is found in M1 ∪ M2, or at least one of u′ or v′ is matched b times to nodes in
V (M1) other than u or v. Next, since nodes in V (M1) can only be matched once in M2, this limits
the number of paths where u and v do not participate in an augmenting path. This implies a large
number of augmenting paths in M1∪M2 that are disjoint in their V (M1) nodes. Finally, since each
node in V (M1) belongs to at most b such paths, some large Ω(1/b) fraction of these augmenting
paths are also disjoint in their V (M1) nodes, from which we conclude that M1∪M2 contains a large
set of node-disjoint augmenting paths w.r.t. M1, and that G[M1 ∪M2] contains a large matching.

We now substantiate the above intuition. The first lemma in this vein asserts that M1 ∪ M2

contains many 3-augmenting paths w.r.t. M1 (assuming M1 is not already near maximum in size).

Lemma 4.1. If |M1| =
(
1
2 + c

)
· µ(G), then G[M1 ∪M2] contains a set P of 3-augmenting paths

w.r.t. M1 that are disjoint in their V (M1) nodes, with expected cardinality at least

E[|P|] ≥
(

b

b+ 1

)
·
(
1

4
·
(
1

2
− 3c

)
− 1

b
·
(
1

2
+ c

)
− 7ǫ

8

)
· µ(G).

As the proof of Lemma 4.1 is a little calculation heavy, we defer its proof to Appendix C, and
instead prove the following slightly weaker but simpler bound here.

Lemma 4.2. If |M1| =
(
1
2 + c

)
· µ(G), then G[M1 ∪M2] contains a set P of 3-augmenting paths

w.r.t. M1 that are disjoint in their V (M1) nodes, with expected cardinality at least

E[|P|] ≥
(
1

4
·
(
1

2
− 3c− 7ǫ

2

)
− 2

b
·
(
1

2
+ c

))
· µ(G).

Proof. Fix a maximum set of node-disjoint 3-augmenting paths in G w.r.t. M1, denoted by P∗. By
Proposition 2.6, we have |P∗| ≥

(
1
2 − 3c− 7ǫ

2

)
· µ(G). Next, let S ⊆ P∗ be the paths u′ − u− v− v′

who “survive” the bipartition, in that (u, u′), (v, v′) ∈ E2. By construction, each path in P∗ survives
with probability exactly 1

4 . Therefore, E[|S|] ≥ 1
4 ·

(
1
2 − 3c− 7ǫ

2

)
· µ(G).

Now, for each survived path u′ − u − v − v′ ∈ S, either both u and v are matched (exactly
once) in M2, thus contributing an augmenting path, or at least one of u′ and v′ must be matched

10

in M2 to b distinct nodes in V (M1). But since each vertex in V (M1) is matched at most once in
M2, there are thus at most |V (M1)|/b = 2|M1|/b paths in S whose middle edges do not belong to a
3-augmenting path in M1∪M2. Therefore, there are at least |S|− 2|M1|/b many edges (u, v) in M1

whose endpoints are both matched in M2 to some (different) nodes u′′ and v′′, respectively. Each
such edge contributes an augmenting path to a set P of the desired size,

E[|P|] = E[|S|]− 2|M1|
b

≥
(
1

4
·
(
1

2
− 3c− 7ǫ

2

)
− 2

b
·
(
1

2
+ c

))
· µ(G).

The preceding two lemmas imply the existence of a multitude of 3-augmenting paths that are
disjoint in their V (M1) nodes. We now use these augmenting paths to prove the existence of
numerous (though possibly fewer) augmenting paths that are disjoint in all their nodes. Since each
of the two V (M1) nodes of a 3-augmenting path belong to at most b such paths, it is easy to find
some 1/(2b−1) fraction of these augmenting paths that are disjoint in all their nodes. The following
lemma, resembling [EHM16, Lemma 6], increases this fraction to 1/b.

Lemma 4.3. Let P be a set of 3-augmenting paths w.r.t. M1 in G[M1 ∪M2] such that each V (M1)
(resp. V (M1)) node belongs to at most one (resp., b) paths in P. Then P contains a set of node-
disjoint 3-augmenting paths P ′ ⊆ P of cardinality at least |P ′| ≥ 1

b · |P|.

Proof. Consider the graph G′ = (V (M1), E
′) obtained by replacing each path u′ − u− v − v′ in P

with a single edge u′ − v′. This graph G′ is bipartite, by virtue of our random bipartition of G.
Now, since this bipartite graph G′ has maximum degree b, it contains a matching of size at least
|E′|/b = |P|/b: the fractional matching assigning values 1/b to each edge has value |E′|/b, and so
G′ contains an integral matching of at least the same value. On the other hand, disjoint edges in
G′ have a one-to-one mapping to node-disjoint paths in P, since each node in V (M1) belongs to
at most one such path. Thus, the maximum matching in G′ corresponds to a collection P ′ ⊆ P of
node-disjoint augmenting paths in G[M1 ∪M2] w.r.t. M1, of cardinality at least |P ′| ≥ |P|/b.

The three preceding lemmas imply that G[M1 ∪ M2] contains a large set of vertex-disjoint 3-
augmenting paths w.r.t. M1, assuming this latter matching is not already large. As we now show,
this implies that G[M1 ∪M2] contains a better-than-2-approximate matching.

Theorem 4.4. Let ǫ ∈ (0, 1/4). Then, Algorithm 2 with b = 9 satisfies µ(G) ≥ E[µ(G[M1∪M2])] ≥(
1
2 +

1
144 − ǫ

)
· µ(G), and is thus (12 +

1
144 − ǫ)−1 < 1.973(1 + 2ǫ)-approximate in expectation.

Proof. Let |M1| =
(
1
2 + c

)
· µ(G), where c ∈ [−ǫ/8, 1/2], with the lower bound on c following

from Observation 2.4 and M being an (ǫ/4)-AMM. Let P ′ be a maximum set of vertex-disjoint
3-augmenting paths w.r.t. M1 in G[M1 ∪M2]. Then, augmenting along these paths, we find that
M1

⊕P ′ contains a matching (hence of size at most µ(G)) of the desired expected cardinality.

E[|M1

⊕
P ′|] = E[|M1|+ |P ′|]

≥
(
1

2
+ c

)
· µ(G) +

(
1

b+ 1
·
(
1

4
·
(
1

2
− 3c

)
− 1

b
·
(
1

2
+ c

)
− 7ǫ

8

))
· µ(G)

≥
(
1

2
− ǫ

8
+

1

b+ 1
·
(
1

4
· 1
2
− 1

b
· 1
2

)
− 7ǫ

8

)
· µ(G)

=

(
1

2
+

1

144
− ǫ

)
· µ(G).

Above, the first inequality follows from Lemma 4.1 and Lemma 4.3, the second inequality mainly
relies on the parenthetical expression being increasing in c ≥ −ǫ/8 (for our choice of b = 9). Finally,
the equality holds by our choice of b = 9.

11

4.2 Dynamic Algorithms

In this section we provide the dynamic algorithms yielding our main results, theorems 1.1 and 1.2. As
with the bipartite case, our general approach is to approximately implement our two-pass streaming
algorithm in a dynamic setting. Unlike the algorithm for bipartite graphs, here we need to (slightly)
unbox the sublinear-time algorithm of [Beh22] to find a large set of edges in M1 which belong to
3-augmenting paths in G[M1 ∪M2], as explained below.

4.2.1 Breaking the barrier of two in polylog time

In this section, we present a robust dynamic (1.973 + ǫ)-approximate maximum matching size with
worst case update time of tu = Õǫ(1), and a query time of tq = Õǫ(n), provided µ(G) ≥ ǫn. This,
combined with Proposition 2.1, implies our main result, Theorem 1.1.

For our dynamic (approximate) implementation of Algorithm 1, which works on bipartite graphs,
all we needed was to estimate |M2|. In contrast, for our dynamic (approximate) implementation of
Algorithm 2, we will need to estimate the size of the set P as guaranteed by Lemma 4.1. Specifically,
we note that the proofs of lemmas 4.1, and 4.3 and Theorem 4.4 imply the following observation.

Observation 4.5. Let M̂1 ⊆ M1 be the set of edges in M1 whose two endpoints are matched in M2 in

Algorithm 2 run with b = 9. Then, |M1|+ 1
b ·E

[
|M̂1|

]
≥ µ(G)

1.973·(1+2ǫ) , and also µ(G) ≥ |M1|+ 1
b · |M̂1|.

To estimate |M̂1| efficiently, we make use of the following extension of the algorithm of [Beh22].

Lemma 4.6. Consider a graph G′ = (V ′, E′) with |V ′| = n′, and a matching M with V (M) ⊆ V ′

that is not necessarily part of G′ (i.e., we might have M * E′). For any matching M ′ in G′, let kM ′

denote the number of edges in M both of whose endpoints are matched in M ′. There is an algorithm
which, given adjacency matrix query access to the edges of G′, whp runs in Õǫ(n

′) time and returns
an estimate κ ∈ [kM ′ − ǫ2n′, kM ′] for some maximal matching M ′ in G′.

This lemma follows from the work of [Beh22] rather directly, though it requires some unboxing of
the results there, due to the organization of that work. We substantiate this lemma in Appendix B.

Given the above, we are now ready to prove the main result of this section, which is summarized
in the theorem below.

Theorem 4.7. For any ǫ ∈ (0, 1/4), there exists a robust dynamic matching size estimator algorithm
A with worst-case update time Õǫ(1) that, provided µ(G) ≥ ǫ · n, supports Õǫ(n)-time queries and
outputs a (1.973 + ǫ)-approximate estimate w.h.p.

Proof. The dynamic algorithm A is based on Algorithm 2. For its updates, it maintains an (ǫ/4)-
AMM M1 in the input graph G, using Lemma 2.5, and a balanced binary search tree (BST) of edges
in the graph, allowing for logarithmic-time insertion, deletion and edge queries. This immediately
implies a worst-case update time of tu = Õǫ(1).

We now describe how Algorithm A responds to a query about the maximum matching size. To
answer this query, the algorithm considers a new auxiliary graph G∗ = (V ∗, E∗), which is defined
as follows. For each node u ∈ V (M1), create a node 0u in G∗. Next, for each node v ∈ V (M1),
create b nodes 1v, . . . , bv in G∗. Finally, for every edge (u, v) ∈ E2, with u ∈ V (M1) and v ∈ V (M1),
create an edge (0u, iv) in G∗ for all i ∈ {1, . . . , b}. Note that there is a one-to-one mapping between
maximal matchings in the new graph G∗ and maximal b-matchings in B.

We emphasize that our dynamic algorithm A does not explicitly maintain the auxiliary graph
G∗. When we receive a query about the maximum matching size in G, we explicitly construct only

12

the node-set V ∗ of G∗, based on the matching M1. This takes only O(n) time. We can, however,
simulate adjacency matrix queries in G∗ efficiently: there exists an edge (0u, iv) in G∗ iff there exists
an edge (u, v) between the corresponding nodes in G, verifiable in O(log n) time using our edge-set
BST.

At this point, we estimate the size of M̂1 by invoking Lemma 4.6 with G′ = G∗ and M = M1.
This gives us, in time Õǫ(n) a value κ satisfying κ ∈ [|M̂1| − ǫ2n, |M̂1|], w.h.p. We now return
ν := |M1|+ 1

b · κ as our estimate of µ(G). All in all, our algorithm has query time tq = Õǫ(n).
It remains to analyze the approximation ratio. Towards this end, we observe that, by our

hypothesis that µ(G) ≥ ǫ · n,

E[ν] ≥ E

[
|M1|+

1

b
· (|M̂1| − ǫ2n)

]

= |M1|+
1

b
· E

[
M̂1

]
− ǫ2n

b

≥ µ(G)

1.973 · (1 + 2ǫ)
− ǫ2n

≥ µ(G)

1.973 · (1 + 2ǫ)
− ǫ · µ(G)

≥ µ(G)

1.973 · (1 + 5ǫ)
. (6)

In the above derivation, the second inequality follows from Observation 4.5. Similarly, we have whp:

ν ≤ |M1|+
1

b
· |M̂1| ≤ µ(G). (7)

The second inequality in the above derivation again follows from Observation 4.5. From (6) and (7),
we conclude that we return in response to each query a 1.973(1 + 5ǫ)-approximation to µ(G) in
expectation. Therefore, by standard Chernoff bounds, running Oǫ(log n) copies of this algorithm
(increasing update and query time appropriately) and taking the average of these will then result
in a 1.973(1 + O(ǫ)) approximation of the desired value, w.h.p. Reparameterizing ǫ appropriately,
the theorem follows.

Combined with Proposition 2.1, the above theorem implies our main result, Theorem 4.7.

4.2.2 New time/approximation tradeoffs

In this section we show our secondary result: a black-box method to improve dynamic matching
algorithm’s approximation ratio, at the cost of only outputting a size estimate. We start with the
following observation.

Proposition 4.8. Let G be an n-node graph, ǫ ∈ (0, 1) and α ≥ 1. Then, given an ǫ-AMM M ′ and
α-approximate maximum matching M ′′ in G, one can compute in O(n) time a matching M in G
which is both α-approximate and an ǫ-AMM.

Proof. The subgraph G[M ′ ∪ M ′′] has maximum degree two, and is thus the union of paths and
cycles. Let M be the matching obtained by taking from each connected component C in G[M ′∪M ′′]
either the set of edges of M ′ or M ′′ that are most plentiful in C, breaking ties in favor of M ′. By
construction, it is clear that M is a matching, and that moreover |M | ≥ |M ′′|, and so M is α-
approximate. On the other hand, M matches all nodes of M ′ in each component, and therefore
overall. That is, after removing at most ǫµ(G) nodes in V \V (M) ⊆ V \ V (M ′), we obtain a graph
in which M is maximal. That is, the matching M is also an ǫ-AMM.

13

We are now ready to prove Theorem 1.2, restated below for ease of reference.

Theorem 1.2. For any α > 1.5, a dynamic α-approximate matching algorithm with update time tu

implies a dynamic
(
α− Ω

((
1− 6

(
1
α − 1

2

))2))
-approximate matching size estimator with update

time Õ(tu).

Proof. Let ǫ > 0 be some sufficiently small constant. We describe how to obtain a new dynamic
matching size estimator A for G, with update time Õǫ(tu) that, provided µ(G) ≥ ǫ · n, supports
Õǫ(n)-time queries and outputs a β-approximate estimate w.h.p., for some β = α−Ω((1− 6(1/α−
1/2))2)). The theorem then immediately follows from Proposition 2.1.

The algorithm A works as follows. It maintains an ǫ-AMM M ′
1, invoking Lemma 2.5, taking

Õǫ(1) update time. It also maintains α-approximate matching M ′′
1 , by running the dynamic algo-

rithm guaranteed by the theorem’s hypothesis, taking tu update time. Therefore, Algorithm A has
an overall update time of tu + Õǫ(1) = Õǫ(tu).

Upon receiving a query, Algorithm A first invokes Proposition 4.8 to obtain a matching M1

(based on M ′
1 and M ′′

1) that is simultaneously an ǫ-AMM and an α-approximate maximum matching
in G. This takes O(n) time. The rest of the query algorithm remains exactly the same as in
Section 4.2. This implies that Algorithm A has an overall query time of Õǫ(n).

We now analyze the approximation guarantee of A. Towards this end, observe that as α > 1.5,
we can write 1

α = 1
2 + c where 0 < c < 1/6. So, we have that |M1| =

(
1
2 + z

)
· µ(G) for some z ≥ c.

Therefore, by Lemma 4.2 and Lemma 4.2, there exists some set P ′ of node-disjoint length-three
augmenting paths w.r.t. M1 in G[M1 ∪M2] whose cardinality satisfies

|P ′|
µ(G)

≥ fb(z) :=
1

b
·
(
1

4
·
(
1

2
− 3z − 7ǫ

2

)
− 2

b
·
(
1

2
+ z

))
.

Augmenting along these paths with respect to M1, we obtain a new matching in G[M1 ∪ M2] of
cardinality at least

(
1
2 + z + fb(z)

)
· µ(G). Now, for b ≥ 2 (as we will choose), this matching size

is decreasing in z, as observed by taking the derivative of 1/2 + z + fb(z) w.r.t. z. Therefore, the
matching size is minimized at z = c, and we find that µ(G[M1 ∪M2]) ≥ 1/2 + c + fb(c). Taking
another derivative, this time with respect to b, we find that this expression is minimized (ignoring

the ǫ dependence) at b∗ = 16(1+2c)
1−6c . Note that b ≥ 16, as c ∈ (0, 1/6). This optimal b∗ need not be an

integer, however, and so we take b = ⌈b∗⌉ ≤ 17
16b

∗ in our algorithm, and find that M1∪M2 contains a

matching of size at least µ(G) times 1/2+z+fb(z) ≥ 1/2+c+f 17b
16

b∗(c) ≥ 1/2+c+ 9(1−6c)2

2312(1+2c))−O(ǫ/b).

Moreover, some b · fb(z) many edges M̂1 ⊆ M1 have both of their endpoints matched in the b-
matching M2.

We conclude that E[µ(G[M1∪M2])] gives a strictly-better-than-α approximation to µ(G) (again
using that c < 1/6). Specifically, the gain we get in the approximation ratio is of the order of
Θ((1 − 6c)2) = Θ((1 − 6(1/α − 1/2))2). Now, using the fact that µ(G) ≥ ǫn and we are running
the same query algorithm as in Section 4.2, our estimation using the sub-linear-time algorithm
(Lemma 4.6) gives a strictly-better-than-α approximation to µ(G) in expectation. As before, taking
the average of O(log n) copies of this algorithm will provide the same bound w.h.p., at an additional
logarithmic multiplicative overhead to the update and query times.

Remark 4.9. We note that the reduction underlying Theorem 1.2 preserves robustness and worst-
case update time.

14

5 AMMs against Adaptive Adversaries

In this section we prove Lemma 2.5. That is, we provide a robust dynamic algorithm for maintaining
an ǫ-AMM in worst-case polylogarithmic update time. But first, we motivate our algorithm, and
characterize the kind of matching we wish to compute.

We first recall a useful tool in the literature, namely edge sparsification: maintaining a sparse
subgraph of G containing a large matching–a so-called matching sparsifier. Such sparsifiers naturally
allow to achieve speedups in the algorithms needed for Proposition 2.1, as a large matching in a
sparsifier can be computed quickly. One influential such sparsifier that we will use are kernels,
introduced by Bhattacharya et al. [BHI18].

Definition 5.1. For ǫ ≥ [0, 1] and d ∈ N, a subgraph K = (V,EK) of graph G = (V,E) is an
(ǫ, d)-kernel if K’s maximum degree is at most d and each edge e ∈ E \EK has at least one endpoint
of degree at least d(1− ǫ) in K.

These sparsifiers will play an integral role in robustly and efficiently maintaining an AMM in
this section. We start by motivating their use in computing AMMs in a static setting.

5.1 From kernels to AMMs

To motivate the interest in bounded-degree graphs, we recall the following observation, which follows
from the 2µ(G) endpoints of a maximum matching forming a vertex cover (i.e., being incident on
each edge of the graph.

Fact 5.2. Let G = (V,E) be a graph of maximum degree ∆. Then |E| ≤ 2µ(G) ·∆.

Consequently, for small d we have that (ǫ, d)-kernels of G are sparse subgraphs. In particular,
the time needed to compute maximal matchings in such subgraphs is linear in their size, |EK | ≤
2µ(K) · d = O(µ(G) · d). The following result of [DP14] implies that essentially the same amount
of time is needed to compute a near-maximum-weight matching in K.

Proposition 5.3. Let G = (V,E,w) be a weighted graph. Then, one can compute deterministically
a (1 + ǫ)-approximate maximum weight matching in G in time Oǫ(|E|).

We now turn to identifying useful matchings in a kernel K that allow us to obtain an AMM of
G. For this, we will need to upper bound the number of high-degree nodes in K. Specifically, for an
(ǫ, d)-kernel K of graph G, we denote by HK := {v | dK(v) ≥ d(1− ǫ)} the set of high-degree nodes
in K. We will wish to argue that a removal of few high-degree nodes in the kernel yields a subgraph
in which our matching is maximal. We therefore need to prove that the number of high-degree
nodes is itself small in terms of µ(G).

Lemma 5.4. Let K = (V,EK) be an (ǫ, d)-kernel K of G with ǫ ≤ 1/4. Then |HK | ≤ 4µ(G).

Proof. We consider the fractional matching x ∈ RE where xe = 1[e ∈ EK]/d. By the degree bound
of K, this is a feasible fractional matching in G. Using this fractional matching, we can show that

1

2
· (1− ǫ) · |HK | ≤

∑

v∈HK

∑

e∋v
xe ≤

∑

e

xe ≤
3

2
· µ(G),

where the first inequality follows from the definition of HK and possible double counting of edges,
and the last inequality follows from the integrality gap of 3

2 of the factional matching polytope.
Simplifying the above and using ǫ ≤ 1/4, we have that indeed |HK | ≤ (3/(1−ǫ))·µ(G) ≤ 4µ(G).

15

We now characterize the matchings that we wish to compute in this section, prove that they
exist and that they are AMMs.

Lemma 5.5. Let K = (V,EK) be an (ǫ, d)-kernel of G = (V,E), for ǫ ∈ (0, 1/4) and d ≥ 1
ǫ . Then,

a maximal matching M in K that matches at least a (1− c · ǫ)-fraction of HK is a 4cǫ-AMM in G.
Moreover, such a matching exists for c = 2.

Proof. First, we argue that such a matching M , if it exists, is indeed a 4cǫ-AMM in G. We recall
that every edge in E \EK has a high-degree endpoint in K. Therefore, if we remove the cǫ fraction
of high-degree nodes HK unmatched by M , each edge in E \ EK in the resulting graph G′ has at
least one endpoint matched in M . On the other hand, every edge in EK has an endpoint matched
in M , by maximality of M in K. We conclude that after removing cǫ · |HK | ≤ 4cǫ · µ(G) nodes in
G (with the inequality relying on Lemma 5.4), we obtain a graph G′ where M is maximal. That is,
M is a 4cǫ-AMM.

We now argue the existence of such a matching M for c = 2. Since H has maximum degree
d ≥ 1

ǫ , by Vizing’s theorem [Viz64] it can be (d + 1)-edge-colored, i.e., decomposed into (d + 1)
matchings. A randomly-chosen color in this edge coloring is a matching M ′ that matches each edge
with probability 1

d+1 , and thus it matches each high-degree vertex v with probability at least

Pr[v matched] ≥ (1− ǫ)/(d+ 1) ≥ (1− ǫ)/(1 + ǫ) ≥ 1− 2ǫ.

Finally, extending this matching M ′ to also be maximal in K by adding edges of K greedily then
proves the existence of the desired 8ǫ-AMM contained in the kernel K.

The above implies a static algorithm with running time Õǫ(d · µ(G)) for computing an ǫ-AMM
in G given an (ǫ, d)-kernel K of G.

Lemma 5.6. Given an (ǫ, d)-kernel K = (V,EK) of G = (V,E), one can compute an ǫ-AMM in
G in deterministic time Oǫ(d · µ(G)).

Proof. By Fact 5.2, the number of edges in K is at most |EK | = O(d · µ(G)). We then compute
a (1 + ǫ′)-max weight matching M ′ in the graph G with edge weights equaling the number of
high-degree nodes incident on them, we =

∑
v∈e 1[v ∈ HK] ∈ {0, 1, 2}. By Proposition 5.3, this

can be done in deterministic time Oǫ(d · µ(G)). By Lemma 5.5, this guarantees that at least a
(1 − 2ǫ′)/(1 + ǫ′) ≥ (1 − 3ǫ′) fraction of high-degree nodes in K are unmatched by this dynamic
subroutine. We then extend M ′ to also be maximal in K, by scanning over the |EK | = O(d · µ(G))
edges of K (in the same deterministic time) and adding them to M ′ where possible. By Lemma 5.5,
this results in a 12ǫ′-AMM, i.e., an ǫ-AMM, after a total of Oǫ(d · µ(G)) deterministic time.

So far, we have provided a static AMM algorithm with deterministic time Oǫ(d ·µ(G)), provided
we have access to a kernel. To dynamize the above, we fisrt show how to (periodically) compute a
kernel dynamically.

5.2 Periodic kernels and AMMs

In [Waj20], Wajc provided a method for rounding dynamic fractional matchings to matching spar-
sifiers, and from these (by methods underlying Algorithm 3), we can obtain integral matchings.
Crucially for our needs, his framework was robust, and allowed for worst-case update times. Un-
fortunately for us, the lemma statements in his work do not immediately imply a robust dynamic
kernel maintenance. However, they do allow for kernel queries, with running time Õ(d · µ(G)).

16

Lemma 5.7. Let ǫ ∈ (0, 1) and d = Õǫ(1) be sufficiently large. Then, there exists a robust algorithm
with worst-case update time tu = Õǫ(1) allowing for (ǫ, d)-kernel and ǫ-AMM queries in worst-case
query time tq = Õǫ(d · µ(G)). The query’s outputs are a kernel and an ǫ-AMM w.h.p.

Given the ability to query a kernel, the ability to query an AMM then follows directly from
Lemma 5.6. As the proof and presentation of an algorithm allowing for kernel queries essentially
requires repeating verbatim numerous lemmas in [Waj20], we defer its proof to Appendix D.

We now turn to designing a robust dynamic algorithm that always maintains an AMM.

5.3 Robust dynamic AMMs

So far, we have provided a method to answer AMM queries in a dynamic setting. To lift this result
to obtain AMM maintenance algorithms, we can rely on

Lemma 5.8. Let ǫ ∈ (0, 1/2). If M is an ǫ-AMM in G, then the non-deleted edges of M during
any sequence of at most ǫ · µ(G) updates constitute a 6ǫ-AMM in G (during the updates).

Proof. Let G and M be the graph and matching before the updates, and let G′ and M ′ be their
counterparts after these updates. Since each update can decrease the size of the maximum matching
size by at most one, we have that

1

2
· µ(G) ≤ (1− ǫ) · µ(G) ≤ µ(G′).

Now, recall that for some set of vertices U ⊆ V of size at most |U | ≤ ǫ · µ(G) nodes from G, the
matching M is maximal in G[V \ U]. Now, after these ǫ · µ(G) updates, it might be that 2ǫ · µ(G)
edges in G′ are now not incident on edges in M ′. (The factor of two arises due to edges of M that
are deleted leaving two uncovered edges, addressable by removing two more nodes). That is, after
removing a node set U ′ ⊆ V of size at most |U ′| ≤ 3ǫ · µ(G) ≤ 6ǫ · µ(G′) nodes from G′, we obtain
a graph G′[V \ U ′] where M ′ is maximal. That is, M ′ is an O(ǫ)-AMM in G′.

The above “stability” property of AMMs again lends itself to the periodic re-computation frame-
work of [GP13], which, together with our algorithms for querying for AMMs, yields algorithms for
maintaining AMMs (always).

Lemma 5.9. Let ǫ ∈ (0, 1/2). Then, there exists a robust dynamic algorithm for maintaining an
ǫ-AMM w.h.p. (at all times) in w.c. update time Õǫ(1).

Proof. We will run the dynamic AMM query algorithm A of Lemma 5.7, whose update fits within our
update time budget. We will periodically query A, and spread this computation over these periods to
guarantee low worst-case update time. Specifically, we will divide the update sequence into epochs,
where if the graph G at the start of epoch i is Gi, then the epoch has length ℓi ∈ [ǫ·µ(G)/3, ǫ·µ(Gi)].
In order to determine the length of the epochs, we run the deterministic dynamic (2+ǫ)-approximate
fractional matching algorithm of [BHN17], which in particular gives us a 2 + ǫ ≤ 3-approximation
of µ(Gi) in worst-case update time Õǫ(1), again fitting within our time budgets. Now, during phase
i, we spend the time tq for the ǫ-AMM query subroutine of A, so as to finish computing Mi. The

amount of time spent per update to achieve this goal is at most Õǫ(µ(Gi))
⌊ǫ·µ(Gi)/10⌋ = Õǫ(1), again fitting

within our time updates. We now describe and analyze the matchings maintained by this algorithm
(these are not always Mi).

By Lemma 5.8, we need to provide a matching M ′
i+1 at the start of each phase i + 1 which

is an O(ǫ)-AMM in Gi+1, thus guaranteeing that the non-deleted edges of M ′
i+1 remain an O(ǫ)-

AMM. Reparameterizing appropriately will then yield the desired result. It remains to define our

17

matchings M ′
i . Using our estimate of µ(G) obtained by the dynamic fractional matching, we test

whether µ(Gi) ∈ [1/ǫ, 10/ǫ]. If this is the case, then M ′
i+1 is obtained by querying the AMM

algorithm A at the beginning of phase i+1, in time Oǫ(1). (This relied on µ(Gi+1) ≤ µ(Gi) + ℓi ≤
µ(Gi) · (1 + ǫ) = Õǫ(1).) By the properties of A, the matching M ′

i+1 is an ǫ-AMM in Gi+1 w.h.p.
Now, if conversely µ(Gi) ≥ 10/ǫ, then we have that

1

2
· µ(Gi) ≤ (1− ǫ) · µ(Gi) ≤ µ(Gi)− ℓi ≤ µ(Gi+1).

Now, Mi, is an ǫ-AMM in Gi, which is obtained from Gi+1 by at most ǫ · µ(Gi) ≤ 2ǫ · µ(Gi+1)
updates. Therefore, by Lemma 5.8 Mi is a 12ǫ-AMM in Gi+1. We therefore take M ′

i+1 to be Mi.
Reparameterizing ǫ appropriately, the lemma follows.

6 Conclusion and Future Directions

We presented the first dynamic matching (size estimation) algorithm breaking the approximation
barrier of 2 in polylogarithmic update time. While this presents a major advance in our understand-
ing of the dynamic matching problem, many questions remain. We mention a few such questions
which we find particularly intriguing.

Explicit Fast Matching. In our work we show how to maintain a better-than-two approximate
estimate of the maximum matching size. Can one also maintain an explicit matching of similar
approximation ratio within the same time bounds?

Better approximation in o(n) update time? Known conditional impossibility results rule out an
exact algorithm with n1−Ω(1) update time [AVW14, HKNS15, Dah16], but the best approximation
ratios currently known are 3

2 + ǫ [BS15, BS16, Kis22, GSSU22]. Can one do better in o(n) time?
On the flip side, can we show any (conditional) hardness of approximate dynamic matching, for any
approximation ratio?

Unconditional impossibility results. With this work we bring dynamic matching with better-
than-two approximation into the polylogarithmic update time regime—the range where uncondi-
tional impossibility are known for numerous data structures and dynamic algorithms. Can such
unconditional impossibility results be proven for (approximate) dynamic matching?

Acknowledgements. We thank the anonymous reviewers for helpful comments.

APPENDIX

A Proofs of basic building blocks

Here we substantiate some key propositions implied by prior work. We stress that we provide proofs
mostly for completeness, due to our propositions being slight variants or being differently organized
than their previous counterparts. That is, we do not claim novelty of the underlying ideas of this
section.

A.1 Proof of Proposition 2.1

A key component of Proposition 2.1 is the following vertex sparsification technique for dynamic
settings by Kiss [Kis22], adapted from such a vertex sparsification of Assadi et al. [AKLY16] in the
context of stochastic matching.

18

Proposition A.1. There exists a randomized algorithm which for each update to G makes an update

to O
(
log2 n
ǫ3

)
contracted subgraphs, such that w.h.p. throughout any (possibly adaptively generated)

update sequence, one subgraph G′ has a matching of cardinality µ(G) · (1 − O(ǫ)) and nodeset of
size n′ ≤ µ(G)/ǫ. Moreover, any matching M ′ in G′ can be transformed into a matching in G of
cardinality |M ′| in time O(|M ′|). For any matching M ′ in any G′ undergoing edge updates we can
maintain a matching of cardinality |M ′| in G with O(1) worst-case update time.

Proof. Consider a random graph G′ obtained by hashing each node into one of k/ǫ buckets, for some
integer k, and contracting all nodes that are hashed into the same bin. That is, two contracted
nodes neighbor in G′ if their corresponding bins contain neighboring nodes in G. By storing for each
edge e in G′ a list of edges inducing e, we can easily transform a matching M ′ in G′ to a matching in
G of the same cardinality in time O(|M ′|). The majority of this proof is thus dedicated to showing

that O
(
logn
ǫ2

)
such contractions for each value k = ⌈(1 + ǫ)i⌉ with i ∈ [log1+ǫ(n)] ⊆

[
O
(
logn
ǫ

)]

suffice to guarantee that one of these G′ contains a matching of cardinality at least µ(G) · (1− 3ǫ).
Fix an integer i and k = ⌈(1 + ǫ)i⌉ ≤ n. Fix a matching M in G of cardinality |M | ≤ k. The

probability that a vertex v incident on some edge of M is contracted into a separate bin than the
other 2|M | − 1 endpoints can be expressed as follows:

(1− 1/(k/ǫ − 1))2|M |−1 ≥
(
1− 2 · ǫ

k

)2·k
≥ (1− 5 · ǫ).

Thus, by linearity, the number X of such endpoints of edges of M satisfy that E[X] ≥ (1−5ǫ) ·2|M |.
Observe that X is the sum of negatively associated random variables, by [DR98], since the hashing
of vertices is equivalent to the folklore balls and bins experiment, so by standard Chernoff Bounds,

Pr[X ≤ 2 · |M | · (1− 6ǫ)] ≤ exp
(
−Θ(ǫ2|M |)

)
.

If at least 2|M | · (1 − 6 · ǫ) endpoints of M are hashed to unique vertices then at least |M | −
2|M | · 6ǫ ≥ |M | · (1− 12ǫ) edges of M had both of their endpoints assigned to unique vertices in G′

hence are present in G′.
We say that the contraction is bad if for some matching M of cardinality in the range [k, k(1+ǫ)+

1] if the number of edges of M that are not present in G′ is lesser than |M | · (1− 12ǫ). Otherwise,

it is good. Now, there are
∑k(1+ǫ)+1

i=k

(n
i

)
≤ kǫ · nk(1+ǫ)+1 ≤ nk(1+ǫ)+2 possible matchings of size

|M | ∈ [k, k(1 + ǫ)]. Therefore, by randomly contracting the graph for range [k, k(1 + ǫ) + 1] some
C logn

ǫ2
many times, for a sufficiently large C, we have that the probability that all contractions for

range [k, k(1 + ǫ) + 1] are bad is

Pr[all contractions are bad] ≤ nk(1+ǫ)+2 · exp
(
−Θ(ǫ2k) · C log n

ǫ2

)
≤ n−3.

Therefore, taking union bound over the log1+ǫ(n) possible value of k, we find that with high prob-
ability, each range [k, k(1 + ǫ) + 1] has some good contraction.

We conclude that, w.h.p., among the O
(
log2 n
ǫ3

)
contracted graphs, there exists a good con-

traction for every k = ⌈(1 + ǫ)i⌉, and in particular for k ≤ µ(G) ≤ k(1 + ǫ) + 1. That is, one
of the contracted graphs contains a large matching, µ(G′) ≥ µ(G) · (1 − 12ǫ), and has few nodes,
n′ ≤ k/ǫ ≤ µ(G)/ǫ, as desired.

We now proceed towards proving Proposition 2.1, restated below for ease of reference.

19

Proposition 2.1. Let ǫ ∈ (0, 1) and α ≥ 1. Suppose there exists an algorithm A on a dynamic
n-node graph G with update time tu, that, provided µ(G) ≥ ǫ · n, supports tq-time α-approximate
size estimate queries w.h.p. Then, there is another algorithm A′ on G that always maintains an
(α+O(ǫ))-approximate estimate ν ′ in Õǫ(tu + tq/n) update time. Moreover if the update time of A
is worst-case, so is that of A′, and if A works against an adaptive adversary, then so does A′.

Proof. Let ǫ′ = α′ · ǫ · 2 (here α′ is some O(1) factor). Using the algorithm described by Propo-
sition A.1 we can generate T = Õǫ(1) graphs Gi : i ∈ [T] with the following properties: A)
µ(Gi) ≤ µ(G) for all i ∈ [T], B) There is an i ∈ [T] satisfying that µ(Gi) ≥ (1 − ǫ′) · µ(G) and
µ(Gi) ≥ n · ǫ′, C) All sub-graphs Gi undergo a single update when G undergoes an update.

Our algorithm proceeds as follows: on all T generated sub-graphs we run algorithm A at all times.
Furthermore, on each sub-graph we maintain an O(1) = α′-approximate estimate on the maximum
matching size µ̃i using algorithms from literature (randomized against an adaptive adversary) in
Õǫ(1) worst-case time. For all sub-graphs we monitor the relationship of µ̃i and |Vi|. If µ̃i increases
above the threshold of |Vi| · ǫ we start a run of the query algorithm on Gi returning us an α-
approximate estimate of µ(Gi) which will define ν ′i. We distribute the work of this query over
|Vi| · (ǫ)2 updates and re-initiate the query every |Vi| · (ǫ)2 updates. The matching size queries of Gi

always run on the state of Gi at the start of the query (even though Gi undergoes updates during
it’s run). If µ̃i decreases bellow the threshold of |Vi| · ǫ we stop the querying process and set ν ′i = 0.
Note that at initialization we just set ν ′i = µ(Gi) for all i ∈ [T] statically.

At all times we maintain the output maxi∈R ν ′i, the maximum of our matching size estimates.

Algorithm 3 Vertex set sparsification

1: Initialize ν ′i = µ(Gi)
2: Maintain contracted sub-graphs Gi and α′-approximate matching size estimates µ̃i

3: Run algorithm A on every Gi

4: for i ∈ [T] do
5: if µ̃i becomes at least |Vi| · ǫ then
6: Initiate a matching size query of Gi in O(tq) time on the current state of Gi

7: Distribute the work over the next |Vi| · ǫ2 updates
8: Repeatedly recompute distributed over every |Vi| · ǫ2 updates
9: Let ν ′i be the latest finished estimate

10: if µ̃i reduces below |Vi| · ǫ then
11: Terminate the querying process of µ(Gi)
12: Set ν ′i ← 0

13: At all times return maxi∈[T] ν
′
i

We first discuss the update time of Algorithm 3. The maintenance of the T contracted sub-graphs
and matching size estimates µ̃i takes Õǫ(1) w.c. time. Running algorithm A on each of the contracted
sub-graphs takes update time Õǫ(tu) (and is worst case if A has worst-case update time). A matching
size query will only be initiated and run on contracted sub-graph Gi if µ̃i ≥ µ(Gi)/α

′ ≥ |Vi| · ǫ, that
is if µ(Gi) ≥ |Vi| · ǫ/2. Each re-computation of the estimate ν ′i will be distributed over some |Vi| · ǫ2
updates, that is, it will take O(tq/(|Vi| · ǫ2) = Oǫ(tq/|Vi|) worst-case time. Finding and returning
the maximum matching size estimate ν ′i takes Õǫ(1) = O(T) time. Therefore, the total update time
of the algorithm is Õǫ(tu+ tq ·β/n) and is worst-case if A has worst-case update time. Furthermore,
all components of the algorithm but A are randomized against an adaptive adversary..

It remains to argue that the algorithm maintains ν ′ such that ν ′ ≤ µ(G) ≤ ν ′ · (α + O(ǫ)) at

20

all times. Say that Gi is a ’successful’ contraction if Gi satisfies property B). By Proposition A.1,
w.h.p., there is a successful contraction at all times, at time point τ1 let that contraction be Gi. We
will separate two instances:

i) Throughout the run of the algorithm at all times it held that µ̃i ≥ |Vi| · ǫ: The algorithm has
ran the matching size query sub-routine on Gi after every |Vi| · ǫ2 edge updates. Let Gτ0

i be the past
state of the graph Gi when the algorithm started calculating the current estimate (ντ1i)′. By the
scheduling of this calculation we know that τ0 ≥ τ1 − ǫ2 · |Vi|. Hence, µ(Gτ0

i) ≥ µ(Gτ1
i) − ǫ2 · |Vi|,

where µ(Gτ1
i) ≥ µ(G) · (1− ǫ′) and µ(Gτ1

i) ≥ |V |i · ǫ′. Hence, (ντ1i)′ · α · (1 +O(ǫ)) ≥ µ(G).
ii) At time τ1 Gi is a successful contraction but at some prior point during the run of the

algorithm µ̃i became less than |Vi| · ǫ: we know that at some point τ0 prior to τ1 µ̃i must have
increased above |Vi| · ǫ. Define the state of Gi at the two time points as Gτ0

i and Gτ1
i respectively.

As at τ1 Gτ1
i is a successful contraction we know that µ(Gτ1

i) ≥ |Vi| · ǫ′. When µ̃i crossed the
threshold at τ0 it held that µ̃i = |Vi| · ǫ that is µ(Gτ0

i)i ≤ |Vi| · ǫ · α. As per each update the
maximum matching size may only change by 1 we have that τ1 − τ0 ≥ |Vi| · ǫ ·α. Hence, by time τ1
the algorithm already had an updated estimate of ν ′i (that is one calculated in the previous ǫ2 · |Vi|
updates such that µ(Gi) ≥ |Vi| · ǫ during these updates). Here we can refer back to the previous
case (pretending the algorithm initialized at τ0).

A.2 Proof of Proposition 2.6

We now give a proof extending standard arguments that small maximal matchings contain many
length-three augmenting paths to showing that small ǫ-AMM likewise contain many such paths.

Proposition 2.6. Let ǫ > 0 and c ∈ R and let M be an ǫ-AMM in G such that |M | ≤
(
1
2 + c

)
·µ(G).

Then M admits a collection of at least
(
1
2 − 3c− 7ǫ

2

)
· µ(G) node-disjoint 3-augmenting paths.

Proof. The above bound for ǫ = 0 is well-known (see, e.g., [KMM12]). We reduce to this case by
removing the at most ǫ ·µ(G) nodes in V \ V (M) needed to make M maximal. This yields a graph
G′ with µ(G′) ≥ µ(G) · (1− ǫ), and therefore

|M | ≤
(
1

2
+ c

)
· µ(G) ≤

1
2 + c

1− ǫ
· µ(G′) ≤

(
1

2
+ c+ ǫ

)
· µ(G′),

Consequently, by the special case of this proposition with ǫ = 0, we have that the maximum number
of disjoint 3-augmenting paths that M admits in G′ (and hence also in G) is at least

(
1

2
− 3(c + ǫ)

)
· µ(G′) ≥

(
1

2
− 3(c + ǫ)

)
(1− ǫ) · µ(G) ≥

(
1

2
− 3(c + ǫ)− ǫ

2

)
· µ(G).

B Proof of Lemma 4.6

Our proof of Lemma 4.6 is a minor modification of the argument from Section 5 of [Beh22]. We
claim no novelty for this proof. To make our notations consistent with the ones used by [Beh22],
we will focus on an n-node graph G = (V,E) (different from our dynamic input graph). Let π be a
permutation of the edges of graph G = (V,E). Let GMM(G,π) stand for the output of the greedy
maximum matching algorithm when run on graph G with edge ordering π.

B.1 Building blocks

Lemma B.1 is explicitly concluded by [Beh22], whereas Lemma B.2 is a slight modification of a
construction appearing in Section 5 of [Beh22] we need to fit our arguments.

21

Lemma B.1. There is a randomized algorithm that in Õ(|E|/|V |) expected time returns the matched
status of a random v under GMM(G,π), for random π. This algorithm relies on list access to the
edges of G.

In order to prove Lemma 4.6 we have to work with adjacency matrix queries. Based on a slight
modification of Section 5 of [Beh22] we can derive the following tool for this purpose.

Lemma B.2. Let δ ∈ (0, 1/2). For a given n-node graph G = (V,E) there exists a supergraph
H = (VH , EH) of G (i.e., VH ⊇ V and EH ⊇ E) satisfying the following:

• |EH | = Θδ(n
2).

• |VH | = Θδ(n
2).

• At most δ · n nodes of V are matched to nodes in VH \ V by GMM(H,π), w.h.p. over π.

• GMM(H,π) ∩ E is a maximal matching in G[V \ Vslack], where Vslack ⊆ V are nodes in V
that are matched to nodes in V \ VH .

• Any adjacency list query to EH (querying the i-th neighbour of a vertex according to some
ordering of neighbours) can be implemented using one adjacency matrix query to E (querying
the existence of any edge (u, v)).

Informally, the main change in our construction compared to that of [Beh22] is that our con-
struction will allow us to argue that the random matching in the constructed graph H is, w.h.p.,
a maximal matching after ignoring a small set of nodes. In contrast, the construction in [Beh22]
resulted in an “expected” version of this guarantee. As the high-probability bounds will simplify our
discussion later, we modify this construction below. The second change we make is in externalizing
the fact that the matching computed this way is maximal, rather than 2-approximate, as stated in
[Beh22]. We now turn to proving the above lemma.

Proof of Lemma B.2. The node-set of H is VH := V ∪ V ∗ ∪ (W1 . . . ,Wn) ∪ (U1, . . . , Un), where
V = {v1, v2, . . . , vn} (note that G = (V,EH [V])), V ∗ = {v∗2 , v∗2 , . . . , v∗2}, Wi = {w1

i , w
2
i , . . . w

n
i }, and

the set Ui = {u1i , u2i , . . . , usi} is of size s := 10n/δ for all i ∈ [n]. To specify the edge-set EH , we
now define the ordered adjacency list for every node v ∈ VH .

• Every node vi ∈ V has degree exactly n: For any j ∈ [n], if (vi, vj) ∈ E then the jth neighbor
of vi is the node vj ∈ V , otherwise it is the node v∗j ∈ V ∗.

• Every node v∗i ∈ V ∗ has degree exactly n + s: For any j ∈ [n], if (vi, vj) ∈ E then the jth

neighbor of v∗i is the node wj
i ∈ Wi, otherwise it is the node vj ∈ V . Furthermore, for all

j ∈ [s], the (n+ j)th neighbor of v∗i is the node uji ∈ Ui.

• Each node in Uj , for any j ∈ [n], has only one neighbor (which is v∗j).

• Node wj
i may have degree at most one: if (vi, vj) ∈ E then wj

i is a neighbour of v∗i ∈ V ∗,
otherwise it is an isolated vertex of H.

Note that |VH | = 2n + n2 + ns = Θ(n2/δ) and that similarly |EH | = n2 + |E| + ns = Θ(n2/δ).
Furthermore, from the above discussion it is immediate that an adjacency list query to EH (i.e.,
querying for the j-th neighbor of a vertex) can be implemented using at most one adjacency matrix
query to E. It remains to prove the remaining two properties of H.

22

To this end, recall that Vslack denotes the set of vertices in V matched to V * nodes. Then,
by maximality of GMM(H,π), we have that GMM(H,π) ∩ E is indeed maximal matching of
G[V \ Vslack]. We now turn to bound |Vslack|. To this end, we say a node v∗ ∈ V ∗ is occupied if its
earliest edge in π has its other endpoint in Wi or Ui. Trivially, such an occupied vertex v∗ ∈ V ∗ is
matched to a vertex of Uv∗ ∪Wv∗ under GMM(H,π). The following simple claim, which follows
by a Chernoff bound together with the simple observation that it is unlikely for a node in V ∗ to be
matched in V (and thus contribute to |Vslack|).
Claim B.3. Let π be a uniformly random permutation of EH . Let Xv∗ : v∗ ∈ V ∗ represent the
indicator variable of v∗ being occupied and XO =

∑
Xv∗ . Then X ≥ n · (1− δ) w.h.p.

Proof. Note that each v∗ ∈ V ∗ has at most n edges with vertices of V ′ and has at least 10n/δ edges
with vertices in Uv∗ and Wv∗ . Therefore,

E[Xv∗] = Pr(Xv∗ = 1) ≥ n · 10/δ
n · (10/δ + 1)

= 1− 1

10/δ + 1
≥ 1− δ/10.

On the other hand, the variables {Xv∗ | v ∈ V } are independent binary variables. Therefore, by
Chernoff’s bound, we have that

Pr(XO ≤ n · (1− δ)) ≤ Pr

(
XO ≤ n · (1− δ/10) − n · δ

2

)

≤ Pr

(
XO ≤ E[XO]− E[XO] ·

δ

2

)
(8)

≤ 2 · exp
(
−(δ/2)2 · E[XO]

3

)
(9)

≤ n−Θ(1) (10)

Inequality 8 follows from the fact that n ≥ E[XO] ≥ n · (1 − δ). Inequality 9 is an application
of Chernoff’s bound. Inequality 10 follows as long as n · δ2 ∈ Ω(log(n)).

The above claim completes the proof of the last requirement of Lemma B.2.

B.2 The algorithm

We now introduce the algorithm that will build on the previous two lemmas and inform the proof
of Lemma 4.6, given in Algorithm 4. Recall that we wish to estimate the number of edges in some
input matching, which here, to avoid confusion, we denote by M∗, that are both matched in some
maximal matching in G.

Let H = (VH , EH) be the supergraph of G defined by Lemma B.2 of G with δ = ǫ2/8. For a
permutation π of EH , define M ′(π) := GMM(H,π)∩ (V ×V) to be the set of edges in GMM(H,π)
both of whose endpoints are in V . Let M(π) be a maximal matching in G that is obtained by
augmenting M ′(π), i.e., we start with M = M ′(π), visit the edges e ∈ E in an arbitrarily fixed
order, and obtain the matching M(π) by greedily adding as many edges to M as possible. Note
that M ′(π) ⊆ M(π) ⊆ E′. Note also that M(π) will be the maximal matching that Lemma 4.6
refers to as M ′. We now slightly overload our notations and let kM ′(π) denote the number of edges
in M∗ both of whose endpoints are matched in M ′(π).7

7Recall that in the statement of Lemma 4.6 we defined the notation kM′ only if M ′ is a matching in G′, which is
not the case with M ′(π). Nevertheless, for ease of exposition, we use the notation kM′(π).

23

Algorithm 4 Extended Sub-Linear Algorithm

1: if |M∗| ≤ ǫ2 · n then
2: Return κ = 0
3: (Implicitly) construct H = (VH , EH) as in Lemma B.2 with δ = ǫ2/8
4: Sample a permutation π of EH uniformly at random

5: L ← 105·log(n)
ǫ5

6: Sample L edges e1, . . . , eL ∈ M∗ uniformly at random with replacement
7: Let Xi be one if both endpoints of edge ei are matched by GMM(H,π) and X =

∑
iXi

8: Return κ = X·|M |
L − n·ǫ2

2

Claim B.4. Algorithm 4 can be implemented in time Õǫ(n) in expectation.

Proof. The construction of H is implicit, and as such takes no time. Let TH(v, π) stand for the
time it takes to calculate the matched status of vertex v ∈ VH in GMM(H,π) using the algorithm
of [BK22]. By Lemma B.1 we have that E

v∼VH

[TH(v, π)] = Õǫ(|EH |/|VH |) = Õǫ(1). Therefore, since

the endpoints of the sampled edges S =
⋃L

i=1 ei ⊆ VH are a subset of of vertices of cardinality
|S| ≥ ǫ2 · n, and since |VH | = Θǫ(n

2) we have the expected time to calculate their matched status
(using adjacency matrix queries, using the construction of H) is

EH
v∼S

[TH(v, π)] ≤ E
v∼VH

[TH(v, π)] · |VH |
|S| ≤ Õǫ(n)

We now argue that Algorithm 4 provides a good approximation of the number of nodes in M∗

both of whose endpoints are matched by GMM(H,π). But first, we recall the basic Chernoff bounds
that we will rely on here.

Lemma B.5. Chernoff bound: Let X be the sum of independently distributed (or negatively asso-
ciated) random variables X1, . . . ,Xm with Xi ∈ [0, 1] for each i ∈ [m]. Then for all δ ∈ (0, 1):

Pr(|X − E[X]| ≥ δ ·E[X]) ≤ 2 · exp
(
−δ2 · E[X]

3

)
.

Lemma B.6. W.h.p., The output κ of Algorithm 4 satisfies

κM(π) ≥ κ ≥ κM(π) − n · ǫ2.

Proof. First, by Lemma B.2, we have that w.h.p., the set of nodes Vslack ⊆ V that are matched to
nodes in VH \V have cardinality at most |Vslack| ≤ nǫ2/8. Moreover, GMM(H,π)∩E is a maximal
matching in G[V \ Vslack].

Observe that whenever κ = 0 is returned by the algorithm due to |M∗| being small, the algorithm
returns a trivially correct solution. As M ′(π) is an ǫ2/8-AMM, we conclude that:

|M ′(π)| ≤ |M(π)| ≤ |M ′(π)|+ n · ǫ2
8

. (11)

Define M∗
H to be the set of edges of M∗ such that both of their endpoints are matched by

GMM(H,π). By the guarantees of the construction of H we know that there can be at most
n · ǫ2/8 vertices of V matched by an edge not in M ′(π). Therefore,

|M∗
H | ≥ κM ′(π) ≥ |M∗

H | − n · ǫ2
8

. (12)

24

Note that using the Algorithm 4 is sampling from edges of M∗ and determining if they are in
M∗

H (hence approximating κM∗

H
). Specifically, by inequalities (11) and (12), we get the following.

κM∗

H
∈
[
κM ′(π) ± n·ǫ2

8

]
⊆

[
κM(π) ± n·ǫ2

8 ± |M(π)| − |M ′(π)|
]
⊆

[
κM(π) ± n·ǫ2

4

]
.

We will argue that with high probability X·|M |
L ∈

[
κM∗

H
± n·ǫ2

8

]
, dependent on the randomization

of M∗
L. Observe that Xi are independently distributed random variables taking values in [0, 1] and

X is a binomial variable with parameters k, |κM∗

H
|/|M |. We will consider two cases:

Case (A): κM∗

H
≤ n·ǫ3

8 . In this case, we derive that

Pr

(
X · |M |

L
/∈
[
κM∗

H
± n · ǫ2

8

])
= Pr

(
X · |M |

L
≥ κM∗

H
+

n · ǫ2
8

)

≤ Pr

(
X · |M |

L
≥ n · ǫ2

8

)

= Pr

(
B(L, κM∗

H
/|M |) ≥ n · ǫ2

8

)
(13)

≤ Pr

(
B(L, ǫ) ≥ n · ǫ2

8

)
(14)

≤ Pr (B(L, ǫ) ≥ 2 · E[B(L, ǫ)])

≤ 2 · exp
(
−E[B(L, ǫ)]

3

)
(15)

≤ n−Θ(1).

In the above derivation, (13) holds as κM∗

H
/|M | ≤ ǫ (as otherwise κ = 0 would have been

returned by the algorithm), and (14) is true assuming n ·ǫ2/8 ≥ 2 ·L ·ǫ = Õ(1). Finally, (15) follows
from Chernoff bound (Lemma B.5) on a binomial random variable.

Case (B): κM∗

H
≥ n · ǫ3

8 . In this case, we derive that

Pr

(
X · |M |

L
/∈
[
κM∗

H
± n · ǫ2

8

])
= Pr

(
|X − E[X]| ≥ n · ǫ2

8
· L

|M |

)

= Pr

(
|X − E[X]| ≥ E[X] · n · ǫ2

8 · κM∗

H

)

≤ Pr

(
|X − E[X]| ≥ E[X] · n · ǫ2

8 · n

)

≤ 2 · exp
(
−
(
ǫ2/8

)2 · E[X]

3

)
(16)

= exp

(
−
L · κM∗

H
· ǫ4

|M | · 194

)
(17)

≤ n−Θ(1).

In the above derivation, (16) follows from Chernoff bound (Lemma B.5), and (17) holds due to on
our assumptions on |M | and κM∗

H
. Therefore, with high probability X · |M |/k ∈ [κM∗

H
± ǫ2 · n/8] ∈

25

[κM(π) ± ǫ2 · n · (1/8 + 1/4)] (recall that κM(π) = κM). This implies that κ ≤ κM + ǫ2 · n · (1/8 +
1/4 − 1/2) ≤ κM and κ ≥ κM − ǫ2 · n · (1/8 + 1/4− 1/2) ≥ κM − ǫ2 · n.

Having concluded that Algorithm 4 can be implement in low expected time, and is correct
w.h.p., we are now ready to prove Lemma 4.6, restate below for ease of reference. (Note that here
G = (V,E) are renamed G′ = (V ′, E′), and n′ and kM ′ correspond respectively to n and κM(π),
whereas M∗ in Algorithm 4 is renamed M .)

Lemma 4.6. Consider a graph G′ = (V ′, E′) with |V ′| = n′, and a matching M with V (M) ⊆ V ′

that is not necessarily part of G′ (i.e., we might have M * E′). For any matching M ′ in G′, let kM ′

denote the number of edges in M both of whose endpoints are matched in M ′. There is an algorithm
which, given adjacency matrix query access to the edges of G′, whp runs in Õǫ(n

′) time and returns
an estimate κ ∈ [kM ′ − ǫ2n′, kM ′] for some maximal matching M ′ in G′.

Proof. By Claim B.4, Algorithm 4 runs in expected Õǫ(n) time and returns a correct solution with
high probability. To improve its running time guarantee to a high probability bound we only need
to incur a blowup of O(log(n)) in running time: run the algorithm O(log(n)) time in parallel and
output the solution given by the first terminating copy. One of these algorithms will terminate within
at most twice the expected time, by Markov’s inequality, and so w.h.p., one of these completes after
Õǫ(n) time. Finally, by union bound and Lemma B.6, all of the log n algorithms’ output satisfies
the desired bounds with probability 1 − 1/poly(n), and so w.h.p., we obtain a solution satisfying
the desired bounds after Õǫ(n) time.

C Omitted Proofs from Section 4.1

Here we prove the tighter bound on the number of V (M1)-disjoint 3-augmenting paths in the
subgraph M1 ∪M2 as output by Algorithm 2, restated below.

Lemma 4.1. If |M1| =
(
1
2 + c

)
· µ(G), then G[M1 ∪M2] contains a set P of 3-augmenting paths

w.r.t. M1 that are disjoint in their V (M1) nodes, with expected cardinality at least

E[|P|] ≥
(

b

b+ 1

)
·
(
1

4
·
(
1

2
− 3c

)
− 1

b
·
(
1

2
+ c

)
− 7ǫ

8

)
· µ(G).

Proof. Fix a maximum set of disjoint length-three augmenting paths w.r.t. M1 in G, denoted by
P∗. By Proposition 2.6, we have |P∗| ≥

(
1
2 − 3c− 7ǫ

2

)
· µ(G). Next, let S ⊆ P∗ be the paths

u′ − u− v− v′ that “survive” the bipartition, in the sense that (u, u′), (v, v′) ∈ E2. By construction,
each path in P∗ survives with probability exactly 1

4 . Therefore, E[|S|] ≥ 1
4 ·

(
1
2 − 3c− 7ǫ

2

)
· µ(G).

Let D := P∗ \ S be the set of paths that did not survive this bipartition.
For i ∈ {0, 1, 2}, let Si ⊆ S and Di ⊆ D be the sets of paths u′ − u − v − v′ in S and D

(respectively) with i of their V (M1) nodes u and v matched in M2. Now, by our bipartition, if
u′−u− v− v′ ∈ S2 ∪D2, i.e., if u and v are both matched in M2, then they are matched to distinct
nodes. Therefore, G[M1 ∪M2] contains a set of augmenting paths P w.r.t. M1 that are disjoint in
their V (M1) nodes, of cardinality |P| = |S2|+ |D2|. We now turn to lower bounding |S2|+ |D2|.

To bound |S2|+ |D2|, we will double count the edges of M2, once from their V (M1) endpoints,
and once from their V (M1) endpoints. First, by definition, since each edge in M2 has exactly
one endpoint in V (M1) and each node in V (M1) is matched at most once in M2, we have that
|M2| = 2|S2| + |S1| + 2|D2| + |D1| ≤ |S2|+ |D2| + |M1|, where the inequality follows from |M1| ≥∑2

i=0(|Si|+ |Di|), by definition. On the other hand, for each of the |S| − |S2| = |S0|+ |S1| survived
paths u′ − u − v − v′ ∈ S0 ∪ S1 that does not have both its internal nodes matched in M2, we

26

have by maximality of M2 that u′ and/or v′ must contribute b distinct edges to M2. Therefore,
|M2| ≥ b · (|S0|+ |S1|). Combining the above, we obtain

b · (|S| − |S2|) ≤ |M2| ≤ |S2|+ |D2|+ |M1|,

which after rearranging, yields

b · |S| − |M1| ≤ (b+ 1) · |S2|+ |D2| ≤ (b+ 1) · (|S2|+ |D2|).

Simplifying and combining with the lower bound on E[|S|], we obtain the claimed bound, as follows.

E[|P|] = E[|S2|+ |D2|] ≥
b

b+ 1
·
(
E[|S|]− 1

b
· |M1|

)

≥ b

b+ 1
·
(
1

4
·
(
1

2
− 3c− 7ǫ

2

)
− 1

b
·
(
1

2
+ c

))
· µ(G).

=
b

b+ 1
·
(
1

4
·
(
1

2
− 3c

)
− 1

b
·
(
1

2
+ c

)
− 7ǫ

8

)
· µ(G).

D Omitted Proofs of Section 5

We stress that the following is essentially implied by the work of [Waj20], from which we now repeat
significant amount of text essentially verbatim. The only difference here will be our final proof of
Lemma 5.7, allowing us to efficiently periodically compute an ǫ-AMM, and the use of this lemma in
the subsequent section. Readers familiar with [Waj20] are encourage to read ahead to that lemma.

Overview. Briefly, [Waj20] identified an edge-coloring-based approach to compute, based on the
efficient maintenance of edge colorings and a particular fractional matching of [BHI18], a kernel. (See
Algorithm 5.) We start by recalling the type of fractional matching needed here, due to [ACC+18].

Definition D.1. For c ≥ 1 and d ≥ 1, a fractional matching ~x is (c, d)-approximately-maximal
(c, d)-AMfM if every edge e ∈ E either has fractional value xe > 1/d or it has one endpoint v with∑

e∋v xe ≥ 1/c with all edges e′ incident on this v having value xe′ ≤ 1/d.

As proven in [ACC+18, Appendix A], the dynamic fractional matching of [BHN17] is precisely
such an approximately-maximal matching.

Lemma D.2. For all ǫ ≤ 1
2 , there is a deterministic dynamic (1 + 2ǫ,max{54 log n/ǫ3, (3/ǫ)21})-

AMfM algorithm with tu = O(log3 n/ǫ7) worst-case update time, changing at most O(log n/ǫ2) edges’
fractions per update in the worst case.

Now, we turn to the sparsification procedure of [Waj20], given in Algorithm 5. Briefly, this
algorithm decomposes the graph into a logarithmic number of subgraphs, based on grouped x-
values, edge colors these subgraphs using at most γ = 2 times their maximum degree, and then
outputs the union of these subgraphs.

The following lemma of [Waj20] allows us to compute kernels from AMfMs using Algorithm 5.

Lemma D.3. Let c ≥ 1, ǫ > 0 and d ≥ 9c(1+ǫ)2·logn
ǫ2

. If ~x is a (c, d)-AMfM, then the subgraph K
output by Algorithm 5 when run on ~x with ǫ and d is a (c(1 +O(ǫ), d(1 +O(ǫ), 0)-kernel, w.h.p.

We are now ready to prove our (periodic) algorithmic kernel and AMM algorithm’s guarantees,
restated below for ease of reference.

27

Algorithm 5 Edge-Color and Sparsify [Waj20]

1: for i ∈ {1, 2, . . . , ⌈2 log1+ǫ(n/ǫ)⌉} do
2: let Ei , {e | xe ∈ ((1 + ǫ)−i, (1 + ǫ)−i+1]}.
3: compute a 2⌈(1 + ǫ)i⌉-edge-coloring χi of Gi , G[Ei]. ⊲ Note: ∆(Gi) < (1 + ǫ)i

4: Let Si be a sample of min{2⌈d(1 + ǫ)⌉, 2⌈(1 + ǫ)i⌉} colors without replacement in χi.

5: Return K , (V,
⋃

i

⋃
M∈Si

M).

Lemma 5.7. Let ǫ ∈ (0, 1) and d = Õǫ(1) be sufficiently large. Then, there exists a robust algorithm
with worst-case update time tu = Õǫ(1) allowing for (ǫ, d)-kernel and ǫ-AMM queries in worst-case
query time tq = Õǫ(d · µ(G)). The query’s outputs are a kernel and an ǫ-AMM w.h.p.

Proof. We maintain the dynamic (1 + 2ǫ, Õǫ(1))-AMfM of Lemma D.2, using Õǫ(1) deterministic
w.c. update time and number of changes to edges per update. In addition, we maintain the subgraphs
Gi in Algorithm 5. In each such subgraph we maintain 2⌈(1+ ǫ)i⌉-color edge colorings in each Gi in
O(log n) deterministic w.c. time per change to ~x, using the logarithmic-time (2∆− 1)-edge coloring
algorithm of [BCH20]. This concludes the description of the updates, which by the above take
deterministic w.c. update time tu = Õǫ(1).

Next, to compute a kernel, we run the sampling step of Algorithm 5. As this is bottlenecked
by the time to write down the O(log2 n) colors (matchings), each of size no greater than µ(G) (by
definition), this query takes deterministic Õ(µ(G)). Finally, this output graph K is an (O(ǫ), d(1 +
O(ǫ))-kernel w.h.p., by Lemma D.3. Finally, to output an ǫ-AMM, we appeal to the static algorithm
Lemma 5.6, which runs in deterministic time Õǫ(d · µ(G)) = Õ(µ(G)) and outputs an ǫ-AMM,
provided K is a kernel, i.e., it also succeeds w.h.p.

References

[ACC+18] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic match-
ing: Reducing integral algorithms to approximately-maximal fractional algorithms. In
Proceedings of the 45th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 79:1–79:16, 2018. ↑1, ↑27

[AD16] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic
planar graph algorithms. In Proceedings of the 57th Symposium on Foundations of
Computer Science (FOCS), pages 477–486, 2016. ↑1

[AG13] Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model
with application to the maximum matching problem. Information and Computation,
222:59–79, 2013. ↑3

[AJJ+22] Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-
streaming bipartite matching in fewer passes and optimal space. In Proceedings of the
33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 627–669,
2022. ↑3

[AKL19] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem
with (very) few queries. ACM Transactions on Economics and Computation (TEAC),
7(3):1–19, 2019. ↑4

28

[AKLY16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum match-
ings in dynamic graph streams and the simultaneous communication model. In Pro-
ceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1345–1364, 2016. ↑18

[AVW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In Proceedings of the 55th Symposium on Foun-
dations of Computer Science (FOCS), pages 434–443, 2014. ↑1, ↑18

[BCH20] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic
dynamic matching in O(1) update time. Algorithmica, 82(4):1057–1080, 2020. ↑28

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and
Madhu Sudan. Fully dynamic maximal independent set with polylogarithmic update
time. In Proceedings of the 60th Symposium on Foundations of Computer Science
(FOCS), pages 382–405, 2019. ↑1

[BDL21] Aaron Bernstein, Aditi Dudeja, and Zachary Langley. A framework for dynamic
matching in weighted graphs. In Proceedings of the 53rd Annual ACM Symposium on
Theory of Computing (STOC), 2021. ↑9

[Beh22] Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover.
In Proceedings of the 62nd Symposium on Foundations of Computer Science (FOCS),
pages 873–884, 2022. ↑3, ↑4, ↑12, ↑21, ↑22

[Beh23] Soheil Behnezhad. Dynamic algorithms for maximum matching size. In Proceedings
of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), page To
appear in, 2023. ↑3

[BFH19] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization ap-
proach for dynamic spanner and dynamic maximal matching. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1899–
1918, 2019. ↑1

[BGS15] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching
in O(log n) update time. SIAM Journal on Computing (SICOMP), 44(1):88–113, 2015.
↑1

[BHI18] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Deterministic fully
dynamic data structures for vertex cover and matching. SIAM Journal on Computing
(SICOMP), 47(3):859–887, 2018. ↑15, ↑27

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic
approximation algorithms for fully dynamic matching. In Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), pages 398–411, 2016. ↑1

[BHN17] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic
approximate maximum matching and minimum vertex cover in O(log3 n) worst case
update time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 470–489, 2017. ↑17, ↑27

29

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a (2+ǫ)-
approximate minimum vertex cover in O(1/ǫ2) amortized update time. In Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1872–1885, 2019. ↑1

[BK21] Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional
matchings. In Proceedings of the 48th International Colloquium on Automata, Lan-
guages and Programming (ICALP), 2021. ↑1

[BK22] Soheil Behnezhad and Sanjeev Khanna. New trade-offs for fully dynamic matching
via hierarchical edcs. In Proceedings of the 33rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 3529–3566, 2022. ↑1, ↑2, ↑24

[BKM+22] Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranu-
rak, and Uri Stemmer. Dynamic algorithms against an adaptive adversary: Generic
constructions and lower bounds. In Proceedings of the 54th Annual ACM Symposium
on Theory of Computing (STOC), pages 1671–1684, 2022. ↑1

[BLM20] Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni. Fully dynamic matching: Beat-
ing 2-approximation in ∆ǫ update time. In Proceedings of the 31st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2492–2508, 2020. ↑1

[BNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic
matrix inverse: Improved algorithms and matching conditional lower bounds. In
Proceedings of the 60th Symposium on Foundations of Computer Science (FOCS),
pages 456–480, 2019. ↑1

[BS15] Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In
Proceedings of the 42nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP), pages 167–179, 2015. ↑1, ↑3, ↑18

[BS16] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approxi-
mation ratios. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 692–711, 2016. ↑1, ↑3, ↑18

[CK19] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source
shortest paths with applications to vertex-capacitated flow and cut problems. In
Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC),
pages 389–400, 2019. ↑1

[CS14] Michael Crouch and Daniel M Stubbs. Improved streaming algorithms for weighted
matching, via unweighted matching. In Proceedings of the 17th International Con-
ference on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX), page 96, 2014. ↑3

[CS18] Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Break-
ing the polynomial barrier for worst-case time bounds. In Proceedings of the 45th
International Colloquium on Automata, Languages and Programming (ICALP), pages
33:1–33:14, 2018. ↑1

[CZ19] Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected
poly-log update time. In Proceedings of the 60th Symposium on Foundations of Com-
puter Science (FOCS), pages 370–381, 2019. ↑1

30

[Dah16] Søren Dahlgaard. On the hardness of partially dynamic graph problems and connec-
tions to diameter. In Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming (ICALP), pages 48:1–48:14, 2016. ↑1, ↑18

[DP14] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching.
Journal of the ACM (JACM), 61(1):1, 2014. ↑1, ↑15

[DR98] Devdatt P. Dubhashi and Desh Ranjan. Balls and bins: A study in negative depen-
dence. Random Struct. Algorithms, 13(2):99–124, 1998. ↑19

[Edm65a] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of
research of the National Bureau of Standards B, 69(125-130):55–56, 1965. ↑1

[Edm65b] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics,
17(3):449–467, 1965. ↑1

[EHM16] Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding
large matchings in semi-streaming. In 2016 IEEE 16th International Conference on
Data Mining Workshops (ICDMW), pages 608–614, 2016. ↑3, ↑11

[EKS09] Sebastian Eggert, Lasse Kliemann, and Anand Srivastav. Bipartite graph matchings
in the semi-streaming model. In Proceedings of the 16th Annual European Symposium
on Algorithms (ESA), pages 492–503, 2009. ↑3

[ELSW13] Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds for
online preemptive matching. In Proceedings of the 30th International Symposium on
Theoretical Aspects of Computer Science (STACS), page 389, 2013. ↑3

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. Theoretical Computer Science
(TCS), 348(2-3):207–216, 2005. ↑3

[FMP+18] Matthew Fahrbach, Gary L Miller, Richard Peng, Saurabh Sawlani, Junxing Wang,
and Shen Chen Xu. Graph sketching against adaptive adversaries applied to the
minimum degree algorithm. In Proceedings of the 59th Symposium on Foundations of
Computer Science (FOCS), pages 101–112, 2018. ↑1

[FMU22] Manuela Fischer, Slobodan Mitrović, and Jara Uitto. Deterministic (1 + ǫ)-
approximate maximum matching with poly (1/ǫ) passes in the semi-streaming model
and beyond. In Proceedings of the 54th Annual ACM Symposium on Theory of Com-
puting (STOC), pages 248–260, 2022. ↑3

[FS22] Moran Feldman and Ariel Szarf. Maximum matching sans maximal matching: A new
approach for finding maximum matchings in the data stream model. In Proceedings
of the 25th International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), 2022. ↑3

[GKK09] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in O(n1.5)
time in regular bipartite graphs. arXiv preprint arXiv:0902.1617, 2009. ↑3

[GKK10] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings via uniform
sampling in regular bipartite graphs. ACM Transactions on Algorithms (TALG),
6(2):27, 2010. ↑3

31

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and
streaming complexity of maximum bipartite matching. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 468–485, 2012.
↑3

[GKK13] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in O(n log n)
time in regular bipartite graphs. SIAM Journal on Computing (SICOMP), 42(3):1392–
1404, 2013. ↑3

[GP13] Manoj Gupta and Richard Peng. Fully dynamic (1 + ǫ)-approximate matchings. In
Proceedings of the 54th Symposium on Foundations of Computer Science (FOCS),
pages 548–557, 2013. ↑1, ↑4, ↑17

[GSSU22] Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Main-
taining an edcs in general graphs: Simpler, density-sensitive and with worst-case time
bounds. Proceedings of the 5th Symposium on Simplicity in Algorithms (SOSA), pages
12–23, 2022. ↑1, ↑3, ↑18

[GW19] Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming (2+ǫ)-
approximate matching. In Proceedings of the 2nd Symposium on Simplicity in Algo-
rithms (SOSA), 2019. ↑3

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In Proceedings of the 47th Annual ACM Sym-
posium on Theory of Computing (STOC), pages 21–30, 2015. ↑1, ↑18

[Kap13] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1679–1697, 2013. ↑3

[Kap21] Michael Kapralov. Space lower bounds for approximating maximum matching in the
edge arrival model. In Proceedings of the 32nd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1874–1893, 2021. ↑3

[Kis22] Peter Kiss. Improving update times of dynamic matching algorithms from amortized
to worst case. Proceedings of the 13th Innovations in Theoretical Computer Science
Conference (ITCS), pages 94:1–94:21, 2022. ↑1, ↑3, ↑4, ↑18

[KMM12] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in
semi-streaming with few passes. In Proceedings of the 15th International Conference
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
pages 231–242, 2012. ↑3, ↑5, ↑21

[KN21] Christian Konrad and Kheeran K Naidu. On two-pass streaming algorithms for max-
imum bipartite matching. In Proceedings of the 24th International Conference on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
19:1–19:18, 2021. ↑2, ↑3, ↑7

[Kon18] Christian Konrad. A simple augmentation method for matchings with applications to
streaming algorithms. In Proceedings of the 43rd International Symposium on Math-
ematical Foundations of Computer Science (MFCS), 2018. ↑2, ↑3

32

[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum
conjecture. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1272–1287, 2016. ↑1

[KT17] Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few
more passes over graph streams. In Proceedings of the 20th International Conference
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
2017. ↑3

[Kuh55] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955. ↑1

[LMSVW22] Hung Le, Lazar Milenković, Shay Solomon, and Virginia Vassilevska Williams. Dy-
namic matching algorithms under vertex updates. In Proceedings of the 13th Innova-
tions in Theoretical Computer Science Conference (ITCS), 2022. ↑1, ↑2

[McG05] Andrew McGregor. Finding graph matchings in data streams. In Proceedings of the
8th International Conference on Approximation Algorithms for Combinatorial Opti-
mization Problems (APPROX), pages 170–181. 2005. ↑3

[NO08] Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In Proceedings of the 49th Symposium on Foundations of Computer
Science (FOCS), pages 327–336, 2008. ↑3

[NS17] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with
worst-case update time: adaptive, las vegas, and O(n1/2−ε)-time. In Proceedings of the
49th Annual ACM Symposium on Theory of Computing (STOC), pages 1122–1129,
2017. ↑1

[OR10] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small
vertex cover. In Proceedings of the 42nd Annual ACM Symposium on Theory of Com-
puting (STOC), pages 457–464, 2010. ↑1

[ORRR12] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal
sublinear-time algorithm for approximating the minimum vertex cover size. In Pro-
ceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1123–1131, 2012. ↑3

[PR07] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear
time and a connection to distributed algorithms. Theoretical Computer Science (TCS),
381(1-3):183–196, 2007. ↑3

[PS16] David Peleg and Shay Solomon. Dynamic (1 + ǫ)-approximate matchings: a density-
sensitive approach. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 712–729, 2016. ↑1, ↑5

[PS18] Ami Paz and Gregory Schwartzman. A (2 + ǫ)-approximation for maximum weight
matching in the semi-streaming model. ACM Transactions on Algorithms (TALG),
15(2):18, 2018. ↑3

[RSW22] Mohammad Roghani, Amin Saberi, and David Wajc. Beating the folklore algorithm
for dynamic matching. In Proceedings of the 13th Innovations in Theoretical Computer
Science Conference (ITCS), pages 111:1–111:23, 2022. ↑1

33

[San07] Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
118–126, 2007. ↑1

[Sol16] Shay Solomon. Fully dynamic maximal matching in constant update time. In Pro-
ceedings of the 57th Symposium on Foundations of Computer Science (FOCS), pages
325–334, 2016. ↑1

[Viz64] Vadim G Vizing. On an estimate of the chromatic class of a p-graph. Diskret analiz,
3:25–30, 1964. ↑16

[Waj20] David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proceed-
ings of the 52nd Annual ACM Symposium on Theory of Computing (STOC), pages
194–207, 2020. ↑1, ↑2, ↑16, ↑17, ↑27, ↑28

[YYI12] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approxi-
mation algorithms for maximum matchings and other optimization problems. SIAM
Journal on Computing (SICOMP), 41(4):1074–1093, 2012. ↑3

34

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Further Related Work
	1.3.1 Concurrent work

	2 Preliminaries
	2.1 Previous building blocks
	2.2 New algorithmic primitive: Robust Approximately Maximal Matchings

	3 Algorithms on Bipartite Graphs
	3.1 Two-Pass Streaming Algorithm
	3.2 Dynamic Algorithm

	4 Algorithms on General Graphs
	4.1 Two-Pass Streaming Algorithm
	4.2 Dynamic Algorithms
	4.2.1 Breaking the barrier of two in polylog time
	4.2.2 New time/approximation tradeoffs

	5 AMMs against Adaptive Adversaries
	5.1 From kernels to AMMs
	5.2 Periodic kernels and AMMs
	5.3 Robust dynamic AMMs

	6 Conclusion and Future Directions
	A Proofs of basic building blocks
	A.1 Proof of Proposition 2.1
	A.2 Proof of Proposition 2.6

	B Proof of Lemma 4.6
	B.1 Building blocks
	B.2 The algorithm

	C Omitted Proofs from sec:algo-general-streaming
	D Omitted Proofs of sec:adaptive

