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Abstract

In the dynamic linear program (LP) problem, we are given an LP undergoing updates and we need to
maintain an approximately optimal solution. Recently, significant attention (e.g. [Gupta et al. STOC’17;
Arar etal. ICALP’ 18, Wajc STOC’20]) has been devoted to the study of special cases of dynamic packing
and covering LPs, such as the dynamic fractional matching and set cover problems. But until now, there
is no non-trivial dynamic algorithm for general packing and covering LPs.

In this paper, we settle the complexity of dynamic packing and covering LPs, up to a polylogarithmic
factor in update time. More precisely, in the partially dynamic setting (where updates can either only
relax or only restrict the feasible region), we give near-optimal deterministic e-approximation algorithms
with polylogarithmic amortized update time. Then, we show that both partially dynamic updates and
amortized update time are necessary; without any of these conditions, the trivial algorithm that recom-
putes the solution from scratch after every update is essentially the best possible, assuming SETH.

To obtain our results, we initiate a systematic study of the multiplicative weights update (MWU)
method in the dynamic setting. As by-products of our techniques, we also obtain the first online (1 + €)-
competitive algorithms for both covering and packing LPs with polylogarithmic recourse, and the first
streaming algorithms for covering and packing LPs with linear space and polylogarithmic passes.
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1 Introduction
Packing and covering linear programs (LPs) are defined as follows:

Covering LP C:  min {c¢'z | Az > b},
z€RY

Packing LPP:  max {b'y | ATy < ¢},
ye[RgLO

where A € RT;", b € RZ,,c € RZ, contain only non-negative entries. The two LPs are duals to each
other, so we let OPT denote their shared optimum. We say that x is an e-approximation for C if Az > b
and ¢' 2 < (1 + ¢)OPT. Similarly, y is an e-approximation for P if ATy < cand b’y > OPT/(1 +¢).

Packing-covering LPs have a wide range of applications in various different contexts, such as in approx-
imation algorithms [LLN93, Tre98], flow control [BBR04], scheduling [PST95], graph embedding [PST95]
and auction mechanisms [ZNO1]. Thus, a long line of work is concerned with the study of efficient algo-
rithms for packing-covering LPs [ZO15, AZO19, WRM15, KY 14, Youl4, CQ18, Qua20], and currently, it
is known how to compute e-approximation in O(N/e) time [AZO19, WRM15]. Here, N denotes the total
number of non-zero entries in the constraint matrix.'

In this paper, we consider a very natural dynamic setting, where an adversary can update any entry of
A, b or c. After each update, the goal is to obtain a new e-approximation quickly. Although this question
has been studied since the early 80’s [OvL80, OvL81, Epp91, AEM92, Mat93], all the existing dynamic
algorithms can only handle a very small number of variables such as 2 or 3 (but they work for general LPs).
In contrast, significant attention [ACC ™18, BHN19, BK21, GKKP17, Waj20] has recently been devoted to a
special case of dynamic packing and covering LPs: the dynamic fractional matching and set cover problems.
These new algorithms, however, are highly specific and do not extend to general packing-covering LPs. For
the latter, the current best dynamic algorithm just recomputes a solution from scratch after each update.

1.1 Our Results

We resolve the complexity of dynamic algorithms for general packing-covering LPs, up to a polylogarithmic
factor in the update time. The following are the two key take-home messages from this paper. (1) In
partially dynamic settings, there are deterministic e-approximation algorithms for this problem that have
polylogarithmic amortized update times. (2) Both partially dynamic updates and amortized update times are
necessary: without any of these conditions, the trivial algorithm which recomputes an e-approximation to
the input LP from scratch is essentially the best possible. Below, we explain our results more formally.

We say an update is relaxing C (and restricting P) if u increases an entry of A or decreases an entry
of b, c. Note that OPT can only decrease due to a relaxing update. In contrast, an update is restricting C
(and relaxing P) if it decreases an entry of A or increases an entry of b,c. A sequence of updates to an
LP is partially dynamic if either {all of them are relaxing} or {all of them are restricting}. Otherwise, the
sequence of updates is fully dynamic. Let N denote the maximum number of non-zero entries in the input
LP throughout the sequence of updates. Our main algorithmic result is the following:

Theorem 1.1. We can deterministically maintain an e-approximation to a packing-covering LP going
through t partially dynamic updates in O (N /&3 +t/ e) total update time. Thus, the amortized update

time of our algorithm is O(1/€*).2

'O(-) notation hides a poly (log( NWY) factor, where W is the ratio between the largest and smallest nonzero entries in the LP.
2The total update time is defined to be the preprocessing time plus the total time taken to handle all updates. If an algorithm has
total update time O(N7; + t72), then its amortized update time is O (max {71, 72}).



By generality of packing and covering LPs, several applications immediately follow. For example, The-
orem 1.1 implies the first decremental (1 + €)-approximation algorithm for bipartite maximum matching
in weighted graphs in poly(log(n)/e) amortized update time. Previously, the best known algorithms ei-
ther took Q(y/m) update time [GP13] or only worked for unweighted graphs [BGS20, JJIST22, ABD22].
Theorem 1.1 also implies near-optimal incremental/decremental algorithms for maintaining near-optimal
fractional solutions for set covers and dominating sets [GKKP17, HIPS19]. Generally, Theorem 1.1 reduces
every dynamic problem that can be modeled as a packing/covering LP to a dynamic rounding problem.
Since rounding LPs is one of the most successful paradigms in designing approximation algorithms in the
static setting, we expect that our result will find many other future applications in dynamic algorithms.

We complement Theorem 1.1 by giving strong conditional lower bounds. Assuming SETH,? we show
that a N°()-approximation algorithm which either handles fully dynamic updates or guarantees worst-case
update time, must have an update time of (N 1_0(1)). As we can solve the problem from scratch after every
update in O(N ) time, our lower bound rules out any non-trivial dynamic algorithm in these settings.

Theorem 1.2. Under SETH, there exists a 8 = N°Y) such that any dynamic algorithm A that maintains a
B-approximation to the optimal objective of a packing or covering LP P satisfies the following conditions.

o If P undergoes fully dynamic updates, then A must have Q.(N 1_0(1)) amortized update time.
o If P undergoes partially dynamic updates, then A must have QQ(N 1_0(1)) worst-case update time.

Our lower bounds hold even if the dynamic algorithm only implicitly maintains the solution, meaning
that it only maintains an approximation to the value of OPT. Furthermore, they hold even if all the updates
are on the entries of the constraint matrix A. Thus, Theorem 1.1 and Theorem 1.2 essentially settle the
complexity of the dynamic packing-covering LP problem, up to a polylogarithmic factor in update time.

1.2 Techniques

To prove our main result (Theorem 1.1), we initiate a systematic study of the multiplicative weight update
(MWU) framework in the dynamic setting. MWU is one the most versatile iterative optimization framework
in theoretical computer science. There is a big conceptual barrier, however, in extending this framework to
the dynamic setting. We start by explaining how to overcome this conceptual barrier.

1.2.1 MWU in the dynamic setting: The main challenge

Like other iterative methods, a MWU-based algorithm builds its solution x in iterations. At each iteration ¢,
the solution () heavily depends on the previous solution z(*~1). So when we update our original input, we
expect that the update affects the solution z(!) from the first iteration. Then, the change in z(1) affects 2(?),
which in turn affects z(®) and so on. There are at least logarithmic many iterations and eventually the final
solution might completely change. Intuitively, this propagation of changes suggests that using MWU in the
dynamic setting is a dead end. How do we overcome this strong conceptual barrier?

As a take-home message, we show that for MWU there is no propagation of changes under partially
dynamic updates! To be a bit more concrete, suppose that the current solution is 2®) and now the adversary
updates the input. As long as the updates are partially dynamic, we can argue that all the previous solutions
=M 20D 2® remain valid with the new input. Our only task is to compute a valid 2t for the
updated input, which is much more manageable. To understand why this is possible, we now explain how
MWU works at a high level.

3The Strong Exponential Time Hypothesis [[PZ01] says that there is no algorithm for solving k-CNF SAT with n variables for
all k in 2"~ 9™ time.



The explanation below will be generic (i.e., it will hold beyond packing-covering LPs). But for concrete-
ness, consider a feasibility problem where given a matrix C' € {0,1}™*", we need to find z € RZ, where
1"z < 1and Cz > 1. Its dual problem is to find y € RZ, where 1"y > 1and CTy < 1. MWU-based
algorithms can be viewed as two-player games where the two players, which we call a Whack-a-Mole player
and a Greedy player, together maintain a pair (z, y) using the following simple outline:

1. Whack-a-Mole player builds a multiplicative solution: Start with z = 1/n. If x violates some
constraint ¢ € [m] (i.e. Cjz < 1), then multiplicatively update x according to i (i.e. z; < (1 + €)x;
for all j where Cj; = 1). We refer to this operation as whacking constraint <. Whenever x satisfies all
constraints, terminate the game. Basically, this player keeps “whacking” violated constraints.

2. Greedy player builds an additive solution: Start with the zero vector y = 0. If there exists a
cheap coordinate ¢ € [m], then additively increment y; by one. (In our case, coordinate ¢ is cheap
iff Cjz < 1.)* Terminate the game after 7" rounds, for some 7', and return the average y* = y/T.
Basically, this player keeps greedily “incrementing” in a cheap direction.

The game terminates when: either (1) = satisfying all constraints, or (2) via the regret minimization property
of MWU [AHK 2], we can show that y* is approximately feasible (i.e., 1y* = 1 and C'Ty* < (1 + €)1).

Coming back to the existing literature on MWU, we observe that the known algorithms can be classified
into one of two categories. The algorithms in the first category take the greedy player’s perspective and
build their solutions y additively, while updating the weight z multiplicatively as a helper. These include
algorithms for flow-related problems [Fle00, GK02, GKO07], packing-covering LPs [PST95, KY 14, Youl4,
CQ18, Qua20], or constructions of pseudorandom objects [Bsh16]. In contrast, the algorithms in the second
category take the whack-a-mole player’s perspective and build their solutions = multiplicatively. These
include algorithms for learning and boosting [Lit88, FS97, FS99]. The idea is also implicit in algorithms for
geometric set covers [Cla93, BG95, AP14, CH20] and explicit in algorithms for online set covers [GKL21].

Now, the high-level explanation as to why MWU works under partially dynamic updates is simple.
Suppose that the updates are restricting only. Then we take the whack-a-mole player’s perspective. All we
do is whacking violated constraints. Given an update, the constraints that we whacked in the past would
still be violated at that time because the update is restricting. So our past actions are still valid. On the other
hand, if the updates are relaxing only, then we take the greedy player’s perspective. Given a relaxing update,
all the cheap directions that we incremented in the past remain cheap at the present moment as well. This
explains why all the past actions that we committed to are still valid. Hence, we only need to ensure that the
next action is valid with respect to the updated input.

As the reasoning above is very generic, we expect that this insight will lead to further applications. For
now, we discuss how we efficiently carry out this approach for packing-covering LPs.

1.2.2 Width-Independent Packing Covering LP Solvers via Black-box Regret Minimization

Existing static e-approximation algorithms for packing-covering LPs can be grouped into two types: width-
dependent and width-independent solvers. The width-dependent solvers have running time depending on
A - OPT, where \ is the largest entry in the LP (e.g. O(N(@)Q) [PST95] and O(NMZET) [AHK12]).
While the analysis in [PST95] is adhoc, [AHK12] gives a very insightful explanation as to how the guarantee
of these solvers follows in a black-box manner from the well-established regret minimization property of
MWU in the experts setting. This undesirable dependency on AOPT in the runtime led to an extensive line
of work on width-independent solvers [ZO15, KY 14, Youl4, CQ18, Qua20]. These stronger solvers run in
O(N/ poly(e)) time, which is independent of AOPT, and many of them are based on MWU.

*For readers familiar with the MWU literature, this is the “oracle” problem. Given weight z, we need to find a 3y’ which satisfies
the “average constraint” ' C'" 3y’ < 2" 1. Then, we sety < y + 1/



There is, however, one curious and unsatisfactory aspect in the literature on width-independent LP
solvers. Namely, each of these MWU-based algorithms requires a separate and fine-tuned analysis involving
calculations that resemble the proof of the regret minimization property of MWU. But can we just apply the
regret bound of MWU in a blackbox manner while analyzing a width-indepdendent LP solver?

We design a new static algorithm for packing-covering LPs that answers this question in affirmative. To
the best of our knowledge, it is the first width-independent near-linear-time LP solver whose analysis follows
from a black-box application of the regret bound for MWU. This is explained in details in Section 2.1.
Moreover, the algorithm is very intuitive and its high-level description is as follows:

There are O(log(n)/€?) phases. During each phase, we loop over the constraints: if constraint
7 1s violated, then we “whack’ it until it is satisfied and move on to the next constraint ¢ + 1.
Whenever 1"z > (1 + ¢), we start the next phase and normalize = so that 17z = 1. If we
finish the loop, then we return x as an e-approximation to the primal. After the last phase, we
are guaranteed to obtain a dual e-approximation y certifying that there is “almost” no feasible
primal solution, i.e., no x where 1Tz <1land Cz > (I+e)-1.

Henceforth, we refer to this algorithm as the whack-a-mole MWU algorithm.> The algorithm takes near-

linear time because it has few phases and each phase requires only one-pass scan. In more details, we refer to
the operation of “whacking constraint ¢ until it is satisfied” as enforceing constraint i. Enforcing a constraint
1 can be done via binary search in O(NZ) time, where V; is the number of non-zero entries in constraint 7. As
each constraint is scanned and enforced once per phase, the total running time is O(3_ N;/e?) = O(N/€?).
The simplicity of this algorithm not only leads us to efficient dynamic implementations (see Sec-
tion 1.2.3), but also efficient streaming algorithms and online algorithms with recourse (see Section 1.3).

1.2.3 Dynamic Implementation

We can extend our whack-a-mole MWU algorithm from Section 1.2.2 to handle restricting updates, in the
following natural manner. Suppose that the algorithm obtained a feasible solution = (because x satisfies all
constraints during the one-pass scan). Now, consider a restricting update to constraint 7, say to an entry Cj;.
We just need to check whether = violates constraint ¢ (i.e., if Cyz < 1). If yes, then we enforce constraint ¢
(i.e., whack it until it is satisfied). No new constraint gets violated due to this enforcement. As in the static
setting, we start the next phase whenever 1"z > (1 + ¢). We proceed like this until we obtain a feasible
solution z. Once the algorithm concludes that there is almost no feasible solution, then we are done because
this will remain the case after future restricting updates. The correctness follows from the static algorithm.

We have to overcome an issue while analyzing the total update time: Each constraint is not enforced
once per phase anymore (because constraint ¢ can be updated repeatedly within a phase). Accordingly, we
strengthen our analysis to show that, even under restricting updates, each constraint is still enforced O(l /€%)
times. But the algorithm remains the same. This leads to a total update time of O(N/e? + t), for t updates.

Our dynamic whack-a-mole MWU algorithm applies to covering LPs under restricting updates, and by
duality, to packing LPs under relaxing updates. There is a technical challenge, however, that prevents us
from extending this approach to packing (resp. covering) LPs under restricting (resp. relaxing) updates.

To handle this case, we instead consider another static O(N/e?)-time algorithm that take the greedy
player’s perspective [Youl4, Qua20]. We call it the greedy MWU algorithm. Given a covering LP (or
even a mixed packing-covering LP), this greedy MWU algorithm can naturally handle relaxing updates (as

3Qur algorithm resembles the whack-a-mole-based algorithms for computing geometric set covers [Cla93, BG95, AP14, CH20].
However, these previous algorithms give O(1)-approximation, are specifically described for set covers, and use adhoc calculation
related to MWU. Thus, our whack-a-mole MWU algorithm refines their approximation, generalizes their applicability, and modu-
larizes their analysis. Furthermore, for readers familiar with the algorithms of [ Youl4, Qua20], our whack-a-mole MWU algorithms
can be interpreted as implementing their algorithms from the whack-a-mole player’s perspective.



discussed in Section 1.2.1). Using similar ideas, we show how to dynamize it with only polylogarithmic
overhead in the total update time. Therefore, we obtain algorithms for covering LPs under relaxing updates,
and by duality, for packing LPs under restricting update via duality.®

Discussion on the Simplicity of Our Techniques. We show how to seamlessly use the MWU framework to
obtain near-optimal partially dynamic algorithms for packing-covering LPs. We view the simplicity of our
approach as an important merit of this paper. Despite its simplicity, our result implies immediate applica-
tions such as a near-optimal decremental maximum weight matching algorithm, while previous algorithms
[BGS20, JJST22] for this problem require more involved arguments and work only on unweighted graphs.

1.3 By-Products of Our Techniques

Our techniques turn out to have implications beyond dynamic algorithms for packing-covering LPs.

Online Algorithms with Recourse. The online covering LP problem was introduced in the influential work
of Buchbinder and Naor [BN09a]. This is a fundamental problem in the literature on the online primal-dual
method; with applications in online set cover, routing, ad-auctions, metrical task systems and many other
settings (see the book [BN"09b]). Several variants of the problem are studied in [GN12, ABFP13, GKL.21].

In this problem, we have a covering LP C with m constraints and n variables. The constraints of C
arrive in an online fashion one after another, and we need to maintain a solution to C. Crucially, the values
of the variables can only increase through time (i.e., any decision made cannot be retracted). An online
covering LP algorithm is c-competitive if it maintains a solution to C whose cost is always at most .- OPT.
Buchbinder and Naor gave a tight © (log n)-competitive algorithm for this problem.

Can we beat the lower bound on competitive ratio for a given problem by allowing some amount of
recourse? Here, recourse is defined to be the number of times the algorithm “retracts” its decision. An
influential line of work in online algorithms [BHR18, GGK13, GK14, GKS14, GKKP17] has been devoted
towards answering this question for various fundamental problems. For online covering LPs, recourse equals
the number of times the value of any variable is decreased. Although covering LPs play a central role
in online algorithms, until now it was not known whether we can beat the (logn) lower bound on the
competitive ratio of this problem if we allow for small recourse. We answer this question in the affirmative.

Theorem 1.3. There is a (1-+¢)-competitive algorithm for online covering LPs with O(nlog(n)log(nW)/e3)
total recourse. In fact, in this algorithm each variable incurs at most O(log(n)log(nW)/e®) recourse.

Note that the recourse bound is completely independent of the number of constraints. Theorem 1.3
follows almost immediately from our whack-a-mole MWU algorithm from Section 1.2.2. Interestingly,
our algorithm can be viewed as a small adjustment to the well-known O(log n)-competitive algorithm of
[BN09a]. To see this, suppose that we know OPT by guessing. Then here is the description of our algorithm.

Run the algorithm of [BN09a]. Whenever the objective of the solution exceeds (1 + ¢)OPT,
scale down the solution by a factor of (1 + ¢) and continue.

Our argument shows that we will never scale down too many times. The algorithm is clearly (1 + €)-
competitive. In the paper, we also show similar (1 + €)-competitive algorithm for online packing LPs.
Curiously, online algorithms without recourse of this problem is not known.’

®Since the greedy MWU algorithm can handle mixed packing-covering LPs under relaxing updates, via duality this implies
algorithms for handling restricting updates to both covering and packing LPs. So strictly speaking, our dynamic whack-a-mole
MWU algorithm is subsumed by the dynamic greedy MWU algorithm. Nevertheless, we present the dynamic whack-a-mole MWU
algorithm as it is simpler to understand and has more modular analysis.

"Many papers in online algorithms consider a problem where the variables of a packing LP are revealed one by one, which is a
dual of the online covering LP problem. We consider a different setting, where the packing constraints arrive one after another.



Streaming algorithms. Our whack-a-mole MWU algorithm also works in the streaming setting. When the
rows of the constraint matrix arrive one by one, we obtain an e-approximation for both packing and covering
LPs using O(n) space and O(1/¢3) passes. In contrast, when the columns of the constraint matrix arrive
one by one, we get the same result but with a space complexity of O(n + m). These give the first streaming
algorithms for general packing covering LPs. Previous algorithms in the literature worked only for special
cases such as fractional set cover [IMR " 17] and fractional matching [AG11, AG18, AJJT22].

Mixed Packing-Covering LPs. In a mixed packing-covering LP P (or positive LP for short), we are given
A, € [R;nSX”, b. € [Rgg and A, € [R;ngxn, b, € [R;ng, and we need to find z € R, such that Acx > b. and
Apx < by,. This is a generalization of both packing and covering LPs. An x is an e-approximation to this
positive LP if A,z > b./(1 + €) and A,z < (1 + €)b,. Our dynamic greedy MWU algorithm can handle

positive LPs under relaxing updates.

Theorem 1.4. We can deterministically maintain an e-approximation to a positive LP undergoing t relaxing
updates in O (N /e3 4t/ e) total update time. Hence, the amortized update time of our algorithm is O(1/¢3).

Theorem 1.4 immediately gives the following natural applications captured by mixed packing-covering
LPs. For the well-studied load balancing problem (e.g., [HLLT06, ABL20]), we obtain a near-optimal decre-
mental algorithm for maintaining (1 + €)-approximate fractional assignments, where each update deletes
a job. By duality, for the dynamic densest subhypergraph problem [HWC17, BBCG22], this implies a
near-optimal decremental algorithm for maintaining (1 + €)-approximation, where each update deletes a
hyperedge. The near-optimal algorithms for both problems were not known before.

Finally, we leave the question of designing a dynamic algorithm for positive LPs under restricting up-
dates as an interesting open problem.

1.4 Roadmap for the Rest of the Paper

In Section 2, we present our whack-a-mole MWU algorithm and its extensions to dynamic, streaming and
online settings. Section 3 gives an overview of the static greedy MWU algorithm for positive LPs [Youl4,
Qua20], and then explains how we extend this algorithm to the setting where the input LP undergoes relaxing
updates. Finally, in Section 4, we present our conditional lower bounds for dynamic packing-covering LPs.

If the reader wishes to treat this as an extended abstract, then we recommend reading until the end of
Section 2.2 as that contains the main technical result of this paper.

2 The Whack-a-Mole MWU Algorithm

This section focuses on the whack-a-mole MWU algorithm. We start by considering the following problem.

Problem 2.1. Given a matrix C € [0, \|™*™ where X > 0, either return a vector v € R% with 17z <
1+0(e) and Cx > (1-0(¢))-1, or return avector y € RZ with 1Ty >1-0(e)and CTy < (1+0(e))-1.

Problem 2.1 corresponds to the following covering LP: Minimize 1"z, s.t. Cz > 1 and z € R%,. We
have to either return an approximately feasible solution to this covering LP with objective < 1 4 O(e),
or return an approximately feasible solution to the dual packing LP with objective > 1 — ©(¢). In Sec-
tions 2.1, 2.2, 2.3 and 2.4, we respectively show that our MWU algorithm solves Problem 2.1 in static,
dynamic, streaming and online settings. Subsequently, in Section 2.5, we explain how we can compute an
e-approximate optimal solution to a general packing-covering LP if we have an algorithm for Problem 2.1.

Throughout this section, an index i € [m] (resp. j € [n]) refers to a row (resp. column) of the matrix
C, and Cj; € [0, \] denotes the entry corresponding to the it" row and j*" column of C. Furthermore, the
symbol vy, denotes the k" coordinate of a vector v € R”, where k € [n)].



2.1 Static Whack-a-Mole MWU Algorithm

We now present the whack-a-mole MWU algorithm for Problem 2.1 in the static setting. We describe the
basic template behind the algorithm in Section 2.1.1. In Section 2.1.3, we show how to implement this basic
template in near-linear time.

2.1.1 The Basic Template

O1. Define T' < ’\—122(1), and two vectors 21, 2! € RZ, where £! + 1 and 2! H_;;H_l
02. ForRt=1TOT"
03. EITHER
04. Conclude that (C - z"), > 1 — e forall i € [m].
05. Terminate the FOR loop, and RETURN (2!, NULL).
06. Or
07. Find a covering constraint i; € [m] such that (C - :L't)it <L
08. 2 < WHACK (i, 21). // See Figure 2.
t+1
09. ot H;C’STM
10. Let y* € A™ be the vector where (yt)z.t =land (y'), = Oforalli e [m]\ {i}.
Hooy e (1T) 3,0y
12. RETURN (NULL, y).

Figure 1: The Whack-a-Mole MWU Algorithm

1. FOR ALL j € [n]:
2 e (1+e-G) iy

3. RETURN 2

Figure 2: WHACK(i, Z).

The algorithm is described in Figure 1 and Figure 2. It maintains a vector & € R%, where Z; denotes
the weight associated with a variable j € [n] in the covering LP, and the normalized vector = := &/ |||,
This ensures that 1" - 2 = 1. The algorithm runs in 7' = X In(n)/¢? iterations, where 0 < € < 1/2.

Let 2 and x! respectively denote the status of Z and x at the start of iteration ¢ € [T'] of the main FOR
loop in Figure 1. Before the very first iteration, we initialize &' « 1. Subsequently, during any given
iteration ¢ € [T, the algorithm branches into one of the following two cases.

Case (1). Tt observes that Cz* > (1—e)-1 and returns (z*, NULL). In this case, 2* € RZ is an approximately
feasible solution to the covering LP, with objective 1" z! = 1.

Case (2). Tt identifies a violated covering constraint i; € [m| with (C’xt)z.t < 1. It then whacks constraint

it, by setting & < (1 +e€- C;\” ) - &; for all j € [n], and accordingly updates the normalized vector x.

Note that this step increases the relative importance (in the solution z*) of the coordinates j € [n] that have
large Cj,; values. Thus, intuitively, whacking a violated covering constraint makes progress towards making
the solution 2! feasible for the covering LP. We let 4* € A™ denote the indicator vector for the covering
constraint 4; € [m] that gets whacked.



After T iterations, the algorithm returns (NULL,y), where y is the average of the vectors y!,--- 4.
Clearly, we have 17y = 1. The next lemma shows that y is an approximately feasible solution to the
dual packing LP.3 Its proof appears in Section 2.1.2.

Lemma 2.2. Suppose that the algorithm in Figure I returns (NULL, ) in step (12). Then C' "y < (1-+4e€)-1

Theorem 2.3. The algorithm in Figure I either returns an x* € R2 3o With 172t =1and Ozt > (1 —¢) -1,
oritreturns ay € RY, with 1Ty =1and CTy < (1+4e)-1

Proof. Follows from Lemma 2.2 and the preceding discussion. U

2.1.2 Proof of Lemma 2.2

We start by recalling the experts setting [AHK12]. We have n experts {1,...,n}, who participate the
following process that goes on for 7" rounds. At the start of round ¢t € [T], we have a weight vector
wt € RZ, where (wt)j denotes the weight associated with expert j € [n]. Initially, before round 1 begins,

we set w! = 1. These weights define a distribution D! over the experts, where the probability of picking

t

expert j € [n] is given by |(|wtﬁ At the start of round ¢ € [T'], our algorithm picks an expert j € [n] from
this distribution D. Subsequently, nature reveals a payoff vector p* € [—1,1]", where (pt)j € [-1,1] is
the payoff for expert j € [n] in round ¢. Based on these payoffs, the algorithm then updates the weights of
the experts for the next round, by setting w;*l — (1 +€- (pt)j> . w;i forall j € [n].

The lemma below, which is identical to Theorem 2.5 in [AHK12], bounds the total expected payoff
obtained by the algorithm in this setting, in terms of the total payoft obtained by any fixed expert.

Lemma 2.4. For all experts j € [n], we have:
wt

0" = 20 - e [ -

t=1 t=1 t=1

We now map the whack-a-mole algorithm to the experts setting as follows. Each covering constraint
j € [n] corresponds to an expert, each iteration of the FOR loop in Figure 1 corresponds to a round, the
vector 2! corresponds to the weight vector w' at the start of round ¢ € [T, and finally, the payoff for an
expert j € [n] inround ¢ € [T is given by ( ) = (1/A) - Ci, 5.

Since Cj, ; € [0, A], we have ‘ ‘ = j forall j e [n],t € [T]. Thus, Lemma 2.4 implies that:
d T 4 In(n)
E (p") -zt > E (I—e)- (pt)j - , for all experts j € [n]. 2.1
€
t=1 t=1

Diving both sides of the above inequality by 7’, and then rearranging the terms, we get:

—€) a ¢ n()
Z(p e-T

J
t=1 t:l

A
el

, for all experts j € [n]. (2.2)

We next upper bound the right hand side (RHS) of (2.2). Since the algorithm picks a violated covering
constraint to whack in each round, we have: (plt)—r szt = (1/)N) - (C’xt)it < (1/)). Taking the average of

8We remark here that this basic algorithm will work even if the matrix C' had negative entries (i.e., if we had C' € [\, A7),
A2 1In(n)

provided we increase the number of iterations by setting 7' = =—



this inequality across all the 7" rounds, we get: (1/T) - 3.1, (pt)T a2t < (1/)). Since T = Aln(n) /e
we derive the following upper bound on the RHS of (2.2).

T
¢ . In(n
IDNGNER O

t=1

“(1+4e). (2.3)

y|)—~

We now focus our attention on the left hand side (LHS) of (2.2). Fix any expert j € [n]. We first express
the payoff obtained by this expert at round ¢ € [T'] in terms of the vector y¢, and get: (pt)j =1-Cj =
% . (C’Tyt)j. Since y = % . Zle y', the average payoff for the expert j across all the T rounds is given by:

T

Sk d W), -1 ),

t=1 t=1

S| =

From (2.2), (2.3) and (2.4), we get:
(1—¢) T 1 T ;
o C'y .g)\-(1+e), and hence (C''y) < (1+4e)forallj € [n].
J J
The last inequality holds since € < 1/2. This concludes the proof of Lemma 2.2.

2.1.3 A Near-Linear Time Implementation

0l. 2! «+ 1,t < 1,and T < Aln(n)/e>.

02. Loop

03, W |#],.

04. FORALL i € [m]:

05. IF <C’ : IW> <1 ¢/2 THEN

06. § « ENFORCE(i, ¢, &', W). // See Figure 4.

07. t<t+9.

08. IFt =T, THEN

09. Terminate the LOOP and return (NULL, ), where y := (1/T) - S25_, "
10. IF ||2t]], > (1 —¢/2)~1 - W, THEN

11. GO TO step (03). // Initiate a new phase.
12.  Terminate the LOOP and return (zf, NULL), where z* : = ng

Figure 3: An Implementation of the Whack-a-mole MWU Algorithm.

We now show how to implement the whack-a-mole MWU algorithm from Section 2.1.1 in near-linear
time. This implementation is outlined in Figure 3, and is based on two key ideas. (1) We split up the
working of the Whack-a-mole MWU algorithm into phases, and ensure that within any given phase the total
weight thH of all the experts (see the discussion in the beginning of Section 2.1.2) changes by at most a
(1 —¢/2)~! multiplicative factor. (2) The weight of an expert j € [n] can only increase during the course of
the algorithm. Because of this, within a given phase we only need to consider each constraint at most once,
provided upon considering the constraint we keep repeatedly whacking it until it gets satisfied.

1 Throughout the phase, the value of ¥ will not change
and it will serve as an estlmate of the total welght of the experts. Since W remains within a multlphcatlve
(1 —¢/2)~* factor of Haj , the vector W remains a good estimate of the actual solution x! :=

IIxtlh



1. § < STEP-SIZE (i, t, 2!, W). // See Figure 5.
2.ForRt =tto(t+0—1):

3. &'t WHACK(i, &). /I See Figure 2.
4, Ty — 1.

5. Let y* € A™ be the vector where (yt'> ~=1land (yt/>

(2

_=0foralli € [m]\ {i}.

6. RETURN 9.

Figure 4: ENFORCE(i, t, 2, W).

K
1. For every integer > 1, let 2* € R%, be such that (2%); = (1 +e- C;i”) . (it)j forall j € [n].

t

2.If(C-Z;; >'<1,THEN
KA
3. 6« T —t.

4. ELSE

5. Using binary search, compute the the smallest integer 6 € [T" — ¢] such that (C’ . %) > 1
7

6. Return ¢

Figure 5: STEP-SIZE(i,t, %!, W)

During a given phase, we scan through all the covering constraints in any arbitrary order. We now
explain how to implement a typical iteration of this scan, where (say) we are considering the constraint

i € [m]. We first check if (C . %) > 1— €/2, that is, whether the constraint is approximately satisfied. If

the answer is yes, then we do nothilng with this constraint and proceed to the next iteration of the scan. In
contrast, if the answer is no, then we enforce this constraint by calling the subroutine ENFORCE(4, ¢, £¢, W).
This subroutine works as follows. It finds an integer 6 > 1 which indicates the minimum number of times
the constraint ¢ € [m] needs to be whacked before it gets satisfied, assuming that we continue to be in the
same phase even at the end of all these whacks. Constraint ¢ then repeatedly gets whacked ¢ times, and after
that we set ¢ < ¢ + J. At this point, if £ = T, then we terminate the algorithm and return a solution for
the dual packing LP, as in Section 2.1.1. Else if ||#? >0 —€/ 2)~! . W, because the total weight of the
experts increased a lot due to the previous  whacks, then we initiate a new phase.

If at the end of the scan, we observe that W is still an accurate estimate of the total weight H:i"t H , and

t._ &t
R

t < T, then we terminate the algorithm and return x as a solution to the primal covering LP.

Lemma 2.5. The procedure described in Figure 3 implements the algorithm from Section 2.1.1.

Proof. We refer to each call to WHACK (7, ') as a round (see Section 2.1.2). Both Figure 1 and Figure 3 ini-
tialize 2! < 1 and run for at most 7' = X In(n) /e rounds. We will show that the way Figure 3 implements
each round and the way it eventually returns a solution are both consistent with Figure 1.

Towards this end, first consider the scenario where the procedure in Figure 3 enforces a constraint
i € [m] at the start of a round ¢ € [T] by calling the subroutine ENFORCE(i, t, £*, W), which repeatedly
whacks the constraint § times. From Figure 4 and Figure 5, we infer that

At/
(C%) <lforallt <t <t+6—1. (2.5)

(2

Since W is the total weight of all the experts at the start of the concerned phrase, and since the weight of

10



any expert can only increase with time, we have: Hwt/ H1 > W for all ' > t. Hence, from (2.5) we get:

~t
<C’ . g;t,) < 1forallt <t <t+§—1, where ¥ = ”;TH (2.6)
v 1
This implies that the decisions to whack constraint ¢ € [m] in successive rounds ¢’ € [t,t + § — 1] are
consistent with the rule governing the whacking of constraints in Figure 1.

Next, note that after enforcing the constraint i« € [m], the procedure in Figure 3 sets t < ¢ + §. At this
point, if ¢ = T, then it decides to return the vector y := (1/7") - 23:1 yt/ as a solution to the dual packing
LP. Clearly, this decision is also consistent with steps (11) — (12) in Figure 1.

Finally, consider the scenario where the procedure in Figure 3 returns a vector 2" in round t” (see step
(12) in Figure 3). Focus on the very last phase, which spans from (say) round ¢’ to round ", where t' < t”.
Let W be the value of Hﬁ:tHl at the start of this phase. Fix any constraint ¢ € [m], which was considered
(say) at the start of round ¢; € [t', "] by the FOR loop in Figure 3. Now, there are two possible cases.

Case I: The constraint 7 did not get enforced in this phase. This happens if <C’ . %) > 1—¢€/2. Here, we
(2

. At st . . A~ . .
derive that (C’ . ﬁ/v ) > (C . %) >1- €/2, since each co-ordinate of & can only increase over time.
1 (3

Case II: The constraint ¢ got enforced in this phase, by getting repeatedly whacked J times starting from

round ¢;. Thus, we have t; + 0 < T (otherwise, the algorithm would return a dual packing solution y) and
" Gtit 5

<C’- itﬁ&)i > 1. Analogous to Case I, here we derive that <C’- ﬁ;/ >Z > <C’- W >Z >1>1—¢/2

w

To summarize, we have the following guarantee for every constraint ¢ € [m] at the start of round ¢”.

:i-t”
C T '21—6/2. 2.7)

(2

Since no new phase got initiated just before round t” (see steps (10) — (11) in Figure 3), we infer that
~t!
x

) < (1—¢€/2)~! - W. Thus, from (2.7), we get the following guarantee for every constraint i € [m].

A4

<C’ : xt”)' > <C- w—) (1—¢/2) > (1—¢/2)>>1—¢, where 2! := :EW (2.8)

¢
w

In other words, the vector 2! satisfies the inequality C - zt" > (1 — ¢€) - 1, and hence the decision to return

z!" as a solution to the covering LP is also consistent with the template described in Figure 1. O

Theorem 2.6. The procedure in Figure 3 either returns an x* € RS with 172t =1and Ozt > (1 —¢) -1,
or it returns a y € RY, with 1Ty =1and CTy < (1 + 4¢) - 1.

Proof. Follows from Theorem 2.3 and Lemma 2.5. U

It now remains to bound the running time of this algorithm. Towards this end, the lemma below analyzes
the time taken by a call to the subroutine STEP-SIZE(4, 2, W).

Lemma 2.7. A call to STEP-SIZE(i, t,£', W) can be implemented in O (N,- - log? (M%g(")» time, where

N; is the number of non-zero entries in row © € [m| of the matrix C' € [0, \]"*".

Proof. Tttakes O(NN;-log k) time to compute (C’ . %)Z for any x > 1 (see step (1) of Figure 5). Furthermore,

the value of (C’ . %)Z can only increase as we increase . Thus, we can find 4, as in steps (2) - (5) of Figure 5,
by doing a binary search in O(N; - log T - log T') time. The lemma follows since 7' = AIn(n)/e2. O

11



The next lemma bounds the time taken to enforce a constraint.
Lemma 2.8. A call to ENFORCE(i, t, #t, W) can be implemented in O (N,- - log? <)‘l%g(")>> time, where

N; is the number of non-zero entries in row © € [m| of the matrix C' € [0, \]"*".

Proof. The key idea is that we do not need to explicitly store all the vectors &1, ... &t and ¢, ... yito~ 1,

Instead, using standard data structures, the overall algorithm (outlined in Figure 3) keeps track of only the
following information corresponding to a specific call to ENFORCE(4, ¢, £t, W).

(1) The value of ¢ at the start of the call, and the step-size 6 computed by the call.

(2) The index i € [m] corresponding to the call. This index implicitly defines all the vectors 47, ...,y 1.

(3) A vector & € RY, which was equal to #* just before the call, and needs to be set to £+ at the end of
the call. This will be required to implement the next iteration of the FOR loop in Figure 3.
The overall algorithm (in Figure 3) can easily recover the answer it needs to return, provided it keeps
track of the above mentioned pieces of information corresponding to each call to the ENFORCE subroutine.
Thus, the runtime of a call to ENFORCE(i, t, 2¢, W) is dominated by the time spent on the following two
tasks: (1) computing the value of d, and (2) ensuring that the vector &, which was equal to #* just before
the call, equals 27 at the end of the call. The time needed for the former task is bounded by Lemma 2.7,

whereas the time needed for the latter task is O(N; - log §). The lemma follows since 6 < T' = %Q(n) O

We next bound the total number of phases in the algorithm.
Lemma 2.9. Throughout the duration of the algorithm outlined in Figure 3, we have: Hict H L < n/e),

Proof. Consider any round ¢ € [T, which corresponds to an iteration of the FOR loop in Figure 1 (see

Lemma 2.5). Observe that:
~ Ci, j € . €
t)j) =3 (@), <€. Ty> =S (cih), <5

=5 (1,

Jj€ln] j€ln]

i,t

=

- |

|

1-

The last inequality follows since (C’:nt)it < land 2’ := 3'/||2||,. Rearranging the terms, we get:

< (145):

AsT = %2(") and ||2°||, = n, from (2.9) we get: ||2!||, < (1 + %)T 29|, < n(/9) forall t € [T]. O

.i't

L (2.9)

Corollary 2.10. The algorithm outlined in Figure 3 has at most O (log(")> many phases.

Proof. We initiate a new phase whenever Hﬁct H increases by a multiplicative factor of (1 — ¢/2)~!. Hence,

by Lemma 2.9, the number of phases is at most O (log(l_e/z)q n(1/6)> =0 <1°E#> O
We are now ready to bound the total runtime of our algorithm.

Theorem 2.11. The algorithm outlined in Figure 3 can be implemented in O <N log(") - log? (/\log(") ))
time, where N is the total number of non-zero entries in the matrix C' € [0, \]""*".

Proof. Consider a given phase of the algorithm. From Lemma 2.8, it follows that the time taken to enforce
any specific constraint ¢ € [m] in this phase is at most O ( -log? (’\I%M) > Since each constraint gets
enforced at most once during this phase, the total time spent in this phase is at most:

Z N <)\log( )) :O<N_10g2 <M0%g(n)>>

The theorem now follows from Corollary 2.10. O
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2.2 Dynamic Whack-a-Mole MWU Algorithm for Covering LPs

In this section, we focus on designing a dynamic algorithm for Problem 2.1 in the following setting. At
preprocessing, we receive a constraint matrix C' € [0, A\]"**™. Subsequently, the matrix C' undergoes a
sequence of restricting updates, where each update decreases the value of some entry C;; of the matrix C 0
Throughout this sequence of updates, we need to maintain either a vector € RZ, with 172 < 14 O(e)

and C% > (1 — O(e)) - 1, or a vector y € RY, with 1Ty =1and CTy < (1+6(e)) - 1.
We will show that our implementation of the whack-a-mole MWU algorithm from Section 2.1.3 seam-

lessly extends to this dynamic setting. In more details, our dynamic algorithm works as follows.
Preprocessing: At preprocessing, we run the static algorithm from Section 2.1.3 on the input matrix C.
Depending on its outcome, we consider one of the following two cases.

Case I: The static algorithm returns a vector y € RYY, as in step (09) of Figure 3. It follows that 1Ty =1and

CTy < (1 + 4e) - 1 (see Theorem 2.6). In this case, the vector y will continue to remain an approximately
feasible solution to the dual packing LP as the matrix C undergoes restricting entry updates in future. Hence,
our dynamic algorithm terminates without having to process any update.

Case II: The static algorithm returns a vector z := &'/ ||z

1» as in step (12) of Figure 3. It follows that
172t = 1 and Czt > (1 — €) - 1 (see Theorem 2.6). Our dynamic algorithm, however, will explicitly
maintain only the vector Z! := &'/, which is a very good approximation to z since W < HiﬁtHl <
(1 —¢/2)~1-W < (1 +¢) - W. Thus, in this case, after preprocessing our dynamic algorithm returns a
vector &' which satisfies 173" < 1+ e and C3! > (1 —¢) - 1.

Handling a restricting entry update to C': Consider an update which decreases the value of some entry Cj;
of the matrix C'. To handle this update, we simply run the steps (05) - (11) of Figure 3. In words, we observe
that if any constraint in the covering LP gets violated due to this update, then it must be the constraint
i € [m]. Thus, we check whether the current solution 7! := 2! /W approximately satisfies constraint 7. If
not, then we enforce that constraint by repeatedly whacking it. At the end of this process, we end up in one
of three possible cases. (Case 1): W is no longer an accurate estimate of Hﬁ:tHl In this case, we initiate a
new phase. (Case 2): t = T'. Here, we return an approximately feasible solution ¥ to the dual packing LP,
and we terminate the dynamic algorithm since y remains a valid dual solution after any future update. (Case
3): If we are neither in Case 1 nor in Case 2, then we infer that Z! is now an approximately feasible solution
to the covering LP, with 173* < 1 4 e and CZ' > (1 — ¢) - 1. This holds because repeatedly whacking
constraint ¢ does not lead to any other constraint being violated, provided we remain in the same phase.

Rounds/phases: Before proceeding any further, we recall that a new round begins whenever we whack a
constraint, and the variable ¢ denotes the total number of rounds we have seen so far. In contrast, a new
phase begins whenever Hﬁct Hl increases by a multiplicative factor of (1 —¢/2)71.

It now remains to analyze our dynamic algorithm. We start by noting that Theorem 2.6 and Lemma 2.9
seamlessly extend to the dynamic setting. We respectively summarize the analogues of these statements in
Theorem 2.12 and Lemma 2.13 below. Their proofs are deferred to Appendix A.

Theorem 2.12. If our dynamic algorithm returns a vector y € R, after handling an update, then 1'y=1
and C'Ty < (1 4+ 4e) - 1. In contrast, if our dynamic algorithm returns a vector &' := 2t /W € R, after
handling an update, then 177t < 1 + ¢ and C&t > (1—¢)-1.

Lemma 2.13. Throughout the duration of our dynamic algorithm, we have |||} < n(1/9).

°As we will see later in Section 2.5.2, we can assume that all updates are applied only to entries of the matrix C' (and not on the
objective nor the RHS of the constraints).
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We now focus on bounding the total update time of our dynamic algorithm. The key challenge here is to
derive an upper bound on the maximum number of times a given constraint ¢ € [m] can get enforced, over
the entire duration of the algorithm.'? This is done in Lemma 2.14, whose proof appears in Section 2.2.1.

Lemma 2.14. Throughout the entire duration of our dynamic algorithm, a given constraint i € [m] can get
enforced at most O <IOE# -log (@)) times.

We are now ready to bound the total update time of our dynamic algorithm.

Theorem 2.15. To handle any sequence of T restricting entry updates to C, our dynamic algorithm takes
0 (T + N - logé# -log? <M°Tg(")>> time, where N is the number of non-zero entries in C at preprocessing.

Proof. (Sketch) The total time update time is dominated by the time spent on the following two tasks.

Task I. After an update decreases the value of some entry C; of the input matrix C, decide whether the

constraint ¢ € [m] is approximately satisfied, i.e., whether <C’ . ”th) >1—€/2.

Task I1. Enforce a given constraint i € [m)].

We first focus on bounding the total time spent on Task II. Towards this end, we first adapt the argument

in the proof of Lemma 2.8. This leads us to conclude that whenever we enforce a constraint i € [m], it takes
Alog(n)

0 (N,- -log? (T)) time, where [V; is the number of non-zero entries in row i € [m] of the input matrix

C at preprocessing. Hence, Lemma 2.14 implies that the total time spent on enforcing a given constraint

i € [m] is at most O (Ni . 10%# -log? (’\IOTg(") > Summing this up over all the constraints ¢ € [m], we

infer that the total time spent on Task II is at most:

o> N log(n) -log? <M%M> -0 <N- logegn) -log? <M%g(n)>> . (2.10)
1€[m]

€2

It now remains to bound the total time spent on Task I. Towards this end, we maintain a variable Z;
for each co-ordinate j € [n]. We always ensure that 2; = (1 + €)" for some nonnegative integer £ > 0.
Furthermore, we ensure that Z; always lies within a multiplicative (1 + ¢) factor of ((i?t)j. In other words, the
value of Z; always forms an accurate estimate of (ﬁ:t)j. Finally, for each constraint i € [m], we explicitly

2 z

maintain the value of (C . W)i' This way, we can keep track of the value of <C’ . Wt) forall i € [m],
K3

within a multiplicative factor of (1 + €). This is sufficient for us to detect whether a given constraint i € [m]

is approximately satisfied, in O(1) time after an update.

Fix any co-ordinate j € [n]. Note that (il)j = 1, and by Lemma 2.13 we have (iﬁt)j < Zj,e[n} (it)j, <
n(1/€) for all t € [T7]. In words, the value of (fnt)j always lies in the interval [1, n(t/ E)]. We need to update
the estimate Z; each time the value of (ﬁ:t)j increases by a multiplicative factor of (1 + €). Thus, throughout
the duration of our algorithm, the value of Z; gets updated at most log ;) n/€) = O(log n/€?) times.

Finally, whenever the value of Z; changes, we need to spend an additional O(N 7) time to reflect this
change in the values of (C . %)Z forall i € [m], where N7 denotes the number of non-zero entries in column
J € [n] of the matrix C' at preprocessing. Hence, the total time spent in this manner, in order to maintain

the estimates 2; and (C - %)Z is at most O (Zje[n] N7 - (log n/ez)) = O(Nlogn/€?). So the total time
spent by our algorithm on Task I is at most O(7 + N log n/e?). The theorem now follows from (2.10). O

'We say that constraint i € [m] gets enforced whenever we call ENFORE(, ¢, 2, W).
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2.2.1 Proof of Lemma 2.14

Throughout the proof, fix a constraint i € [m]. We associate a step-size with each enforcement of this
constraint. Specifically, suppose that the constraint gets enforced in round ¢ with step-size §. Then the
constraint gets whacked ¢ times during this enforcement (see Figure 4). Furthermore, note that the step-size
J lies in the range [1, T'], according to Figure 5. We discretize this range [1, 7] into O(log T") many intervals
in powers of 2. Armed with this discretization, we now assign an integral rank to each enforcement of this
constraint. Specifically, a given enforcement has rank 1 < k < O(logT) iff its step-size § € [2“_1, 2“).
We will now bound the maximum number of enforcements of a given rank encountered by constraint 7.

Claim 2.1. Fix any integer 1 < k < O(logT). Throughout the duration of our dynamic algorithm, the

constraint i € [m] encounters at most O (106%”) many enforcements of rank k.

Proof. Suppose that the constraint 7 € [m| encounters  + 1 enforcements of rank . Furthermore, suppose
that these enforcements occurr in rounds 1 < to < - -+ < t., < t,+1. We will show that v = O(log n/€?).
Focus on the second-last of these enforcements, that occur in round ¢.. Just before this enforcement, we

have <C’ . %) <1l-e /2. In contrast, just after this enforcement, we have (C’ . cht) > 1.1 So the value
(]

2

of (C . cht> _increases by at least a multiplicative factor of 1 + ©(€) during this enforcement. Hence, there
7

must exist some co-ordinate j* € [n] such that (fnt)j* also increases by at least a multiplicative factor of
1+ O(e) during the same enforcement in round ¢.,. On the other hand, since the concerned enforcement has
rank &, it has a step-size of at most 2*. Thus, due to this enforcement (ﬁct)j* increases by at most a factor of

ty \ 2
<1 +€- Z){ > , where C’f] denotes the value of C;;~ just before round ¢,. Accordingly, we infer that:

o\
<1—|—e- ;) > 1+ 0(e). 2.11)

Next, consider any previous enforcement with rank  that occurs in some round ¢/ (where 1 <~ <),
and focus on the same co-ordinate j*. Since the concerned enforcement has step-size at least 2!, we infer
that due to this enforcement ((ift)j* increases by at least a multiplicative factor of:

o\ o\
1+e- ;ﬂ = <1+e' f) > \/1+6(e) =1+ 6(e).

The inequality follows from (2.11). To summarize, we conclude that during each of the enforcements in
rounds t1, ... ,t,, the value of (ﬁct)j* increases by at least a factor of 1 + O(e).

Finally, observe that (ﬁnt) . = 1 at the start of the algorithm, and that the value of (iﬁt)j* increases
monotonically with time. Thus, at the end of the enforcement in round ¢,, we have:

~t ~t 1/e
(14+6(e) < (2'),. < > (&), <M, (2.12)
J€ln]
The last inequality holds due to Lemma 2.13. From (2.12), we infer that v = O(log n/€?). O

Claim 2.1 implies that a given constraint ¢ € [m] is enforced at most O (105# -logT > times by our

dynamic algorithm. Lemma 2.14 now follows from the fact that 7' = \1In(n)/e>.

""Here, we rely on the fact that this is not the last enforcement of constraint 7, for otherwise we might execute step (3) in Figure 5.
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2.3 Streaming Whack-a-Mole MWU Algorithm

In this section, we focus on designing a streaming algorithm for Problem 2.1 in the following setting. We
get a matrix C' € RZ;™ as input. The rows of C' are stored one after the other in a read-only repository.
We wish to design an algorithm which makes one or more passes through this repository, and then either
outputs a vector x € RY, with 172z =1and Cx > (1 — ¢) - 1, or outputs a vector y € RT, with 17y =1
and C' Ty < (14 4e) - 1. The goal is to minimize the number of passes and the space complexity (excluding
the space taken up by the repository to store the input) of the algorithm.

We observe that the static whack-a-mole MWU algorithm, as described in Section 2.1.3, immediately
extends to this streaming setting if we allow the algorithm to have a space complexity of O(m +n). Specifi-
cally, we can implement the main FOR loop in Figure 3 in a single pass as follows. The algorithm explicitly
maintains a vector # = @' € RZ,, the values W,t € R, and a vector y* = (1/T) - >l,_, y¥ € RZ, in
its memory. Note that when ¢t = T, we have * = y. While making a pass through the read-only repos-
itory, suppose that the algorithm encounters row i € [m/| of the matrix C. The algorithm checks whether
(C’ : %)Z < 1 —€/2, and if yes, then it enforces the constraint ¢ € [m]. Using the vectors & and y*, this
enforcement step can be performed without incurring any extra overhead in the space complexity.

Since we can implement the main FOR loop in Figure 3 in one pass, the total number of passes is equal
to the number of phases of the whack-a-mole algorithm. The next theorem now follows from Corollary 2.10.

Theorem 2.16. Consider a streaming setting where the rows of the matrix C' € [0, \|"*"™ arrive one after
the other. Then there is a deterministic streaming algorithm with space complexity O(m + n) that makes

(0] (loegz") many passes through this stream, and either returns a vector x € RZ, with 1"z = 1 and

Cz > (1 —¢€) -1, or returns a vector y € RY, with 1Ty =1and CTy < (1+4e) - 1.

Next, note that if we are only required to return either the vector z € RZ or a special symbol NULL
(indicating that the dual packing LP has an approximately feasible solution with objective = 1), then we
can further reduce the space complexity of our streaming algorithm. This holds because in such a scenario
we only need to maintain the vector £ € R% and the values W, ¢ € R>¢. In particular, we no longer need
to maintain the vector y* € RZ, while making a pass through the read-only repository. Instead, when we

observe that ¢ = 7', we simply return NULL. This leads to the following corollary.

mxn

Corollary 2.17. Consider a streaming setting where the rows of the matrix C € [0, ] arrive one

after the other. Then there is a deterministic streaming algorithm with space complexity O(n) that makes

(0] (loegz") many passes through this stream, and either returns a vector x € R%, with 1"z = 1 and
Cx > (1 —€) - 1, or returns NULL. In the latter case, it is guaranteed that there exists a vector y € [R;”O
with 1Ty = 1 and C Ty < (1 + 4¢) - 1 (although the algorithm does not return v).

2.4 Online Whack-a-Mole MWU Algorithm

In this section, we focus on designing an online algorithm for Problem 2.1 in the following setting. An
adversary chooses a matrix C' € [0, A]™*" as input. In the beginning, the values of n and X are public
knowledge, whereas only the adversary knows the value of m and the entries of the matrix C'. Subsequently,
the adversary reveals to us the rows of this matrix one after another. We need to maintain a vector z € R%
such that 172 < 1+ ©(¢) and Cz > (1 — O(e)) - 1 until a certain point in time, and after that we need
to terminate our algorithm by returning a y € R%, such that 17y > 1 — O(e) and C'y < (1 + O(e)) - 1.
We incur a recourse of one each time we decrease the value of some variable () jiJ € [n]. Our goal is to
design an algorithm in this online setting with as small total recourse as possible.

We observe that the dynamic whack-a-mole MWU algorithm, as described in Section 2.2, seamlessly
extends to this online setting. Thus, we maintain the vector Z! := 2'/W. Whenever a new row i € [m] of
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the matrix C' arrives, we check whether (C . th) < 1 — €/2, and if the answer is yes, then we enforce the
corresponding constraint i € [m]. The correctness of this algorithm follows from Theorem 2.12.

We now derive an upper bound on the number of phases. Corollary 2.13 implies that HiﬁtHl < pl/e
throughout the duration of the algorithm. Since Hiﬁl Hl = n at the start of the algorithm, and since we initiate
a new phase whenever H:ﬁt H , increases by a multiplicative factor of 1+ O (e), it follows that the total number
of phases is at most log(; 1 g(c)) n(1/9 = O (%)

Next, note that within a given phase our algorithm incurs zero recourse. This holds because the values
(ﬁct / W)j can only increase when we enforce a constraint within the phase (as W does not change). On the
other hand, we incur a recourse of n each time we initiate a new phase, since we have n variables and each

of these variables decreases its value as we increase W at the start of the phase. Hence, the total recourse of
the algorithm is n times the number of phases. This leads to the following theorem.

Theorem 2.18. Consider an online setting where the rows of the matrix C € [0, \]""*™ arrive one after
another. Let N denote the number of non-zero entries in C. There is a deterministic online algorithm

with total recourse O (%) which has the following property. It maintains a vector x € RZ, with

172 < 14 O(e) and Cz > (1 — O(e)) - 1 until a certain point in time, and after that it terminates and
returns a vector y € RZy with 17y >1-0(e)and CTy < (1 +O(e)) - 1.

2.5 Reductions to General Packing-Covering LPs

Consider a matrix C € [R;“OX", vectors a € R%, b € RZ, and a generic covering LP defined below.

Minimise a ' s.t. Cx > band x € RY. (2.13)
The dual of the above LP is given by:
Maximise b ' y st.C'y<aandy e RTo- (2.14)

Let OPT be the optimal objective value of this pair of primal and dual LPs. Say that x € RY is an
e-approximate optimal solution to LP (2.13) iff a 'z < (14-©(¢))-OPT and Cx > (1 —©(€)) - b. Similarly,
say that y € R7, is an e-approximate optimal solution to LP (2.14) iff b’y > (1 — ©O(e)) - OPT and
CTy < (14 6(¢)) - a.'> We will now explain how to use the whack-a-mole MWU algorithm to obtain
e-approximate optimal solutions to this pair of LPs in static, dynamic, streaming and online settings.

Specifically, we describe how an algorithm for Problem 2.1 can be used in a black-box manner to solve
general packing-covering LPs. Such a reduction works by first guessing the value of OPT, and then showing
an equivalence between: (a) finding a solution with objective = OPT and (b) solving Problem 2.1. The
equivalence follows from standard scaling techniques.

2.5.1 Static Setting
In this section, we show how to prove the following theorem.

Theorem 2.19. There is a deterministic e-approximation algorithm for solving LP (2.13) that runs in
0 (N- loge# -log? <%Lg(n)) : log(nU/L)) time. Here, N denotes the number of non-zero entries in
C, whereas L (resp. U ) respectively denotes a lower (resp. upper) bound on the minimum (resp. maximum)
value of any non-zero entry in C, a,b. The same guarantee also holds for solving LP (2.14).

12This notion of an e-approximation is equivalent to the one defined at the start of Section I, upto a multiplicative factor of
1+ ©(e). To see why this is true, consider an z such that 1"z < (1 + ©(¢)) - OPT and Cz > (1 — ©(e)) - b. Then it follows that

172 < (1+6(e) - OpT and CZ > b, where 7 := T=6(c- A similar argument holds for an e-approximation to LP (2.14).

17



Define a matrix C* € RY ;" such that C}; := Cj;/(a;b;) forall i € [m], j € [n]. It is easy to check that
LP (2.13) and LP (2.14) can be equivalently written as:

Minimise 1"z st.C'z>1andx € RZo. (2.15)
Maximise 1y st. (C)'y<landy e RTo- (2.16)

We can compute the matrix C’ in O(NV) time. Furthermore, the maximum (resp. minimum) value of any
non-zero entry of C’ is upper (resp. lower) bounded by U/L? (resp. L/U?). Let OPT denote the optimal
objective value of LP (2.15) and LP (2.16). Note that L? /U < OpT < nU? /L. We discretize this range
[L?/U,nU?/L] in powers of (1 + ¢), to obtain 10g(14¢) (nU3/L?) = O(log(nU/L)/¢) many guesses for
OPT. For each such guess 1, we consider the following problem.

Problem 2.20. Either return an x € R% such that 17z < (1+ O(¢)) - pand C'z > (1 —O(¢)) - 1, or
return ay € RYy such that 17y > (1-0(e) - pand (C")Ty < (1+6(e)) - 1.

Next, define a matrix C" € RI;™ where Cj; := p - Cj; for all i € [m],j € [n], and observe that
Problem 2.20 is equivalent to the following problem.

Problem 2.21. Either return an x € R% such that 17z < 1+ ©(€) and C"z > (1 —O(¢)) - 1, or return a
y € R, such that 1Ty >1-0(e)and (C")Ty < (14 6(¢)) - 1.

Note that C” € [0, \]™*"™ where A = - (U/L?) < nU3/L3. Accordingly, we can solve Problem 2.21
by using our whack-a-mole MWU algorithm from Section 2.1. According to Theorem 2.11, this takes

O (- 5l log? (2R )) = O (- 5 g (255 ) )t

It is easy to check that we can recover e-approximate optimal solutions to LP (2.13) and LP (2.14) if we
solve Problem 2.21 for each of the ©(log(nU/L)/¢) many guesses p. This leads us to Theorem 2.19.

2.5.2 Dynamic Setting
In this section, we show how to prove the following theorem.

Theorem 2.22. Consider any sequence of T restricting updates to LP (2.13), where each update either
decreases an entry of C, or increases an entry of a,b. Let N denote the total number of non-zero entries in
C' at preprocessing. Let L (resp. U) denote a lower (resp. upper) bound on the minimum (resp. maximum)
value of a non-zero entry of C, a, b. We can deterministically maintain an e-approximate optimal solution to
LP (2.13)in O (T . w + N - 10%# -log? <%Lg(")) . log(nU/L)) total time. The same guarantee
also holds for maintaining an e-approximate solution to LP (2.14), which undergoes relaxing updates.

As in Section 2.5.1, we make O(log(nU/L)/€) many guesses for OPT. For each such guess p, we
maintain a solution to Problem 2.20, which, in turn, is equivalent to Problem 2.21. This allows us to
maintain e-approximate optimal solutions to LP (2.13) and LP (2.14) in the dynamic setting.

Fix any guess y, and focus on the corresponding instance of Problem 2.21. Since we are satisfied with
an e-approximate optimal solution, we can safely assume that any update with a meaningful impact on the
solution changes the corresponding entry by at least a multiplicative factor of (1 + ¢). Henceforth, we
only focus on handling these meaningful updates. Note that each entry of C, a,b participates in at most

log(l JrE)(U /L) = O <w> many meaningful updates. Furthermore, each time there is a meaningful

restricting update to some b, it leads to at most O(NV;) many restricting entry updates to the matrix C”,
where N; is the number of non-zero entries in the i*” row of C' at preprocessing. Similarly, whenever there
is a meaningful restricting update to some a;, it leads to at most O (N 7) many restricting entry updates to
the matrix C”/, where N7 is the number of non-zero entries in the j*” column of C' at preprocessing.
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Consider any sequence of 7 restricting updates to LP (2.13). By the above discussion, this leads to at
most 7+ (Zje[n] NI+ > iem] Ni) -0 (w) =740 (N . w) many restricting entry updates

in Problem 2.21, which we solve using the algorithm from Section 2.2. As A < nU3/L3, Theorem 2.15
implies a total update time of:

O<T+N~M+N-M'log3 (M%g(”)» =O<T+N-log(n) log® <M>>

€2 €2 el

copies of the dynamic algorithm, one for each .

Theorem 2.22 follows since we run © (M)

2.5.3 Streaming Setting

In this section, we consider the streaming setting where the rows of the constraint matrix of a covering LP
(or equivalently, the columns of the constraint matrix of the dual packing LP) are arriving one after another.
We show how to prove the following two theorems.

Theorem 2.23. Consider a streaming setting where the columns of the constraint matrix of LP (2.14) ar-
rive one after another. There is a deterministic algorithm with space complexity O(m + n) that makes

(@) bgn'lof%) passes through the stream, and returns an e-approximate optimal solution to LP (2.14).

Here, L (resp. U) denotes a lower (resp. upper) bound on the value of any non-zero entry of C, a, b.

Theorem 2.24. Consider a streaming setting where the rows of the constraint matrix of LP (2.13) arrive one

after another. There is a deterministic algorithm with space complexity O(n) that makes O (logn'loﬁg%

passes through the stream, and returns an e-approximate optimal solution to LP (2.13). Here, L (resp. U)
denotes a lower (resp. upper) bound on the value of any non-zero entry of C, a, b.

As in Section 2.5.1, we make O (log(nU/L)/¢e) many guesses for OPT. For each such guess x, we solve
Problem 2.20 in the streaming setting, which, in turn, is equivalent to Problem 2.21. This allows us to return
e-approximate optimal solutions to LP (2.13) and LP (2.14).

Fix any guess u, and focus on the corresponding instance of Problem 2.21. Suppose that we are allowed
to have a space complexity of O(m + n). By Theorem 2.16, we can solve Problem 2.21 by making O( loﬁ%”)
many passes through the stream. Theorem 2.23 now follows since we need to solve Problem 2.21 for each
guess 4, which increases the number of passes by a multiplicative factor of ©(log(nU/L)/e).

Finally, Theorem 2.24 follows if we apply the same strategy described above and use Corollary 2.17.

2.5.4 Online Setting

In this section, we explain how to prove the following theorem.

Theorem 2.25. Consider an online setting where the constraints of LP (2.13) arrive one after another.
There is a deterministic algorithm which maintains an e-approximate optimal solution to this LP with total

recourse O <n lo?g.ﬁ -log ( %)) Here, L (resp. U) is a lower (resp. upper) bound on the value of any
non-zero entry of C, a, b.

As in Section 2.5.1, we make O (log(nU/L)/€) many guesses for OPT. For each such guess p, we solve
Problem 2.20 in the online setting, which, in turn, is equivalent to Problem 2.21. This allows us to maintain
an e-approximate optimal solutions to LP (2.13). Theorem 2.25 now follows from Theorem 2.18 as the total
recourse increases by a multiplicative factor of ©(log(nU/L)/e).
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2.6 Challenges for Dynamic Whack-a-Mole MWU Algorithm for Packing LPs

We have so far focussed on the whack-a-mole MWU algorithm for covering LPs. For packing LPs, there
exists an analogous whack-a-mole MWU algorithm. To see this, consider the following problem.

Problem 2.26. Given a matrix P € [0, \]™*" where \ > 0, either return an x € R, with 17z > 1—6(¢)

and Pz < (14 0O(¢)) - 1, or rern ay € R with 17y <1+ O(e) and PTy > (1 - O(e)) - L.

The basic template for a whack-a-mole algorithm for Problem 2.26 is described in Figure 6 and Figure 7.
Note that this is completely analogous to the template in Section 2.1.1.

01. Define T « )‘12—2(") and two vectors 3?71, xt e RZ, where #l « 1 and 2! « H_xxlll\_l
02. FOrRt=1TOT"
03. EITHER
04. Conclude that (P - "), <1+ eforalli € [m].
05. Terminate the FOR loop, and RETURN (2!, NULL).
06. Or
07. Find a packing constraint i; € [m] such that (P - :L't)it > 1.
08. 2 < WHACK (i, 21). // See Figure 7.
t+1
09. ot H;C’STM
10. Let y* € A™ be the vector where (yt)z.t = land (y'), = Oforalli e [m]\ {i}.
Hooy e (1T) 3,0y
12. RETURN (NULL, y).

Figure 6: The Whack-a-Mole MWU Algorithm for a Packing LP.

1. FOR ALL j € [n]:
2. 7:“j<—<1—6']:;ij)'i'j.
3. RETURN 2

Figure 7: WHACK(i, &).

The key point to note is that unlike in Section 2.1.1, here the weight (ﬁ:t)j of an expert j € [n] (see the
discussion in the beginning of Section 2.1.2) can only decrease whenever we whack a constraint. Neverthe-
less, we can easily extend the analysis from Section 2.1.1 to obtain the following theorem.

Theorem 2.27. The algorithm in Figure 6 either returns a vector x* € RS with 17zt = 1 and Pzt <
(1+©(¢)) - 1, or it returns a vector y € R, with 1"y =1and PTy > (1 — O(¢)) - 1.

From this basic template, it is straightforward to obtain a near-linear time static algorithm for Prob-
lem 2.26. The framework also seamlessly extends to give us whack-a-mole MWU algorithms for packing
LPs in the streaming and online settings. Thus, every theorem derived in Sections 2.5.1, 2.5.3 and 2.5.4
holds even if we switch the occurrences of LP (2.13) with that of LP (2.14) in the concerned theorem state-
ment. The only exception is the theorem derived in Section 2.5.2. Below, we highlight the main challenge
in obtaining a dynamic whack-a-mole MWU algorithm for packing LPs under restricting updates.

Recall that a key part of the analysis in Section 2.2 was deriving an upper bound on the number of times
a given constraint can get enforced throughout the duration of the algorithm (see Lemma 2.14). The proof
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of Lemma 2.14, on the other hand, relied on the property that the weight (iﬁt)j of every expert j € [n] is

monotonically non-decreasing with time and always lies in the range [1, n/ E)] , and hence is polynomially
bounded (see the discussion leading to (2.12)). This property followed from three observations: (1) at the
start of the algorithm we have (a% )j 1, (2) the total weight zy '] ( ) of all the experts is at most

n1/9) and (3) the weight (ﬁnt)j of a given expert j € [n] is at most the total weight z ven] ( t)j.
Coming back to our current setting, recall that the weight ( ) - of an expert j € [n] can only decrease

over time when we run the whack-a-mole MWU algorithm on a packing LP. Thus, in order to bound the
maximum number of times a constraint can get enforced, we need to show that the weight (iﬁt)j of every

expert j € [n] lies in the range [W, 1] throughout the duration of the algorithm. A natural way to

replicate the argument from the previous paragraph to our current setting would be to make the following
sequence of claims: (a) at the start of the algorithm we have ( ) = 1, (b) the total weight >_ ., jren] ( ) of

all the experts is at least n(1/9) and (c) the weight (m )j of a given expert j € [n] is at least the total weight

> i'en] (ﬁ:t)j. Now, the crucial observation is that although we can extend the analysis of the whack-a-mole
MWU algorithm for covering LP to prove claims (a) and (b), claim (c) clearly does not hold for obvious
reasons. Indeed, if we consider a natural extension of the static whack-a-mole MWU algorithm for packing
LPs to a setting with restricting updates, then we can not ensure that the weight (ﬁct)j of an expert j € [n]
remains polynomially bounded. This, in turn, implies that we cannot upper bound the maximum number of
times a constraint gets enforced, and hence we cannot bound the total update time of the algorithm.

We address this issue in Section 3, where we present an efficient dynamic algorithm for maintaining an
e-approximate solution to a positive LP under relaxing updates. Section 3.3 shows that as a simple corollary
of this result, we obtain an efficient dynamic algorithm for maintaining an e-approximate optimal solution
to a packing (resp. covering) LP under restricting (resp. relaxing) updates (see Theorem 3.15).

3 The Greedy MWU Algorithm

In this section we focus on positive LPs, which are defined as follows:
Find z € RY such that Pz < a and Cx > b, where P € [Rm”xn a € [R>0,C' € [R X” ,b e [R (3.1

An e-approximate solution for the positive LP is either an z € RY satisfying Pz < (14 €)aand Cx >
(1 — €)b, or a symbol L indicating that the LP is infeasible. In the dynamic setting, an update to the LP
can change an entry of P, a,C or b. Observe that the update is relaxing if it increases an entry of C or a,
or decreases an entry of P or b. In this section, we wish to design a dynamic algorithm for maintaining an
e-approximation solution to a positive LP undergoing relaxing updates. Note that such an algorithm will
work as follows. Initially, it will return L for a sequence of relaxing updates. After that, at a certain point
in time it will return an = € RY satisfying Pz < (1 + €)a and Cz > (1 — €)b. From this point onward, the
same x will continue to remain an e-approximate solution to the input positive LP after every future update.

Notation and preliminaries. We now introduce a few key notations and concepts that will be used through-
out the rest of Section 3.'3 We classify a relaxing update as an entry update if it changes an entry of P or C,
whereas we classify a relaxing update as a translation update if it changes an entry of a or b. Throughout
the sequence of updates, let L (resp. U) respectively denote an upper (resp, lower) bound on the value of
any nonzero entry in P,C,a,b; and let N denote an upper bound on the total number of nonzero entries
in P,C. We assume that U/L = O(poly(m, + m. + n)), where m,, m. and n respectively denote the
number of rows in P, the number of rows in C, and the number of variables. We refer to Pz < a as the

3We emphasize that some of these notations are different from the ones used in Section 2.
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packing constraints, and we refer to Cz > b as the covering constraints. For all i € [m,] and k € [n],
we let P(i,k) € R>o denote the entry in the it" row and k' column of the matrix P. Furthermore, we let
F; € [R%" denote the i*" row of the matrix P. We analogously define the notations C(j, k) € R>o and
C; e [Rlzf)", for all j € [m.] and k € [n]. Finally, we use the symbol v; to denote the i*" co-ordinate of a
vector v = (v1,...,U,) € R™.

Our main result is summarised below. In this section, we present a high level overview of the main ideas
behind the proof of Theorem 3.1. The full details are deferred to Appendix B and Appendix C.

Theorem 3.1. We can maintain an e-approximate solution to a positive LP undergoing a sequence of t > 0
log? U/L
. log (mct;np‘f‘ /L) + t)

relaxing updates in O (N total update time.

A simplifying assumption: To convey the main ideas behind our algorithm, in this section we focus on the
setting where all the relaxing updates made to the input LP are entry updates, for the following reason.

Consider an input positive LP (P, C, a, b), which asks us to find an = such that Px < a and Cx > b.
Since we are happy with a ©(e)-approximate solution to the input LP, we can keep ignoring the relaxing
translation updates to a packing constraint (Px); < a; (resp. covering constraint (Cz); > b;) as long
as a; (resp. b;) does not increase (resp. decrease) by more than a multiplicative factor of (1 + €). Thus,
during the course of our algorithm, a given packing or covering constraint will essentially go through at
most = O(log 4 (U/L)) many relaxing translation updates.

Next, note that we can simulate a relaxing translation update to a packing constraint (Px); < a;
(resp. covering constraint (C'z); > b;) by making nzp(;) (resp. nzc(;)) many relaxing entry updates, where
nzp(;) (resp. nzc(;)) denotes the current number of nonzero entries in row i (resp. row j) of P (resp. C).
This is because of the following reason: If the translation update asks us to scale up (resp. scale down) the
value of a; (resp. b;) by a multiplicative factor of o > 1, then we can implement this update by scaling down
(resp. scaling up) every nonzero entry in row ¢ (resp. row j) of P (resp. C') by the same factor «.

It follows that all the relaxing translation updates encountered by an algorithm for this problem can be
simulated by at most xN many relaxing entry updates. Hence, if we prove Theorem 3.1 for relaxing entry
updates, then we can immediately convert it into an algorithm that handles both translation and entry updates

2 2
with total update time O (N . Lo (mct;np TUE) 4 ¢+ kN > =0 (N . log (mct;”ﬁU/ Dy t),
Accordingly, for the rest of Section 3, the phrase relaxing update will refer to a relaxing entry update.

Scaling the constraints: Since we have to deal with only the entry updates in this section, for notational
convenience we will scale the right hand sides of all the packing and covering constraints to 1. Accordingly,
throughout the rest of Section 3 the input positive LP will be given by an ordered pair (P, C'), where P €
[RZ%’X" and C € [R;”(jx” and it asks us to find an z € R% such that Px < 1 and Cx > 1.

Organisation: In Section 3.1, we recap a known static greedy MWU algorithm for positive LPs [Qua20),
Youl4]. We present and analyse our dynamic algorithm in Section 3.2. Finally, we show that the analysis
in Section 3.2 implies a dynamic algorithm for solving a packing (resp. covering) LP under restricting
(resp. relaxing) updates. This observation is summarized in Section 3.3.
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3.1 Static Greedy MWU Algorithm [Qua20, Youl4]

Define two functions fy(z) and f.(x), which respectively correspond to the soft-max of the packing con-
straints and the soft-min of the covering constraints, as stated below.

1 mp 1 me
fp(z) = o log <Z eXp(nPiw)> and f.(z) = - log [ Y exp(—nCjz) |,
i=1 j=1
where n = log(my + me + U/L). 3.2)
€

It can be shown that the function f,(x) (resp. f.(x)) closely approximates the maximum (resp. minimum)
value among the left hand sides of the packing (resp. covering) constraints. Specifically, we have:

max Pz < fp(r) < max Pyr+eand min Cjz — e < fo(z) < min Cjz, forallz € RE,. (3.3)

i€[myp] 1€[myp] JE[m] JE[m]

The algorithm attempts to find an = € R%, where f,(z) < 1and fc(z) > 1. By (3.3), such an x is indeed an
e-approximate solution to the input positive LP. Note that both the functions f,(z) and f.(z) are continuous
and differentiable, and hence their gradients exist at all points.

3.1.1 The main idea

Say that a direction z € RZ is cheap with respect to a point z € RZ iff (V f(x),2) < (Vf.(z),2). In
other words, starting from the point z, if we take an infinitesimally small step towards a cheap direction
w.r.t. z, then the increase in fj,(x) is at most the increase in f.(z). The high level idea behind the algorithm
can be summarised as follows: It starts at an x = 0 € RZ,, where we have f,(z) = fo(z) = 0. It
then continuously keeps moving this point z in a cheap direction. This leads to the following invariant:
fp(z) < fo(x). The algorithm stops once it reaches a point  where f.(x) = 1. Such an x satisfies
fp(z) < 1 and fe.(x) > 1, and hence is an e-approximate solution to the input positive LP, according
to (3.3). On the other hand, if at some point in time during this continuous process, we reach a point = that
does not admit any cheap direction, then it can be shown that the input LP is infeasible.

In order to actually implement the scheme described above, we first need to discretise the process which
keeps moving the point z. This discretised process will consist of a sequence of steps. As before, initially
we have 2 = 0. At the start of each step, we identify an (approximately) cheap direction z € RY, w.r.t. the
current z, which satisfies (V f,(z),2) < (1 + ©(¢)) - (Vf(x), 2), and then we take a small discrete jump
along that direction by setting = < x + dz for some sufficiently small § > 0. It can be shown that due
to each of these steps, the increase in the value of f,(x) is at most (1 + ©(¢)) times the increase in the
value of f.(x), which leads to the invariant: f,(xz) < (1 + O(¢)) - fo(x). Furthermore, during each of
these steps, the value of f.(x) increases by at most ©(e), for sufficiently small 0. The process terminates
immediately after we reach a stage where f.(x) > 1. Thus, at termination we have 1 < f.(z) < (1+ ©(e))
and fp(z) < (14 O(¢))fe(z) < (14 O(¢)), and hence x is a ©(e)-approximate solution to the input
positive LP. In contrast, if at any step during this process, we end up with an = which does not admit any
(approximately) cheap direction, then we can certify that the input LP is infeasible.

We will work with a concrete version of the framework described above. Say that a coordinate k € [n]
is (approximately) cheap with respect to a point x € RZ, iff (V fy(x),€) < (14 O(¢€)) - (V fe(z), €k),
where e, € {0,1}" is the unit vector along coordinate k. We will use the following crucial observation:
Any given point x admits a cheap direction iff it admits a cheap coordinate. Thus, all we need to do is start
at z = 0, and then move the point z in a sequence of steps, where at each step we move z by a small amount
along a cheap coordinate. We now present this algorithmic template more formally in Section 3.1.2.
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3.1.2 The basic algorithmic template

We start by introducing some crucial notations. Given any € RY,, we associate a weight with each
LP constraint. To be specific, for all ¢ € [myp] and j € [m.], we have wy(x,i) := exp (n- Piz) and
we(w,5) == exp (—n - Cjz). Let wy(z) := >_1% wy(w,4) and we(z) := Z;”:CI we(zx, ).

Definition 3.2. Consider any k € [n]. The cost of coordinate k at a given x € RE is defined as:

o Sy (x,1) - Piy k)
ANz, k) = S e (2.5) O

The coordinate k € [n] is said to be cheap w.r.t. a given x € RY iff A(z, k) < (1 + O(€)) - wp(x)/we ().

It turns out that the notion of a cheap coordinate, as per Definition 3.2, is identical to the one used in the
last paragraph of Section 3.1.1 (see Property 3.3 and Property 3.4). The algorithm is described in Figure 8.

INITIALISE z ¢+ 0 € R,
WHILE minje(p, Cjz < 1:

IF there is no cheap coordinate at -, THEN
RETURN that the LP is infeasible.

Let k € [n] be a cheap coordinate.
x < BOOST(z, k). /I See Figure 9.

1
2
3
4.
5. ELSE
6
7
8. RETURN z.

Figure 8: A static algorithm for solving a positive LP (P, C').

1. Find the maximum § such that max;c,,,,] P (4, k) - 6 < ¢/n and max e, ).c;0<2 C(4: k) - 0 < €/n.
2. RETURN x + dé}.

Figure 9: BOOST(x, k).

It is easy to check that this algorithm follows the framework outlined in Section 3.1.1. To summarise,
the algorithm starts at z = 0. Subsequently, each iteration of the WHILE loop in Figure 8 either declares
that the input LP is infeasible, or identifies a cheap coordinate w.r.t. the current x and calls the subroutine in
Figure 9 to boost (i.e., change) = by a small amount along that direction. It stops when min;¢(,, ] Cjz > 1.

We now state two key properties of the algorithm, whose proofs are deferred to Appendix B. Prop-
erty 3.3 justifies the algorithm’s decision to declare that the input LP is infeasible if it cannot find any cheap
coordinate w.r.t. the current z € RZ,. Property 3.4 ensures that whenever the algorithm decides to boost the
current z along a cheap coordinate k € [n], the increase in f,(z) is at most (1 + ©(¢)) times the increase in
fe(z), which, in turn, is itself at most © (e).

Property 3.3. Consider any x € RY. If there is no cheap coordinate at x, then the LP (P, C) is infeasible.

Property 3.4. Assume ¢ < 1/10 and let k € [n] be a cheap coordinate at y € R, and let z <
B0OST(y, k). Then we have:

fp(2) = fp(y) < (14 6(€)) - (fe(2) = fely)) < O(e).
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Recall that initially 2 = 0, and so fp(z) = fe(z) = 0. Each subsequent iteration of the WHILE loop in
Figure 8 boosts the current x along a cheap coordinate. Hence, Property 3.4 implies the following invariant:

Invariant 3.5. During the course of this algorithm, we always have f,(x) < (14+©(€))- fc(x). Furthermore,
each call to the subroutine BOOST(x, k) increases the value of f.(x) by at most an additive O (e).

Corollary 3.6. If the algorithm in Figure 8 returns an x € RY, in step 8, then x is indeed a ©(e)-
approximate solution to the input LP. Otherwise, it correctly declares that the input LP is infeasible.

Proof. Case (i): The algorithm terminates in step 8 of Figure 8. All the claims made in the next paragraph
hold because of (3.3) and Invariant 3.5.

Just before the last iteration of the WHILE loop in Figure 8, we had f,(z) < (1 + O(¢)) - fc(z) and
fe(z) < minjepy, Cjz < 1. Accordingly, at the end of the last iteration of the concerned WHILE loop,
we have max;cp, | Pz < fp(z) < (14 0(¢€)) - fe(z) < (1 +6(e)) - (1 4+ O(¢)) < 1+ O(e), and

min;ep,, Cjr > 1. Hence, the z that is returned in step 8 of Figure 8 is a © (e)-approximate solution to the
input LP.

Case (ii): The algorithm terminates because during some iteration of the WHILE loop in Figure 8 it cannot
find any cheap coordinate w.r.t. the current x. In this case, by Property 3.3, the input LP is infeasible. O

3.2 An Overview of Our Dynamic Greedy MWU Algorithm

We describe the basic template that will be followed by our dynamic algorithm in Section 3.2.1. For ease
of exposition, in Section 3.2.2 we describe and analyse our dynamic algorithm in a setting where all the
relaxing entry updates occur to the covering constraints, whereas the packing constraints remain unchanged.
Finally, in Section 3.2.3 we present an overview of the complete algorithm which can handle relaxing entry
updates to both the packing and covering constraints.

3.2.1 The basic template for our dynamic algorithm

Initialisation: At preprocessing, we start by implementing the procedure described in Figure 8. At this
stage, if we end up with a © (¢)-approximate solution z to the positive LP, then we are done. This is because
such an z will continue to remain a O (e)-approximate solution to the input LP even after it undergoes any
sequence of relaxing updates in future. Accordingly, henceforth we assume that the procedure in Figure 8
ends up with an = at which there is no cheap coordinate.

Handling a relaxing update: After the update, we keep on boosting = along cheap coordinates until either
(a) the set of cheap coordinates becomes empty again, or (b) we have min;¢(,,,.] Cj > 1. In the former case,
we declare that the input LP remains infeasible even after the relaxing update. In the latter case, we declare
the current x as a ©(e)-approximate solution to the input LP from this point onward.

Clearly, as per the discussion in Section 3.1, any dynamic algorithm following the above template solves
the problem of maintaining a ©(e€)-approximate solution to a positive LP under relaxing updates.

3.2.2 Handling a sequence of relaxing entry updates to the covering constraints

We now present an overview of our dynamic algorithm, under the assumption that every relaxing update
increases the value of some entry in the matrix C' (whereas the matrix P remains unchanged). We follow
the template outlined in Section 3.2.1. The main challenge is to define the appropriate data structures, and
to describe how to choose a cheap coordinate for boosting x at any given point in time.

Before proceeding any further, note that there are two types of events which influence the outcome of
any dynamic algorithm following the template from Section 3.2.1: (1) a relaxing update which increases the
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value of some entry in the matrix C, and (2) a call to the subroutine BOOST(z, k) which boosts the current
x along the coordinate k. We start with the key invariant that drives the analysis of our dynamic algorithm.

Invariant 3.7. During the course of our dynamic algorithm, we always have fy(z) < (1 + O(¢)) - fe(z).
Furthermore, every call to the subroutine BOOST(z, k) increases f.(x) by at most an additive O ().

Proof. The algorithm starts at « = 0, where f,(z) = f.(z) = 0 and so the invariant holds. Subsequently,
the values of f,(z) and f.(x) can change because of one of the two following types of events.

(1) A relaxing update increases the value of an entry C(j, k) of the matrix C, for j € [m¢], k € [n]. This
increases the value of Cjz; whereas for all ;' € [m.] \ {j} and i € [m,], the values of Cjx and P;x
remain unchanged. We accordingly infer that f.(x) increases, whereas f,(z) remains unchanged. Thus, if
the invariant was true just before this event, then it continues to remain true just after the event.

(2) The algorithm make a call to BOOST(z, k), for some k& € [n]. By Property 3.4, due to this event the
increase in fp(x) is at most (1 + ©(¢)) times the increase in f.(x), and this latter quantity is at most O (e).
Thus, if the invariant was true just before this event, then it continues to remain true just after the event. [

Corollary 3.8. During the course of our dynamic algorithm, we always have max;cp, | Pz <1+ O(e).
Proof. Follows from (3.3), Invariant 3.7, and the fact that we return x the moment min ¢, | Cjzis > 1. [

Next, we derive a few important observations which show that the weights w,(x, ), w.(z,j) of the
constraints and the costs A(z, k) of the coordinates change (almost) monotonically over time.

Observation 3.9. Consider an event which consists of either a relaxing update to the matrix C or a call to
the subroutine BOOST(x, k). Such an event can only increase the weight wy,(x,1) of a packing constraint
i € [mp), and it can only decrease the weight w.(z, j) of a covering constraint j € [m.|.

Proof. Consider a relaxing update which increases the value of some entry C(j, k) of the matrix C. This
increases the value of Cjx; whereas for all j' € [m.] \ {j} and i € [m,], the values of C;;x and P;z remain
unchanged. Accordingly, this event decreases the weight w.(x, j); whereas for all j/ € [m.] \ {j} and
i € [my), the weights w.(x, j') and wy(z, 7) remain unchanged due to this event.

Next, consider a call to BOOST(z, k). For all i € [m,] with P(i, k) > 0 this increases the value of Pz,
whereas for all i € [m,] with P(i, k) = 0 the value of P;z remains unchanged. Similarly, for all j € [m]
with C'(j, k) > 0 this increases the value of C;x, whereas for all j € [m.] with C(j,k) = 0 the value of
Cjz remains unchanged. In effect, this means that for all i € [m,] the weight wy,(z,%) can only increase
due to this event, whereas for all j € [m,] the weight w.(z, j) can only decrease due to this event. O

Observation 3.10. Consider an event which consists of a call to the subroutine BOOST(x, k) for some
k € [n]. Because of this event, the cost \(x, k') of any coordinate k' € [n] can only increase.

Proof. Follows from Observation 3.9 and Definition 3.2. ]

Observation 3.11. Consider a relaxing update to the entry C(j, k) of the matrix C, where j € [m.], k € [n].
Because of this event, the cost \(x, k') of a coordinate k' € [n]\ {k} can only increase, whereas the cost of
the coordinate k can change in either direction (i.e., it can increase or decrease).

Proof. Because of this relaxing update, the value of C(j, k) increases, whereas the values of all other entries
in the matrices C and P remain unchanged. The proof follows from Observation 3.9 and Definition 3.2. [
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Key data structures: We will explicitly maintain the following quantities: (1) The point z € R%,. (2) The
weights wy(z, 1), we(z, j) forall i € [my], j € [m.]. (3) The total weights wy,(z) and w,(z). (4) The values
of Pz and Cjjx, for all i € [m,] and j € [m,].

We are now ready to describe the exact implementation of our dynamic algorithm in more details.

Phases: Observation 3.9 implies that the ratio y(x) := wp(x)/w.(x) increases monotonically over time
during the course of our algorithm. Armed with this observation, we split the working of our algorithm into
phases. Tn the beginning, we have = = 0 and hence (z) = w,(z)/w.(x) = 1/1 = 1. We initiate a new
phase whenever the value of «(x) increases by a multiplicative factor of (1 + O(e)). Thus, a given phase
can span a sequence of calls to the BOOST(z, k) subroutine at preprocessing, or it can also span a sequence
of calls to the BOOST(z, k) subroutine interspersed with a sequence of relaxing updates to the matrix C.

Implementing a given phase: Let 4(z) be the value of y(x) := w,(z)/w.(x) at the start of the phase.
During the phase, () does not change by more than an (1 4+ ©(e)) factor. Accordingly, at any point in
time within the phase, we classify a coordinate k € [n] as being cheap iff A(x, k) < (1 + O(¢)) - 7°(z).

We maintain a set ¥ C [n] that always contains all the coordinates that are currently cheap. At the start
of the phase, we initialise £ < [n], and then call the subroutine BOOST-ALL(x, E') which is described
in Figure 10. Note that at the end of any iteration of the inner WHILE loop (steps 4 — 9 in Figure 10),
the concerned coordinate k is no longer cheap. Furthermore, the monotonicity of the costs (as captured by
Observation 3.10) imply that a coordinate k, once removed from the set E, does not become cheap again
within the same phase due to some future iteration of the outer WHILE loop in Figure 10.

Handling a relaxing update within the phase: Consider a relaxing update to an entry C'(j, k) of the matrix
C. Just before this update, we had E = (). If the value of () becomes more than (1 + ©(e))7° () because
of this update, then we terminate the current phase and initiate a new one. Otherwise, by Observation 3.11,
the only coordinate that can become cheap because of this update is k. Accordingly, we set E < {k}, and
call the subroutine BOOST-ALL(x, E'). Observation 3.10 again implies that as we keep boosting x along the
coordinate k, it does not lead to any other coordinate k¥’ € [n] \ {k} becoming cheap.

1. WHILE E # (:

2 Consider any k € E.

3 E + E\ {k}.

4 WHILE A(z, k) < (14 O(¢)) - 7°(x)

5. x < BoosT(z, k). /I See Figure 9.
6 IF minje ] Cjx > 1, THEN

7 RETURN z.

8 IF y(x) > (14 O(¢)) - v°(x), THEN

9 Terminate the current phase.

Figure 10: BOOST-ALL(x, E).

The next two lemmas capture a couple of crucial properties of this dynamic algorithm.

Lemma 3.12. Fix any coordinate k € [n]. The dynamic algorithm described above calls the subroutine
2
BOOST(z, k) at most O <log (mc+12np+U/L)

€

> many times.

Proof. Fix a coordinate k € [n] for the rest of the proof.
Consider any call to the BOOST(x, k) subroutine during the course of our dynamic algorithm, which
increases coordinate k of the vector z € RY, by some amount § > 0. From Figure 9, observe that just before
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this specific call to the subroutine, either there exists a packing constraint i € [m,,] with P(i, k) -6 = €/n, or
there exists a not-too-large covering constraint j € [m.]'* with C(j, k)-8 = ¢/n. In the former (resp. latter)
case, we refer to the index i (resp. j) as the pivor and the current value of P(i, k) (resp. C(j,k)) as the
pivot-value corresponding to this specific call to the subroutine BOOST(z, k).

Without loss of generality, assume that U = 27 - L where 7 = log(U/L) is an integer, and that the value
of any nonzero entry in the constraint matrix lies in the interval (L, U] at all times. Partition the interval
(L,U] into T segments Zy, . .., Z,_1, where Z, = (L 20 L. 2“’1] forall¢ € {0,...,7 —1}.

Claim 3.1. Consider any ¢ € {0,...,7 — 1}. Throughout the duration of our dynamic algorithm, at most
4n/e calls with pivot-values in Iy and pivots in [m.] are made to the BOOST(z, k) subroutine (see (3.2)).

Proof. Let 3, € R>q denote the k' coordinate of the vector z € R%,. For ease of exposition, we say that a
call to BOOST(x, k) is covering-critical iff its pivot is in [m,] and its pivot-value is in Z,. We wish to upper
bound the total number of covering-critical calls made during the course of our dynamic algorithm.

Consider any specific covering-critical call to BOOST(z, k) with pivot j € [m,.] and pivot-value o €
Iy = (L -2, L - 2°]. From Figure 9, it follows that this call increases z, by § = ¢/(na) > €/(nL2°).

Suppose that 7" covering-critical calls have been made to the BOOST(z, k) subroutine, where 7' > 4n/e.
Let us denote these calls in increasing order of time by: I'y, g, ..., I'p. Thus, for all ¢t € [T], we let 'y
denote the ! covering-critical call made during the course of our dynamic algorithm. From the discussion
in the preceding paragraph, each of these critical calls I'; increases x, by at least €/(nL2°).

Initially z;, = 0, and it increases monotonically over time. Hence, just before the last critical call I'r we
have 2, > (T — 1) - ¢/(nL2%) > (4n/e) - ¢/(nL2°) = 1/(L2°72). Let jr € [m,] be the pivot of the call
I'7. Since the pivot-value of I'p lies in Zy, it follows that C'(jr, k) > L - 261 just before the call I'z. Thus,
just before the call 'z, we have Cj. - x > C(j7, k) - o > L2071 - 1/(L2¢72) = 2. Butif Cj,. - = > 2 just
before the call I'r, then j7 cannot be the pivot of I'r (see Figure 9). This leads to a contradiction. Hence,
we must have 7' < 47/¢, and this concludes the proof of the claim. O

Claim 3.2. Consider any ¢ € {0,...,7 — 1}. Throughout the duration of our dynamic algorithm, at most
4n /e calls with pivot-values in I, and pivots i € [m,,] are made to the BOOST(x, k) subroutine (see (3.2)).

Proof. (Sketch) As in the proof of Claim 3.1, let z;, € R>( denote the k" coordinate of the vector x € RZ,.
Say that a call to BOOST(z, k) is packing-critical iff its pivot is in [m,] and its pivot-value is in Z;. -
Suppose that T covering-critical calls have been made to the BOOST(z, k) subroutine, where 7' >
4n/e. Let us denote these calls in increasing order of time by: I'y,I'a,...,I'z. Thus, for all t € [T,
we let I'; denote the t** packing-critical call made during the course of our dynamic algorithm. Let iz €
[my] be the pivot of the last packing-critical call I'7. Following the same argument as in the proof of
Claim 3.1, we conclude that P, - > 2 just before the call I'y. But if P, - > 2, then f,(z) >
maX;c|y,,] Pz > 2 according to (3.3). Now, applying Invariant 3.7, we conclude that just before the call
I'p we have: minep,| Cjz > fo(z) > (1+€)7"- fo(x) > (14€)~'-2 > 1. This leads to a contradiction,
since if minjepy,, Cjz > 1, then our dynamic algorithm would immediately declare that it has found a
O (€)-approximate solution to the input LP from this point onward, without making any further calls to the
BOOST(z, k) subroutine (in particular, without making the call I'7). Thus, it must be the case that 7' < 47/e,
and this concludes the proof of the claim. U

4We say that a covering constraint j € [my] is not-too-large iff Cjz < 2.
5Note that the values of the entries in the constraint matrix change over time due to the sequence of updates. The pivot-value of
acall to BOOST(z, k) refers to the value of the concerned entry in the constraint matrix just before the specific call to BOOST(z, k).
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Any call to the BOOST(x, k) subroutine has its pivot in [m,] U [m,] and pivot-value in Z;, for some
¢ € {0,...,7 — 1}.'% Thus, Claim 3.1 and Claim 3.2 imply that the total number of calls made to the

BOOST(z, k) subroutine is at most 2 - 7 - (4n/e) = O (10g2(mc+2n”+U/L)). O

€

log(mc+mp+U/L)

€2

Lemma 3.13. The dynamic algorithm described above has at most O ( ) many phases.

Proof. By Observation 3.9, the ratio y(z) := w,(x)/w.(z) increases monotonically over time. Initially, we
have 2 = 0, and hence v(z) = w,(x)/w.(z) = 1. Let  be the time-instant at which the last ever call to
B0OST(z, k) is made by our dynamic algorithm. We will upper bound ~(z) just before the time-instant x.

Just before the time-instant , by Corollary 3.8 we have max;¢|,,,) P52 < 140 (¢) and hence wy(z, i) <
exp(n(1 + O(e))) for all i € [m,), which implies that w,(z) = i wy(x, i) < my, - exp(n(1 + O(e))).

Just before the time-instant «, we also have minje[mc} Cjx < 1. Hence, at that moment there exists some
J' € [m] with Cyx < 1 and we(z, j') > 1/ exp(n). This means that w.(x) > we(x,j') > 1/ exp(n).

To summarise, we infer that y(z) = wp(z) /wc(z) < mp-exp(n(1+06(€)))-exp(n) = O(m,-exp(3-n))
just before the time-instant x. Thus, the value of () increases from 1 at the start of the algorithm to at
most A = O(exp(3 - n) - my) just before the last call to the BOOST(z, k) subroutine.

Note that y(x) increases monotonically over time in the range [1, A], and we create a new phase when-

ever y(x) increases by a (1 4+ O(e)) factor. Thus, from (3.2), we conclude that the total number of phases is
log(mp+mc+U/L)) n
T et ).

€

at most log (1. g(e)) A =0 (

Analysing the total update time: We first focus on bounding the total time spent on all the calls to the

B0OST(z, k) subroutine during the course of our algorithm. By Lemma 3.12, the point x gets boosted along
10g2 (mc +mp +U/L)
€2

a given coordinate k € [n] at most I' = O ( ) times. Whenever we boost x along some

coordinate k, we need to spend O(nz(k)) time to update all the relevant weights {w,(z,?)}, {wc(z,J)},
wp(x), we(x) and the values {C;x}, { P;x}; where nz(k) is the total number of nonzero entries in the
k' column of the matrices P, C' at the current moment. Hence, the total time spent in all the calls to the
B0OST(z, k) subroutine is at most > ., _, I'- O(nz(k)) =T - O(N) = O (N . 10g2(m0+62n”+U/L)).

Next, note that whenever we create a new phase, we set £ < [n] and call the subroutine BOOST-
ALL(z, E) as in Figure 10. Also, whenever there is a relaxing update to an entry C'(7, k) in the covering
matrix, we set F' < {k} and then make a call to BOOST-ALL(z, F). Thus, it might very well be the case
that a coordinate & € [n] moves in and out of the set £ on multiple occasions, without being boosted at all.
The time spent on these apparently futile operations, which modify the set £ without leading to any call to
B0OST(z, k), is captured by steps 1-3 of Figure 10. Lemma 3.13 implies that the total time spent in this
manner, throughout a sequence of ¢ relaxing updates and across all the coordinates, is at most:

number of phases) - O(number of coordinates) + O(t) = O (n- log(me + my + U/L) +1
( p 5
€
_ 0 <N' log(mc—i-n;p—i-U/L) +t> '
€
Finally, note that the preprocessing time is at most O (N . bg(mg%”“) since the static algorithm from

Section 3.1 can be implemented in O (N . log(mgi;rmp)) time [Youl4]. This leads us to Theorem 3.1 for
relaxing entry updates to covering constraints.

'5This holds because the pivot-values lie in the range (L, U], and this range has been partitioned into subintervals: Zo, . . ., Z, 1.
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3.2.3 The full algorithm: Handling relaxing entry updates to both packing and covering constraints

We start by identifying the main difficulty in extending the dynamic algorithm from Section 3.2.2 to the
setting where relaxing updates occur to both packing and covering constraints of the input positive LP.
Consider a relaxing update to the entry P(i, k), for some i € [mp],k € [n]. Due to this relaxing update,
the value of P(i, k) gets reduced, and accordingly the weight w,(x, ) also decreases. This contradicts the
monotonicity of the weights as captured in Observation 3.9. Thus, w,(x) no longer increases monotonically
with time, which in turn invalidates the proof of Lemma 3.13. We circumvent this difficulty by working
with an extended positive LP (P*, C*), which is derived from the input LP (P, C') in the following manner.

The extended LP: Throughout the sequence of updates to the input LP, we ensure that we always have:
« P e [R;ngx(nﬂ), where P*(i,k) = P(i,k) and P*(i,n + 1) > 0 for all i € [m,],k € [n].

e C* e [RQSX("H), where C*(j, k) = C(j, k) and C*(j,n + 1) = 0 for all j € [m¢|,k € [n].

It is easy to check that the input LP (P, C') is feasible iff the extended LP (P*, C*) is feasible. Furthermore,
if 2* = (2f,...,2%,,) € RE5" is a O(e)-approximate solution to the extended LP (P*,C*), then = =
(z%,...,2%) € R, is a O(e)-approximate solution to the input LP (P, C'). Accordingly, our new dynamic
algorithm will attempt to approximately solve the extended LP (P*, C*). Note that we are free to set the
values P*(i,n + 1) of the matrix P* in any way we chose (provided they remain nonnegative). We will
use this to our advantage while dealing with relaxing updates to the packing constraints in the input LP. It
is important to emphasise that except the entries P*(i,n + 1), at any point in time the values of all other

entries in the matrices P* and C* are determined by the current status of the input LP (P, C).

Initialisation: At preprocessing, we set P*(i,n + 1) < 0 for all i € [m,]. We start with an z* =
(%,..., 2% ,) € RES! where 2§ = --- = 2} = 0 and 2%, | = 1. At this point in time, we have f,(z*) =
fe(z*) = 0. From this point onward, we will keep modifying x* until it becomes a ©(¢)-approximate
solution to the extended LP (P*,C*), by following the same template as outlined in Section 3.2.1 and
Section 3.2.2. In addition, now after every relaxing update to an entry in the packing matrix (say) P(i, k),
we will change the value of P*(i,n + 1) in such a way that works to our advantage. This is explained in
more details below. For clarity of exposition, henceforth we assume that after an update to an entry P(i, k)
(resp. C(j, k)) of the matrix P (resp. C'), the corresponding entry P*(i, k) (resp. C*(j, k)) implicitly gets
updated so as to ensure the equality P*(i, k) = P(i, k) (resp. C*(j, k) = C(J, k)).

Pseudo-updates to the extended LP: Consider any relaxing update to an entry P(i, k) of the matrix P,
where i € [mp), k € [n]. Immediately after this relaxing update, we increase the value of P*(i,n + 1) to
such an extent that the value of P*z* (and hence the weight w,(z*)) remains unchanged. We refer to this
step as a pseudo-update to the extended LP. The only purpose behind the pseudo-update is to ensure that the
monotonicity of the weights as captured by Observation 3.9 continues to hold.

In summary, the overall algorithm follows the same template as in Section 3.2.1 and Section 3.2.2, with
the following caveat: Immediately after every relaxing update to a packing constraint in the input LP, we
perform the corresponding pseudo-update to the extended LP so as to ensure the validity of Observation 3.9.
It is easy to check that all the observations, lemmas and inferences derived in Section 3.2.2 continue to hold
here. This leads us to the dynamic algorithm promised in Theorem 3.1, for relaxing entry updates.

3.3 Handling Restricting (resp. Relaxing) Updates to a Packing (resp. Covering) LP

Consider the setting where we wish to maintain a solution to Problem 2.1 when the matrix C' is undergoing
relaxing entry updates (or equivalently, the matric C'" is undergoing restricting entry updates). Thus, each
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update increases the value of some entry of C'. The idea is simple. We run the dynamic algorithm from
Section 3.2 on the positive LP defined by (3.4) and (3.5), which is undergoing relaxing entry updates.

]lTaz
Cz

1 (3.4)
1 3.5)

IV IA

Suppose that this algorithm has just finished processing an update. Consider two possible cases.

Case I: The algorithm returns a solution = € RY, which satisfies 172 <14+06(e)and Cx > (1—0O(¢)) - 1.

In this case, we simply return the vector z and terminate our algorithm. The vector x will continue to remain
an e-approximate solution to the input LP after any future update.

Case II: The algorithm declares that the positive LP is infeasible as there is no cheap co-ordinate. From
Section 3.1.2, recall that w.(x, j) denotes the weight of a covering constraint j € [m], and that w.(x) =
> jelm] we(z, j) denotes the total weight of all the covering constraints. Define the vector g € RY, where
Uj = we(x, j)/we(z) for all j € [m]. We now claim that g is a feasible solution to the dual packing LP.

Claim 3.3. We have 1" =1and CTj < 1.

Proof. Since {f;} denotes the normalized weights of the covering constraints, we have 17§ = 1. Next, fix
any k € [n]. Since we are in Case II, the coordinate k is not cheap. So, from Definition 3.2, we infer that:

1
- — > 1+ O(e), or equivalently, (CT@> = ;- C(j, k) <1—-06(¢) < 1.
zje[m} ;- C(4, k) k jez[;n] ’
Accordingly, we get ' < 1. O

Our algorithm maintains an estimate w)(z) € [w(z), (1 + €)w.(x)]. If after processing an update,
we end up in Case II, then we return a y € R, where y; := we(z,j)/wi(z) for all j € [m]. As
9; <yj < (1+O(e)) - g; forall j € [m], Claim 3.3 implies that 1Ty > 1 and C Ty < (1 + O(¢)) - 1.

It is easy to maintain the vector y without any significant overhead in the total update time, because of
three reasons: (1) the algorithm from Section 3.2 explicitly maintains the weight w.(z, j) for each j € [m],
(2) we do not need to change the estimate w(z) as long as we remain in the same phase, and (3) by

log(m+U/L)
2

Lemma 3.13 we have at most O ( > many phases. Note that whenever we start a new phase we

have to spend O(m) time to update the vector y. Theorem 3.14 now follows from Theorem 3.1.

Theorem 3.14. We can deterministically maintain a solution to Problem 2.1 when the matrix C undergoes
2 2
log (n;b;rU/L) +m- 10g(m:2rU/L)) —O(t+ N2 (ﬂsz/L)) total

t relaxing entry updates in O <t + N -
time, where N denotes the maximum number of non-zero entries in C' throughout these updates.

Finally, we consider the problem of maintaining an e-approximate optimal solution to a generic cover-
ing (resp. packing) LP under relaxing (resp. restricting) updates. It is easy to verify that if we start with
Theorem 3.14 and apply the same reduction outlined in Section 2.5.2, then we obtain the following result.

Theorem 3.15. Consider any sequence of t relaxing updates to LP (2.13), where each update either in-
creases an entry of C, or decreases an entry of a,b. Throughout these updates, let N denote the maximum
number of non-zero entries in C, and let L (resp. U) be a lower (resp. upper) bound on the minimum

(resp. maximum) value of a non-zero entry of C,a,b. We can deterministically maintain an e-approximate
2

optimal solution to LP (2.13) in O <t : w +N- k’g(’ﬁiﬂ/” -log(nU/L)> total time. The same

guarantee also holds for maintaining an e-approximate solution to LP (2.14) under restricting updates.
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4 Conditional Lower Bounds

In previous sections, we presented partially dynamic algorithms for packing-covering LP-s with polylog-
arithmic amortized update times. This leads to a couple of natural questions: (1) Can we solve the same
problem in polylogarithmic worst case update time? (2) Can we design a fully dynamic algorithm for
packing-covering LPs in polylogarithmic amortized update time? We will now provide conditional lower
bounds that rule out the possibility of having these stronger guarantees.

Our lower bounds hold under Strong Exponential Time Hypothesis (SETH), and the starting points of
our reductions are Problem 4.1 and Theorem 4.2 described below [ARW17].

Problem 4.1. As input, we get four parameters N, k,m, 3" such that © (No(l)) =0 <k<m=
C] (No(l)), and two collections of N vectors A = {a(l), . ,a(N)} and B = {b(l), e ,b(N)} such that
a,b € {0,1}™ forall a € A,b € B. Furthermore, each vector b € B has exactly k non-zero entries. We
want to design an algorithm that can distinguish between the following two cases.

* (1) There exists some a € A and b € B such that a > b.

e (2)Foralla € Aandb € B, we have a - b < k* := Bﬁ

Theorem 4.2. [ARWI7] Under SETH, any algorithm for Problem 4.1 runs in Q(N?~¢) time for all ¢ > 0.
Now, we are ready to prove Theorem 1.2, and we state a more detailed version of it below.
Theorem 4.3. Assume SETH holds. Let N and OPT respectively denote the number of non-zero entries in

the input LP and its optimal objective value. Then there exists some 3 = © (N 0(1)) such that:

* (i) Any algorithm which maintains an estimate % < v < OPT for a packing or covering LP under

fully dynamic entry updates must have an amortized update time of Q(N 1-o(1) ).

* (ii) Any algorithm which maintains an estimate % < v < OPT for a packing or covering LP under

partially dynamic entry updates must have a worst-case update time of Q (N 1_0(1)).

Furthermore, the same lower bounds hold even under translation updates.

4.1 Proof of Theorem 4.3 - part (i)

We prove the theorem for packing LPs. The proof for covering LPs immediately follows via LP duality.

Recall the parameters N, k, m,3* from the statement of Problem 4.1. Set 5 := (3*/3. Suppose that
there is a dynamic algorithm A that maintains an estimate % < v < OpT for a packing LP undergoing
fully dynamic entry updates in ©(7") amortized update time. Using A as a subroutine, we design a static
algorithm .4* for Problem 4.1, as described below.

Upon receiving its input, the algorithm A* defines the following packing LP, where initially we have

Aj = 1forall j € [m]. The algorithm .4* now feeds this packing LP as an input to .A at pre-processing.

Maximize Z Z; 4.1)
j=1

st. a-x < k* forall a € A. 4.2)

Njcxg <1 forall j € [m]. 4.3)

zj > 0 forall j € [m]. 4.4

Subsequently, the algorithm A* performs the steps outlined in Figure 11.
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FOR ALL b € B:
Set \j = L := m/k* for all j € [m] with b; = 0, and feed these updates to .A.
IF A returns an estimate v < 2k*, THEN
REPORT that we are in case (1) of Problem 4.1, and TERMINATE.
Return the LP to its initial state, by setting A\; = 1 for all j € [m] with b; = 0,
and feeding these updates to the dynamic algorithm .A.
6. REPORT that we are in case (2) of Problem 4.1 and TERMINATE.

A S

Figure 11: Solving Problem 4.1 using the dynamic algorithm .A.

Claim 4.1. Suppose that a - b < k* forall a € A,b € B. Then the algorithm A* correctly reports that we
are in case (2) of Problem 4.1.

Proof. Consider any vector b € B, and focus on the corresponding iteration of the FOR loop in Figure 11.
After step (2) of this iteration, we have \; = L for all j € [m] with b; = 0, and \; = 1 for all j € [m] with
b; = 1. Now, define an x where x; = 1 for all j € [m] with b; =1, and 2; = 0 for all j € [m] with b; = 0.
Such an z is a feasible solution to the LP and has an objective of >, x; = |{j € [m] : b; = 1}| = k.
This implies that OPT > k. Accordingly, in step (3), the dynamic algorithm A returns a value v > % =
g—'j = 3k*. Hence, the algorithm 4* does not terminate during this iteration.

The preceding discussion implies that .4* does not terminate during any iteration of the FOR loop in
Figure 11. Instead, at the end of the FOR loop, it correctly reports that we are in case (2) of Problem 4.1. [

Claim 4.2. Suppose that there exists vectors a € A, b € B such that a > b. Then the algorithm A* correctly
reports that we are in case (1) of Problem 4.1.

Proof. Focus on the iteration of the FOR loop in Figure 11 which deals with the vector b € B. After step
(2) of this iteration, we have A\; = L for all j € [m] with b; = 0, and \; = 1 for all j € [m] with b; = 1.
Partition the set [n] into two subsets: Py = {j € [m] : b; =0} and P, = {j € [m] : b; = 1}. Since a > b,
we have a; = 1 forall j € P. Let z be any feasible solution to LP (4.1). Observe that:

ij:Zajxjga-:ngkr*. 4.5)

JjEP jeEP

Next, recall that A\; = L for all j € F%. Thus, we have z; <1 /L for all j € Py, and hence:
dow< T =k (4.6)

Summing (4.5) and (4.6), we now get: Z;”zl xj < 2k*. Since this inequality holds for every feasible
solution x to the LP, we get OPT < 2k*. Accordingly, during step (3) of the concerned iteration of the FOR
loop in Figure 11, the dynamic algorithm .A returns a value v < 2k*. Thus, the algorithm 4* terminates at
this point, before correctly reporting that we are in case (1) of Problem 4.1. O

The correctness of algorithm .A* follows from Claim 4.1 and Claim 4.2. The claim below bounds its run
time in terms of the update time of the dynamic algorithm A.

Claim 4.3. The algorithm A* runs in O(N - T) time, where T is the update time of A.
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Proof. The algorithm A* starts by feeding LP (4.1), which is of O(N ) size, to A as input at pre-processing.
Subsequently, during each iteration b € B of the FOR loop, it feeds ©(m) = O(1) updates to A. Since
the FOR loop runs for at most [V iterations, overall the dynamic algorithm .4 needs to handle at most O(N )
updates. Hence, the total time spent by the dynamic algorithm A is at most O(N - T). The claims follows
since the runtime of .4* is dominated by the total update time of .A. O

Theorem 4.2 implies that assuming SETH, the run time of algorithm A* must be Q(N27¢) for every
constant € > 0. Hence, from Claim 4.3 it follows that the amortized update time of the dynamic algorithm
Ais at least T = Q(N'~°()), This concludes the proof of part-(i) of Theorem 4.3.

If we wish to prove the same lower bound for translation updates, then the reduction remains almost
the same. The only difference now is that in step (2) of Figure 11, instead of changing the value of the
coefficient \; we now change the constraints z; < 1 to z; < 0 for the concerned co-ordinates j, and un-do
these changes in step (5) as before.

4.2 Proof of Theorem 4.3 - part (ii)

We prove the theorem for packing LPs. The proof for covering LPs immediately follows via LP duality.

Asin Section 4.2, set 5 := 3* /3. Suppose that there is a dynamic algorithm A that maintains an estimate
% < v < OPT for a packing LP undergoing restricting entry updates in ©(7") worst-case update time.
Using A as a subroutine, we design a static algorithm .A* for Problem 4.1. To achieve this goal, we follow
almost exactly the same strategy as in Section 4.2. The only difference being that in step (5) of Figure 11,
instead of feeding a new set of updates to A, we roll back the state of A to where it was at pre-processing.
This allows us to deal with the fact that A can only handle restricting (not fully dynamic) updates. The rest
of the arguments in the proof remain the same as in Section 4.2.

The preceding discussion implies the desired lower-bound when the input LP undergoes restricting
updates. To derive the analogous lower-bound for relaxing updates, we need to make only the following
minor tweak in our design of algorithm A*: Initially, we set A\; = L for all j € [m]. Subsequently, in step
(2) of Figure 11, we set A; = 1 for all j € [m] with b; = 1, and feed these updates to .A. Next, in step (5)
of Figure 11, we roll back the state of A to where it was at pre-processing.

Finally, we can easily extend our lower bounds to hold in settings where we only have translation up-
dates, using the idea outlined in the last paragraph of Section 4.2.

A Proofs of Theorem 2.12 and Lemma 2.13

Proof of Lemma 2.13: To conclude Lemma 2.13 notice that Lemma 2.9 seamlessly extends to the dynamic
setting. The only property of the dynamic input matrix C' the proof of Lemma 2.9 exploits is that at the
time of the ¢-th WHACK sub-routine it holds that (Cz);, < 1 which is similarly guaranteed in the dynamic
setting. To argue it formally let C* refer to the state of constraint matrix C' at the time of the ¢-th WHACK
call. Fix some ¢ € [T]. The following line of inequalities in analogous with the proof of Lemma 2.13.

i,t

1

|, — |2, = Z <(5’3t+1)j _ (i,t)j) _ Z (int)j, (6. %) _ § (C'3), < § .

j€ln] j€ln]

The last inequality follows since (Ctxt)z.t <landz!:= 3!/ HﬁctHl Rearranging the terms, we get:

|, < (1+§).

Ii’t

1
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< n/9 forall t € [T).

AsT = %2(") and Hﬁ:oHl = n we get the following: Hﬁ:tul < (1 + §)T ||2°

h
Proof of Theorem 2.12: The extension of Theorem 2.6 to the dynamic setting is also relatively straightfor-
ward. Observe, that at the initialization of our dynamic algorithm we simply run the static implementation.
Therefore before any update occurs Theorem 2.12 can be concluded from Theorem 2.6. We will first argue
that if the dynamic algorithm returns vector Z! then it must satisfy that C'- 7! > 1- (1 —¢) and |Z'|; < 1+¢
even after some restricting updates have occurred.

Consider the starting point of a given phase at time 7. At this point 1737 = 1727/ ||#7||, = 1 and
we fix W = ||27||;. During the phase Z' may only monotonously increase. However, if at any point
#'||, > (1—€/2)~1-W anew phase begins. As Z' = & /W during the phase HitHl <(1-¢/2)7! < 1+e

Fix some i € [m]. At the start of each phase the algorithm ensures that (C' - Z'); > 1 through enforcing
all currently violating constraints. As during a phase Z' may only monotonously increase until further
restricting updates occur to constraint ¢ it will remain satisfied. At all times the algorithm keeps an e-
approximate estimate of (C - Z'). Whenever a restricting update occurs to some constraint element C; ; and
we observe that out estimate of the constraint value falls bellow 1 we enforce constraint i until (C - z%); > 1.
Due to us keeping an e-approximate estimate of (C - Z'); this will never allow it to fall bellow 1 — e. Note
that the value of (C' - Zt); only depends on the i-th row of C and 7! therefore if a restricting update occurs to
constraint ¢ and we decide not to enforce the constraint itself then the values of all other constraints remain
unaffected.

It remains to argue that whenever the dynamic algorithm returns vector y following a series of updates
it holds that |y|; = 1and CTy < 1- (1 +4 - ¢). Once the algorithm has returned such a vector y it will no
longer change its output. As C-s elements may only get reduced over time y will maintain these properties.
Here we refer to the proof of Lemma 2.2 with slight deviations. Recall the experts setting from [AHK12] as
presented in the proof Lemma 2.2. Further recall the statement of Lemma 2.4.

We map the whack-a-mole algorithm to the experts setting in the same manner however now accounting
for the evolving constraint matrix. Let C* stand for the state of C at the time of the ¢-th call to WHACK. Each
covering constraint j € [n] corresponds to an expert, each iteration of the FOR loop in Figure 1 corresponds
to a round, the vector &' corresponds to the weight vector w! at the start of round ¢ € [T, and finally, the
payoff for an expert j € [n] in round ¢ € [T] is given by (pt)j = (1/7) - Cf, ;.

Since Cj, ; € [0, A], we have ‘(pt)j‘ = (pt)j forall j € [n],t € [T]. Thus, Lemma 2.4 implies that:

T
Z (pt)T Lt ln(en)

t=1 t

(1-¢)- (), -

1

T
, for all experts j € [n]. (A.1)
Diving both sides of the above inequality by 7', and then rearranging the terms, we get:

T

(1—¢) 1 &, o7 In(n) ,
T ; (pt)j < T ; (pt) AR =T for all experts j € [n]. (A.2)

We next upper bound the right hand side (RHS) of (A.2). Since the algorithm picks a violated covering
constraint to whack in each round, we have: (pt)T szt = (1/X) - (C’tmt)it < (1/)). Taking the average of
this inequality across all the 7" rounds, we get: (1/T) - 3.1, (pt)T -2t < (1/A). Since T = AIn(n)/€?,
we derive the following upper bound on the RHS of (A.2).

1 & T In(n) 1
f‘Z(Pt) il —m <1 (l+e) (A.3)
t=1
We now focus our attention on the left hand side (LHS) of (A.2). Fix any expert j € [n]. We first express
the payoff obtained by this expert at round ¢ € [T'] in terms of the vector y¢, and get: (pt)j =1-Cj; =
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. ((Ct)Tyt)j. Since y = & - Zf 1 ', the average payoff for the expert j across all the T rounds is given

1XT:(1€ _11 d t\NT, t 1 d TTt _1 T\T
IDCIES IO (GOl )—TXE(C v), =5 (€)@

In A.4 the inequality holds as the elements of C' may only reduce over time. The inequality is the most
significant deviation from the proof in the static setting. From (A.2), (A.3) and (A.4), we get:

J

(a - 2 (€")7w) < % (1), andhence ((C")7y) < (1+4e) forall j & [n].

The last inequality holds since e < 1/2. This concludes the proof of Theorem 2.12.

B Missing Proofs from Section 3.1

Claim B.1. A coordinate k is cheap if and only if (V f,(x), er) < (14 €)(V fe(z), ex).

., Z’L m em i P(Z k) Zz me ncLLC(vk)
Proof. Follows from definitions: (V f,,(x), ex) = GX[LZ][ T AV fe(x),er) = %iel[:;c] en.ciwz ,

Die(my) €77 P(ik) Dicme €7
D icime) € CF-C(ik) ZiE[mp] en b

e (Vip(x).en)
hence if ﬁ < 1 + € we have that

= Nz, k) - 2@ < 4

wp(z

~

B.1 Proof of Property 3.3

Proof. The proof is analogous to the argument of Young [Youl4]. Let y be a feasible solution to the
Sih (Cy)iwe (i) > 1 > St (Py)i-wp(@,i)

we(z) wp (z
wp(x,1)/wy(x) just are describing distributions over the the constraints. This could be phrased as:

linear program. Then we have that as we(z,1)/we(x) and

|we(2)] |wp()]

(T we() pT. wp(x) )

Which as y is non-negative implies that there is an ¢ such that C'iT . |$CE3\ PT |wp EI;I > 0 which is
equivalent to saying A(x,7) < wpgx; meaning there is a cheap coordinate.

O

B.2 Proof of Property 3.4

For the convenience of the reader we will restate the statement precisely: given e is sufficiently small such
that ¢ < 1/10 we have that:

Fol+0-ex)— fo(2) < (1+10-€) - (fol@+0-ex) — fol@) (1 +10-€) - e <2-¢

Proof. Note, thatif ¢ < 1/10 then exp(—log(m.+U/L)/¢) < exp(—2-In(mc+U/L)—1/e+2) < 7 L

Let k be a cheap coordinate which the algorithms boosts by ¢ and let = stand for the value of the output
vector before boosting. If coordinate k is boosted we have that (V fy,(z),ex) < (1 +¢€) - (Vfe(x), er). We
will show that (V f,(z+ 9 -ex), er) < (Vfp(z),ex) - (1+0(e)) and (V fe(x+0-ex), ex) > (Vfp(x), ex) -

(1 —O(e)). As fc(x) and f,(z) monotonously reduces and increases respectively with x this implies that

36



during the boost it must hold that (V f,(x),ex) < (1 + O(e)) - (V fe(z), ex) which in turn implies that
oz +0-ex) — fp(x) < (fe(z+6-er) — fe(x)) - (1 — O(€)) implying one half of the claim.

<pr(33 +0-ex),er) =

Zie[mp} en-Pi(x-HS-ek) ’ P(Z> k)
Zz’e[m | en Pi(z+d-ex)

D ietmy) €T P(i k)

< B.1
o Zie[mp} en iz ( )
= ¢ (Vp(a),ex)

< (142-€) - (Vfp(z),ex) (B.2)

Inequality B.1 follows from the definition of § and Inequality B.2 applies for any € < 1.
Define I = {i € [m¢] : Cijz > 2and A = {i € [m.] : Cijz < 2} representing the inactive and active

constraints of C'.

<Vfc((£), ek>

Zie[mc} e e C(Z7 k)

—C;
Zie[mc]e e

Cli, k) + > ;e €70 - C(i, k)

Dieae MO 43 e

ica e e

Cli k) + Y e €70 - CO(i, k)

<

B Diea€ MO

< Yica€ TET - Cli k) + Y e Clis k)

B Dieae MO

i _lo (me+U/L) i
_ Tiea€ 1O Clik) e e e a1 {CG )
B Dicae TEE
Y ica e T O k) +e - L€
< S ae O (B.3)
7
e G Ok
< ZZGAZ ; e—ncz-x( ). (1+e¢) (B.4)
i€

Equation B.3 follows if € is selected small enough such that e‘w < &L Equation B.4 follows

—= “Me "

from the fact that in order for a boost to occur there must be at least one unsatisfied covering constraint, hence
Siea€ TG Ci k) > e - L.
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Sy €T (i k)
D icimel e—1-Ci(z+d-€;)
Yieae T O k) + 3 e ) O k)
D icA e Ci(z+de) 4 dicr e~ Ci(z+6-¢;)
Sy IO (i )

(Vf(x+6-e)er) =

>

= ZieA e—nC’,L-(x-i-(S-ei) + ZiGP 6_77.Ci(x+6.ei)

- Sica e~ Cilztde) L O, k)

= ZieA e—n-Ci(w-H;'ei) + me - 6—2-17

. ZiEA e—n-&(z-ﬁ-é-ei) . C(Z, k) 1 B

- . —n-Ci(x+5-€;) ' (B.5)
dicat 1+e€

L Tieac O Clik) e 5o

B Diea€ TG L+4e .

Here Equation B.5 similarly follows from the fact that »_,_ 4 e~ Cilztde) > e=n=¢ (by the choice
of §) and by the definition of 7. Equation B.6 follows from the definition of d. Therefore, we get that
(Vi(x+d-e),ex)- (1+4-€) > (Vi(r+0d-€),er)- (1;%)2 > (Vfe(z),er) (given € < 1/5).

As (Vfp(x+0-e)er) < (1+2-€)(Vfp(z),er) and (Vfp(x), ex) < (Vfa(z),ex) - (1+ €) we have
that (V fp(x+0-€;),ex) < (Vfc(z+0-€;),ex)-(1+€)-(142-€)-(14+4e) < (Vfe(x+0-€;),ex) - (1+10-€)
(given € < 1/10).

Asboth f.(x) and f,(z) are monotone in = we get that fj,(z+0-e)— fp(x) < (fe(x+d-ex)— fe(x)) (14
10-¢€). Note that fo(x) > min;epy,,) Ciz and fo(r+6-ex)+€ < minep, ) Ci(r+eg-€) < mingep, | Civ+e
therefore f.(z + 9 - ex) — fc(z) < e. Therefore, we can conclude the original inequality.

U

C Complete Algorithm from Section 3.2

In Section 3, we presented an overview of our dynamic algorithm for positive LPs under relaxing updates.
But we glossed over some implementation details to highlight the key ideas. For instance, we did not specify
the dynamic data structure that will be needed to find the appropriate § during a call to the BOOST(z, k)
subroutine (see step 1 in Figure 9). Furthermore, in Section 3.2.2 we focused only on relaxing updates to the
covering constraints, and we sketched in Section 3.2.3 how to deal with the relaxing updates to the packing
constraints. Accordingly, to address these gaps, in this section we present a full, comprehensive version of
our dynamic algorithm for positive LPs under relaxing updates.

Preliminaries: Let P € %@gxn and C' € RT™" be input matrices to the linear program. Let N stand
for the number of entries in P and C which are non-zero at any point during the run of the algorithm. Let
U and L stand for upper and lower bounds on the elements of the constraint matrices P, C at all times,
respectively. Let ¢ stands for the total number of relaxing updates progressed by the dynamic algorithm.

Let RY @i € [my), ch : j € [m¢] refer to the number of elements in the i-th row of P and the j-th row
of C' respectively which take a non-zero value at any time. Similarly, define [V, ,f :k € [n]and N, kc 1k € [n]
to represent the number of elements in the k-th column of P and C respectively taking a non-zero value at
any point.
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Theorem C.1. There is an algorithm for maintaining a certificate of infeasability or returning an e-approximate

. 2 . . . .
(N log (m”;chrU/ L 4 t) deterministic time

solution for a relaxing dynamic positive linear program in O
(for e < 1/200).

We will dedicate this entire section to proving Theorem C.1. For sake of simplicity we will first show
how we can handle a dynamic linear program undergoing solely entry wise updates. In Subsection C.6 we
will show to extend the algorithm for translation updates. We will make the following assumption on the
distribution of inputs:

Assumption C.2. Non-zero elements of input matrices P and C'lie in the range of [1/poly(N), poly(N)]
at all times.

C.1 Variables

Define P*, C* and X* as described in Section 3.2.3:

s P* e [Rggx(nﬂ), where P*(i,k) = P(i,k) and P*(i,n + 1) > 0 for all i € [m,],k € [n].
e " e [RZSX(HH), where C*(j, k) = C(j, k) and C*(j,n + 1) = 0 for all j € [m.],k € [n].
e ¥ € [R;”gl and x refers to the first n coordinates of z*

From now on we will refer to the linear program defined by Px < 1, CX > 1 as the original linear
program and to the linear program defined by P*x* < 1, C*x* > 1 as the extended linear program. Use

variable ¢ and j to refer to row indices of P and C respectively, and use k for referring to column indices of
PorC.

Observation C.3. If x is a feasible solution to the original linear program then {x, 1} (x extended witha 1)
is a valid solution to the extended linear program. If x* is a feasible solution to the extended linear program
then the first n coordinates of ©* form a feasible solution to the original linear program. Hence, the original
linear program is feasible if and only if the extended linear program is feasible.

Due to Observation C.3 we will focus only on the extended linear program in this section.

Data-Structure: We will initially define the following variables:

n— log(me+ m, + U/L)
€

(C.1)

o w.(x*,i) =1 fori € [m,| representing covering constraint weights
* wp(z*,j) = 1for j € [m,] representing packing constraint weights
© we(x") = D iepm We(@™, 1) and wp(z*) = 3 cp, 1 wp(2", )

° )\(33*)0 = wp (")

we(z*)

Zje[mp] wp(z*,5)-P* (5,k)
2icme] We(z*,9)-C*(i,k)

representing the price of each coordinate. Note that after initialization the algorithm will not keep track of
exact A(x*, k) values. Similarly, for the purposes of the algorithm description and analysis define but do not
maintain

For the purposes of the analysis we will define A(z*, k) = Vk € [n] : A(z*, k) =
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Vk € [n]: 0 = m(?x{max{ max P*(i, k) - 6, max  C*(j,k)-0} =¢/n}

1€[myp] J€[me]|Cra* <2
Approximate Variables: The algorithm will initialize the following approximate variables:
* Vi€ [my) s wp(z*, i) = wy(z*, 1)
o Vj € [me): we(z*, ) = we(x*, j)
* Wp(a*) = wp(z”)

* We(z”) = we(z")

o Vk € [n]: Ma*, k) = A(z*, k)

~

* Ao(z") = Ao(z")

Invariant C.4. The following inequalities are simultaneously satisfied:
o Vi€ [me] rwe(x*, i) < we(z*,i) < we(z*,i) - (14 €)
o Vi€ [my] : wy(a*, i) > wp(z*,i) > wp(z*,7) - (1 —¢€)

2 jelmy) Wp(@™:3)-P*(5,k)

« Vk € [n] : Ma* k) = o Xo(z*) > Ao(z*) - (1 —€)

i€[me
C.2 Algorithm

Iterate subroutine: Initially the algorithm calls the Iterate() sub-routine which initializes \o(z*) = Ao (z*)
and iterates over all coordinates k € [n]. Iterate() boosts any coordinate k satisfying 5\(95*, k) < Xo(z*) -
(14 5-€) until A(z*, k) > Ao(z*) - (14 5 - €). If due to the boosts Ao(z*) has increased enough such that
Xo(z*) - (1 — €) > Ao(2*) Irerate() is called recursively.

Boost subroutine: A call to Boost(k) increases the k-th coordinate of x*. The algorithm selects an increment
of ¢ such that all packing constraints and all not *well” satisfied covering constraints are increased by at most
e/, that is § = maxs{max{max; P * (i, k) - 9, Max;|cr <o C*(j, k) -0} = €/n}. The algorithm increments
x* by e, - 0 and afterwards proceeds to restore the affected variables w,(z*, ), wy(x*, j), we(x*), wp(z*)
and \o(x*) precisely. Afterwards UpdatePWeights, UpdateCWeights subroutines are called to ensure the
correctness of Invariant C.4.

UpdatePweights, UpdateCWeights subroutines: These subroutines are used to update ), W, and \ values
respectively. Without loss of generality assume that UpdateCWeights(k) was called. The algorithm checks
for all i € [mp] such that the i-th element of the k-th column of P* is not empty (P * (i,k) > 0) weather
wp(x*,1) < wp(z*,4) - (1 — €) as these are the wy,(x*, i) values which have increased due to the boosting
coordinate k. For rows where the slack between the approximate and actual values became too significant the
algorithm readjusts the approximate parameter (wy,(x*,7) < wy(z*,7)) and adjusts all values of Aa*, k)
which might have been affected by this change (that is the ones corresponding to columns of P* where the
i-th row is non empty, that is P*(i, k") > 0).

UpdateP subroutine: A call UpdateP(i, k, A) handles a reduction of A to P*(i, k). After updating Px (i, k)
the algorithm increments P « (i,n + 1) with A - ¥ to guarantee that w,(x*,7) remains the same after
increasing P*(i, k). This way the only A value which is affected is A(z*, k) which the subroutine updates
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to ensure the correctness of Invariant C.4. Due to the update of S\(x*, k) coordinate k& might become cheap
(that is A(z*, k) < Xo(z*) - (1 +5 - €)) so the subroutine boosts % until it is no longer cheap. If some boosts
occur then Ag(z*) might reduce enough such that Ag(z*) < Ag(z*) - (1 — €) in which case a new call to
Iterate is made to ensure the correctness of Invariant C.4.

Algorithm 1: Main subroutine of the algorithm
Input: C* € R7g*", P* ¢ RI2™"
Output: z* € RZEC*z* > 1, P*2* <1- (14200 ¢)
1 Function Tterate ():
2 | Ao(@¥) + Xo(a¥)
3 | forke[n]do
4 while A\(z*, k) < Xo(z*) - (1 +5-¢) do
5 L L Boost(k) // See Algorithm 2

6 | if Xo(z*) < Ao(z*) - (1 — €) then
L Iterate()

Function Main () :
L Iterate()

NI )

Algorithm 2: Boosting of coordinate k

1 Function Boost (k) :

2 0 < sample in [0y /4, O] // See Section C.5

3 T x"+ep 6 ¢/ is the unit k-th coordinate vector
4 if C*x* > 1 then

5 L Return x*

6 for Vi € [my]|P*(i,k) > 0do

7| | wp(a*, i) < exp(n - Pfa*)

8 wp(2*) = Y iem,) Wp(@", 1) // Updated in O(N!) time
9 | forVje [m.]|C*(j,k) >0do

10 L we(z*, j) « exp(—n - Ciz*)

| we(a*) = 3 e, el ) // Updated in O(NY) time
*\ _ wp(z”)

12 | Xo(z*) = Z’c’(i*)

13 UpdatePWeights(k) // See Algorithm 3

14 UpdateCWeights(k) // See Algorithm 4

C.3 Correctness

Claim C.1. Invariant C.4 is always satisfied by Algorithm 1.

Proof. At initialization the invariant clearly holds by the definition of the approximate variables as their
exact counterparts. To prove the correctness of the invariant we will consider the three instances where
variables are updated and argue inductively that they preserve Invariant C.4.
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Algorithm 3: The subroutine updating packing weights

1 Function UpdatePWeights (k) :

2 for j € [m,]|P}) > 0do
3 if Wy, (2%, j) < wp(x*, j) - (1 — €) then
4 'lﬁp(fL'*,j) = wp(x*7j)
5 for k' € [n][ P/}, > 0do
S > etmyp) Wp(2*,3")-P* (5" k')
6 L )\(1’ ,k/) = XJ:iEe[r:C] Be(z™0)C 0,k

Algorithm 4: The subroutine updating covering weights

1 Function UpdateCWeights (i):

2 | forie [m]|C]) >0do
3 lfu?c(m*,z) > wc(m*,i) : (1 + E) then
4 We(z*,1) = we(x*, 1)
5 for k&' € [n]|Cf,, > 0do
3 * ZG[m ]’lﬁp(l’*J)P*(J’k/)
6 L )\(1’ ,]{}/) = Z;g[m:] We (@ 7)-C (i k)

Algorithm 5: Subroutine handling updates to the packing constraint matrix P*

Input: (j,k,A): P*(j, k) decreased by A
1 Function UpdateP (j,k, A):
2 P*(i k) < P*(i,k) — A
3 P*(i,n+1)=P*(i,n+1)+ Az}
< 7 et Wp (2 3)-P* (i K
4 A(x*y ]{7) = %ji[[mpc]] chil’*,j))'a* ((j,k))
5 | while \(z*, k) < \o(a*) - (1+5-¢) do
6 L Boost(k)

7 | if A(z*) < Ao(z*) - (1 — €) then
8 L Iterate()

// Updated in O(1) time

// See Algorithm 2

// See Algorithm 1
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Algorithm 6: Subroutine handling updates to the covering constraint matrix C*

1 Function UpdateC (j,k,A):

2
3
4

5
6

7

10
11

12

13
14

15

16
17

18
19

C*(j, k) < C*(j,
if C*2* > 1 then

L Return z*
we(x*, 7) + exp(—n
wC( ) — Zye[m
Ao(z*) = ))

lfwc( 7]) < wc(

by

k) + A

0 Cja)
] wc( *7])

*,7) - (1 —€) then

we (", J) = we(z™, 7)
for k' € [n]|C5;, > 0do

;\(ZE*,]C/) =

i€[mp]

Input: (j,k,A): C*(j, k) increased by A

wp (x,1)- P (4,k")

// Updated in O(1l) time

or k' € [n]|C7 1, > 0do
while \(z*

S e lme) D@ O G

k') < Ao(z7) - (1+5-¢€) do

| Boost(k’)

Zie[mp] wl’(x*vi)'P*(ivk)

Ma* k) =

j’elm

while \(z*, k) < Xo(z*)- (1+5 -

L Boost(k)

if \o(z*) < Ao(z
L Iterate()

’Lﬁc((E*,j/)'C* (],7k)

cl

*)- (1 — €) then

€) do

// See Algorithm 2

// See Algorithm 2

// See Algorithm 1
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Boost subroutine (Algorithm 2): when Boost(k) is called then elements of w,(z*,4)|P*(i,k) > 0 and
wp(x*, §)|C*(4,k) > 0, we(z*), wp(z*) and \g(z*) are updated. Afterwards UpdatePWeights(k) and
UpdateCWeights(k) are called. These subroutines check variables w,(x*, )| P* (i, k) > 0and w,(z*, j)|C*(j, k) >
0 and update them to enforce the requirements of Invariant C.4. Boost(k) might be called by subroutines
Iterate, UpdateP and UpdateC. Each of these subroutines call Iterate if the last requirement of Invariant C.4
(Ao(z*) < Ag-(1—e) is violated. As Invariant C.4 can’t compile (as it calls itself) until Ag(z*) > Xg- (1 —¢)

all of Invariant C.4 will be satisfied after a boost operation.

UpdateP subroutine (Algorithm 3): UpdateP(1, k, A) doesn’t affect constraint weights by define. The only
variable it needs to update is A(x*, k) because of the change in P*(i, k). As argued previously, Invariant C.4
is restored by the Boost calls inside of UpdateP.

UpdateC subroutine (Algorithm 4): UpdateC makes changes to w.(z*, j), w.(z*) and Ag(z*) and updates
the approximate variables accordingly to fit Invariant C.4. As argued previously the invariant is restored after
proceeding Boost calls.

O

Claim C.2. Whenever the algorithm halts without returning an answer the extended LP is infeasible.

Proof. By Claim C.1 we can assume that Invariant C.4 is satisfied whenever the algorithm halts without
returning an answer. Following the proof of Property 3.3 from Section B.1 if at any time for all k£ € [n] we
have that A\(z*, k) < Ao(z*) then the linear program is infeasible. We will argue that Invariant C.4 implies
VEk € [n] : AM(z*, k) < Xo(2z*). Fix k € [n] for this proof.

By Invariant C.4 we always have that S\(x*, k) > Mz*,k). Say whenever the algorithm checked if
AMa*, k) < Xo(2*) - (14 5 - €) that the algorithm has checked the price of coordinate k. After a coordinates
price is checked it is boosted until A(z*, k) > A(z*,k) > Xo(z*) - (1 + 5 - €). Each coordinates price is
checked at least once at initialization. Let Ay (z*) and AJ (z*) represent the value of \o(z*) after the last
time coordinate k-s price was checked and at compilation respectively. Let ;\o(m*)* represent the value of
5\0(95*) at both of these time points (note that if \g (z*) would have been updated between the last price
checking of coordinate & and compilation a new call to Iferate() would have been made, hence k-s price
would have been checked again). By Invariant C.4 we have that \(z*)* < Ay (z*) and Ao(z*)* > \{ (z*)-
(1 — €). Therefore, AJ (z*) < @

€

A(z*, k)-s value might only have reduced since the last time k-s price was checked as at every in-
stance it’s price might increase it is checked. Therefore, we have that at that whenever the algorithm halts
Az*, k) > Xo(z*) - (1 4 5¢) - (1 — €) > Ao(z*) if € < 4/5 which concludes the claim.

O

Claim C.3. At all times the algorithm satisfies that P*x* < 1 - (14 200 - €) (given € < 1/10).

Proof. We will show that the following invariant is maintained throughout the run of algorithm:

max {Pz*} < min {C;z*} - (1 + 50¢) + 100¢
i€[mp) i€[me]

Initially the inequality holds and the inequality will be affected by 3 kinds of changes: updates to P*,
C* and x*. Notice, that whenever C* is updated only the right hand size of the inequality may change
and it may only increase. Similarly, a decrease of P* may only decrease the left hand side. However, the
algorithm does increase the last column of P* whenever an decrease of P* occurs. Note however, that the
last coordinate of x* is is always 0 as coordinate n + 1 is never boosted (due to the last column of C'* being
0 A(z*,n + 1) is unbounded hence coordinate n + 1 is never cheap).
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It remains to argue that during Boost calls the inequality is maintained. Assume coordinate ¢ is boosted
by 0 and at the start of the boosting process the inequality holds. Define f,(z*) = n-log(zie[mﬂ exp(nP;z*))
and fe(z*) = —n - 10g(3 e[, exp(—nC;z")) analogously to Section ??. Following the proof of Prop-
erty 3.4 we get that f,(z* + 0 - ;) — fp(z*) < (fe(z* + 6 - €;) — fe(x*)) - (1 + 50 - €) (note that a
different constant 50¢ appears as the amount of slack the algorithm uses is different). As both function are
monotonous in z* and relaxing updates may only increase f.(z*) and reduce f,(z*) we have that at all
times f.(z*) - (1 4+50-¢€) > fp(z*).

By the properties of f.(z*) and f,(x*) (stated in Section 3.1 as Equation 3.2 we can conclude that
MaXe(m, | {F2*} < minjgp, {CF 2"} (14+50-€)+e- (1450-¢€)) < min;ep, {C;z*}-(1+50-€)+100-¢
at all times.

Let ¢ stand for the value of the last boost. By definition C*9 < 1-e hence at all times min ¢y, {C’]*a:*} <

1 + e. Therefore at all times max;ef, |{P;2*} < (1 + 50¢) - (1 + €) + 100e < 1 + 200e that is
P*x* < 1-(1+ 200€).

O

Corollary C.5. If € < 1/200 then at all times wy(xz*) < exp(3 - 1) and wy(z*) > exp(2 - n), hence
No(a*) < exp(5 - ).

Proof. wy(z*) < my - exp(n - maxXep,, {P7*}) < exp(n(2 + 200 - €)) < exp(n - 3). As argued in
the proof of Claim C.3 we have that min;c, |{C;jz*} < 1+ € at all times, hence w¢(z*) > exp(—7 -
minjepy, ) {Ciz*}) > exp(—2-n)..

O

Lemma C.6. Whenever the algorithm halts without returning an answer the extended linear program is
infeasible. If the algorithm may only return an O(e) approximate solution to the extended linear program.

Proof. The lemma follows from Claim C.2 and Claim C.1
O

C.4 Running Time

Claim C4. For any k € [n] Boost(k) may be called at most O(log%réi;wm) = O(w) number
of times.

Proof. Fix a coordinate k € [n] for the rest of the proof.

Consider any call to the BOOST(x*) subroutine during the course of our dynamic algorithm, which
increases coordinate k of the vector z* € RZ, by some amount § > 0. From Algorithm 2, observe that just
before this specific call to the subroutine, either there exists a packing constraint i € [m,,] with P*(i, k)-8 <
€/n, or there exists a not-too-large covering constraint j € [m.]!” with C(j, k) - § < €/n. In the former
(resp. latter) case, we refer to the index i (resp. j) as the pivor and the current value of P(i, k) (resp. C(j, k))
as the pivot-value corresponding to this specific call to the subroutine BoosT(k).'8

Due to Assumption C.2 we can assume that U = 27 - L for some integer 7 = O(logn). Partition the
interval (L, U] into 7 segments Zy, . ..,Z,_1, where Z, = (L 20 L. 2“1] forall¢ € {0,...,7 —1}.

Claim C.5. Consider any ( € {0, ..., — 1}. Throughout the duration of our dynamic algorithm, at most
16n /€ calls with pivot-values in T, and pivots in [m.| are made to the BOOST(k) subroutine.

'"We say that a covering constraint j € [m.] is not-too-large iff Cjz* < 2.
8Note that the values of the entries in the constraint matrix change over time due to the sequence of updates. The pivor-value of
a call to BOOST(z, k) refers to the value of the concerned entry in the constraint matrix just before the specific call to BOOST(k).
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Proof. Let zj, € R>o denote the k*" coordinate of the vector z € R%,. For ease of exposition, we say that
a call to BOOST(k) is covering-critical iff its pivot is in [m,] and its pivot-value is in Z,. We wish to upper
bound the total number of covering-critical calls made during the course of our dynamic algorithm.

Consider any specific covering-critical call to BOOST(k) with pivot j € [m,.] and pivot-value o €
Iy = (L ot L. 25]. From the definition of Algorithm 2, it follows that this call increases zy by § =
e/(na-4) > ¢/(nL2"+2).

Suppose that 7" covering-critical calls have been made to the BOOST(z, k) subroutine, where 7' >
16 - n/e. Let us denote these calls in increasing order of time by: I'1, Iy, ..., I'p. Thus, for all ¢ € [T,
we let T'; denote the t** covering-critical call made during the course of our dynamic algorithm. From the
discussion in the preceding paragraph, each of these critical calls I'; increases x, by at least ¢/(nL2¢+2).

Since z; = 0 initially and it increases monotonically over time, just before the last critical call I'r we
have xj, > (T — 1) - ¢/(nL2+2) > (16n/¢) - ¢/(nL2F2) = 1/(L272). Let jr € [m,] be the pivot of the
call I'p. Since the pivot-value of I'p lies in Zy, it follows that C'(jp, k) > L - 2t-1 just before the call I'r.
Thus, just before the call 'y, we have Cj. - @ > C(jr, k) - xp, > L2071 -1/(L2°2) = 2. Butif Cj,. - > 2
just before the call I'p, then jr cannot be the pivot of I'r. This leads to a contradiction. Hence, we must
have T' < 16 - n/e, and this concludes the proof of the claim.

O

Claim C.6. Consider any ¢ € {0,...,7 — 1}. Throughout the duration of our dynamic algorithm, at most
16 - n/e calls with pivot-values in I, and pivots i € [m,] are made to the BOOST(k) subroutine.

Proof. (Sketch) As in the proof of Claim C.5, let x;, € R>q denote the k" coordinate of the vector = € R,.
Say that a call to BOOST(k) is packing-critical iff its pivot is in [m,] and its pivot-value is in Z,. N
Suppose that 7" covering-critical calls have been made to the BOOST(k) subroutine, where 7' > 16-7/e.
Let us denote these calls in increasing order of time by: I';,T's, ..., 'p. Thus, for all ¢t € [T], we let T’y
denote the #*" packing-critical call made during the course of our dynamic algorithm. Let iy € [my)] be the
pivot of the last packing-critical call I'7. Following the same argument as in the proof of Claim C.5, we
conclude that P;,, - x > 2 just before the call I'r. By Claim C.3 this leads to a contradiction (assuming
€ < 1/200). Thus, it must be the case that 7" < 167/¢, and this concludes the proof of the claim.
O

Any call to the subroutine BOOST(k) has pivot in [m,] U [m.] and pivot-value in Z, for some ¢ €
{0,...,7—1}." Accordingly, from Claim 3.1 and Claim 3.2, it follows that the total number of calls made

to the BOOST(k) during the course of our dynamic algorithm is at most 2 - 7 - (16n/¢) = O(ng(nzijU/L))‘
U

Claim C.7. All calls to UpdatePWeights and UpdateCWeights be handled in O(w) total time.

Proof. As each call to Boost calls the weight update functions once by Claim C.4 they will be called a
total of O(w -n) times. Fix k € [n]. UpdatePWeights(k) and UpdateCWeights(k) will be called
O(log(m+U/L)-17) (N ) log(m—I—U/L)-n)

handle.

times. Hence, the outer loops of both function will take O total time to

Without loss of generality focus on UpdatePWeights. For any i € [m,] between any two updates to
wp(x*,9) wy(x™, i) must increase by a factor of 1 + €2(e). Due to Corollary C.5 this may happen at most
O(log?(m + U/L)/€?) times. After updating ,(z*,i) the algorithm will spend O(R!") time updating
Xo(z*)(z*, k) values. Therefore, over all i € [m,)] the total work to maintain \o(z*)(z*, k) values will

"“This holds because the pivot-values lie in the range (L, U], and this range has been partitioned into subintervals: Zo, . . ., Z,_1.
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be in O(bg%'zijwm). The proof proceeds similarly for the work UpdateCWeights does on maintaining
Xo(@*)(z*, k) values.
O
log?(m+U/L)-N
(———=")

€

Claim C.8. The total time spent by the algorithm through calls to the Boost subroutine is in O

Proof. Each call to Boost(k) requires 3 non-constant time tasks. Firstly an estimate of d; has to be sampled.
By Claim C.11 and Claim C.4 these samplings will take O (N - 1og(m€+U/L)) total time.

Afterwards the algorithm updates all w,(z*,7) for i € [mp||P*(i,k) > 0 and w.(z*,j) for j €
[me]|C*(j,k) > 0in O(NF + NS) time. Over all calls to boost this will take total O(N - logz(ﬁéinrU/L))
time by Claim C.11.

Finally, the algorithm makes calls to UpdatePWeights(k) and UpdateCWeights(k) (see Algorithms 4 and
3). This will take total time O(N - PE0HU/LINy yy Claim C.7.

U

Claim C.9. The total time by the UpdateP and UpdateC subroutines (outside of calls to Iterate and Boost)
2
is bounded by O(w +t).

Proof. The only action UpdateP does which is not in O(1) is the while loop. Due to Claim C.4 the while

. . . log?(m+U/L : :
loops will test a coordinates price at most O(n - —>———"= + t) time over the total run of the algorithm.

Similarly, the while loops of UpdateC may also only have O(n - 10g2(r?72+U/L + t) iterations due to

Claim C.4. The only other non-constant time operation of UpdateC is the process of updating w.(z*, j)
and affected \(z*, k') values. Whenever 1, (z*, j) is updated ch values of A(z*, k) will be updated. As
an update to w.(x*, j) increases its value by a multiplicative factor of at least 1 + e due to Assumption C.2
there can be at most O(log(N')/¢) updates of w.(z*, j). Therefore, the maintenance of the slack parameters
will take at most O(w + t) total time for UpdateC. This finishes the proof.

U

N-log?(m+U/L)
Nlogrm+U/L)
€

Lemma C.7. Algorithm I runs in O( + t) deterministic time.

Proof. The time spent by calls to Boost or updates is handled in O(w + t) total time by

Claim C.8 and Claim C.9. Between each call to iterate \o(z*) increases by a factor of 1/(1 — €). As
Ao(z*) < exp(5 - n) by Corollary C.5 there will be at most O(n/¢) = O(log(m + U/L)/€?) calls to Iter-

ate() which will take O(W) to complete (apart from Boost calls). This completes the lemma.
O

C.5 Maintenance of an estimate of /; for Algorithm 2

To imitate the increments of the static algorithm described by Figure 9 when Boost(k) is called we would like
to find § = maxs{max{max; P*(i, k) - 0, MaX;j| g <o C*(j,k) - 0} = €/n. Unfortunately, under dynamic
relaxing updates returning the exact ¢y, is too slow. Therefore, we will implement an efficient oracle which
returns 0 € [0y, - (1 — €), ;] when queried in O(1) time.

Max-Heap: Using folklore data structures we will assume that a max-heap on at most m = m. + m,
objects is a black-box tool which can handle the following actions:

* In O(1) the max-heap returns the maximum-element stored in the heap

* In O(log(m)) time an element can be removed from the heap
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* In O(log(m)) time an element can be added to the heap

Initialization: At initialization the oracle implements n max heaps Hy, : k € [n], one for each coordinate of
z*. We will now describe the implementation of a specific heap Hy. Hj will consist of at most V. kc + N, f
objects each representing a non-zero element of the k-th column of C* or P*. Each non-zero element of
these two columns will be inserted into the heap with it’s initial value and an identifier. Hence, the top
element of Hj, will represent the largest value in the k-th column of C* and P*.

Update to P*: Assume that due to a relaxing update P*(i, k) reduced by A to some P7 (i, k). The oracle
will look-up the value P*(i, k) currently represented under in Hy, say this value is P* (i, k). If P*(i, k) > 2-
P (i, k) then the oracle will remove P~* (i, k) from H}, and re-enter it as P} (i, k). If P* (i, k) < 2- Py (4, k)
then the oracle doesn’t change anything in the heap Hy.

Update to C*: Assume that due to a relaxing update C*(j, k) increased by A to some C7 (j, k). If pre-
viously to the update (C*);z* < 2 however after the update (C;);x* > 2 the oracle proceeds over all
non-zero entries of the j-th row of C* (iterate over all ¥’ € [m.]|C*(j, k") > 0) of the form C*(j,k") > 0
and removes them from their corresponding heaps. Otherwise the oracle proceeds similarly to its behaviour
under a packing update: say that the value of C*(j, k) stored in Hy, is C* (j,k). If C* (j, k) < 2- CL(j,k)
then the oracle removes the C* (j, k) node from the heap and re-enters it as the current value C} (j, k). If
C*(j,k) > 2-C%(j, k) the oracle rests.

Query of J;: Let the top element of heap Hj, when the query is made be x. The oracle will return value
0= 6.;7 73 Afterwards, the oracle proceeds to adjust it’s max-heaps to the boost of coordinate k. Let 2% and
x* represent the state of x* after and before having been incremented by J - e, through Boost(k) respectively.
The oracle iterates through all j € [m.] such that C*(j,k) > 0. For any such j if (C*);z* < 2 however
(C%)ja* > 2 the oracle proceeds as follows: for all &’ € [n]|C*(j, k") > 0 the oracle removes C*(j, k') (or

the value stored as the representative of C*(j, k) which might be somewhat smaller) from heap Hy..

Claim C.10. [f the oracle is queried to return an estimate of dy, it returns a value in [0y /4, O]

Proof. Assume Boost(k) was called and the oracle is queried to return an estimate of d;. Observe, that at
all time points the heap H}, contains an object corresponding to each non-zero elements of the k-th column
of P*. Furthermore, Hy contains an element for each C*(j, k) : j € [m.]|C; < 2. Fix an element of P*
represented in Hy, say P*(i, k) and let P* (i, k) stand for the value it is represented under in the heap Hj.
Observe that by construction P*(i,k) < P*(i,k) < P*(i,k). Fix an element of C* represented in Hy,
say C*(j, k) and let it’s representation in Hy, have value C* (4, k). Similarly, observe by construction that

Define k = max{max;c(,,, | P*(i, k), MaX e i, ]| Cra* <2 C*(j, k)}. By the observations above we can
conclude that the maximum element of Hy, is in [k/2,k - 2]. Therefore, the oracle returns a value in
[4.;.777 ,{Ln] = [5k/47 519]

O

Claim C.11. Let By, : k € [n] represent the number of times Algorithm 1 calls subroutine Boost(k). The
total time it takes to maintain the oracle and return it’s queries is in O(3_c () BrdV O+ N -log?(N) +¢).

Proof. Say that the oracle re-adjust a constraint parameter P*(j, k) or C*(i, k) whenever it removes their
outdated value for heap Hj, and inserts their current value in the constraint matrix. Whenever a replacement
of a constraint parameter occurs it’s value in Hy has to double if it’s a member of C* or halve if its a
member of P* respectively. By Assumption C.2 non-zero parameters of constraint matrices always lie in
[1/poly(N), poly(N)] therefore each constraint element may has its value re-adjusted at most O(log(N))
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times. This means that handling re-adjustments of all elements of the heaps maintained by the oracle can be
completed in O(N - log?(N)) total time.

When an update is made to P* the oracle checks the value of a single element in the heap, therefore
it’s work outside of possibly re-adjusting said value can be completed in O(1) time. This means O(N -
log? (N) + t) upper bounds the work of the oracle handling packing constraint updates.

When an update is made to C*, say to C*(j, k), the oracle first has to check weather Cz™ has exceeded
2 for the first time. Checking the value of C’; x* can be completed in O(1) time (assuming the algorithm
keeps track of each constraints progress at all times). The value of C*(j, k) may only exceed 2 once over
the total run of the iteration. At this point the oracle removes ch elements from it’s heaps. All of these
removals therefore will take at most O(N -log(NN)) total time. Therefore, O(N -log®(N)+t) upper bounds
the work of the oracle handling covering constraint updates.

When a coordinate k is boosted by Algorithm 2 the oracle has to iterate over all non-zero elements of
the k-th column of C* which takes O(N{') time. For all j € [m.]|C*(j,k) > 0 the oracle calculates Cra*
in O(1). Afterwards, the oracle may proceed to remove all elements in any such line of C*, however each
element may only be removed at most once. Therefore, all work of the oracle due to boosting queries can
be upper bounded by O (3¢, BiN{ + N -log(N) + t). This finishes the proof.

O

C.6 The Handling of Translation Updates

Using Theorem C.1 as a black-box statement we will show how the algorithm can handle translation updates
in addition to element-wise updates without incurring any blow-up in the total running time. To re-iterate
a mixed packing covering linear program defined by constraint matrices (P, C) is the problem of finding
x such that Px < 1,Cx > 1. A relaxing translation update of the packing constraint could formalized
as follows: for some coordinate i : i € [my] and v > 0 we update the linear program such that we are
looking for x satisfying Pr < 1 + v - ¢;, Cx > 1. Similarly, a relaxing translation update to the covering
matrix is an updated defined by some j € [m.| and v > 0 such that we update the linear program to
Pr<1,Cx>1—"-e¢;.

Observation C.8. Let Ap € %Tg and Ao € %@5 where 0 < Ap < 1-eand 0 < Ac < 1-e Ifz
is an e-approximate solution to the linear program defined by constraint matrices (P,C) then x is a 2 - €
approximate solution to the linear program defined by (P + Ap,C — A¢).

As demonstrated by Observation C.8 if the algorithm ignores translation updates until any constraint is
translated by more than an e factor the solution returned is still O(¢) approximate to the linear program. Once
a constraint (say the i-th pacing constraint) is translated by at least an e factor the algorithm can simulate
this relaxation through Rf) entry updates of the packing matrix by relaxing all elements in the i-th row of
P by the same multiplicative factor. Assuming similarly as in Assumption C.2 that all input parameters lie
in the [1/poly(N), poly(N)] range we can be certain that each constraint will need to be updated at most
O(logy . (poly(N)) = O(w) times due to being translated by more than an e factor. Hence, the total
number of entry-wise updates required to handle all translation updates will be bounded by O(V - w)

Therefore, the algorithm can handle translation updates with O(N - M + t) additional time (where ¢
here stands for the number of translation updates) as the algorithm of Theorem C.1 runs in linear time with
respect to the number of entry wise updates. This implies that Theorem C.1 can be extended to work for

translation updates without incurring any loss in running time.
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