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Abstract

In the dynamic linear program (LP) problem, we are given an LP undergoing updates and we need to

maintain an approximately optimal solution. Recently, significant attention (e.g. [Gupta et al. STOC’17;

Arar et al. ICALP’18, Wajc STOC’20]) has been devoted to the study of special cases of dynamic packing

and covering LPs, such as the dynamic fractional matching and set cover problems. But until now, there

is no non-trivial dynamic algorithm for general packing and covering LPs.

In this paper, we settle the complexity of dynamic packing and covering LPs, up to a polylogarithmic

factor in update time. More precisely, in the partially dynamic setting (where updates can either only

relax or only restrict the feasible region), we give near-optimal deterministic ǫ-approximation algorithms

with polylogarithmic amortized update time. Then, we show that both partially dynamic updates and

amortized update time are necessary; without any of these conditions, the trivial algorithm that recom-

putes the solution from scratch after every update is essentially the best possible, assuming SETH.

To obtain our results, we initiate a systematic study of the multiplicative weights update (MWU)

method in the dynamic setting. As by-products of our techniques, we also obtain the first online (1+ ǫ)-
competitive algorithms for both covering and packing LPs with polylogarithmic recourse, and the first

streaming algorithms for covering and packing LPs with linear space and polylogarithmic passes.
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1 Introduction

Packing and covering linear programs (LPs) are defined as follows:

Covering LP C: min
x∈R

n
≥0

{c⊤x | Ax ≥ b},

Packing LP P: max
y∈R

m
≥0

{b⊤y | A⊤y ≤ c},

where A ∈ R
m×n
≥0 , b ∈ Rm

≥0, c ∈ Rn
≥0 contain only non-negative entries. The two LPs are duals to each

other, so we let OPT denote their shared optimum. We say that x is an ǫ-approximation for C if Ax ≥ b
and c⊤x ≤ (1 + ǫ)OPT. Similarly, y is an ǫ-approximation for P if A⊤y ≤ c and b⊤y ≥ OPT/(1 + ǫ).

Packing-covering LPs have a wide range of applications in various different contexts, such as in approx-

imation algorithms [LN93, Tre98], flow control [BBR04], scheduling [PST95], graph embedding [PST95]

and auction mechanisms [ZN01]. Thus, a long line of work is concerned with the study of efficient algo-

rithms for packing-covering LPs [ZO15, AZO19, WRM15, KY14, You14, CQ18, Qua20], and currently, it

is known how to compute ǫ-approximation in Õ(N/ǫ) time [AZO19, WRM15]. Here, N denotes the total

number of non-zero entries in the constraint matrix.1

In this paper, we consider a very natural dynamic setting, where an adversary can update any entry of

A, b or c. After each update, the goal is to obtain a new ǫ-approximation quickly. Although this question

has been studied since the early 80’s [OvL80, OvL81, Epp91, AEM92, Mat93], all the existing dynamic

algorithms can only handle a very small number of variables such as 2 or 3 (but they work for general LPs).

In contrast, significant attention [ACC+18, BHN19, BK21, GKKP17, Waj20] has recently been devoted to a

special case of dynamic packing and covering LPs: the dynamic fractional matching and set cover problems.

These new algorithms, however, are highly specific and do not extend to general packing-covering LPs. For

the latter, the current best dynamic algorithm just recomputes a solution from scratch after each update.

1.1 Our Results

We resolve the complexity of dynamic algorithms for general packing-covering LPs, up to a polylogarithmic

factor in the update time. The following are the two key take-home messages from this paper. (1) In

partially dynamic settings, there are deterministic ǫ-approximation algorithms for this problem that have

polylogarithmic amortized update times. (2) Both partially dynamic updates and amortized update times are

necessary: without any of these conditions, the trivial algorithm which recomputes an ǫ-approximation to

the input LP from scratch is essentially the best possible. Below, we explain our results more formally.

We say an update is relaxing C (and restricting P) if u increases an entry of A or decreases an entry

of b, c. Note that OPT can only decrease due to a relaxing update. In contrast, an update is restricting C

(and relaxing P) if it decreases an entry of A or increases an entry of b, c. A sequence of updates to an

LP is partially dynamic if either {all of them are relaxing} or {all of them are restricting}. Otherwise, the

sequence of updates is fully dynamic. Let N denote the maximum number of non-zero entries in the input

LP throughout the sequence of updates. Our main algorithmic result is the following:

Theorem 1.1. We can deterministically maintain an ǫ-approximation to a packing-covering LP going

through t partially dynamic updates in Õ
(

N/ǫ3 + t/ǫ
)

total update time. Thus, the amortized update

time of our algorithm is Õ(1/ǫ3).2

1Õ(·) notation hides a poly(log(NW
ǫ

)) factor, where W is the ratio between the largest and smallest nonzero entries in the LP.
2The total update time is defined to be the preprocessing time plus the total time taken to handle all updates. If an algorithm has

total update time O(Nτ1 + tτ2), then its amortized update time is O(max{τ1, τ2}).
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By generality of packing and covering LPs, several applications immediately follow. For example, The-

orem 1.1 implies the first decremental (1 + ǫ)-approximation algorithm for bipartite maximum matching

in weighted graphs in poly(log(n)/ǫ) amortized update time. Previously, the best known algorithms ei-

ther took Ω(
√
m) update time [GP13] or only worked for unweighted graphs [BGS20, JJST22, ABD22].

Theorem 1.1 also implies near-optimal incremental/decremental algorithms for maintaining near-optimal

fractional solutions for set covers and dominating sets [GKKP17, HIPS19]. Generally, Theorem 1.1 reduces

every dynamic problem that can be modeled as a packing/covering LP to a dynamic rounding problem.

Since rounding LPs is one of the most successful paradigms in designing approximation algorithms in the

static setting, we expect that our result will find many other future applications in dynamic algorithms.

We complement Theorem 1.1 by giving strong conditional lower bounds. Assuming SETH,3 we show

that a No(1)-approximation algorithm which either handles fully dynamic updates or guarantees worst-case

update time, must have an update time of Ω(N1−o(1)). As we can solve the problem from scratch after every

update in Õ(N) time, our lower bound rules out any non-trivial dynamic algorithm in these settings.

Theorem 1.2. Under SETH, there exists a β = No(1) such that any dynamic algorithm A that maintains a

β-approximation to the optimal objective of a packing or covering LP P satisfies the following conditions.

• If P undergoes fully dynamic updates, then A must have Ω(N1−o(1)) amortized update time.

• If P undergoes partially dynamic updates, then A must have Ω(N1−o(1)) worst-case update time.

Our lower bounds hold even if the dynamic algorithm only implicitly maintains the solution, meaning

that it only maintains an approximation to the value of OPT. Furthermore, they hold even if all the updates

are on the entries of the constraint matrix A. Thus, Theorem 1.1 and Theorem 1.2 essentially settle the

complexity of the dynamic packing-covering LP problem, up to a polylogarithmic factor in update time.

1.2 Techniques

To prove our main result (Theorem 1.1), we initiate a systematic study of the multiplicative weight update

(MWU) framework in the dynamic setting. MWU is one the most versatile iterative optimization framework

in theoretical computer science. There is a big conceptual barrier, however, in extending this framework to

the dynamic setting. We start by explaining how to overcome this conceptual barrier.

1.2.1 MWU in the dynamic setting: The main challenge

Like other iterative methods, a MWU-based algorithm builds its solution x in iterations. At each iteration t,
the solution x(t) heavily depends on the previous solution x(t−1). So when we update our original input, we

expect that the update affects the solution x(1) from the first iteration. Then, the change in x(1) affects x(2),
which in turn affects x(3) and so on. There are at least logarithmic many iterations and eventually the final

solution might completely change. Intuitively, this propagation of changes suggests that using MWU in the

dynamic setting is a dead end. How do we overcome this strong conceptual barrier?

As a take-home message, we show that for MWU there is no propagation of changes under partially

dynamic updates! To be a bit more concrete, suppose that the current solution is x(t) and now the adversary

updates the input. As long as the updates are partially dynamic, we can argue that all the previous solutions

x(1), . . . , x(t−1), x(t) remain valid with the new input. Our only task is to compute a valid x(t+1) for the

updated input, which is much more manageable. To understand why this is possible, we now explain how

MWU works at a high level.

3The Strong Exponential Time Hypothesis [IPZ01] says that there is no algorithm for solving k-CNF SAT with n variables for

all k in 2n−Ω(1) time.
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The explanation below will be generic (i.e., it will hold beyond packing-covering LPs). But for concrete-

ness, consider a feasibility problem where given a matrix C ∈ {0, 1}m×n , we need to find x ∈ Rn
≥0 where

1⊤x ≤ 1 and Cx ≥ 1. Its dual problem is to find y ∈ Rm
≥0 where 1⊤y ≥ 1 and C⊤y ≤ 1. MWU-based

algorithms can be viewed as two-player games where the two players, which we call a Whack-a-Mole player

and a Greedy player, together maintain a pair (x, y) using the following simple outline:

1. Whack-a-Mole player builds a multiplicative solution: Start with x = 1/n. If x violates some

constraint i ∈ [m] (i.e. Cix < 1), then multiplicatively update x according to i (i.e. xj ← (1 + ǫ)xj
for all j where Cij = 1). We refer to this operation as whacking constraint i. Whenever x satisfies all

constraints, terminate the game. Basically, this player keeps “whacking” violated constraints.

2. Greedy player builds an additive solution: Start with the zero vector y = 0. If there exists a

cheap coordinate i ∈ [m], then additively increment yi by one. (In our case, coordinate i is cheap

iff Cix < 1.)4 Terminate the game after T rounds, for some T , and return the average y∗ = y/T .

Basically, this player keeps greedily “incrementing” in a cheap direction.

The game terminates when: either (1) x satisfying all constraints, or (2) via the regret minimization property

of MWU [AHK12], we can show that y∗ is approximately feasible (i.e., 1⊤y∗ = 1 and C⊤y∗ ≤ (1 + ǫ)1).

Coming back to the existing literature on MWU, we observe that the known algorithms can be classified

into one of two categories. The algorithms in the first category take the greedy player’s perspective and

build their solutions y additively, while updating the weight x multiplicatively as a helper. These include

algorithms for flow-related problems [Fle00, GK02, GK07], packing-covering LPs [PST95, KY14, You14,

CQ18, Qua20], or constructions of pseudorandom objects [Bsh16]. In contrast, the algorithms in the second

category take the whack-a-mole player’s perspective and build their solutions x multiplicatively. These

include algorithms for learning and boosting [Lit88, FS97, FS99]. The idea is also implicit in algorithms for

geometric set covers [Cla93, BG95, AP14, CH20] and explicit in algorithms for online set covers [GKL21].

Now, the high-level explanation as to why MWU works under partially dynamic updates is simple.

Suppose that the updates are restricting only. Then we take the whack-a-mole player’s perspective. All we

do is whacking violated constraints. Given an update, the constraints that we whacked in the past would

still be violated at that time because the update is restricting. So our past actions are still valid. On the other

hand, if the updates are relaxing only, then we take the greedy player’s perspective. Given a relaxing update,

all the cheap directions that we incremented in the past remain cheap at the present moment as well. This

explains why all the past actions that we committed to are still valid. Hence, we only need to ensure that the

next action is valid with respect to the updated input.

As the reasoning above is very generic, we expect that this insight will lead to further applications. For

now, we discuss how we efficiently carry out this approach for packing-covering LPs.

1.2.2 Width-Independent Packing Covering LP Solvers via Black-box Regret Minimization

Existing static ǫ-approximation algorithms for packing-covering LPs can be grouped into two types: width-

dependent and width-independent solvers. The width-dependent solvers have running time depending on

λ · OPT, where λ is the largest entry in the LP (e.g. Õ(N(λOPT
ǫ )2) [PST95] and Õ(N λOPT

ǫ2
) [AHK12]).

While the analysis in [PST95] is adhoc, [AHK12] gives a very insightful explanation as to how the guarantee

of these solvers follows in a black-box manner from the well-established regret minimization property of

MWU in the experts setting. This undesirable dependency on λOPT in the runtime led to an extensive line

of work on width-independent solvers [ZO15, KY14, You14, CQ18, Qua20]. These stronger solvers run in

Õ(N/poly(ǫ)) time, which is independent of λOPT, and many of them are based on MWU.

4For readers familiar with the MWU literature, this is the “oracle” problem. Given weight x, we need to find a y′ which satisfies

the “average constraint” x⊤C⊤y′ ≤ x⊤1. Then, we set y ← y + y′.
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There is, however, one curious and unsatisfactory aspect in the literature on width-independent LP

solvers. Namely, each of these MWU-based algorithms requires a separate and fine-tuned analysis involving

calculations that resemble the proof of the regret minimization property of MWU. But can we just apply the

regret bound of MWU in a blackbox manner while analyzing a width-indepdendent LP solver?

We design a new static algorithm for packing-covering LPs that answers this question in affirmative. To

the best of our knowledge, it is the first width-independent near-linear-time LP solver whose analysis follows

from a black-box application of the regret bound for MWU. This is explained in details in Section 2.1.

Moreover, the algorithm is very intuitive and its high-level description is as follows:

There are O(log(n)/ǫ2) phases. During each phase, we loop over the constraints: if constraint

i is violated, then we “whack” it until it is satisfied and move on to the next constraint i + 1.

Whenever 1⊤x > (1 + ǫ), we start the next phase and normalize x so that 1⊤x = 1. If we

finish the loop, then we return x as an ǫ-approximation to the primal. After the last phase, we

are guaranteed to obtain a dual ǫ-approximation y certifying that there is “almost” no feasible

primal solution, i.e., no x where 1⊤x ≤ 1 and Cx ≥ (1 + ǫ) · 1.

Henceforth, we refer to this algorithm as the whack-a-mole MWU algorithm.5 The algorithm takes near-

linear time because it has few phases and each phase requires only one-pass scan. In more details, we refer to

the operation of “whacking constraint i until it is satisfied” as enforceing constraint i. Enforcing a constraint

i can be done via binary search in Õ(Ni) time, where Ni is the number of non-zero entries in constraint i. As

each constraint is scanned and enforced once per phase, the total running time is Õ(
∑

Ni/ǫ
2) = Õ(N/ǫ2).

The simplicity of this algorithm not only leads us to efficient dynamic implementations (see Sec-

tion 1.2.3), but also efficient streaming algorithms and online algorithms with recourse (see Section 1.3).

1.2.3 Dynamic Implementation

We can extend our whack-a-mole MWU algorithm from Section 1.2.2 to handle restricting updates, in the

following natural manner. Suppose that the algorithm obtained a feasible solution x (because x satisfies all

constraints during the one-pass scan). Now, consider a restricting update to constraint i, say to an entry Cij .

We just need to check whether x violates constraint i (i.e., if Cix < 1). If yes, then we enforce constraint i
(i.e., whack it until it is satisfied). No new constraint gets violated due to this enforcement. As in the static

setting, we start the next phase whenever 1⊤x > (1 + ǫ). We proceed like this until we obtain a feasible

solution x. Once the algorithm concludes that there is almost no feasible solution, then we are done because

this will remain the case after future restricting updates. The correctness follows from the static algorithm.

We have to overcome an issue while analyzing the total update time: Each constraint is not enforced

once per phase anymore (because constraint i can be updated repeatedly within a phase). Accordingly, we

strengthen our analysis to show that, even under restricting updates, each constraint is still enforced Õ(1/ǫ2)
times. But the algorithm remains the same. This leads to a total update time of Õ(N/ǫ2 + t), for t updates.

Our dynamic whack-a-mole MWU algorithm applies to covering LPs under restricting updates, and by

duality, to packing LPs under relaxing updates. There is a technical challenge, however, that prevents us

from extending this approach to packing (resp. covering) LPs under restricting (resp. relaxing) updates.

To handle this case, we instead consider another static Õ(N/ǫ2)-time algorithm that take the greedy

player’s perspective [You14, Qua20]. We call it the greedy MWU algorithm. Given a covering LP (or

even a mixed packing-covering LP), this greedy MWU algorithm can naturally handle relaxing updates (as

5Our algorithm resembles the whack-a-mole-based algorithms for computing geometric set covers [Cla93, BG95, AP14, CH20].

However, these previous algorithms give O(1)-approximation, are specifically described for set covers, and use adhoc calculation

related to MWU. Thus, our whack-a-mole MWU algorithm refines their approximation, generalizes their applicability, and modu-

larizes their analysis. Furthermore, for readers familiar with the algorithms of [You14, Qua20], our whack-a-mole MWU algorithms

can be interpreted as implementing their algorithms from the whack-a-mole player’s perspective.
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discussed in Section 1.2.1). Using similar ideas, we show how to dynamize it with only polylogarithmic

overhead in the total update time. Therefore, we obtain algorithms for covering LPs under relaxing updates,

and by duality, for packing LPs under restricting update via duality.6

Discussion on the Simplicity of Our Techniques. We show how to seamlessly use the MWU framework to

obtain near-optimal partially dynamic algorithms for packing-covering LPs. We view the simplicity of our

approach as an important merit of this paper. Despite its simplicity, our result implies immediate applica-

tions such as a near-optimal decremental maximum weight matching algorithm, while previous algorithms

[BGS20, JJST22] for this problem require more involved arguments and work only on unweighted graphs.

1.3 By-Products of Our Techniques

Our techniques turn out to have implications beyond dynamic algorithms for packing-covering LPs.

Online Algorithms with Recourse. The online covering LP problem was introduced in the influential work

of Buchbinder and Naor [BN09a]. This is a fundamental problem in the literature on the online primal-dual

method; with applications in online set cover, routing, ad-auctions, metrical task systems and many other

settings (see the book [BN+09b]). Several variants of the problem are studied in [GN12, ABFP13, GKL21].

In this problem, we have a covering LP C with m constraints and n variables. The constraints of C

arrive in an online fashion one after another, and we need to maintain a solution to C. Crucially, the values

of the variables can only increase through time (i.e., any decision made cannot be retracted). An online

covering LP algorithm is α-competitive if it maintains a solution to C whose cost is always at most α ·OPT.

Buchbinder and Naor gave a tight Θ(log n)-competitive algorithm for this problem.

Can we beat the lower bound on competitive ratio for a given problem by allowing some amount of

recourse? Here, recourse is defined to be the number of times the algorithm “retracts” its decision. An

influential line of work in online algorithms [BHR18, GGK13, GK14, GKS14, GKKP17] has been devoted

towards answering this question for various fundamental problems. For online covering LPs, recourse equals

the number of times the value of any variable is decreased. Although covering LPs play a central role

in online algorithms, until now it was not known whether we can beat the Ω(log n) lower bound on the

competitive ratio of this problem if we allow for small recourse. We answer this question in the affirmative.

Theorem 1.3. There is a (1+ǫ)-competitive algorithm for online covering LPs with O(n log(n) log(nW )/ǫ3)
total recourse. In fact, in this algorithm each variable incurs at most O(log(n) log(nW )/ǫ3) recourse.

Note that the recourse bound is completely independent of the number of constraints. Theorem 1.3

follows almost immediately from our whack-a-mole MWU algorithm from Section 1.2.2. Interestingly,

our algorithm can be viewed as a small adjustment to the well-known O(log n)-competitive algorithm of

[BN09a]. To see this, suppose that we know OPT by guessing. Then here is the description of our algorithm.

Run the algorithm of [BN09a]. Whenever the objective of the solution exceeds (1 + ǫ)OPT,

scale down the solution by a factor of (1 + ǫ) and continue.

Our argument shows that we will never scale down too many times. The algorithm is clearly (1 + ǫ)-
competitive. In the paper, we also show similar (1 + ǫ)-competitive algorithm for online packing LPs.

Curiously, online algorithms without recourse of this problem is not known.7

6Since the greedy MWU algorithm can handle mixed packing-covering LPs under relaxing updates, via duality this implies

algorithms for handling restricting updates to both covering and packing LPs. So strictly speaking, our dynamic whack-a-mole

MWU algorithm is subsumed by the dynamic greedy MWU algorithm. Nevertheless, we present the dynamic whack-a-mole MWU

algorithm as it is simpler to understand and has more modular analysis.
7Many papers in online algorithms consider a problem where the variables of a packing LP are revealed one by one, which is a

dual of the online covering LP problem. We consider a different setting, where the packing constraints arrive one after another.
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Streaming algorithms. Our whack-a-mole MWU algorithm also works in the streaming setting. When the

rows of the constraint matrix arrive one by one, we obtain an ǫ-approximation for both packing and covering

LPs using O(n) space and Õ(1/ǫ3) passes. In contrast, when the columns of the constraint matrix arrive

one by one, we get the same result but with a space complexity of O(n+m). These give the first streaming

algorithms for general packing covering LPs. Previous algorithms in the literature worked only for special

cases such as fractional set cover [IMR+17] and fractional matching [AG11, AG18, AJJ+22].

Mixed Packing-Covering LPs. In a mixed packing-covering LP P (or positive LP for short), we are given

Ac ∈ R
mc×n
≥0 , bc ∈ R

mc
≥0 and Ap ∈ R

mp×n
≥0 , bp ∈ R

mp

≥0 , and we need to find x ∈ Rn
≥0 such that Acx ≥ bc and

Apx ≤ bp. This is a generalization of both packing and covering LPs. An x is an ǫ-approximation to this

positive LP if Acx ≥ bc/(1 + ǫ) and Apx ≤ (1 + ǫ)bp. Our dynamic greedy MWU algorithm can handle

positive LPs under relaxing updates.

Theorem 1.4. We can deterministically maintain an ǫ-approximation to a positive LP undergoing t relaxing

updates in Õ
(

N/ǫ3 + t/ǫ
)

total update time. Hence, the amortized update time of our algorithm is Õ(1/ǫ3).

Theorem 1.4 immediately gives the following natural applications captured by mixed packing-covering

LPs. For the well-studied load balancing problem (e.g., [HLLT06, ABL20]), we obtain a near-optimal decre-

mental algorithm for maintaining (1 + ǫ)-approximate fractional assignments, where each update deletes

a job. By duality, for the dynamic densest subhypergraph problem [HWC17, BBCG22], this implies a

near-optimal decremental algorithm for maintaining (1 + ǫ)-approximation, where each update deletes a

hyperedge. The near-optimal algorithms for both problems were not known before.

Finally, we leave the question of designing a dynamic algorithm for positive LPs under restricting up-

dates as an interesting open problem.

1.4 Roadmap for the Rest of the Paper

In Section 2, we present our whack-a-mole MWU algorithm and its extensions to dynamic, streaming and

online settings. Section 3 gives an overview of the static greedy MWU algorithm for positive LPs [You14,

Qua20], and then explains how we extend this algorithm to the setting where the input LP undergoes relaxing

updates. Finally, in Section 4, we present our conditional lower bounds for dynamic packing-covering LPs.

If the reader wishes to treat this as an extended abstract, then we recommend reading until the end of

Section 2.2 as that contains the main technical result of this paper.

2 The Whack-a-Mole MWU Algorithm

This section focuses on the whack-a-mole MWU algorithm. We start by considering the following problem.

Problem 2.1. Given a matrix C ∈ [0, λ]m×n where λ > 0, either return a vector x ∈ Rn
≥0 with 1⊤x ≤

1+Θ(ǫ) and Cx ≥ (1−Θ(ǫ))·1, or return a vector y ∈ Rm
≥0 with 1⊤y ≥ 1−Θ(ǫ) and C⊤y ≤ (1+Θ(ǫ))·1.

Problem 2.1 corresponds to the following covering LP: Minimize 1⊤x, s.t. Cx ≥ 1 and x ∈ Rn
≥0. We

have to either return an approximately feasible solution to this covering LP with objective ≤ 1 + Θ(ǫ),
or return an approximately feasible solution to the dual packing LP with objective ≥ 1 − Θ(ǫ). In Sec-

tions 2.1, 2.2, 2.3 and 2.4, we respectively show that our MWU algorithm solves Problem 2.1 in static,

dynamic, streaming and online settings. Subsequently, in Section 2.5, we explain how we can compute an

ǫ-approximate optimal solution to a general packing-covering LP if we have an algorithm for Problem 2.1.

Throughout this section, an index i ∈ [m] (resp. j ∈ [n]) refers to a row (resp. column) of the matrix

C , and Cij ∈ [0, λ] denotes the entry corresponding to the ith row and jth column of C . Furthermore, the

symbol vk denotes the kth coordinate of a vector v ∈ Rn, where k ∈ [n].
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2.1 Static Whack-a-Mole MWU Algorithm

We now present the whack-a-mole MWU algorithm for Problem 2.1 in the static setting. We describe the

basic template behind the algorithm in Section 2.1.1. In Section 2.1.3, we show how to implement this basic

template in near-linear time.

2.1.1 The Basic Template

01. Define T ← λ ln(n)
ǫ2 , and two vectors x̂1, x1 ∈ Rn

≥0 where x̂1 ← 1 and x1 ← x̂1

‖x̂1‖1
.

02. FOR t = 1 TO T :

03. EITHER

04. Conclude that
(

C · xt
)

i
≥ 1− ǫ for all i ∈ [m].

05. Terminate the FOR loop, and RETURN (xt,NULL).
06. OR

07. Find a covering constraint it ∈ [m] such that
(

C · xt
)

it
< 1.

08. x̂t+1 ← WHACK(it, x̂
t). // See Figure 2.

09. xt+1 ← x̂t+1

‖x̂t+1‖1
.

10. Let yt ∈ ∆m be the vector where
(

yt
)

it
= 1 and

(

yt
)

i
= 0 for all i ∈ [m] \ {it}.

11. y ← (1/T ) ·∑T
t=1 y

t.

12. RETURN (NULL, y).

Figure 1: The Whack-a-Mole MWU Algorithm

1. FOR ALL j ∈ [n]:

2. ẑj ←
(

1 + ǫ · Cij

λ

)

· x̂j .
3. RETURN ẑ

Figure 2: WHACK(i, x̂).

The algorithm is described in Figure 1 and Figure 2. It maintains a vector x̂ ∈ Rn
≥0, where x̂j denotes

the weight associated with a variable j ∈ [n] in the covering LP, and the normalized vector x := x̂/ ‖x̂‖1.

This ensures that 1⊤ · x = 1. The algorithm runs in T = λ ln(n)/ǫ2 iterations, where 0 < ǫ < 1/2.

Let x̂t and xt respectively denote the status of x̂ and x at the start of iteration t ∈ [T ] of the main FOR

loop in Figure 1. Before the very first iteration, we initialize x̂1 ← 1. Subsequently, during any given

iteration t ∈ [T ], the algorithm branches into one of the following two cases.

Case (1). It observes that Cxt ≥ (1−ǫ)·1 and returns (xt,NULL). In this case, xt ∈ Rn
≥0 is an approximately

feasible solution to the covering LP, with objective 1⊤xt = 1.

Case (2). It identifies a violated covering constraint it ∈ [m] with
(

Cxt
)

it
< 1. It then whacks constraint

it, by setting x̂j ←
(

1 + ǫ · Citj

λ

)

· x̂j for all j ∈ [n], and accordingly updates the normalized vector x.

Note that this step increases the relative importance (in the solution xt) of the coordinates j ∈ [n] that have

large Citj values. Thus, intuitively, whacking a violated covering constraint makes progress towards making

the solution xt feasible for the covering LP. We let yt ∈ ∆m denote the indicator vector for the covering

constraint it ∈ [m] that gets whacked.
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After T iterations, the algorithm returns (NULL, y), where y is the average of the vectors y1, · · · , yT .

Clearly, we have 1⊤y = 1. The next lemma shows that y is an approximately feasible solution to the

dual packing LP.8 Its proof appears in Section 2.1.2.

Lemma 2.2. Suppose that the algorithm in Figure 1 returns (NULL, y) in step (12). Then C⊤y ≤ (1+4ǫ)·1.

Theorem 2.3. The algorithm in Figure 1 either returns an xt ∈ Rn
≥0 with 1⊤xt = 1 and Cxt ≥ (1− ǫ) · 1,

or it returns a y ∈ Rm
≥0 with 1⊤y = 1 and C⊤y ≤ (1 + 4ǫ) · 1.

Proof. Follows from Lemma 2.2 and the preceding discussion.

2.1.2 Proof of Lemma 2.2

We start by recalling the experts setting [AHK12]. We have n experts {1, . . . , n}, who participate the

following process that goes on for T rounds. At the start of round t ∈ [T ], we have a weight vector

wt ∈ Rn
≥0, where

(

wt
)

j
denotes the weight associated with expert j ∈ [n]. Initially, before round 1 begins,

we set wt = 1. These weights define a distribution Dt over the experts, where the probability of picking

expert j ∈ [n] is given by
(wt)

j

‖wt‖1
. At the start of round t ∈ [T ], our algorithm picks an expert j ∈ [n] from

this distribution Dt. Subsequently, nature reveals a payoff vector pt ∈ [−1, 1]n, where
(

pt
)

j
∈ [−1, 1] is

the payoff for expert j ∈ [n] in round t. Based on these payoffs, the algorithm then updates the weights of

the experts for the next round, by setting wt+1
j ←

(

1 + ǫ ·
(

pt
)

j

)

· wt
j for all j ∈ [n].

The lemma below, which is identical to Theorem 2.5 in [AHK12], bounds the total expected payoff

obtained by the algorithm in this setting, in terms of the total payoff obtained by any fixed expert.

Lemma 2.4. For all experts j ∈ [n], we have:

T
∑

t=1

(

pt
)⊤ · wt

‖wt‖1
≥

T
∑

t=1

(

pt
)

j
−

T
∑

t=1

ǫ ·
∣

∣

∣

(

pt
)

j

∣

∣

∣
− ln(n)

ǫ
.

We now map the whack-a-mole algorithm to the experts setting as follows. Each covering constraint

j ∈ [n] corresponds to an expert, each iteration of the FOR loop in Figure 1 corresponds to a round, the

vector x̂t corresponds to the weight vector wt at the start of round t ∈ [T ], and finally, the payoff for an

expert j ∈ [n] in round t ∈ [T ] is given by
(

pt
)

j
:= (1/λ) · Cit,j .

Since Cit,j ∈ [0, λ], we have

∣

∣

∣

(

pt
)

j

∣

∣

∣
=

(

pt
)

j
for all j ∈ [n], t ∈ [T ]. Thus, Lemma 2.4 implies that:

T
∑

t=1

(

pt
)⊤ · xt ≥

T
∑

t=1

(1− ǫ) ·
(

pt
)

j
− ln(n)

ǫ
, for all experts j ∈ [n]. (2.1)

Diving both sides of the above inequality by T , and then rearranging the terms, we get:

(1− ǫ)

T
·

T
∑

t=1

(

pt
)

j
≤ 1

T
·

T
∑

t=1

(

pt
)⊤ · xt + ln(n)

ǫ · T , for all experts j ∈ [n]. (2.2)

We next upper bound the right hand side (RHS) of (2.2). Since the algorithm picks a violated covering

constraint to whack in each round, we have:
(

pt
)⊤ · xt = (1/λ) ·

(

Cxt
)

it
≤ (1/λ). Taking the average of

8We remark here that this basic algorithm will work even if the matrix C had negative entries (i.e., if we had C ∈ [−λ, λ]m×n),

provided we increase the number of iterations by setting T = λ2 ln(n)

ǫ2
.
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this inequality across all the T rounds, we get: (1/T ) · ∑T
t=1

(

pt
)⊤ · xt ≤ (1/λ). Since T = λ ln(n)/ǫ2,

we derive the following upper bound on the RHS of (2.2).

1

T
·

T
∑

t=1

(

pt
)⊤ · xt + ln(n)

ǫ · T ≤ 1

λ
· (1 + ǫ). (2.3)

We now focus our attention on the left hand side (LHS) of (2.2). Fix any expert j ∈ [n]. We first express

the payoff obtained by this expert at round t ∈ [T ] in terms of the vector yt, and get:
(

pt
)

j
= 1

λ · Cit,j =
1
λ ·

(

C⊤yt
)

j
. Since y = 1

T ·∑T
t=1 y

t, the average payoff for the expert j across all the T rounds is given by:

1

T
·

T
∑

t=1

(

pt
)

j
=

1

T
· 1
λ
·

T
∑

t=1

(

C⊤yt
)

j
=

1

λ
·
(

C⊤y
)

j
. (2.4)

From (2.2), (2.3) and (2.4), we get:

(1− ǫ)

λ
·
(

C⊤y
)

j
≤ 1

λ
· (1 + ǫ), and hence

(

C⊤y
)

j
≤ (1 + 4ǫ) for all j ∈ [n].

The last inequality holds since ǫ < 1/2. This concludes the proof of Lemma 2.2.

2.1.3 A Near-Linear Time Implementation

01. x̂1 ← 1, t ← 1, and T ← λ ln(n)/ǫ2.

02. LOOP

03. W ←
∥

∥x̂t
∥

∥

1
.

04. FOR ALL i ∈ [m]:

05. IF

(

C · x̂t

W

)

i
< 1− ǫ/2 THEN

06. δ ← ENFORCE(i, t, x̂t,W ). // See Figure 4.

07. t ← t+ δ.

08. IF t = T , THEN

09. Terminate the LOOP and return (NULL, y), where y := (1/T ) ·∑T
t′=1 y

t′ .

10. IF
∥

∥x̂t
∥

∥

1
> (1− ǫ/2)−1 ·W , THEN

11. GO TO step (03). // Initiate a new phase.

12. Terminate the LOOP and return (xt,NULL), where xt := x̂t

‖x̂t‖1
.

Figure 3: An Implementation of the Whack-a-mole MWU Algorithm.

We now show how to implement the whack-a-mole MWU algorithm from Section 2.1.1 in near-linear

time. This implementation is outlined in Figure 3, and is based on two key ideas. (1) We split up the

working of the Whack-a-mole MWU algorithm into phases, and ensure that within any given phase the total

weight
∥

∥x̂t
∥

∥

1
of all the experts (see the discussion in the beginning of Section 2.1.2) changes by at most a

(1− ǫ/2)−1 multiplicative factor. (2) The weight of an expert j ∈ [n] can only increase during the course of

the algorithm. Because of this, within a given phase we only need to consider each constraint at most once,

provided upon considering the constraint we keep repeatedly whacking it until it gets satisfied.

At the start of a new phase, we set W ←
∥

∥x̂t
∥

∥

1
. Throughout the phase, the value of W will not change

and it will serve as an estimate of the total weight of the experts. Since W remains within a multiplicative

(1− ǫ/2)−1 factor of
∥

∥x̂t
∥

∥

1
, the vector x̂t

W remains a good estimate of the actual solution xt := x̂t

‖x̂t‖1
.
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1. δ ← STEP-SIZE(i, t, x̂t,W ). // See Figure 5.

2. FOR t′ = t to (t+ δ − 1):

3. x̂t
′+1 ← WHACK(i, x̂t

′
). // See Figure 2.

4. it′ ← i.

5. Let yt
′ ∈ ∆m be the vector where

(

yt
′
)

i
= 1 and

(

yt
′
)

i′
= 0 for all i′ ∈ [m] \ {i}.

6. RETURN δ.

Figure 4: ENFORCE(i, t, x̂t ,W ).

1. For every integer κ ≥ 1, let zκ ∈ Rn
≥0 be such that (zκ)j =

(

1 + ǫ · Cij

λ

)κ
·
(

x̂t
)

j
for all j ∈ [n].

2. If
(

C · zT−t

W

)

i
< 1, THEN

3. δ ← T − t.
4. ELSE

5. Using binary search, compute the the smallest integer δ ∈ [T − t] such that
(

C · zδ

W

)

i
≥ 1.

6. Return δ

Figure 5: STEP-SIZE(i, t, x̂t ,W )

During a given phase, we scan through all the covering constraints in any arbitrary order. We now

explain how to implement a typical iteration of this scan, where (say) we are considering the constraint

i ∈ [m]. We first check if
(

C · x̂t

W

)

i
≥ 1− ǫ/2, that is, whether the constraint is approximately satisfied. If

the answer is yes, then we do nothing with this constraint and proceed to the next iteration of the scan. In

contrast, if the answer is no, then we enforce this constraint by calling the subroutine ENFORCE(i, t, x̂t ,W ).
This subroutine works as follows. It finds an integer δ ≥ 1 which indicates the minimum number of times

the constraint i ∈ [m] needs to be whacked before it gets satisfied, assuming that we continue to be in the

same phase even at the end of all these whacks. Constraint i then repeatedly gets whacked δ times, and after

that we set t ← t + δ. At this point, if t = T , then we terminate the algorithm and return a solution for

the dual packing LP, as in Section 2.1.1. Else if
∥

∥x̂t
∥

∥

1
> (1 − ǫ/2)−1 ·W , because the total weight of the

experts increased a lot due to the previous δ whacks, then we initiate a new phase.

If at the end of the scan, we observe that W is still an accurate estimate of the total weight
∥

∥x̂t
∥

∥

1
and

t < T , then we terminate the algorithm and return xt := x̂t

‖x̂t‖1
as a solution to the primal covering LP.

Lemma 2.5. The procedure described in Figure 3 implements the algorithm from Section 2.1.1.

Proof. We refer to each call to WHACK(i, x̂t) as a round (see Section 2.1.2). Both Figure 1 and Figure 3 ini-

tialize x̂1 ← 1 and run for at most T = λ ln(n)/ǫ2 rounds. We will show that the way Figure 3 implements

each round and the way it eventually returns a solution are both consistent with Figure 1.

Towards this end, first consider the scenario where the procedure in Figure 3 enforces a constraint

i ∈ [m] at the start of a round t ∈ [T ] by calling the subroutine ENFORCE(i, t, x̂t ,W ), which repeatedly

whacks the constraint δ times. From Figure 4 and Figure 5, we infer that

(

C · x̂
t′

W

)

i

< 1 for all t ≤ t′ ≤ t+ δ − 1. (2.5)

Since W is the total weight of all the experts at the start of the concerned phrase, and since the weight of
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any expert can only increase with time, we have:

∥

∥

∥xt
′
∥

∥

∥

1
≥ W for all t′ ≥ t. Hence, from (2.5) we get:

(

C · xt′
)

i
< 1 for all t ≤ t′ ≤ t+ δ − 1, where xt

′

:=
x̂t

′

‖xt′‖1
. (2.6)

This implies that the decisions to whack constraint i ∈ [m] in successive rounds t′ ∈ [t, t + δ − 1] are

consistent with the rule governing the whacking of constraints in Figure 1.

Next, note that after enforcing the constraint i ∈ [m], the procedure in Figure 3 sets t ← t+ δ. At this

point, if t = T , then it decides to return the vector y := (1/T ) ·∑T
t′=1 y

t′ as a solution to the dual packing

LP. Clearly, this decision is also consistent with steps (11) – (12) in Figure 1.

Finally, consider the scenario where the procedure in Figure 3 returns a vector xt
′′

in round t′′ (see step

(12) in Figure 3). Focus on the very last phase, which spans from (say) round t′ to round t′′, where t′ < t′′.
Let W be the value of

∥

∥x̂t
∥

∥

1
at the start of this phase. Fix any constraint i ∈ [m], which was considered

(say) at the start of round ti ∈ [t′, t′′] by the FOR loop in Figure 3. Now, there are two possible cases.

Case I: The constraint i did not get enforced in this phase. This happens if
(

C · x̂ti

W

)

i
≥ 1− ǫ/2. Here, we

derive that
(

C · x̂t′′

W

)

i
≥

(

C · x̂ti

W

)

i
≥ 1− ǫ/2, since each co-ordinate of x̂ can only increase over time.

Case II: The constraint i got enforced in this phase, by getting repeatedly whacked δ times starting from

round ti. Thus, we have ti + δ < T (otherwise, the algorithm would return a dual packing solution y) and
(

C · x̂ti+δ

W

)

i
≥ 1. Analogous to Case I, here we derive that

(

C · x̂t′′

W

)

i
≥

(

C · x̂ti+δ

W

)

i
≥ 1 ≥ 1− ǫ/2.

To summarize, we have the following guarantee for every constraint i ∈ [m] at the start of round t′′.

(

C · x̂
t′′

W

)

i

≥ 1− ǫ/2. (2.7)

Since no new phase got initiated just before round t′′ (see steps (10) – (11) in Figure 3), we infer that
∥

∥

∥
x̂t

′′
∥

∥

∥

1
≤ (1− ǫ/2)−1 ·W . Thus, from (2.7), we get the following guarantee for every constraint i ∈ [m].

(

C · xt′′
)

i
≥

(

C · x̂
t′′

W

)

i

· (1− ǫ/2) ≥ (1− ǫ/2)2 ≥ 1− ǫ, where xt
′′

:=
x̂t

′′

W
. (2.8)

In other words, the vector xt
′′

satisfies the inequality C · xt′′ ≥ (1− ǫ) · 1, and hence the decision to return

xt
′′

as a solution to the covering LP is also consistent with the template described in Figure 1.

Theorem 2.6. The procedure in Figure 3 either returns an xt ∈ Rn
≥0 with 1⊤xt = 1 and Cxt ≥ (1− ǫ) · 1,

or it returns a y ∈ Rm
≥0 with 1⊤y = 1 and C⊤y ≤ (1 + 4ǫ) · 1.

Proof. Follows from Theorem 2.3 and Lemma 2.5.

It now remains to bound the running time of this algorithm. Towards this end, the lemma below analyzes

the time taken by a call to the subroutine STEP-SIZE(i, x̂t ,W ).

Lemma 2.7. A call to STEP-SIZE(i, t, x̂t ,W ) can be implemented in O
(

Ni · log2
(

λ log(n)
ǫ

))

time, where

Ni is the number of non-zero entries in row i ∈ [m] of the matrix C ∈ [0, λ]m×n.

Proof. It takes O(Ni·log κ) time to compute
(

C · zκ

W

)

i
for any κ ≥ 1 (see step (1) of Figure 5). Furthermore,

the value of
(

C · zκ

W

)

i
can only increase as we increase κ. Thus, we can find δ, as in steps (2) - (5) of Figure 5,

by doing a binary search in O(Ni · log T · log T ) time. The lemma follows since T = λ ln(n)/ǫ2.
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The next lemma bounds the time taken to enforce a constraint.

Lemma 2.8. A call to ENFORCE(i, t, x̂t,W ) can be implemented in O
(

Ni · log2
(

λ log(n)
ǫ

))

time, where

Ni is the number of non-zero entries in row i ∈ [m] of the matrix C ∈ [0, λ]m×n.

Proof. The key idea is that we do not need to explicitly store all the vectors x̂t+1, . . . , x̂t+δ and yt, . . . , yt+δ−1.

Instead, using standard data structures, the overall algorithm (outlined in Figure 3) keeps track of only the

following information corresponding to a specific call to ENFORCE(i, t, x̂t ,W ).

(1) The value of t at the start of the call, and the step-size δ computed by the call.

(2) The index i ∈ [m] corresponding to the call. This index implicitly defines all the vectors yt, . . . , yt+δ−1.

(3) A vector x̂ ∈ Rn
≥0, which was equal to x̂t just before the call, and needs to be set to x̂t+δ at the end of

the call. This will be required to implement the next iteration of the FOR loop in Figure 3.

The overall algorithm (in Figure 3) can easily recover the answer it needs to return, provided it keeps

track of the above mentioned pieces of information corresponding to each call to the ENFORCE subroutine.

Thus, the runtime of a call to ENFORCE(i, t, x̂t ,W ) is dominated by the time spent on the following two

tasks: (1) computing the value of δ, and (2) ensuring that the vector x̂, which was equal to x̂t just before

the call, equals x̂t+δ at the end of the call. The time needed for the former task is bounded by Lemma 2.7,

whereas the time needed for the latter task is O(Ni · log δ). The lemma follows since δ ≤ T = λ ln(n)
ǫ2 .

We next bound the total number of phases in the algorithm.

Lemma 2.9. Throughout the duration of the algorithm outlined in Figure 3, we have:
∥

∥x̂t
∥

∥

1
≤ n(1/ǫ).

Proof. Consider any round t ∈ [T ], which corresponds to an iteration of the FOR loop in Figure 1 (see

Lemma 2.5). Observe that:

∥

∥x̂t+1
∥

∥

1
−

∥

∥x̂t
∥

∥

1
=

∑

j∈[n]

(

(

x̂t+1
)

j
−

(

x̂t
)

j

)

=
∑

j∈[n]

(

x̂t
)

j
·
(

ǫ · Cit,j

λ

)

=
ǫ

λ
·
(

Cx̂t
)

it
<

ǫ

λ
·
∥

∥x̂t
∥

∥

1
.

The last inequality follows since
(

Cxt
)

it
< 1 and xt := x̂t/

∥

∥x̂t
∥

∥

1
. Rearranging the terms, we get:

∥

∥x̂t+1
∥

∥

1
≤

(

1 +
ǫ

λ

)

·
∥

∥x̂t
∥

∥

1
. (2.9)

As T = λ ln(n)
ǫ2

and
∥

∥x̂0
∥

∥

1
= n, from (2.9) we get:

∥

∥x̂t
∥

∥

1
≤

(

1 + ǫ
λ

)T ·
∥

∥x̂0
∥

∥

1
≤ n(1/ǫ) for all t ∈ [T ].

Corollary 2.10. The algorithm outlined in Figure 3 has at most O
(

log(n)
ǫ2

)

many phases.

Proof. We initiate a new phase whenever
∥

∥x̂t
∥

∥ increases by a multiplicative factor of (1 − ǫ/2)−1. Hence,

by Lemma 2.9, the number of phases is at most O
(

log(1−ǫ/2)−1 n(1/ǫ)
)

= O
(

logn
ǫ2

)

.

We are now ready to bound the total runtime of our algorithm.

Theorem 2.11. The algorithm outlined in Figure 3 can be implemented in O
(

N · log(n)
ǫ2

· log2
(

λ log(n)
ǫ

))

time, where N is the total number of non-zero entries in the matrix C ∈ [0, λ]m×n.

Proof. Consider a given phase of the algorithm. From Lemma 2.8, it follows that the time taken to enforce

any specific constraint i ∈ [m] in this phase is at most O
(

Ni · log2
(

λ log(n)
ǫ

))

. Since each constraint gets

enforced at most once during this phase, the total time spent in this phase is at most:

O





∑

i∈[m]

Ni · log2
(

λ log(n)

ǫ

)



 = O

(

N · log2
(

λ log(n)

ǫ

))

.

The theorem now follows from Corollary 2.10.
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2.2 Dynamic Whack-a-Mole MWU Algorithm for Covering LPs

In this section, we focus on designing a dynamic algorithm for Problem 2.1 in the following setting. At

preprocessing, we receive a constraint matrix C ∈ [0, λ]m×n. Subsequently, the matrix C undergoes a

sequence of restricting updates, where each update decreases the value of some entry Cij of the matrix C .9

Throughout this sequence of updates, we need to maintain either a vector x̃ ∈ Rn
≥0 with 1⊤x̃ ≤ 1 + Θ(ǫ)

and Cx̃ ≥ (1−Θ(ǫ)) · 1, or a vector y ∈ Rm
≥0 with 1⊤y = 1 and C⊤y ≤ (1 + Θ(ǫ)) · 1.

We will show that our implementation of the whack-a-mole MWU algorithm from Section 2.1.3 seam-

lessly extends to this dynamic setting. In more details, our dynamic algorithm works as follows.

Preprocessing: At preprocessing, we run the static algorithm from Section 2.1.3 on the input matrix C .

Depending on its outcome, we consider one of the following two cases.

Case I: The static algorithm returns a vector y ∈ Rm
≥0, as in step (09) of Figure 3. It follows that 1⊤y = 1 and

C⊤y ≤ (1 + 4ǫ) · 1 (see Theorem 2.6). In this case, the vector y will continue to remain an approximately

feasible solution to the dual packing LP as the matrix C undergoes restricting entry updates in future. Hence,

our dynamic algorithm terminates without having to process any update.

Case II: The static algorithm returns a vector xt := x̂t/
∥

∥x̂t
∥

∥

1
, as in step (12) of Figure 3. It follows that

1⊤xt = 1 and Cxt ≥ (1 − ǫ) · 1 (see Theorem 2.6). Our dynamic algorithm, however, will explicitly

maintain only the vector x̃t := x̂t/W , which is a very good approximation to xt since W ≤
∥

∥x̂t
∥

∥

1
≤

(1 − ǫ/2)−1 · W ≤ (1 + ǫ) · W . Thus, in this case, after preprocessing our dynamic algorithm returns a

vector x̃t which satisfies 1⊤x̃t ≤ 1 + ǫ and Cx̃t ≥ (1− ǫ) · 1.

Handling a restricting entry update to C: Consider an update which decreases the value of some entry Cij

of the matrix C . To handle this update, we simply run the steps (05) - (11) of Figure 3. In words, we observe

that if any constraint in the covering LP gets violated due to this update, then it must be the constraint

i ∈ [m]. Thus, we check whether the current solution x̃t := x̂t/W approximately satisfies constraint i. If

not, then we enforce that constraint by repeatedly whacking it. At the end of this process, we end up in one

of three possible cases. (Case 1): W is no longer an accurate estimate of
∥

∥x̂t
∥

∥

1
. In this case, we initiate a

new phase. (Case 2): t = T . Here, we return an approximately feasible solution y to the dual packing LP,

and we terminate the dynamic algorithm since y remains a valid dual solution after any future update. (Case

3): If we are neither in Case 1 nor in Case 2, then we infer that x̃t is now an approximately feasible solution

to the covering LP, with 1⊤x̃t ≤ 1 + ǫ and Cx̃t ≥ (1 − ǫ) · 1. This holds because repeatedly whacking

constraint i does not lead to any other constraint being violated, provided we remain in the same phase.

Rounds/phases: Before proceeding any further, we recall that a new round begins whenever we whack a

constraint, and the variable t denotes the total number of rounds we have seen so far. In contrast, a new

phase begins whenever
∥

∥x̂t
∥

∥

1
increases by a multiplicative factor of (1− ǫ/2)−1.

It now remains to analyze our dynamic algorithm. We start by noting that Theorem 2.6 and Lemma 2.9

seamlessly extend to the dynamic setting. We respectively summarize the analogues of these statements in

Theorem 2.12 and Lemma 2.13 below. Their proofs are deferred to Appendix A.

Theorem 2.12. If our dynamic algorithm returns a vector y ∈ Rm
≥0 after handling an update, then 1⊤y = 1

and C⊤y ≤ (1 + 4ǫ) · 1. In contrast, if our dynamic algorithm returns a vector x̃t := x̂t/W ∈ Rn
≥0 after

handling an update, then 1⊤x̃t ≤ 1 + ǫ and Cx̃t ≥ (1− ǫ) · 1.

Lemma 2.13. Throughout the duration of our dynamic algorithm, we have ‖x̂‖t1 ≤ n(1/ǫ).

9As we will see later in Section 2.5.2, we can assume that all updates are applied only to entries of the matrix C (and not on the

objective nor the RHS of the constraints).
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We now focus on bounding the total update time of our dynamic algorithm. The key challenge here is to

derive an upper bound on the maximum number of times a given constraint i ∈ [m] can get enforced, over

the entire duration of the algorithm.10 This is done in Lemma 2.14, whose proof appears in Section 2.2.1.

Lemma 2.14. Throughout the entire duration of our dynamic algorithm, a given constraint i ∈ [m] can get

enforced at most O
(

logn
ǫ2

· log
(

λ logn
ǫ

))

times.

We are now ready to bound the total update time of our dynamic algorithm.

Theorem 2.15. To handle any sequence of τ restricting entry updates to C , our dynamic algorithm takes

O
(

τ +N · log(n)
ǫ2 · log3

(

λ log(n)
ǫ

))

time, where N is the number of non-zero entries in C at preprocessing.

Proof. (Sketch) The total time update time is dominated by the time spent on the following two tasks.

Task I. After an update decreases the value of some entry Cij of the input matrix C , decide whether the

constraint i ∈ [m] is approximately satisfied, i.e., whether
(

C · x̂t

W

)

> 1− ǫ/2.

Task II. Enforce a given constraint i ∈ [m].

We first focus on bounding the total time spent on Task II. Towards this end, we first adapt the argument

in the proof of Lemma 2.8. This leads us to conclude that whenever we enforce a constraint i ∈ [m], it takes

O
(

Ni · log2
(

λ log(n)
ǫ

))

time, where Ni is the number of non-zero entries in row i ∈ [m] of the input matrix

C at preprocessing. Hence, Lemma 2.14 implies that the total time spent on enforcing a given constraint

i ∈ [m] is at most O
(

Ni · log(n)
ǫ2

· log3
(

λ log(n)
ǫ

))

. Summing this up over all the constraints i ∈ [m], we

infer that the total time spent on Task II is at most:

O





∑

i∈[m]

Ni ·
log(n)

ǫ2
· log3

(

λ log(n)

ǫ

)



 = O

(

N · log(n)
ǫ2

· log3
(

λ log(n)

ǫ

))

. (2.10)

It now remains to bound the total time spent on Task I. Towards this end, we maintain a variable ẑj
for each co-ordinate j ∈ [n]. We always ensure that ẑj = (1 + ǫ)κ for some nonnegative integer κ ≥ 0.

Furthermore, we ensure that ẑj always lies within a multiplicative (1+ǫ) factor of
(

x̂t
)

j
. In other words, the

value of ẑj always forms an accurate estimate of
(

x̂t
)

j
. Finally, for each constraint i ∈ [m], we explicitly

maintain the value of
(

C · ẑ
W

)

i
. This way, we can keep track of the value of

(

C · x̂t

W

)

i
for all i ∈ [m],

within a multiplicative factor of (1+ ǫ). This is sufficient for us to detect whether a given constraint i ∈ [m]
is approximately satisfied, in O(1) time after an update.

Fix any co-ordinate j ∈ [n]. Note that
(

x̂1
)

j
= 1, and by Lemma 2.13 we have

(

x̂t
)

j
≤ ∑

j′∈[n]

(

x̂t
)

j′
≤

n(1/ǫ) for all t ∈ [T ]. In words, the value of
(

x̂t
)

j
always lies in the interval

[

1, n(1/ǫ)
]

. We need to update

the estimate ẑj each time the value of
(

x̂t
)

j
increases by a multiplicative factor of (1+ ǫ). Thus, throughout

the duration of our algorithm, the value of ẑj gets updated at most log(1+ǫ) n
(1/ǫ) = O(log n/ǫ2) times.

Finally, whenever the value of ẑj changes, we need to spend an additional O(N j) time to reflect this

change in the values of
(

C · ẑ
W

)

i
for all i ∈ [m], where N j denotes the number of non-zero entries in column

j ∈ [n] of the matrix C at preprocessing. Hence, the total time spent in this manner, in order to maintain

the estimates ẑj and
(

C · ẑ
W

)

i
, is at most O

(

∑

j∈[n]N
j · (log n/ǫ2)

)

= O(N log n/ǫ2). So the total time

spent by our algorithm on Task I is at most O(τ +N log n/ǫ2). The theorem now follows from (2.10).

10We say that constraint i ∈ [m] gets enforced whenever we call ENFORE(i, t, x̂t,W ).
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2.2.1 Proof of Lemma 2.14

Throughout the proof, fix a constraint i ∈ [m]. We associate a step-size with each enforcement of this

constraint. Specifically, suppose that the constraint gets enforced in round t with step-size δ. Then the

constraint gets whacked δ times during this enforcement (see Figure 4). Furthermore, note that the step-size

δ lies in the range [1, T ], according to Figure 5. We discretize this range [1, T ] into O(log T ) many intervals

in powers of 2. Armed with this discretization, we now assign an integral rank to each enforcement of this

constraint. Specifically, a given enforcement has rank 1 ≤ κ ≤ O(log T ) iff its step-size δ ∈
[

2κ−1, 2κ
)

.

We will now bound the maximum number of enforcements of a given rank encountered by constraint i.

Claim 2.1. Fix any integer 1 ≤ κ ≤ O(log T ). Throughout the duration of our dynamic algorithm, the

constraint i ∈ [m] encounters at most O
(

logn
ǫ2

)

many enforcements of rank κ.

Proof. Suppose that the constraint i ∈ [m] encounters γ + 1 enforcements of rank κ. Furthermore, suppose

that these enforcements occurr in rounds t1 < t2 < · · · < tγ < tγ+1. We will show that γ = O(log n/ǫ2).
Focus on the second-last of these enforcements, that occur in round tγ . Just before this enforcement, we

have
(

C · x̂t

W

)

i
< 1− ǫ/2. In contrast, just after this enforcement, we have

(

C · x̂t

W

)

i
≥ 1.11 So the value

of
(

C · x̂t

W

)

i
increases by at least a multiplicative factor of 1 + Θ(ǫ) during this enforcement. Hence, there

must exist some co-ordinate j∗ ∈ [n] such that
(

x̂t
)

j∗
also increases by at least a multiplicative factor of

1+Θ(ǫ) during the same enforcement in round tγ . On the other hand, since the concerned enforcement has

rank κ, it has a step-size of at most 2κ. Thus, due to this enforcement
(

x̂t
)

j∗
increases by at most a factor of

(

1 + ǫ · C
tγ
ij∗

λ

)2κ

, where C
tγ
ij∗ denotes the value of Cij∗ just before round tγ . Accordingly, we infer that:

(

1 + ǫ ·
C

tγ
ij∗

λ

)2κ

≥ 1 + Θ(ǫ). (2.11)

Next, consider any previous enforcement with rank κ that occurs in some round tγ′ (where 1 ≤ γ′ ≤ γ),

and focus on the same co-ordinate j∗. Since the concerned enforcement has step-size at least 2κ−1, we infer

that due to this enforcement
(

x̂t
)

j∗
increases by at least a multiplicative factor of:



1 + ǫ ·
C

tγ′
ij∗

λ





2κ−1

=

√

√

√

√

(

1 + ǫ ·
C

tγ
ij∗

λ

)2κ

≥
√

1 + Θ(ǫ) = 1 + Θ(ǫ).

The inequality follows from (2.11). To summarize, we conclude that during each of the enforcements in

rounds t1, . . . , tγ , the value of
(

x̂t
)

j∗
increases by at least a factor of 1 + Θ(ǫ).

Finally, observe that
(

x̂t
)

j∗
= 1 at the start of the algorithm, and that the value of

(

x̂t
)

j∗
increases

monotonically with time. Thus, at the end of the enforcement in round tγ , we have:

(1 + Θ(ǫ))γ ≤
(

x̂t
)

j∗
≤

∑

j∈[n]

(

x̂t
)

j
≤ n(1/ǫ). (2.12)

The last inequality holds due to Lemma 2.13. From (2.12), we infer that γ = O(log n/ǫ2).

Claim 2.1 implies that a given constraint i ∈ [m] is enforced at most O
(

logn
ǫ2

· log T
)

times by our

dynamic algorithm. Lemma 2.14 now follows from the fact that T = λ ln(n)/ǫ2.

11Here, we rely on the fact that this is not the last enforcement of constraint i, for otherwise we might execute step (3) in Figure 5.
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2.3 Streaming Whack-a-Mole MWU Algorithm

In this section, we focus on designing a streaming algorithm for Problem 2.1 in the following setting. We

get a matrix C ∈ Rm×n
≥0 as input. The rows of C are stored one after the other in a read-only repository.

We wish to design an algorithm which makes one or more passes through this repository, and then either

outputs a vector x ∈ Rn
≥0 with 1⊤x = 1 and Cx ≥ (1 − ǫ) · 1, or outputs a vector y ∈ Rm

≥0 with 1⊤y = 1

and C⊤y ≤ (1+ 4ǫ) · 1. The goal is to minimize the number of passes and the space complexity (excluding

the space taken up by the repository to store the input) of the algorithm.

We observe that the static whack-a-mole MWU algorithm, as described in Section 2.1.3, immediately

extends to this streaming setting if we allow the algorithm to have a space complexity of O(m+n). Specifi-

cally, we can implement the main FOR loop in Figure 3 in a single pass as follows. The algorithm explicitly

maintains a vector x̂ = x̂t ∈ Rn
≥0, the values W, t ∈ R≥0, and a vector y∗ = (1/T ) · ∑t

t′=1 y
t′ ∈ Rm

≥0 in

its memory. Note that when t = T , we have y∗ = y. While making a pass through the read-only repos-

itory, suppose that the algorithm encounters row i ∈ [m] of the matrix C . The algorithm checks whether
(

C · x̂
W

)

i
< 1 − ǫ/2, and if yes, then it enforces the constraint i ∈ [m]. Using the vectors x̂ and y∗, this

enforcement step can be performed without incurring any extra overhead in the space complexity.

Since we can implement the main FOR loop in Figure 3 in one pass, the total number of passes is equal

to the number of phases of the whack-a-mole algorithm. The next theorem now follows from Corollary 2.10.

Theorem 2.16. Consider a streaming setting where the rows of the matrix C ∈ [0, λ]m×n arrive one after

the other. Then there is a deterministic streaming algorithm with space complexity O(m + n) that makes

O
(

logn
ǫ2

)

many passes through this stream, and either returns a vector x ∈ Rn
≥0 with 1⊤x = 1 and

Cx ≥ (1− ǫ) · 1, or returns a vector y ∈ Rm
≥0 with 1⊤y = 1 and C⊤y ≤ (1 + 4ǫ) · 1.

Next, note that if we are only required to return either the vector x ∈ Rn
≥0 or a special symbol NULL

(indicating that the dual packing LP has an approximately feasible solution with objective = 1), then we

can further reduce the space complexity of our streaming algorithm. This holds because in such a scenario

we only need to maintain the vector x̂ ∈ Rn
≥0 and the values W, t ∈ R≥0. In particular, we no longer need

to maintain the vector y∗ ∈ Rm
≥0 while making a pass through the read-only repository. Instead, when we

observe that t = T , we simply return NULL. This leads to the following corollary.

Corollary 2.17. Consider a streaming setting where the rows of the matrix C ∈ [0, λ]m×n arrive one

after the other. Then there is a deterministic streaming algorithm with space complexity O(n) that makes

O
(

logn
ǫ2

)

many passes through this stream, and either returns a vector x ∈ Rn
≥0 with 1⊤x = 1 and

Cx ≥ (1 − ǫ) · 1, or returns NULL. In the latter case, it is guaranteed that there exists a vector y ∈ Rm
≥0

with 1⊤y = 1 and C⊤y ≤ (1 + 4ǫ) · 1 (although the algorithm does not return y).

2.4 Online Whack-a-Mole MWU Algorithm

In this section, we focus on designing an online algorithm for Problem 2.1 in the following setting. An

adversary chooses a matrix C ∈ [0, λ]m×n as input. In the beginning, the values of n and λ are public

knowledge, whereas only the adversary knows the value of m and the entries of the matrix C . Subsequently,

the adversary reveals to us the rows of this matrix one after another. We need to maintain a vector x ∈ Rn
≥0

such that 1⊤x ≤ 1 + Θ(ǫ) and Cx ≥ (1 − Θ(ǫ)) · 1 until a certain point in time, and after that we need

to terminate our algorithm by returning a y ∈ Rm
≥0 such that 1⊤y ≥ 1 − Θ(ǫ) and C⊤y ≤ (1 + Θ(ǫ)) · 1.

We incur a recourse of one each time we decrease the value of some variable (x)j , j ∈ [n]. Our goal is to

design an algorithm in this online setting with as small total recourse as possible.

We observe that the dynamic whack-a-mole MWU algorithm, as described in Section 2.2, seamlessly

extends to this online setting. Thus, we maintain the vector x̃t := x̂t/W . Whenever a new row i ∈ [m] of
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the matrix C arrives, we check whether
(

C · x̂t

W

)

< 1 − ǫ/2, and if the answer is yes, then we enforce the

corresponding constraint i ∈ [m]. The correctness of this algorithm follows from Theorem 2.12.

We now derive an upper bound on the number of phases. Corollary 2.13 implies that
∥

∥x̂t
∥

∥

1
≤ n(1/ǫ)

throughout the duration of the algorithm. Since
∥

∥x̂1
∥

∥

1
= n at the start of the algorithm, and since we initiate

a new phase whenever
∥

∥x̂t
∥

∥

1
increases by a multiplicative factor of 1+Θ(ǫ), it follows that the total number

of phases is at most log(1+Θ(ǫ)) n
(1/ǫ) = O

(

logn
ǫ2

)

.

Next, note that within a given phase our algorithm incurs zero recourse. This holds because the values
(

x̂t/W
)

j
can only increase when we enforce a constraint within the phase (as W does not change). On the

other hand, we incur a recourse of n each time we initiate a new phase, since we have n variables and each

of these variables decreases its value as we increase W at the start of the phase. Hence, the total recourse of

the algorithm is n times the number of phases. This leads to the following theorem.

Theorem 2.18. Consider an online setting where the rows of the matrix C ∈ [0, λ]m×n arrive one after

another. Let N denote the number of non-zero entries in C . There is a deterministic online algorithm

with total recourse O
(

n logn
ǫ2

)

which has the following property. It maintains a vector x ∈ Rn
≥0 with

1⊤x ≤ 1 + Θ(ǫ) and Cx ≥ (1 − Θ(ǫ)) · 1 until a certain point in time, and after that it terminates and

returns a vector y ∈ Rm
≥0 with 1⊤y ≥ 1−Θ(ǫ) and C⊤y ≤ (1 + Θ(ǫ)) · 1.

2.5 Reductions to General Packing-Covering LPs

Consider a matrix C ∈ R
m×n
≥0 , vectors a ∈ Rn

>0, b ∈ Rm
>0, and a generic covering LP defined below.

Minimise a⊤x s.t. Cx ≥ b and x ∈ R
n
≥0. (2.13)

The dual of the above LP is given by:

Maximise b⊤y s.t. C⊤y ≤ a and y ∈ R
m
≥0. (2.14)

Let OPT be the optimal objective value of this pair of primal and dual LPs. Say that x ∈ Rn
≥0 is an

ǫ-approximate optimal solution to LP (2.13) iff a⊤x ≤ (1+Θ(ǫ)) ·OPT and Cx ≥ (1−Θ(ǫ)) · b. Similarly,

say that y ∈ Rm
≥0 is an ǫ-approximate optimal solution to LP (2.14) iff b⊤y ≥ (1 − Θ(ǫ)) · OPT and

C⊤y ≤ (1 + Θ(ǫ)) · a.12 We will now explain how to use the whack-a-mole MWU algorithm to obtain

ǫ-approximate optimal solutions to this pair of LPs in static, dynamic, streaming and online settings.

Specifically, we describe how an algorithm for Problem 2.1 can be used in a black-box manner to solve

general packing-covering LPs. Such a reduction works by first guessing the value of OPT, and then showing

an equivalence between: (a) finding a solution with objective = OPT and (b) solving Problem 2.1. The

equivalence follows from standard scaling techniques.

2.5.1 Static Setting

In this section, we show how to prove the following theorem.

Theorem 2.19. There is a deterministic ǫ-approximation algorithm for solving LP (2.13) that runs in

O
(

N · log(n)
ǫ3

· log2
(

nU log(n)
ǫL

)

· log(nU/L)
)

time. Here, N denotes the number of non-zero entries in

C , whereas L (resp. U ) respectively denotes a lower (resp. upper) bound on the minimum (resp. maximum)

value of any non-zero entry in C, a, b. The same guarantee also holds for solving LP (2.14).

12This notion of an ǫ-approximation is equivalent to the one defined at the start of Section 1, upto a multiplicative factor of

1 +Θ(ǫ). To see why this is true, consider an x such that 1⊤x ≤ (1 +Θ(ǫ)) · OPT and Cx ≥ (1−Θ(ǫ)) · b. Then it follows that

1⊤x̃ ≤ (1 + Θ(ǫ)) · OPT and Cx̃ ≥ b, where x̃ := x
1−Θ(ǫ)

. A similar argument holds for an ǫ-approximation to LP (2.14).
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Define a matrix C ′ ∈ R
m×n
≥0 such that C ′

ij := Cij/(ajbi) for all i ∈ [m], j ∈ [n]. It is easy to check that

LP (2.13) and LP (2.14) can be equivalently written as:

Minimise 1
⊤x s.t. C ′x ≥ 1 and x ∈ R

n
≥0. (2.15)

Maximise 1
⊤y s.t. (C ′)⊤y ≤ 1 and y ∈ R

m
≥0. (2.16)

We can compute the matrix C ′ in O(N) time. Furthermore, the maximum (resp. minimum) value of any

non-zero entry of C ′ is upper (resp. lower) bounded by U/L2 (resp. L/U2). Let OPT denote the optimal

objective value of LP (2.15) and LP (2.16). Note that L2/U ≤ OPT ≤ nU2/L. We discretize this range

[L2/U, nU2/L] in powers of (1 + ǫ), to obtain log(1+ǫ)(nU
3/L3) = Θ(log(nU/L)/ǫ) many guesses for

OPT. For each such guess µ, we consider the following problem.

Problem 2.20. Either return an x ∈ Rn
≥0 such that 1⊤x ≤ (1 + Θ(ǫ)) · µ and C ′x ≥ (1 − Θ(ǫ)) · 1, or

return a y ∈ Rm
≥0 such that 1⊤y ≥ (1−Θ(ǫ)) · µ and (C ′)⊤y ≤ (1 + Θ(ǫ)) · 1.

Next, define a matrix C ′′ ∈ R
m×n
≥0 where C ′′

ij := µ · Cij for all i ∈ [m], j ∈ [n], and observe that

Problem 2.20 is equivalent to the following problem.

Problem 2.21. Either return an x ∈ Rn
≥0 such that 1⊤x ≤ 1 +Θ(ǫ) and C ′′x ≥ (1−Θ(ǫ)) · 1, or return a

y ∈ Rm
≥0 such that 1⊤y ≥ 1−Θ(ǫ) and (C ′′)⊤y ≤ (1 + Θ(ǫ)) · 1.

Note that C ′′ ∈ [0, λ]m×n where λ = µ · (U/L2) ≤ nU3/L3. Accordingly, we can solve Problem 2.21

by using our whack-a-mole MWU algorithm from Section 2.1. According to Theorem 2.11, this takes

O
(

N · log(n)
ǫ2

· log2
(

nU3 log(n)
ǫL3

))

= O
(

N · log(n)
ǫ2

· log2
(

nU log(n)
ǫL

))

time.

It is easy to check that we can recover ǫ-approximate optimal solutions to LP (2.13) and LP (2.14) if we

solve Problem 2.21 for each of the Θ(log(nU/L)/ǫ) many guesses µ. This leads us to Theorem 2.19.

2.5.2 Dynamic Setting

In this section, we show how to prove the following theorem.

Theorem 2.22. Consider any sequence of τ restricting updates to LP (2.13), where each update either

decreases an entry of C , or increases an entry of a, b. Let N denote the total number of non-zero entries in

C at preprocessing. Let L (resp. U ) denote a lower (resp. upper) bound on the minimum (resp. maximum)

value of a non-zero entry of C, a, b. We can deterministically maintain an ǫ-approximate optimal solution to

LP (2.13) in O
(

τ · log(nU/L)
ǫ +N · log(n)

ǫ3
· log3

(

nU log(n)
ǫL

)

· log(nU/L)
)

total time. The same guarantee

also holds for maintaining an ǫ-approximate solution to LP (2.14), which undergoes relaxing updates.

As in Section 2.5.1, we make Θ(log(nU/L)/ǫ) many guesses for OPT. For each such guess µ, we

maintain a solution to Problem 2.20, which, in turn, is equivalent to Problem 2.21. This allows us to

maintain ǫ-approximate optimal solutions to LP (2.13) and LP (2.14) in the dynamic setting.

Fix any guess µ, and focus on the corresponding instance of Problem 2.21. Since we are satisfied with

an ǫ-approximate optimal solution, we can safely assume that any update with a meaningful impact on the

solution changes the corresponding entry by at least a multiplicative factor of (1 + ǫ). Henceforth, we

only focus on handling these meaningful updates. Note that each entry of C, a, b participates in at most

log(1+ǫ)(U/L) = O
(

log(U/L)
ǫ

)

many meaningful updates. Furthermore, each time there is a meaningful

restricting update to some bi, it leads to at most O(Ni) many restricting entry updates to the matrix C ′′,

where Ni is the number of non-zero entries in the ith row of C at preprocessing. Similarly, whenever there

is a meaningful restricting update to some aj , it leads to at most O(N j) many restricting entry updates to

the matrix C ′′, where N j is the number of non-zero entries in the jth column of C at preprocessing.
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Consider any sequence of τ restricting updates to LP (2.13). By the above discussion, this leads to at

most τ+
(

∑

j∈[n]N
j +

∑

i∈[m]Ni

)

·O
(

log(U/L)
ǫ

)

= τ+O
(

N · log(U/L)
ǫ

)

many restricting entry updates

in Problem 2.21, which we solve using the algorithm from Section 2.2. As λ ≤ nU3/L3, Theorem 2.15

implies a total update time of:

O

(

τ +N · log(U/L)
ǫ

+N · log(n)
ǫ2

· log3
(

λ log(n)

ǫ

))

= O

(

τ +N · log(n)
ǫ2

· log3
(

nU log(n)

ǫL

))

.

Theorem 2.22 follows since we run Θ
(

log(nU/L)
ǫ

)

copies of the dynamic algorithm, one for each µ.

2.5.3 Streaming Setting

In this section, we consider the streaming setting where the rows of the constraint matrix of a covering LP

(or equivalently, the columns of the constraint matrix of the dual packing LP) are arriving one after another.

We show how to prove the following two theorems.

Theorem 2.23. Consider a streaming setting where the columns of the constraint matrix of LP (2.14) ar-

rive one after another. There is a deterministic algorithm with space complexity O(m + n) that makes

O
(

logn·log(nU/L)
ǫ3

)

passes through the stream, and returns an ǫ-approximate optimal solution to LP (2.14).

Here, L (resp. U ) denotes a lower (resp. upper) bound on the value of any non-zero entry of C, a, b.

Theorem 2.24. Consider a streaming setting where the rows of the constraint matrix of LP (2.13) arrive one

after another. There is a deterministic algorithm with space complexity O(n) that makes O
(

logn·log(nU/L)
ǫ3

)

passes through the stream, and returns an ǫ-approximate optimal solution to LP (2.13). Here, L (resp. U )

denotes a lower (resp. upper) bound on the value of any non-zero entry of C, a, b.

As in Section 2.5.1, we make Θ(log(nU/L)/ǫ) many guesses for OPT. For each such guess µ, we solve

Problem 2.20 in the streaming setting, which, in turn, is equivalent to Problem 2.21. This allows us to return

ǫ-approximate optimal solutions to LP (2.13) and LP (2.14).

Fix any guess µ, and focus on the corresponding instance of Problem 2.21. Suppose that we are allowed

to have a space complexity of O(m+n). By Theorem 2.16, we can solve Problem 2.21 by making O( logn
ǫ2

)
many passes through the stream. Theorem 2.23 now follows since we need to solve Problem 2.21 for each

guess µ, which increases the number of passes by a multiplicative factor of Θ(log(nU/L)/ǫ).
Finally, Theorem 2.24 follows if we apply the same strategy described above and use Corollary 2.17.

2.5.4 Online Setting

In this section, we explain how to prove the following theorem.

Theorem 2.25. Consider an online setting where the constraints of LP (2.13) arrive one after another.

There is a deterministic algorithm which maintains an ǫ-approximate optimal solution to this LP with total

recourse O
(

n · logn
ǫ3

· log
(

nU
L

)

)

. Here, L (resp. U ) is a lower (resp. upper) bound on the value of any

non-zero entry of C, a, b.

As in Section 2.5.1, we make Θ(log(nU/L)/ǫ) many guesses for OPT. For each such guess µ, we solve

Problem 2.20 in the online setting, which, in turn, is equivalent to Problem 2.21. This allows us to maintain

an ǫ-approximate optimal solutions to LP (2.13). Theorem 2.25 now follows from Theorem 2.18 as the total

recourse increases by a multiplicative factor of Θ(log(nU/L)/ǫ).
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2.6 Challenges for Dynamic Whack-a-Mole MWU Algorithm for Packing LPs

We have so far focussed on the whack-a-mole MWU algorithm for covering LPs. For packing LPs, there

exists an analogous whack-a-mole MWU algorithm. To see this, consider the following problem.

Problem 2.26. Given a matrix P ∈ [0, λ]m×n where λ > 0, either return an x ∈ Rn
≥0 with 1⊤x ≥ 1−Θ(ǫ)

and Px ≤ (1 + Θ(ǫ)) · 1, or return a y ∈ Rm
≥0 with 1⊤y ≤ 1 + Θ(ǫ) and P⊤y ≥ (1−Θ(ǫ)) · 1.

The basic template for a whack-a-mole algorithm for Problem 2.26 is described in Figure 6 and Figure 7.

Note that this is completely analogous to the template in Section 2.1.1.

01. Define T ← λ ln(n)
ǫ2

, and two vectors x̂1, x1 ∈ Rn
≥0 where x̂1 ← 1 and x1 ← x̂1

‖x̂1‖1
.

02. FOR t = 1 TO T :

03. EITHER

04. Conclude that
(

P · xt
)

i
≤ 1 + ǫ for all i ∈ [m].

05. Terminate the FOR loop, and RETURN (xt,NULL).
06. OR

07. Find a packing constraint it ∈ [m] such that
(

P · xt
)

it
> 1.

08. x̂t+1 ← WHACK(it, x̂
t). // See Figure 7.

09. xt+1 ← x̂t+1

‖x̂t+1‖1
.

10. Let yt ∈ ∆m be the vector where
(

yt
)

it
= 1 and

(

yt
)

i
= 0 for all i ∈ [m] \ {it}.

11. y ← (1/T ) ·∑T
t=1 y

t.

12. RETURN (NULL, y).

Figure 6: The Whack-a-Mole MWU Algorithm for a Packing LP.

1. FOR ALL j ∈ [n]:

2. ẑj ←
(

1− ǫ · Pij

λ

)

· x̂j .

3. RETURN ẑ

Figure 7: WHACK(i, x̂).

The key point to note is that unlike in Section 2.1.1, here the weight
(

x̂t
)

j
of an expert j ∈ [n] (see the

discussion in the beginning of Section 2.1.2) can only decrease whenever we whack a constraint. Neverthe-

less, we can easily extend the analysis from Section 2.1.1 to obtain the following theorem.

Theorem 2.27. The algorithm in Figure 6 either returns a vector xt ∈ Rn
≥0 with 1⊤xt = 1 and Pxt ≤

(1 + Θ(ǫ)) · 1, or it returns a vector y ∈ Rm
≥0 with 1⊤y = 1 and P⊤y ≥ (1−Θ(ǫ)) · 1.

From this basic template, it is straightforward to obtain a near-linear time static algorithm for Prob-

lem 2.26. The framework also seamlessly extends to give us whack-a-mole MWU algorithms for packing

LPs in the streaming and online settings. Thus, every theorem derived in Sections 2.5.1, 2.5.3 and 2.5.4

holds even if we switch the occurrences of LP (2.13) with that of LP (2.14) in the concerned theorem state-

ment. The only exception is the theorem derived in Section 2.5.2. Below, we highlight the main challenge

in obtaining a dynamic whack-a-mole MWU algorithm for packing LPs under restricting updates.

Recall that a key part of the analysis in Section 2.2 was deriving an upper bound on the number of times

a given constraint can get enforced throughout the duration of the algorithm (see Lemma 2.14). The proof
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of Lemma 2.14, on the other hand, relied on the property that the weight
(

x̂t
)

j
of every expert j ∈ [n] is

monotonically non-decreasing with time and always lies in the range
[

1, n(1/ǫ)
]

, and hence is polynomially

bounded (see the discussion leading to (2.12)). This property followed from three observations: (1) at the

start of the algorithm we have
(

x̂1
)

j
= 1, (2) the total weight

∑

j′∈[n]

(

x̂t
)

j
of all the experts is at most

n(1/ǫ), and (3) the weight
(

x̂t
)

j
of a given expert j ∈ [n] is at most the total weight

∑

j′∈[n]

(

x̂t
)

j
.

Coming back to our current setting, recall that the weight
(

x̂t
)

j
of an expert j ∈ [n] can only decrease

over time when we run the whack-a-mole MWU algorithm on a packing LP. Thus, in order to bound the

maximum number of times a constraint can get enforced, we need to show that the weight
(

x̂t
)

j
of every

expert j ∈ [n] lies in the range
[

1
npoly(1/ǫ) , 1

]

throughout the duration of the algorithm. A natural way to

replicate the argument from the previous paragraph to our current setting would be to make the following

sequence of claims: (a) at the start of the algorithm we have
(

x̂1
)

j
= 1, (b) the total weight

∑

j′∈[n]

(

x̂t
)

j
of

all the experts is at least n(1/ǫ), and (c) the weight
(

x̂t
)

j
of a given expert j ∈ [n] is at least the total weight

∑

j′∈[n]

(

x̂t
)

j
. Now, the crucial observation is that although we can extend the analysis of the whack-a-mole

MWU algorithm for covering LP to prove claims (a) and (b), claim (c) clearly does not hold for obvious

reasons. Indeed, if we consider a natural extension of the static whack-a-mole MWU algorithm for packing

LPs to a setting with restricting updates, then we can not ensure that the weight
(

x̂t
)

j
of an expert j ∈ [n]

remains polynomially bounded. This, in turn, implies that we cannot upper bound the maximum number of

times a constraint gets enforced, and hence we cannot bound the total update time of the algorithm.

We address this issue in Section 3, where we present an efficient dynamic algorithm for maintaining an

ǫ-approximate solution to a positive LP under relaxing updates. Section 3.3 shows that as a simple corollary

of this result, we obtain an efficient dynamic algorithm for maintaining an ǫ-approximate optimal solution

to a packing (resp. covering) LP under restricting (resp. relaxing) updates (see Theorem 3.15).

3 The Greedy MWU Algorithm

In this section we focus on positive LPs, which are defined as follows:

Find x ∈ R
n
≥0 such that Px ≤ a and Cx ≥ b, where P ∈ R

mp×n
≥0 , a ∈ R

mp

≥0 , C ∈ R
mc×n
≥0 , b ∈ R

mc
≥0 . (3.1)

An ǫ-approximate solution for the positive LP is either an x ∈ Rn
≥0 satisfying Px ≤ (1 + ǫ)a and Cx ≥

(1 − ǫ)b, or a symbol ⊥ indicating that the LP is infeasible. In the dynamic setting, an update to the LP

can change an entry of P, a,C or b. Observe that the update is relaxing if it increases an entry of C or a,

or decreases an entry of P or b. In this section, we wish to design a dynamic algorithm for maintaining an

ǫ-approximation solution to a positive LP undergoing relaxing updates. Note that such an algorithm will

work as follows. Initially, it will return ⊥ for a sequence of relaxing updates. After that, at a certain point

in time it will return an x ∈ Rn
≥0 satisfying Px ≤ (1 + ǫ)a and Cx ≥ (1− ǫ)b. From this point onward, the

same x will continue to remain an ǫ-approximate solution to the input positive LP after every future update.

Notation and preliminaries. We now introduce a few key notations and concepts that will be used through-

out the rest of Section 3.13 We classify a relaxing update as an entry update if it changes an entry of P or C ,

whereas we classify a relaxing update as a translation update if it changes an entry of a or b. Throughout

the sequence of updates, let L (resp. U ) respectively denote an upper (resp, lower) bound on the value of

any nonzero entry in P,C, a, b; and let N denote an upper bound on the total number of nonzero entries

in P,C . We assume that U/L = O(poly(mp + mc + n)), where mp,mc and n respectively denote the

number of rows in P , the number of rows in C , and the number of variables. We refer to Px ≤ a as the

13We emphasize that some of these notations are different from the ones used in Section 2.
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packing constraints, and we refer to Cx ≥ b as the covering constraints. For all i ∈ [mp] and k ∈ [n],
we let P (i, k) ∈ R≥0 denote the entry in the ith row and kth column of the matrix P . Furthermore, we let

Pi ∈ R
1×n
≥0 denote the ith row of the matrix P . We analogously define the notations C(j, k) ∈ R≥0 and

Cj ∈ R
1×n
≥0 , for all j ∈ [mc] and k ∈ [n]. Finally, we use the symbol vi to denote the ith co-ordinate of a

vector v = (v1, . . . , vm) ∈ Rm.

Our main result is summarised below. In this section, we present a high level overview of the main ideas

behind the proof of Theorem 3.1. The full details are deferred to Appendix B and Appendix C.

Theorem 3.1. We can maintain an ǫ-approximate solution to a positive LP undergoing a sequence of t > 0

relaxing updates in O
(

N · log2(mc+mp+U/L)
ǫ2

+ t
)

total update time.

A simplifying assumption: To convey the main ideas behind our algorithm, in this section we focus on the

setting where all the relaxing updates made to the input LP are entry updates, for the following reason.

Consider an input positive LP (P,C, a, b), which asks us to find an x such that Px ≤ a and Cx ≥ b.
Since we are happy with a Θ(ǫ)-approximate solution to the input LP, we can keep ignoring the relaxing

translation updates to a packing constraint (Px)i ≤ ai (resp. covering constraint (Cx)j ≥ bj) as long

as ai (resp. bj) does not increase (resp. decrease) by more than a multiplicative factor of (1 + ǫ). Thus,

during the course of our algorithm, a given packing or covering constraint will essentially go through at

most κ = O(log(1+ǫ)(U/L)) many relaxing translation updates.

Next, note that we can simulate a relaxing translation update to a packing constraint (Px)i ≤ ai
(resp. covering constraint (Cx)j ≥ bj) by making nzp(i) (resp. nzc(j)) many relaxing entry updates, where

nzp(i) (resp. nzc(j)) denotes the current number of nonzero entries in row i (resp. row j) of P (resp. C).

This is because of the following reason: If the translation update asks us to scale up (resp. scale down) the

value of ai (resp. bj) by a multiplicative factor of α ≥ 1, then we can implement this update by scaling down

(resp. scaling up) every nonzero entry in row i (resp. row j) of P (resp. C) by the same factor α.

It follows that all the relaxing translation updates encountered by an algorithm for this problem can be

simulated by at most κN many relaxing entry updates. Hence, if we prove Theorem 3.1 for relaxing entry

updates, then we can immediately convert it into an algorithm that handles both translation and entry updates

with total update time O
(

N · log2(mc+mp+U/L)
ǫ2

+ t+ κN
)

= O
(

N · log2(mc+mp+U/L)
ǫ2

+ t
)

.

Accordingly, for the rest of Section 3, the phrase relaxing update will refer to a relaxing entry update.

Scaling the constraints: Since we have to deal with only the entry updates in this section, for notational

convenience we will scale the right hand sides of all the packing and covering constraints to 1. Accordingly,

throughout the rest of Section 3 the input positive LP will be given by an ordered pair (P,C), where P ∈
R
mp×n
≥0 and C ∈ R

mc×n
≥0 and it asks us to find an x ∈ Rn

≥0 such that Px ≤ 1 and Cx ≥ 1.

Organisation: In Section 3.1, we recap a known static greedy MWU algorithm for positive LPs [Qua20,

You14]. We present and analyse our dynamic algorithm in Section 3.2. Finally, we show that the analysis

in Section 3.2 implies a dynamic algorithm for solving a packing (resp. covering) LP under restricting

(resp. relaxing) updates. This observation is summarized in Section 3.3.

22



3.1 Static Greedy MWU Algorithm [Qua20, You14]

Define two functions fp(x) and fc(x), which respectively correspond to the soft-max of the packing con-

straints and the soft-min of the covering constraints, as stated below.

fp(x) =
1

η
· log

(mp
∑

i=1

exp(ηPix)

)

and fc(x) = −1

η
· log





mc
∑

j=1

exp(−ηCjx)



 ,

where η =
log(mp +mc + U/L)

ǫ
. (3.2)

It can be shown that the function fp(x) (resp. fc(x)) closely approximates the maximum (resp. minimum)

value among the left hand sides of the packing (resp. covering) constraints. Specifically, we have:

max
i∈[mp]

Pix ≤ fp(x) ≤ max
i∈[mp]

Pix+ ǫ and min
j∈[mc]

Cjx− ǫ ≤ fc(x) ≤ min
j∈[mc]

Cjx, for all x ∈ R
n
≥0. (3.3)

The algorithm attempts to find an x ∈ Rn
≥0 where fp(x) ≤ 1 and fc(x) ≥ 1. By (3.3), such an x is indeed an

ǫ-approximate solution to the input positive LP. Note that both the functions fp(x) and fc(x) are continuous

and differentiable, and hence their gradients exist at all points.

3.1.1 The main idea

Say that a direction z ∈ Rn
≥0 is cheap with respect to a point x ∈ Rn

≥0 iff 〈∇fp(x), z〉 ≤ 〈∇fc(x), z〉. In

other words, starting from the point x, if we take an infinitesimally small step towards a cheap direction

w.r.t. x, then the increase in fp(x) is at most the increase in fc(x). The high level idea behind the algorithm

can be summarised as follows: It starts at an x = ~0 ∈ Rn
≥0, where we have fp(x) = fc(x) = 0. It

then continuously keeps moving this point x in a cheap direction. This leads to the following invariant:

fp(x) ≤ fc(x). The algorithm stops once it reaches a point x where fc(x) = 1. Such an x satisfies

fp(x) ≤ 1 and fc(x) ≥ 1, and hence is an ǫ-approximate solution to the input positive LP, according

to (3.3). On the other hand, if at some point in time during this continuous process, we reach a point x that

does not admit any cheap direction, then it can be shown that the input LP is infeasible.

In order to actually implement the scheme described above, we first need to discretise the process which

keeps moving the point x. This discretised process will consist of a sequence of steps. As before, initially

we have x = ~0. At the start of each step, we identify an (approximately) cheap direction z ∈ Rn
≥0 w.r.t. the

current x, which satisfies 〈∇fp(x), z〉 ≤ (1 + Θ(ǫ)) · 〈∇fc(x), z〉, and then we take a small discrete jump

along that direction by setting x ← x + δz for some sufficiently small δ > 0. It can be shown that due

to each of these steps, the increase in the value of fp(x) is at most (1 + Θ(ǫ)) times the increase in the

value of fc(x), which leads to the invariant: fp(x) ≤ (1 + Θ(ǫ)) · fc(x). Furthermore, during each of

these steps, the value of fc(x) increases by at most Θ(ǫ), for sufficiently small δ. The process terminates

immediately after we reach a stage where fc(x) ≥ 1. Thus, at termination we have 1 ≤ fc(x) ≤ (1 +Θ(ǫ))
and fp(x) ≤ (1 + Θ(ǫ))fc(x) ≤ (1 + Θ(ǫ)), and hence x is a Θ(ǫ)-approximate solution to the input

positive LP. In contrast, if at any step during this process, we end up with an x which does not admit any

(approximately) cheap direction, then we can certify that the input LP is infeasible.

We will work with a concrete version of the framework described above. Say that a coordinate k ∈ [n]
is (approximately) cheap with respect to a point x ∈ Rn

≥0 iff 〈∇fp(x), ~ek〉 ≤ (1 + Θ(ǫ)) · 〈∇fc(x), ~ek〉,
where ek ∈ {0, 1}n is the unit vector along coordinate k. We will use the following crucial observation:

Any given point x admits a cheap direction iff it admits a cheap coordinate. Thus, all we need to do is start

at x = ~0, and then move the point x in a sequence of steps, where at each step we move x by a small amount

along a cheap coordinate. We now present this algorithmic template more formally in Section 3.1.2.
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3.1.2 The basic algorithmic template

We start by introducing some crucial notations. Given any x ∈ Rn
≥0, we associate a weight with each

LP constraint. To be specific, for all i ∈ [mp] and j ∈ [mc], we have wp(x, i) := exp (η · Pix) and

wc(x, j) := exp (−η · Cjx). Let wp(x) :=
∑mp

i=1wp(x, i) and wc(x) :=
∑mc

j=1wc(x, j).

Definition 3.2. Consider any k ∈ [n]. The cost of coordinate k at a given x ∈ Rn
≥0 is defined as:

λ(x, k) :=

∑mp

i=1wp(x, i) · P (i, k)
∑mc

j=1wc(x, j) · C(j, k)
.

The coordinate k ∈ [n] is said to be cheap w.r.t. a given x ∈ Rn
≥0 iff λ(x, k) ≤ (1 + Θ(ǫ)) · wp(x)/wc(x).

It turns out that the notion of a cheap coordinate, as per Definition 3.2, is identical to the one used in the

last paragraph of Section 3.1.1 (see Property 3.3 and Property 3.4). The algorithm is described in Figure 8.

1. INITIALISE x ← ~0 ∈ Rn
≥0.

2. WHILE minj∈[mc]Cjx < 1:

3. IF there is no cheap coordinate at x, THEN

4. RETURN that the LP is infeasible.

5. ELSE

6. Let k ∈ [n] be a cheap coordinate.

7. x ← BOOST(x, k). // See Figure 9.

8. RETURN x.

Figure 8: A static algorithm for solving a positive LP (P,C).

1. Find the maximum δ such that maxi∈[mp] P (i, k) · δ ≤ ǫ/η and maxj∈[mc]:Cjx<2C(j, k) · δ ≤ ǫ/η.

2. RETURN x+ δ~ek .

Figure 9: BOOST(x, k).

It is easy to check that this algorithm follows the framework outlined in Section 3.1.1. To summarise,

the algorithm starts at x = ~0. Subsequently, each iteration of the WHILE loop in Figure 8 either declares

that the input LP is infeasible, or identifies a cheap coordinate w.r.t. the current x and calls the subroutine in

Figure 9 to boost (i.e., change) x by a small amount along that direction. It stops when minj∈[mc]Cjx ≥ 1.

We now state two key properties of the algorithm, whose proofs are deferred to Appendix B. Prop-

erty 3.3 justifies the algorithm’s decision to declare that the input LP is infeasible if it cannot find any cheap

coordinate w.r.t. the current x ∈ Rn
≥0. Property 3.4 ensures that whenever the algorithm decides to boost the

current x along a cheap coordinate k ∈ [n], the increase in fp(x) is at most (1 +Θ(ǫ)) times the increase in

fc(x), which, in turn, is itself at most Θ(ǫ).

Property 3.3. Consider any x ∈ Rn
≥0. If there is no cheap coordinate at x, then the LP (P,C) is infeasible.

Property 3.4. Assume ǫ < 1/10 and let k ∈ [n] be a cheap coordinate at y ∈ Rn
≥0, and let z ←

BOOST(y, k). Then we have:

fp(z)− fp(y) ≤ (1 + Θ(ǫ)) · (fc(z)− fc(y)) ≤ Θ(ǫ).
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Recall that initially x = ~0, and so fp(x) = fc(x) = 0. Each subsequent iteration of the WHILE loop in

Figure 8 boosts the current x along a cheap coordinate. Hence, Property 3.4 implies the following invariant:

Invariant 3.5. During the course of this algorithm, we always have fp(x) ≤ (1+Θ(ǫ))·fc(x). Furthermore,

each call to the subroutine BOOST(x, k) increases the value of fc(x) by at most an additive Θ(ǫ).

Corollary 3.6. If the algorithm in Figure 8 returns an x ∈ Rn
≥0 in step 8, then x is indeed a Θ(ǫ)-

approximate solution to the input LP. Otherwise, it correctly declares that the input LP is infeasible.

Proof. Case (i): The algorithm terminates in step 8 of Figure 8. All the claims made in the next paragraph

hold because of (3.3) and Invariant 3.5.

Just before the last iteration of the WHILE loop in Figure 8, we had fp(x) ≤ (1 + Θ(ǫ)) · fc(x) and

fc(x) ≤ minj∈[mc]Cjx < 1. Accordingly, at the end of the last iteration of the concerned WHILE loop,

we have maxi∈[mp] Pix ≤ fp(x) ≤ (1 + Θ(ǫ)) · fc(x) ≤ (1 + Θ(ǫ)) · (1 + Θ(ǫ)) ≤ 1 + Θ(ǫ), and

minj∈[mc]Cjx ≥ 1. Hence, the x that is returned in step 8 of Figure 8 is a Θ(ǫ)-approximate solution to the

input LP.

Case (ii): The algorithm terminates because during some iteration of the WHILE loop in Figure 8 it cannot

find any cheap coordinate w.r.t. the current x. In this case, by Property 3.3, the input LP is infeasible.

3.2 An Overview of Our Dynamic Greedy MWU Algorithm

We describe the basic template that will be followed by our dynamic algorithm in Section 3.2.1. For ease

of exposition, in Section 3.2.2 we describe and analyse our dynamic algorithm in a setting where all the

relaxing entry updates occur to the covering constraints, whereas the packing constraints remain unchanged.

Finally, in Section 3.2.3 we present an overview of the complete algorithm which can handle relaxing entry

updates to both the packing and covering constraints.

3.2.1 The basic template for our dynamic algorithm

Initialisation: At preprocessing, we start by implementing the procedure described in Figure 8. At this

stage, if we end up with a Θ(ǫ)-approximate solution x to the positive LP, then we are done. This is because

such an x will continue to remain a Θ(ǫ)-approximate solution to the input LP even after it undergoes any

sequence of relaxing updates in future. Accordingly, henceforth we assume that the procedure in Figure 8

ends up with an x at which there is no cheap coordinate.

Handling a relaxing update: After the update, we keep on boosting x along cheap coordinates until either

(a) the set of cheap coordinates becomes empty again, or (b) we have minj∈[mc]Cj ≥ 1. In the former case,

we declare that the input LP remains infeasible even after the relaxing update. In the latter case, we declare

the current x as a Θ(ǫ)-approximate solution to the input LP from this point onward.

Clearly, as per the discussion in Section 3.1, any dynamic algorithm following the above template solves

the problem of maintaining a Θ(ǫ)-approximate solution to a positive LP under relaxing updates.

3.2.2 Handling a sequence of relaxing entry updates to the covering constraints

We now present an overview of our dynamic algorithm, under the assumption that every relaxing update

increases the value of some entry in the matrix C (whereas the matrix P remains unchanged). We follow

the template outlined in Section 3.2.1. The main challenge is to define the appropriate data structures, and

to describe how to choose a cheap coordinate for boosting x at any given point in time.

Before proceeding any further, note that there are two types of events which influence the outcome of

any dynamic algorithm following the template from Section 3.2.1: (1) a relaxing update which increases the
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value of some entry in the matrix C , and (2) a call to the subroutine BOOST(x, k) which boosts the current

x along the coordinate k. We start with the key invariant that drives the analysis of our dynamic algorithm.

Invariant 3.7. During the course of our dynamic algorithm, we always have fp(x) ≤ (1 + Θ(ǫ)) · fc(x).
Furthermore, every call to the subroutine BOOST(x, k) increases fc(x) by at most an additive Θ(ǫ).

Proof. The algorithm starts at x = ~0, where fp(x) = fc(x) = 0 and so the invariant holds. Subsequently,

the values of fp(x) and fc(x) can change because of one of the two following types of events.

(1) A relaxing update increases the value of an entry C(j, k) of the matrix C , for j ∈ [mc], k ∈ [n]. This

increases the value of Cjx; whereas for all j′ ∈ [mc] \ {j} and i ∈ [mp], the values of Cj′x and Pix
remain unchanged. We accordingly infer that fc(x) increases, whereas fp(x) remains unchanged. Thus, if

the invariant was true just before this event, then it continues to remain true just after the event.

(2) The algorithm make a call to BOOST(x, k), for some k ∈ [n]. By Property 3.4, due to this event the

increase in fp(x) is at most (1 + Θ(ǫ)) times the increase in fc(x), and this latter quantity is at most Θ(ǫ).
Thus, if the invariant was true just before this event, then it continues to remain true just after the event.

Corollary 3.8. During the course of our dynamic algorithm, we always have maxi∈[mp] Pix ≤ 1 + Θ(ǫ).

Proof. Follows from (3.3), Invariant 3.7, and the fact that we return x the moment minj∈[mc]Cjx is ≥ 1.

Next, we derive a few important observations which show that the weights wp(x, i), wc(x, j) of the

constraints and the costs λ(x, k) of the coordinates change (almost) monotonically over time.

Observation 3.9. Consider an event which consists of either a relaxing update to the matrix C or a call to

the subroutine BOOST(x, k). Such an event can only increase the weight wp(x, i) of a packing constraint

i ∈ [mp], and it can only decrease the weight wc(x, j) of a covering constraint j ∈ [mc].

Proof. Consider a relaxing update which increases the value of some entry C(j, k) of the matrix C . This

increases the value of Cjx; whereas for all j′ ∈ [mc] \ {j} and i ∈ [mp], the values of Cj′x and Pix remain

unchanged. Accordingly, this event decreases the weight wc(x, j); whereas for all j′ ∈ [mc] \ {j} and

i ∈ [mp], the weights wc(x, j
′) and wp(x, i) remain unchanged due to this event.

Next, consider a call to BOOST(x, k). For all i ∈ [mp] with P (i, k) > 0 this increases the value of Pix,

whereas for all i ∈ [mp] with P (i, k) = 0 the value of Pix remains unchanged. Similarly, for all j ∈ [mc]
with C(j, k) > 0 this increases the value of Cjx, whereas for all j ∈ [mc] with C(j, k) = 0 the value of

Cjx remains unchanged. In effect, this means that for all i ∈ [mp] the weight wp(x, i) can only increase

due to this event, whereas for all j ∈ [mp] the weight wc(x, j) can only decrease due to this event.

Observation 3.10. Consider an event which consists of a call to the subroutine BOOST(x, k) for some

k ∈ [n]. Because of this event, the cost λ(x, k′) of any coordinate k′ ∈ [n] can only increase.

Proof. Follows from Observation 3.9 and Definition 3.2.

Observation 3.11. Consider a relaxing update to the entry C(j, k) of the matrix C , where j ∈ [mc], k ∈ [n].
Because of this event, the cost λ(x, k′) of a coordinate k′ ∈ [n] \ {k} can only increase, whereas the cost of

the coordinate k can change in either direction (i.e., it can increase or decrease).

Proof. Because of this relaxing update, the value of C(j, k) increases, whereas the values of all other entries

in the matrices C and P remain unchanged. The proof follows from Observation 3.9 and Definition 3.2.
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Key data structures: We will explicitly maintain the following quantities: (1) The point x ∈ Rn
≥0. (2) The

weights wp(x, i), wc(x, j) for all i ∈ [mp], j ∈ [mc]. (3) The total weights wp(x) and wc(x). (4) The values

of Pix and Cjx, for all i ∈ [mp] and j ∈ [mc].

We are now ready to describe the exact implementation of our dynamic algorithm in more details.

Phases: Observation 3.9 implies that the ratio γ(x) := wp(x)/wc(x) increases monotonically over time

during the course of our algorithm. Armed with this observation, we split the working of our algorithm into

phases. In the beginning, we have x = ~0 and hence γ(x) = wp(x)/wc(x) = 1/1 = 1. We initiate a new

phase whenever the value of γ(x) increases by a multiplicative factor of (1 + Θ(ǫ)). Thus, a given phase

can span a sequence of calls to the BOOST(x, k) subroutine at preprocessing, or it can also span a sequence

of calls to the BOOST(x, k) subroutine interspersed with a sequence of relaxing updates to the matrix C .

Implementing a given phase: Let γ0(x) be the value of γ(x) := wp(x)/wc(x) at the start of the phase.

During the phase, γ(x) does not change by more than an (1 + Θ(ǫ)) factor. Accordingly, at any point in

time within the phase, we classify a coordinate k ∈ [n] as being cheap iff λ(x, k) ≤ (1 + Θ(ǫ)) · γ0(x).
We maintain a set E ⊆ [n] that always contains all the coordinates that are currently cheap. At the start

of the phase, we initialise E ← [n], and then call the subroutine BOOST-ALL(x,E) which is described

in Figure 10. Note that at the end of any iteration of the inner WHILE loop (steps 4 – 9 in Figure 10),

the concerned coordinate k is no longer cheap. Furthermore, the monotonicity of the costs (as captured by

Observation 3.10) imply that a coordinate k, once removed from the set E, does not become cheap again

within the same phase due to some future iteration of the outer WHILE loop in Figure 10.

Handling a relaxing update within the phase: Consider a relaxing update to an entry C(j, k) of the matrix

C . Just before this update, we had E = ∅. If the value of γ(x) becomes more than (1+Θ(ǫ))γ0(x) because

of this update, then we terminate the current phase and initiate a new one. Otherwise, by Observation 3.11,

the only coordinate that can become cheap because of this update is k. Accordingly, we set E ← {k}, and

call the subroutine BOOST-ALL(x,E). Observation 3.10 again implies that as we keep boosting x along the

coordinate k, it does not lead to any other coordinate k′ ∈ [n] \ {k} becoming cheap.

1. WHILE E 6= ∅:

2. Consider any k ∈ E.

3. E ← E \ {k}.

4. WHILE λ(x, k) ≤ (1 + Θ(ǫ)) · γ0(x)
5. x ← BOOST(x, k). // See Figure 9.

6. IF minj∈[mc]Cjx ≥ 1, THEN

7. RETURN x.

8. IF γ(x) > (1 + Θ(ǫ)) · γ0(x), THEN

9. Terminate the current phase.

Figure 10: BOOST-ALL(x,E).

The next two lemmas capture a couple of crucial properties of this dynamic algorithm.

Lemma 3.12. Fix any coordinate k ∈ [n]. The dynamic algorithm described above calls the subroutine

BOOST(x, k) at most O
(

log2(mc+mp+U/L)
ǫ2

)

many times.

Proof. Fix a coordinate k ∈ [n] for the rest of the proof.

Consider any call to the BOOST(x, k) subroutine during the course of our dynamic algorithm, which

increases coordinate k of the vector x ∈ Rn
≥0 by some amount δ > 0. From Figure 9, observe that just before
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this specific call to the subroutine, either there exists a packing constraint i ∈ [mp] with P (i, k) ·δ = ǫ/η, or

there exists a not-too-large covering constraint j ∈ [mc]
14 with C(j, k) ·δ = ǫ/η. In the former (resp. latter)

case, we refer to the index i (resp. j) as the pivot and the current value of P (i, k) (resp. C(j, k)) as the

pivot-value corresponding to this specific call to the subroutine BOOST(x, k).15

Without loss of generality, assume that U = 2τ ·L where τ = log(U/L) is an integer, and that the value

of any nonzero entry in the constraint matrix lies in the interval (L,U ] at all times. Partition the interval

(L,U ] into τ segments I0, . . . ,Iτ−1, where Iℓ =
(

L · 2ℓ, L · 2ℓ+1
]

for all ℓ ∈ {0, . . . , τ − 1}.

Claim 3.1. Consider any ℓ ∈ {0, . . . , τ − 1}. Throughout the duration of our dynamic algorithm, at most

4η/ǫ calls with pivot-values in Iℓ and pivots in [mc] are made to the BOOST(x, k) subroutine (see (3.2)).

Proof. Let xk ∈ R≥0 denote the kth coordinate of the vector x ∈ Rn
≥0. For ease of exposition, we say that a

call to BOOST(x, k) is covering-critical iff its pivot is in [mc] and its pivot-value is in Iℓ. We wish to upper

bound the total number of covering-critical calls made during the course of our dynamic algorithm.

Consider any specific covering-critical call to BOOST(x, k) with pivot j ∈ [mc] and pivot-value α ∈
Iℓ =

(

L · 2ℓ−1, L · 2ℓ
]

. From Figure 9, it follows that this call increases xk by δ = ǫ/(ηα) ≥ ǫ/(ηL2ℓ).
Suppose that T covering-critical calls have been made to the BOOST(x, k) subroutine, where T > 4η/ǫ.

Let us denote these calls in increasing order of time by: Γ1,Γ2, . . . ,ΓT . Thus, for all t ∈ [T ], we let Γt

denote the tth covering-critical call made during the course of our dynamic algorithm. From the discussion

in the preceding paragraph, each of these critical calls Γt increases xk by at least ǫ/(ηL2ℓ).
Initially xk = 0, and it increases monotonically over time. Hence, just before the last critical call ΓT we

have xk ≥ (T − 1) · ǫ/(ηL2ℓ) ≥ (4η/ǫ) · ǫ/(ηL2ℓ) = 1/(L2ℓ−2). Let jT ∈ [mc] be the pivot of the call

ΓT . Since the pivot-value of ΓT lies in Iℓ, it follows that C(jT , k) > L · 2ℓ−1 just before the call ΓT . Thus,

just before the call ΓT , we have CjT · x ≥ C(jT , k) · xk > L2ℓ−1 · 1/(L2ℓ−2) = 2. But if CjT · x > 2 just

before the call ΓT , then jT cannot be the pivot of ΓT (see Figure 9). This leads to a contradiction. Hence,

we must have T ≤ 4η/ǫ, and this concludes the proof of the claim.

Claim 3.2. Consider any ℓ ∈ {0, . . . , τ − 1}. Throughout the duration of our dynamic algorithm, at most

4η/ǫ calls with pivot-values in Iℓ and pivots i ∈ [mp] are made to the BOOST(x, k) subroutine (see (3.2)).

Proof. (Sketch) As in the proof of Claim 3.1, let xk ∈ R≥0 denote the kth coordinate of the vector x ∈ Rn
≥0.

Say that a call to BOOST(x, k) is packing-critical iff its pivot is in [mp] and its pivot-value is in Iℓ.
Suppose that T covering-critical calls have been made to the BOOST(x, k) subroutine, where T >

4η/ǫ. Let us denote these calls in increasing order of time by: Γ1,Γ2, . . . ,ΓT . Thus, for all t ∈ [T ],
we let Γt denote the tth packing-critical call made during the course of our dynamic algorithm. Let iT ∈
[mp] be the pivot of the last packing-critical call ΓT . Following the same argument as in the proof of

Claim 3.1, we conclude that PiT · x > 2 just before the call ΓT . But if PiT · x > 2, then fp(x) ≥
maxi∈[mp] Pix > 2 according to (3.3). Now, applying Invariant 3.7, we conclude that just before the call

ΓT we have: minj∈[mc]Cjx ≥ fc(x) ≥ (1+ ǫ)−1 · fp(x) > (1+ ǫ)−1 · 2 > 1. This leads to a contradiction,

since if minj∈[mc]Cjx > 1, then our dynamic algorithm would immediately declare that it has found a

Θ(ǫ)-approximate solution to the input LP from this point onward, without making any further calls to the

BOOST(x, k) subroutine (in particular, without making the call ΓT ). Thus, it must be the case that T ≤ 4η/ǫ,
and this concludes the proof of the claim.

14We say that a covering constraint j ∈ [mc] is not-too-large iff Cjx < 2.
15Note that the values of the entries in the constraint matrix change over time due to the sequence of updates. The pivot-value of

a call to BOOST(x,k) refers to the value of the concerned entry in the constraint matrix just before the specific call to BOOST(x,k).
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Any call to the BOOST(x, k) subroutine has its pivot in [mp] ∪ [mc] and pivot-value in Iℓ, for some

ℓ ∈ {0, . . . , τ − 1}.16 Thus, Claim 3.1 and Claim 3.2 imply that the total number of calls made to the

BOOST(x, k) subroutine is at most 2 · τ · (4η/ǫ) = O
(

log2(mc+mp+U/L)
ǫ2

)

.

Lemma 3.13. The dynamic algorithm described above has at most O
(

log(mc+mp+U/L)
ǫ2

)

many phases.

Proof. By Observation 3.9, the ratio γ(x) := wp(x)/wc(x) increases monotonically over time. Initially, we

have x = ~0, and hence γ(x) = wp(x)/wc(x) = 1. Let κ be the time-instant at which the last ever call to

BOOST(x, k) is made by our dynamic algorithm. We will upper bound γ(x) just before the time-instant κ.

Just before the time-instant κ, by Corollary 3.8 we have maxi∈[mp] Pix ≤ 1+Θ(ǫ) and hence wp(x, i) ≤
exp(η(1 + Θ(ǫ))) for all i ∈ [mp], which implies that wp(x) =

∑mp

i=1wp(x, i) ≤ mp · exp(η(1 + Θ(ǫ))).
Just before the time-instant κ, we also have minj∈[mc]Cjx < 1. Hence, at that moment there exists some

j′ ∈ [mc] with Cj′x < 1 and wc(x, j
′) ≥ 1/ exp(η). This means that wc(x) ≥ wc(x, j

′) ≥ 1/ exp(η).
To summarise, we infer that γ(x) = wp(x)/wc(x) ≤ mp·exp(η(1+Θ(ǫ)))·exp(η) = O(mp·exp(3·η))

just before the time-instant κ. Thus, the value of γ(x) increases from 1 at the start of the algorithm to at

most Λ = O(exp(3 · η) ·mp) just before the last call to the BOOST(x, k) subroutine.

Note that γ(x) increases monotonically over time in the range [1,Λ], and we create a new phase when-

ever γ(x) increases by a (1 +Θ(ǫ)) factor. Thus, from (3.2), we conclude that the total number of phases is

at most log(1+Θ(ǫ)) Λ = O
(

log(mp+mc+U/L)
ǫ2

)

.

Analysing the total update time: We first focus on bounding the total time spent on all the calls to the

BOOST(x, k) subroutine during the course of our algorithm. By Lemma 3.12, the point x gets boosted along

a given coordinate k ∈ [n] at most Γ = O
(

log2(mc+mp+U/L)
ǫ2

)

times. Whenever we boost x along some

coordinate k, we need to spend O(nz(k)) time to update all the relevant weights {wp(x, i)}, {wc(x, j)},

wp(x), wc(x) and the values {Cjx}, {Pix}; where nz(k) is the total number of nonzero entries in the

kth column of the matrices P,C at the current moment. Hence, the total time spent in all the calls to the

BOOST(x, k) subroutine is at most
∑n

k=1 Γ ·O(nz(k)) = Γ ·O(N) = O
(

N · log2(mc+mp+U/L)
ǫ2

)

.

Next, note that whenever we create a new phase, we set E ← [n] and call the subroutine BOOST-

ALL(x,E) as in Figure 10. Also, whenever there is a relaxing update to an entry C(j, k) in the covering

matrix, we set E ← {k} and then make a call to BOOST-ALL(x,E). Thus, it might very well be the case

that a coordinate k ∈ [n] moves in and out of the set E on multiple occasions, without being boosted at all.

The time spent on these apparently futile operations, which modify the set E without leading to any call to

BOOST(x, k), is captured by steps 1–3 of Figure 10. Lemma 3.13 implies that the total time spent in this

manner, throughout a sequence of t relaxing updates and across all the coordinates, is at most:

(number of phases) · O(number of coordinates) +O(t) = O

(

n · log(mc +mp + U/L)

ǫ2
+ t

)

= O

(

N · log(mc +mp + U/L)

ǫ2
+ t

)

.

Finally, note that the preprocessing time is at most O
(

N · log(mc+mp)
ǫ2

)

, since the static algorithm from

Section 3.1 can be implemented in O
(

N · log(mc+mp)
ǫ2

)

time [You14]. This leads us to Theorem 3.1 for

relaxing entry updates to covering constraints.

16This holds because the pivot-values lie in the range (L, U ], and this range has been partitioned into subintervals: I0, . . . , Iτ−1.
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3.2.3 The full algorithm: Handling relaxing entry updates to both packing and covering constraints

We start by identifying the main difficulty in extending the dynamic algorithm from Section 3.2.2 to the

setting where relaxing updates occur to both packing and covering constraints of the input positive LP.

Consider a relaxing update to the entry P (i, k), for some i ∈ [mp], k ∈ [n]. Due to this relaxing update,

the value of P (i, k) gets reduced, and accordingly the weight wp(x, i) also decreases. This contradicts the

monotonicity of the weights as captured in Observation 3.9. Thus, wp(x) no longer increases monotonically

with time, which in turn invalidates the proof of Lemma 3.13. We circumvent this difficulty by working

with an extended positive LP (P ∗, C∗), which is derived from the input LP (P,C) in the following manner.

The extended LP: Throughout the sequence of updates to the input LP, we ensure that we always have:

• P ∗ ∈ R
mp×(n+1)
≥0 , where P ∗(i, k) = P (i, k) and P ∗(i, n + 1) ≥ 0 for all i ∈ [mp], k ∈ [n].

• C∗ ∈ R
mc×(n+1)
≥0 , where C∗(j, k) = C(j, k) and C∗(j, n + 1) = 0 for all j ∈ [mc], k ∈ [n].

It is easy to check that the input LP (P,C) is feasible iff the extended LP (P ∗, C∗) is feasible. Furthermore,

if x∗ = (x∗1, . . . , x
∗
n+1) ∈ R

n+1
≥0 is a Θ(ǫ)-approximate solution to the extended LP (P ∗, C∗), then x =

(x∗1, . . . , x
∗
n) ∈ Rn

≥0 is a Θ(ǫ)-approximate solution to the input LP (P,C). Accordingly, our new dynamic

algorithm will attempt to approximately solve the extended LP (P ∗, C∗). Note that we are free to set the

values P ∗(i, n + 1) of the matrix P ∗ in any way we chose (provided they remain nonnegative). We will

use this to our advantage while dealing with relaxing updates to the packing constraints in the input LP. It

is important to emphasise that except the entries P ∗(i, n + 1), at any point in time the values of all other

entries in the matrices P ∗ and C∗ are determined by the current status of the input LP (P,C).

Initialisation: At preprocessing, we set P ∗(i, n + 1) ← 0 for all i ∈ [mp]. We start with an x∗ =
(x∗1, . . . , x

∗
n+1) ∈ R

n+1
≥0 where x∗1 = · · · = x∗n = 0 and x∗n+1 = 1. At this point in time, we have fp(x

∗) =
fc(x

∗) = 0. From this point onward, we will keep modifying x∗ until it becomes a Θ(ǫ)-approximate

solution to the extended LP (P ∗, C∗), by following the same template as outlined in Section 3.2.1 and

Section 3.2.2. In addition, now after every relaxing update to an entry in the packing matrix (say) P (i, k),
we will change the value of P ∗(i, n + 1) in such a way that works to our advantage. This is explained in

more details below. For clarity of exposition, henceforth we assume that after an update to an entry P (i, k)
(resp. C(j, k)) of the matrix P (resp. C), the corresponding entry P ∗(i, k) (resp. C∗(j, k)) implicitly gets

updated so as to ensure the equality P ∗(i, k) = P (i, k) (resp. C∗(j, k) = C(j, k)).

Pseudo-updates to the extended LP: Consider any relaxing update to an entry P (i, k) of the matrix P ,

where i ∈ [mp], k ∈ [n]. Immediately after this relaxing update, we increase the value of P ∗(i, n + 1) to

such an extent that the value of P ∗
i x

∗ (and hence the weight wp(x
∗)) remains unchanged. We refer to this

step as a pseudo-update to the extended LP. The only purpose behind the pseudo-update is to ensure that the

monotonicity of the weights as captured by Observation 3.9 continues to hold.

In summary, the overall algorithm follows the same template as in Section 3.2.1 and Section 3.2.2, with

the following caveat: Immediately after every relaxing update to a packing constraint in the input LP, we

perform the corresponding pseudo-update to the extended LP so as to ensure the validity of Observation 3.9.

It is easy to check that all the observations, lemmas and inferences derived in Section 3.2.2 continue to hold

here. This leads us to the dynamic algorithm promised in Theorem 3.1, for relaxing entry updates.

3.3 Handling Restricting (resp. Relaxing) Updates to a Packing (resp. Covering) LP

Consider the setting where we wish to maintain a solution to Problem 2.1 when the matrix C is undergoing

relaxing entry updates (or equivalently, the matric C⊤ is undergoing restricting entry updates). Thus, each
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update increases the value of some entry of C . The idea is simple. We run the dynamic algorithm from

Section 3.2 on the positive LP defined by (3.4) and (3.5), which is undergoing relaxing entry updates.

1
⊤x ≤ 1 (3.4)

Cx ≥ 1 (3.5)

Suppose that this algorithm has just finished processing an update. Consider two possible cases.

Case I: The algorithm returns a solution x ∈ Rn
≥0 which satisfies 1⊤x ≤ 1+Θ(ǫ) and Cx ≥ (1−Θ(ǫ)) ·1.

In this case, we simply return the vector x and terminate our algorithm. The vector x will continue to remain

an ǫ-approximate solution to the input LP after any future update.

Case II: The algorithm declares that the positive LP is infeasible as there is no cheap co-ordinate. From

Section 3.1.2, recall that wc(x, j) denotes the weight of a covering constraint j ∈ [m], and that wc(x) =
∑

j∈[m]wc(x, j) denotes the total weight of all the covering constraints. Define the vector ŷ ∈ Rm
≥0, where

ŷj = wc(x, j)/wc(x) for all j ∈ [m]. We now claim that ŷ is a feasible solution to the dual packing LP.

Claim 3.3. We have 1⊤ŷ = 1 and C⊤ŷ ≤ 1.

Proof. Since {ŷj} denotes the normalized weights of the covering constraints, we have 1⊤ŷ = 1. Next, fix

any k ∈ [n]. Since we are in Case II, the coordinate k is not cheap. So, from Definition 3.2, we infer that:

1
∑

j∈[m] ŷj · C(j, k)
≥ 1 + Θ(ǫ), or equivalently,

(

C⊤ŷ
)

k
=

∑

j∈[m]

ŷj · C(j, k) ≤ 1−Θ(ǫ) ≤ 1.

Accordingly, we get C⊤ŷ ≤ 1.

Our algorithm maintains an estimate w∗
c(x) ∈ [wc(x), (1 + ǫ)wc(x)]. If after processing an update,

we end up in Case II, then we return a y ∈ Rm
≥0, where yj := wc(x, j)/w

∗
c (x) for all j ∈ [m]. As

ŷj ≤ yj ≤ (1 + Θ(ǫ)) · ŷj for all j ∈ [m], Claim 3.3 implies that 1⊤y ≥ 1 and C⊤y ≤ (1 + Θ(ǫ)) · 1.

It is easy to maintain the vector y without any significant overhead in the total update time, because of

three reasons: (1) the algorithm from Section 3.2 explicitly maintains the weight wc(x, j) for each j ∈ [m],
(2) we do not need to change the estimate w∗

c(x) as long as we remain in the same phase, and (3) by

Lemma 3.13 we have at most O
(

log(m+U/L)
ǫ2

)

many phases. Note that whenever we start a new phase we

have to spend O(m) time to update the vector y. Theorem 3.14 now follows from Theorem 3.1.

Theorem 3.14. We can deterministically maintain a solution to Problem 2.1 when the matrix C undergoes

t relaxing entry updates in O
(

t+N · log2(m+U/L)
ǫ2

+m · log(m+U/L)
ǫ2

)

= O
(

t+N · log2(m+U/L)
ǫ2

)

total

time, where N denotes the maximum number of non-zero entries in C throughout these updates.

Finally, we consider the problem of maintaining an ǫ-approximate optimal solution to a generic cover-

ing (resp. packing) LP under relaxing (resp. restricting) updates. It is easy to verify that if we start with

Theorem 3.14 and apply the same reduction outlined in Section 2.5.2, then we obtain the following result.

Theorem 3.15. Consider any sequence of t relaxing updates to LP (2.13), where each update either in-

creases an entry of C , or decreases an entry of a, b. Throughout these updates, let N denote the maximum

number of non-zero entries in C , and let L (resp. U ) be a lower (resp. upper) bound on the minimum

(resp. maximum) value of a non-zero entry of C, a, b. We can deterministically maintain an ǫ-approximate

optimal solution to LP (2.13) in O
(

t · log(nU/L)
ǫ +N · log2(m+U/L)

ǫ3
· log(nU/L)

)

total time. The same

guarantee also holds for maintaining an ǫ-approximate solution to LP (2.14) under restricting updates.
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4 Conditional Lower Bounds

In previous sections, we presented partially dynamic algorithms for packing-covering LP-s with polylog-

arithmic amortized update times. This leads to a couple of natural questions: (1) Can we solve the same

problem in polylogarithmic worst case update time? (2) Can we design a fully dynamic algorithm for

packing-covering LPs in polylogarithmic amortized update time? We will now provide conditional lower

bounds that rule out the possibility of having these stronger guarantees.

Our lower bounds hold under Strong Exponential Time Hypothesis (SETH), and the starting points of

our reductions are Problem 4.1 and Theorem 4.2 described below [ARW17].

Problem 4.1. As input, we get four parameters N, k,m, β∗ such that Θ
(

No(1)
)

= β∗ ≤ k ≤ m =

Θ
(

No(1)
)

, and two collections of N vectors A =
{

a(1), . . . , a(N)
}

and B =
{

b(1), . . . , b(N)
}

such that

a, b ∈ {0, 1}m for all a ∈ A, b ∈ B. Furthermore, each vector b ∈ B has exactly k non-zero entries. We

want to design an algorithm that can distinguish between the following two cases.

• (1) There exists some a ∈ A and b ∈ B such that a ≥ b.

• (2) For all a ∈ A and b ∈ B, we have a · b ≤ k∗ := k
β∗ .

Theorem 4.2. [ARW17] Under SETH, any algorithm for Problem 4.1 runs in Ω(N2−ǫ) time for all ǫ > 0.

Now, we are ready to prove Theorem 1.2, and we state a more detailed version of it below.

Theorem 4.3. Assume SETH holds. Let N and OPT respectively denote the number of non-zero entries in

the input LP and its optimal objective value. Then there exists some β = Θ
(

No(1)
)

such that:

• (i) Any algorithm which maintains an estimate OPT

β ≤ ν ≤ OPT for a packing or covering LP under

fully dynamic entry updates must have an amortized update time of Ω(N1−o(1)).

• (ii) Any algorithm which maintains an estimate OPT

β ≤ ν ≤ OPT for a packing or covering LP under

partially dynamic entry updates must have a worst-case update time of Ω(N1−o(1)).

Furthermore, the same lower bounds hold even under translation updates.

4.1 Proof of Theorem 4.3 - part (i)

We prove the theorem for packing LPs. The proof for covering LPs immediately follows via LP duality.

Recall the parameters N, k,m, β∗ from the statement of Problem 4.1. Set β := β∗/3. Suppose that

there is a dynamic algorithm A that maintains an estimate OPT

β ≤ ν ≤ OPT for a packing LP undergoing

fully dynamic entry updates in Θ(T ) amortized update time. Using A as a subroutine, we design a static

algorithm A∗ for Problem 4.1, as described below.

Upon receiving its input, the algorithm A∗ defines the following packing LP, where initially we have

λj = 1 for all j ∈ [m]. The algorithm A∗ now feeds this packing LP as an input to A at pre-processing.

Maximize

m
∑

j=1

xj (4.1)

s.t. a · x ≤ k∗ for all a ∈ A. (4.2)

λj · xj ≤ 1 for all j ∈ [m]. (4.3)

xj ≥ 0 for all j ∈ [m]. (4.4)

Subsequently, the algorithm A∗ performs the steps outlined in Figure 11.
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1. FOR ALL b ∈ B:

2. Set λj = L := m/k∗ for all j ∈ [m] with bj = 0, and feed these updates to A.

3. IF A returns an estimate ν ≤ 2k∗, THEN

4. REPORT that we are in case (1) of Problem 4.1, and TERMINATE.

5. Return the LP to its initial state, by setting λj = 1 for all j ∈ [m] with bj = 0,

and feeding these updates to the dynamic algorithm A.

6. REPORT that we are in case (2) of Problem 4.1 and TERMINATE.

Figure 11: Solving Problem 4.1 using the dynamic algorithm A.

Claim 4.1. Suppose that a · b ≤ k∗ for all a ∈ A, b ∈ B. Then the algorithm A∗ correctly reports that we

are in case (2) of Problem 4.1.

Proof. Consider any vector b ∈ B, and focus on the corresponding iteration of the FOR loop in Figure 11.

After step (2) of this iteration, we have λj = L for all j ∈ [m] with bj = 0, and λj = 1 for all j ∈ [m] with

bj = 1. Now, define an x where xj = 1 for all j ∈ [m] with bj = 1, and xj = 0 for all j ∈ [m] with bj = 0.

Such an x is a feasible solution to the LP and has an objective of
∑m

j=1 xj = |{j ∈ [m] : bj = 1}| = k.

This implies that OPT ≥ k. Accordingly, in step (3), the dynamic algorithm A returns a value ν ≥ k
β =

3k
β∗ = 3k∗. Hence, the algorithm A∗ does not terminate during this iteration.

The preceding discussion implies that A∗ does not terminate during any iteration of the FOR loop in

Figure 11. Instead, at the end of the FOR loop, it correctly reports that we are in case (2) of Problem 4.1.

Claim 4.2. Suppose that there exists vectors a ∈ A, b ∈ B such that a ≥ b. Then the algorithm A∗ correctly

reports that we are in case (1) of Problem 4.1.

Proof. Focus on the iteration of the FOR loop in Figure 11 which deals with the vector b ∈ B. After step

(2) of this iteration, we have λj = L for all j ∈ [m] with bj = 0, and λj = 1 for all j ∈ [m] with bj = 1.

Partition the set [m] into two subsets: P0 = {j ∈ [m] : bj = 0} and P1 = {j ∈ [m] : bj = 1}. Since a ≥ b,
we have aj = 1 for all j ∈ P1. Let x be any feasible solution to LP (4.1). Observe that:

∑

j∈P1

xj =
∑

j∈P1

ajxj ≤ a · x ≤ k∗. (4.5)

Next, recall that λj = L for all j ∈ P0. Thus, we have xj ≤ 1/L for all j ∈ P0, and hence:

∑

j∈P0

xj ≤
m

L
= κ∗. (4.6)

Summing (4.5) and (4.6), we now get:
∑m

j=1 xj ≤ 2k∗. Since this inequality holds for every feasible

solution x to the LP, we get OPT ≤ 2k∗. Accordingly, during step (3) of the concerned iteration of the FOR

loop in Figure 11, the dynamic algorithm A returns a value ν ≤ 2k∗. Thus, the algorithm A∗ terminates at

this point, before correctly reporting that we are in case (1) of Problem 4.1.

The correctness of algorithm A∗ follows from Claim 4.1 and Claim 4.2. The claim below bounds its run

time in terms of the update time of the dynamic algorithm A.

Claim 4.3. The algorithm A∗ runs in Ô(N · T ) time, where T is the update time of A.
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Proof. The algorithm A∗ starts by feeding LP (4.1), which is of Ô(N) size, to A as input at pre-processing.

Subsequently, during each iteration b ∈ B of the FOR loop, it feeds Θ(m) = Ô(1) updates to A. Since

the FOR loop runs for at most N iterations, overall the dynamic algorithm A needs to handle at most Ô(N)
updates. Hence, the total time spent by the dynamic algorithm A is at most Ô(N · T ). The claims follows

since the runtime of A∗ is dominated by the total update time of A.

Theorem 4.2 implies that assuming SETH, the run time of algorithm A∗ must be Ω(N2−ǫ) for every

constant ǫ > 0. Hence, from Claim 4.3 it follows that the amortized update time of the dynamic algorithm

A is at least T = Ω(N1−o(1)). This concludes the proof of part-(i) of Theorem 4.3.

If we wish to prove the same lower bound for translation updates, then the reduction remains almost

the same. The only difference now is that in step (2) of Figure 11, instead of changing the value of the

coefficient λj we now change the constraints xj ≤ 1 to xj ≤ 0 for the concerned co-ordinates j, and un-do

these changes in step (5) as before.

4.2 Proof of Theorem 4.3 - part (ii)

We prove the theorem for packing LPs. The proof for covering LPs immediately follows via LP duality.

As in Section 4.2, set β := β∗/3. Suppose that there is a dynamic algorithm A that maintains an estimate
OPT

β ≤ ν ≤ OPT for a packing LP undergoing restricting entry updates in Θ(T ) worst-case update time.

Using A as a subroutine, we design a static algorithm A∗ for Problem 4.1. To achieve this goal, we follow

almost exactly the same strategy as in Section 4.2. The only difference being that in step (5) of Figure 11,

instead of feeding a new set of updates to A, we roll back the state of A to where it was at pre-processing.

This allows us to deal with the fact that A can only handle restricting (not fully dynamic) updates. The rest

of the arguments in the proof remain the same as in Section 4.2.

The preceding discussion implies the desired lower-bound when the input LP undergoes restricting

updates. To derive the analogous lower-bound for relaxing updates, we need to make only the following

minor tweak in our design of algorithm A∗: Initially, we set λj = L for all j ∈ [m]. Subsequently, in step

(2) of Figure 11, we set λj = 1 for all j ∈ [m] with bj = 1, and feed these updates to A. Next, in step (5)

of Figure 11, we roll back the state of A to where it was at pre-processing.

Finally, we can easily extend our lower bounds to hold in settings where we only have translation up-

dates, using the idea outlined in the last paragraph of Section 4.2.

A Proofs of Theorem 2.12 and Lemma 2.13

Proof of Lemma 2.13: To conclude Lemma 2.13 notice that Lemma 2.9 seamlessly extends to the dynamic

setting. The only property of the dynamic input matrix C the proof of Lemma 2.9 exploits is that at the

time of the t-th WHACK sub-routine it holds that (Cxt)it < 1 which is similarly guaranteed in the dynamic

setting. To argue it formally let Ct refer to the state of constraint matrix C at the time of the t-th WHACK

call. Fix some t ∈ [T ]. The following line of inequalities in analogous with the proof of Lemma 2.13.

∥

∥x̂t+1
∥

∥

1
−

∥

∥x̂t
∥

∥

1
=

∑

j∈[n]

(

(

x̂t+1
)

j
−

(

x̂t
)

j

)

=
∑

j∈[n]

(

x̂t
)

j
·
(

ǫ ·
Ct
it,j

λ

)

=
ǫ

λ
·
(

Ctx̂t
)

it
<

ǫ

λ
·
∥

∥x̂t
∥

∥

1

The last inequality follows since
(

Ctxt
)

it
< 1 and xt := x̂t/

∥

∥x̂t
∥

∥

1
. Rearranging the terms, we get:

∥

∥x̂t+1
∥

∥

1
≤

(

1 +
ǫ

λ

)

·
∥

∥x̂t
∥

∥

1
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As T = λ ln(n)
ǫ2

and
∥

∥x̂0
∥

∥

1
= n we get the following:

∥

∥x̂t
∥

∥

1
≤

(

1 + ǫ
λ

)T ·
∥

∥x̂0
∥

∥

1
≤ n(1/ǫ) for all t ∈ [T ].

Proof of Theorem 2.12: The extension of Theorem 2.6 to the dynamic setting is also relatively straightfor-

ward. Observe, that at the initialization of our dynamic algorithm we simply run the static implementation.

Therefore before any update occurs Theorem 2.12 can be concluded from Theorem 2.6. We will first argue

that if the dynamic algorithm returns vector x̃t then it must satisfy that C · x̃t ≥ 1 · (1− ǫ) and |x̃t|1 ≤ 1+ ǫ
even after some restricting updates have occurred.

Consider the starting point of a given phase at time τ . At this point 1⊤x̃τ = 1⊤x̂τ/ ‖x̂τ‖1 = 1 and

we fix W = ‖x̂τ‖1. During the phase x̃t may only monotonously increase. However, if at any point
∥

∥x̂t
∥

∥

1
> (1−ǫ/2)−1 ·W a new phase begins. As x̃t = x̂t/W during the phase

∥

∥x̃t
∥

∥

1
≤ (1−ǫ/2)−1 ≤ 1+ǫ.

Fix some i ∈ [m]. At the start of each phase the algorithm ensures that (C · x̃t)i ≥ 1 through enforcing

all currently violating constraints. As during a phase x̃t may only monotonously increase until further

restricting updates occur to constraint i it will remain satisfied. At all times the algorithm keeps an ǫ-
approximate estimate of (C · x̃t). Whenever a restricting update occurs to some constraint element Ci,j and

we observe that out estimate of the constraint value falls bellow 1 we enforce constraint i until (C · x̃t)i ≥ 1.

Due to us keeping an ǫ-approximate estimate of (C · x̃t)i this will never allow it to fall bellow 1 − ǫ. Note

that the value of (C · x̃t)i only depends on the i-th row of C and x̃t therefore if a restricting update occurs to

constraint i and we decide not to enforce the constraint itself then the values of all other constraints remain

unaffected.

It remains to argue that whenever the dynamic algorithm returns vector y following a series of updates

it holds that |y|1 = 1 and C⊤y ≤ 1 · (1 + 4 · ǫ). Once the algorithm has returned such a vector y it will no

longer change its output. As C-s elements may only get reduced over time y will maintain these properties.

Here we refer to the proof of Lemma 2.2 with slight deviations. Recall the experts setting from [AHK12] as

presented in the proof Lemma 2.2. Further recall the statement of Lemma 2.4.

We map the whack-a-mole algorithm to the experts setting in the same manner however now accounting

for the evolving constraint matrix. Let Ct stand for the state of C at the time of the t-th call to WHACK. Each

covering constraint j ∈ [n] corresponds to an expert, each iteration of the FOR loop in Figure 1 corresponds

to a round, the vector x̂t corresponds to the weight vector wt at the start of round t ∈ [T ], and finally, the

payoff for an expert j ∈ [n] in round t ∈ [T ] is given by
(

pt
)

j
:= (1/λ) · Ct

it,j .

Since Ct
it,j ∈ [0, λ], we have

∣

∣

∣

(

pt
)

j

∣

∣

∣ =
(

pt
)

j
for all j ∈ [n], t ∈ [T ]. Thus, Lemma 2.4 implies that:

T
∑

t=1

(

pt
)⊤ · xt ≥

T
∑

t=1

(1− ǫ) ·
(

pt
)

j
− ln(n)

ǫ
, for all experts j ∈ [n]. (A.1)

Diving both sides of the above inequality by T , and then rearranging the terms, we get:

(1− ǫ)

T
·

T
∑

t=1

(

pt
)

j
≤ 1

T
·

T
∑

t=1

(

pt
)⊤ · xt + ln(n)

ǫ · T , for all experts j ∈ [n]. (A.2)

We next upper bound the right hand side (RHS) of (A.2). Since the algorithm picks a violated covering

constraint to whack in each round, we have:
(

pt
)⊤ · xt = (1/λ) ·

(

Ctxt
)

it
≤ (1/λ). Taking the average of

this inequality across all the T rounds, we get: (1/T ) · ∑T
t=1

(

pt
)⊤ · xt ≤ (1/λ). Since T = λ ln(n)/ǫ2,

we derive the following upper bound on the RHS of (A.2).

1

T
·

T
∑

t=1

(

pt
)⊤ · xt + ln(n)

ǫ · T ≤ 1

λ
· (1 + ǫ). (A.3)

We now focus our attention on the left hand side (LHS) of (A.2). Fix any expert j ∈ [n]. We first express

the payoff obtained by this expert at round t ∈ [T ] in terms of the vector yt, and get:
(

pt
)

j
= 1

λ · Cit,j =

35



1
λ ·

(

(Ct)⊤yt
)

j
. Since y = 1

T ·∑T
t=1 y

t, the average payoff for the expert j across all the T rounds is given

by:

1

T
·

T
∑

t=1

(

pt
)

j
=

1

T
· 1
λ
·

T
∑

t=1

(

(Ct)⊤yt
)

j
≥ 1

T
· 1
λ
·

T
∑

t=1

(

(CT )⊤yt
)

j
=

1

λ
·
(

(CT )⊤y
)

j
. (A.4)

In A.4 the inequality holds as the elements of C may only reduce over time. The inequality is the most

significant deviation from the proof in the static setting. From (A.2), (A.3) and (A.4), we get:

(1− ǫ)

λ
·
(

(CT )⊤y
)

j
≤ 1

λ
· (1 + ǫ), and hence

(

(CT )⊤y
)

j
≤ (1 + 4ǫ) for all j ∈ [n].

The last inequality holds since ǫ < 1/2. This concludes the proof of Theorem 2.12.

B Missing Proofs from Section 3.1

Claim B.1. A coordinate k is cheap if and only if 〈∇fp(x), ek〉 ≤ (1 + ǫ)〈∇fc(x), ek〉.

Proof. Follows from definitions: 〈∇fp(x), ek〉 =
∑

i∈[mp]
eη·Pix·P (i,k)

∑
i∈[mp]

eη·Pix
, 〈∇fc(x), ek〉 =

∑
i∈[mc]

eη·Cix·C(i,k)
∑

i∈[mc]
eη·Cix

,

hence if
〈∇fp(x),ek〉
〈∇fc(x),ek〉

≤ 1 + ǫ we have that

∑
i∈[mp]

eη·Pix·P (i,k)
∑

i∈[mc]
eη·Cix·C(i,k)

·
∑

i∈[mc]
eη·Cix

∑
i∈[mp]

eη·Pix
= λ(x, k) · wc(x)

wp(x)
≤ 1 + ǫ.

B.1 Proof of Property 3.3

Proof. The proof is analogous to the argument of Young [You14]. Let y be a feasible solution to the

linear program. Then we have that
∑mp

i=1(Cy)i·wc(x,i)
wc(x)

≥ 1 ≥
∑mp

i=1(Py)i·wp(x,i)
wp(x)

as wc(x, i)/wc(x) and

wp(x, i)/wp(x) just are describing distributions over the the constraints. This could be phrased as:

y · (CT · wc(x)

|wc(x)|
− P T · wp(x)

|wp(x)|
)

Which as y is non-negative implies that there is an i such that CT
i · wc(x)

|wc(x)|
− P T

i · wp(x)
|wp(x)|

≥ 0 which is

equivalent to saying λ(x, i) ≤ wp(x)
wc(x)

meaning there is a cheap coordinate.

B.2 Proof of Property 3.4

For the convenience of the reader we will restate the statement precisely: given ǫ is sufficiently small such

that ǫ ≤ 1/10 we have that:

fp(x+ δ · ek)− fp(x) ≤ (1 + 10 · ǫ) · (fc(x+ δ · ek)− fc(x)) ≤ (1 + 10 · ǫ) · ǫ ≤ 2 · ǫ

Proof. Note, that if ǫ ≤ 1/10 then exp(− log(mc+U/L)/ǫ) ≤ exp(−2 · ln(mc+U/L)−1/ǫ+2) ≤ ǫ·L
U ·mc

.

Let k be a cheap coordinate which the algorithms boosts by δ and let x stand for the value of the output

vector before boosting. If coordinate k is boosted we have that 〈∇fp(x), ek〉 ≤ (1 + ǫ) · 〈∇fc(x), ek〉. We

will show that 〈∇fp(x+ δ · ek), ek〉 ≤ 〈∇fp(x), ek〉 · (1+O(ǫ)) and 〈∇fc(x+ δ · ek), ek〉 ≥ 〈∇fp(x), ek〉 ·
(1 − O(ǫ)). As fc(x) and fp(x) monotonously reduces and increases respectively with x this implies that
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during the boost it must hold that 〈∇fp(x), ek〉 ≤ (1 + O(ǫ)) · 〈∇fc(x), ek〉 which in turn implies that

fp(x+ δ · ek)− fp(x) ≤ (fc(x+ δ · ek)− fc(x)) · (1−O(ǫ)) implying one half of the claim.

〈∇fp(x+ δ · ek), ek〉 =

∑

i∈[mp]
eη·Pi(x+δ·ek) · P (i, k)

∑

i∈[mp]
eη·Pi(x+δ·ek)

≤
∑

i∈[mp]
eǫ+η·Pix · P (i, k)

∑

i∈[mp]
eη·Pix

(B.1)

= eǫ · 〈∇fp(x), ek〉
≤ (1 + 2 · ǫ) · 〈∇fp(x), ek〉 (B.2)

Inequality B.1 follows from the definition of δ and Inequality B.2 applies for any ǫ ≤ 1.

Define I = {i ∈ [mc] : Cix > 2 and A = {i ∈ [mc] : Cix ≤ 2} representing the inactive and active

constraints of C .

〈∇fc(x), ek〉 =

∑

i∈[mc]
e−η·Cix · C(i, k)

∑

i∈[mc]
e−η·Cix

=

∑

i∈A e−η·Cix · C(i, k) +
∑

i∈I e
−η·Cix · C(i, k)

∑

i∈A e−η·Cix +
∑

i∈I e
−η·Cix

≤
∑

i∈A e−η·Cix · C(i, k) +
∑

i∈I e
−η·Cix · C(i, k)

∑

i∈A e−η·Cix

≤
∑

i∈A e−η·Cix · C(i, k) +
∑

i∈I e
−2·η · C(i, k)

∑

i∈A e−η·Cix

≤
∑

i∈A e−η·Cix · C(i, k) + e−η ·mc · e−
log(mc+U/L)

ǫ ·maxi∈[mc]{C(i, k)}
∑

i∈A e−η·Cix

≤
∑

i∈A e−η·Cix · C(i, k) + e−η · L · ǫ
∑

i∈A e−η·Cix
(B.3)

≤
∑

i∈A e−η·Cix · C(i, k)
∑

i∈A e−η·Cix
· (1 + ǫ) (B.4)

Equation B.3 follows if ǫ is selected small enough such that e−
log(mc+U/L)

ǫ ≤ ǫ·L
U ·mc

. Equation B.4 follows

from the fact that in order for a boost to occur there must be at least one unsatisfied covering constraint, hence
∑

i∈A e−η·Cix · C(i, k) ≥ e−η · L.
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〈∇fc(x+ δ · ei), ek〉 =

∑

i∈[mc]
e−η·Ci(x+δ·ei) · C(i, k)

∑

i∈[mc]
e−η·Ci(x+δ·ei)

=

∑

i∈A e−η·Ci(x+δ·ei) · C(i, k) +
∑

i∈I e
−η·Ci(x+δ·ei) · C(i, k)

∑

i∈A e−η·Ci(x+δ·ei) +
∑

i∈I e
−η·Ci(x+δ·ei)

≥
∑

i∈A e−η·Ci(x+δ·ei) · C(i, k)
∑

i∈A e−η·Ci(x+δ·ei) +
∑

i∈P e−η·Ci(x+δ·ei)

≥
∑

i∈A e−η·Ci(x+δ·ei) · C(i, k)
∑

i∈A e−η·Ci(x+δ·ei) +mc · e−2·η

≥
∑

i∈A e−η·Ci(x+δ·ei) · C(i, k)
∑

i∈A e−η·Ci(x+δ·ei)
· 1

1 + ǫ
(B.5)

≥
∑

i∈A e−η·Cix · C(i, k)
∑

i∈A e−η·Cix
· e−ǫ

1 + ǫ
(B.6)

Here Equation B.5 similarly follows from the fact that
∑

i∈A e−η·Ci(x+δ·ei) ≥ e−η−ǫ (by the choice

of δ) and by the definition of η. Equation B.6 follows from the definition of δ. Therefore, we get that

〈∇fc(x+ δ · ei), ek〉 · (1 + 4 · ǫ) ≥ 〈∇fc(x+ δ · ei), ek〉 · (1+ǫ)2

e−ǫ ≥ 〈∇fc(x), ek〉 (given ǫ < 1/5).

As 〈∇fp(x+ δ · ei), ek〉 ≤ (1 + 2 · ǫ)〈∇fp(x), ek〉 and 〈∇fp(x), ek〉 ≤ 〈∇fx(x), ek〉 · (1 + ǫ) we have

that 〈∇fp(x+δ ·ei), ek〉 ≤ 〈∇fc(x+δ ·ei), ek〉·(1+ǫ)·(1+2·ǫ)·(1+4ǫ) ≤ 〈∇fc(x+δ ·ei), ek〉·(1+10·ǫ)
(given ǫ ≤ 1/10).

As both fc(x) and fp(x) are monotone in x we get that fp(x+δ·ek)−fp(x) ≤ (fc(x+δ·ek)−fc(x))·(1+
10·ǫ). Note that fc(x) ≥ mini∈[mc]Cix and fc(x+δ ·ek)+ǫ ≤ mini∈[mc]Ci(x+ek ·ǫ) ≤ mini∈[mc]Cix+ǫ
therefore fc(x+ δ · ek)− fc(x) ≤ ǫ. Therefore, we can conclude the original inequality.

C Complete Algorithm from Section 3.2

In Section 3, we presented an overview of our dynamic algorithm for positive LPs under relaxing updates.

But we glossed over some implementation details to highlight the key ideas. For instance, we did not specify

the dynamic data structure that will be needed to find the appropriate δ during a call to the BOOST(x, k)
subroutine (see step 1 in Figure 9). Furthermore, in Section 3.2.2 we focused only on relaxing updates to the

covering constraints, and we sketched in Section 3.2.3 how to deal with the relaxing updates to the packing

constraints. Accordingly, to address these gaps, in this section we present a full, comprehensive version of

our dynamic algorithm for positive LPs under relaxing updates.

Preliminaries: Let P ∈ ℜmp×n
≥0 and C ∈ ℜmc×n

≥0 be input matrices to the linear program. Let N stand

for the number of entries in P and C which are non-zero at any point during the run of the algorithm. Let

U and L stand for upper and lower bounds on the elements of the constraint matrices P , C at all times,

respectively. Let t stands for the total number of relaxing updates progressed by the dynamic algorithm.

Let RP
i : i ∈ [mp], R

C
j : j ∈ [mc] refer to the number of elements in the i-th row of P and the j-th row

of C respectively which take a non-zero value at any time. Similarly, define NP
k : k ∈ [n] and NC

k : k ∈ [n]
to represent the number of elements in the k-th column of P and C respectively taking a non-zero value at

any point.
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Theorem C.1. There is an algorithm for maintaining a certificate of infeasability or returning an ǫ-approximate

solution for a relaxing dynamic positive linear program in O(
N ·log2(mp+mc+U/L)

ǫ2
+ t) deterministic time

(for ǫ < 1/200).

We will dedicate this entire section to proving Theorem C.1. For sake of simplicity we will first show

how we can handle a dynamic linear program undergoing solely entry wise updates. In Subsection C.6 we

will show to extend the algorithm for translation updates. We will make the following assumption on the

distribution of inputs:

Assumption C.2. Non-zero elements of input matrices P and C lie in the range of [1/poly(N), poly(N)]
at all times.

C.1 Variables

Define P ∗, C∗ and X∗ as described in Section 3.2.3:

• P ∗ ∈ R
mp×(n+1)
≥0 , where P ∗(i, k) = P (i, k) and P ∗(i, n + 1) ≥ 0 for all i ∈ [mp], k ∈ [n].

• C∗ ∈ R
mc×(n+1)
≥0 , where C∗(j, k) = C(j, k) and C∗(j, n + 1) = 0 for all j ∈ [mc], k ∈ [n].

• x∗ ∈ R
n+1
≥0 and x refers to the first n coordinates of x∗

From now on we will refer to the linear program defined by Px ≤ 1, CX ≥ 1 as the original linear

program and to the linear program defined by P ∗x∗ ≤ 1, C∗x∗ ≥ 1 as the extended linear program. Use

variable i and j to refer to row indices of P and C respectively, and use k for referring to column indices of

P or C .

Observation C.3. If x is a feasible solution to the original linear program then {x, 1} (x extended with a 1)

is a valid solution to the extended linear program. If x∗ is a feasible solution to the extended linear program

then the first n coordinates of x∗ form a feasible solution to the original linear program. Hence, the original

linear program is feasible if and only if the extended linear program is feasible.

Due to Observation C.3 we will focus only on the extended linear program in this section.

Data-Structure: We will initially define the following variables:

η =
log(mc +mp + U/L)

ǫ
(C.1)

• wc(x
∗, i) = 1 for i ∈ [mc] representing covering constraint weights

• wp(x
∗, j) = 1 for j ∈ [mp] representing packing constraint weights

• wc(x
∗) =

∑

i∈[mc]
wc(x

∗, i) and wp(x
∗) =

∑

j∈[mp]
wp(x

∗, j)

• λ(x∗)0 =
wp(x∗)
wc(x∗)

For the purposes of the analysis we will define λ(x∗, k) = ∀k ∈ [n] : λ(x∗, k) =

∑
j∈[mp]

wp(x∗,j)·P ∗(j,k)
∑

i∈[mc]
wc(x∗,i)·C∗(i,k)

representing the price of each coordinate. Note that after initialization the algorithm will not keep track of

exact λ(x∗, k) values. Similarly, for the purposes of the algorithm description and analysis define but do not

maintain
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∀k ∈ [n] : δk = max
δ

{max{max
i∈[mp]

P ∗(i, k) · δ, max
j∈[mc]|C∗

j x
∗<2

C∗(j, k) · δ} = ǫ/η}

Approximate Variables: The algorithm will initialize the following approximate variables:

• ∀i ∈ [mp] : ŵp(x
∗, i) = wp(x

∗, i)

• ∀j ∈ [mc] : ŵc(x
∗, j) = wc(x

∗, j)

• ŵp(x
∗) = wp(x

∗)

• ŵc(x
∗) = wc(x

∗)

• ∀k ∈ [n] : λ̂(x∗, k) = λ(x∗, k)

• λ̂0(x
∗) = λ0(x

∗)

Invariant C.4. The following inequalities are simultaneously satisfied:

• ∀i ∈ [mc] : wc(x
∗, i) ≤ ŵc(x

∗, i) ≤ wc(x
∗, i) · (1 + ǫ)

• ∀i ∈ [mp] : wp(x
∗, i) ≥ ŵp(x

∗, i) ≥ wp(x
∗, i) · (1− ǫ)

• ∀k ∈ [n] : λ̂(x∗, k) =

∑
j∈[mp]

ŵp(x∗,j)·P ∗(j,k)
∑

i∈[mc]
ŵc(x∗,i)·C∗(i,k) and λ̂0(x

∗) ≥ λ0(x
∗) · (1− ǫ)

C.2 Algorithm

Iterate subroutine: Initially the algorithm calls the Iterate() sub-routine which initializes λ̂0(x
∗) = λ0(x

∗)
and iterates over all coordinates k ∈ [n]. Iterate() boosts any coordinate k satisfying λ̂(x∗, k) ≤ λ0(x

∗) ·
(1 + 5 · ǫ) until λ̂(x∗, k) > λ0(x

∗) · (1 + 5 · ǫ). If due to the boosts λ0(x
∗) has increased enough such that

λ0(x
∗) · (1− ǫ) > λ̂0(x

∗) Iterate() is called recursively.

Boost subroutine: A call to Boost(k) increases the k-th coordinate of x∗. The algorithm selects an increment

of δ such that all packing constraints and all not ’well’ satisfied covering constraints are increased by at most

ǫ/η, that is δ = maxδ{max{maxi P ∗ (i, k) · δ,maxj|C∗
j<2 C

∗(j, k) · δ} = ǫ/η}. The algorithm increments

x∗ by ek · δ and afterwards proceeds to restore the affected variables wc(x
∗, i), wp(x

∗, j), wc(x
∗), wp(x

∗)
and λ0(x

∗) precisely. Afterwards UpdatePWeights, UpdateCWeights subroutines are called to ensure the

correctness of Invariant C.4.

UpdatePweights, UpdateCWeights subroutines: These subroutines are used to update ŵp, ŵc and λ̂ values

respectively. Without loss of generality assume that UpdateCWeights(k) was called. The algorithm checks

for all i ∈ [mP ] such that the i-th element of the k-th column of P ∗ is not empty (P ∗ (i, k) > 0) weather

ŵp(x
∗, i) < wp(x

∗, i) · (1 − ǫ) as these are the wp(x
∗, i) values which have increased due to the boosting

coordinate k. For rows where the slack between the approximate and actual values became too significant the

algorithm readjusts the approximate parameter (ŵp(x
∗, i) ← wp(x

∗, i)) and adjusts all values of λ̂(x∗, k′)
which might have been affected by this change (that is the ones corresponding to columns of P ∗ where the

i-th row is non empty, that is P ∗(i, k′) > 0).

UpdateP subroutine: A call UpdateP(i, k,∆) handles a reduction of ∆ to P ∗(i, k). After updating P ∗(i, k)
the algorithm increments P ∗ (i, n + 1) with ∆ · x∗i to guarantee that wp(x

∗, i) remains the same after

increasing P ∗(i, k). This way the only λ̂ value which is affected is λ̂(x∗, k) which the subroutine updates
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to ensure the correctness of Invariant C.4. Due to the update of λ̂(x∗, k) coordinate k might become cheap

(that is λ̂(x∗, k) ≤ λ0(x
∗) · (1 + 5 · ǫ)) so the subroutine boosts k until it is no longer cheap. If some boosts

occur then λ0(x
∗) might reduce enough such that λ̂0(x

∗) < λ0(x
∗) · (1 − ǫ) in which case a new call to

Iterate is made to ensure the correctness of Invariant C.4.

Algorithm 1: Main subroutine of the algorithm

Input: C∗ ∈ ℜmc×n
≥0 , P ∗ ∈ ℜmp×n

≥0

Output: x∗ ∈ ℜn+1
≥0 |C∗x∗ ≥ 1, P ∗x∗ ≤ 1 · (1 + 200 · ǫ)

1 Function Iterate():

2 λ̂0(x
∗) ← λ0(x

∗)
3 for k ∈ [n] do

4 while λ̂(x∗, k) ≤ λ0(x
∗) · (1 + 5 · ǫ) do

5 Boost(k) // See Algorithm 2

6 if λ̂0(x
∗) < λ0(x

∗) · (1− ǫ) then

7 Iterate()

8 Function Main():

9 Iterate()

Algorithm 2: Boosting of coordinate k

1 Function Boost(k):

2 δ ← sample in [δk/4, δk] // See Section C.5

3 x∗ ← x∗ + ek · δ //ek is the unit k-th coordinate vector

4 if C∗x∗ ≥ 1 then

5 Return x∗

6 for ∀i ∈ [mp]|P ∗(i, k) > 0 do

7 wp(x
∗, i) ← exp(η · P ∗

i x
∗)

8 wp(x
∗) ← ∑

i∈[mp]
wp(x

∗, i) // Updated in O(NP
k ) time

9 for ∀j ∈ [mc]|C∗(j, k) > 0 do

10 wc(x
∗, j) ← exp(−η · C∗

j x
∗)

11 wc(x
∗) ← ∑

j∈[mc]
wc(x

∗, j) // Updated in O(NC
k ) time

12 λ0(x
∗) =

wp(x∗)
wc(x∗)

13 UpdatePWeights(k) // See Algorithm 3

14 UpdateCWeights(k) // See Algorithm 4

C.3 Correctness

Claim C.1. Invariant C.4 is always satisfied by Algorithm 1.

Proof. At initialization the invariant clearly holds by the definition of the approximate variables as their

exact counterparts. To prove the correctness of the invariant we will consider the three instances where

variables are updated and argue inductively that they preserve Invariant C.4.
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Algorithm 3: The subroutine updating packing weights

1 Function UpdatePWeights(k):

2 for j ∈ [mp]|P ∗
j,k > 0 do

3 if ŵp(x
∗, j) < wp(x

∗, j) · (1− ǫ) then

4 ŵp(x
∗, j) = wp(x

∗, j)
5 for k′ ∈ [n]|P ∗

j,k′ > 0 do

6 λ̂(x∗, k′) =

∑
j′∈[mp]

ŵp(x∗,j′)·P ∗(j′,k′)
∑

i∈[mc]
ŵc(x∗,i)·C∗(i,k′)

Algorithm 4: The subroutine updating covering weights

1 Function UpdateCWeights(i):

2 for i ∈ [mc]|C∗
i,k > 0 do

3 if ŵc(x
∗, i) > wc(x

∗, i) · (1 + ǫ) then

4 ŵc(x
∗, i) = wc(x

∗, i)
5 for k′ ∈ [n]|C∗

i,k′ > 0 do

6 λ̂(x∗, k′) =

∑
j∈[mp]

ŵp(x∗,j)·P ∗(j,k′)
∑

i′∈[mc]
ŵc(x∗,i′)·C∗(i′,k′)

Algorithm 5: Subroutine handling updates to the packing constraint matrix P ∗

Input: (j, k,∆): P ∗(j, k) decreased by ∆
1 Function UpdateP(j, k,∆):

2 P ∗(i, k) ← P ∗(i, k) −∆
3 P ∗(i, n + 1) = P ∗(i, n + 1) + ∆ · x∗i
4 λ̂(x∗, k) =

∑
i′∈[mp]

ŵp(x∗,i′)·P ∗(i′,k)
∑

j∈[mc]
ŵc(x∗,j)·C∗(j,k) // Updated in O(1) time

5 while λ̂(x∗, k) ≤ λ0(x
∗) · (1 + 5 · ǫ) do

6 Boost(k) // See Algorithm 2

7 if λ̂0(x
∗) < λ0(x

∗) · (1− ǫ) then

8 Iterate() // See Algorithm 1
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Algorithm 6: Subroutine handling updates to the covering constraint matrix C∗

Input: (j, k,∆): C∗(j, k) increased by ∆
1 Function UpdateC(j, k,∆):

2 C∗(j, k) ← C∗(j, k) + ∆
3 if C∗x∗ ≥ 1 then

4 Return x∗

5 wc(x
∗, j) ← exp(−η · C∗

j x
∗)

6 wc(x
∗) ← ∑

j∈[mc]
wc(x

∗, j) // Updated in O(1) time

7 λ0(x
∗) =

wp(x∗)
wc(x∗)

8 if wc(x
∗, j) < ŵc(x

∗, j) · (1− ǫ) then

9 ŵc(x
∗, j) = wc(x

∗, j)
10 for k′ ∈ [n]|C∗

j,k′ > 0 do

11 λ̂(x∗, k′) =

∑
i∈[mp]

ŵp(x∗,i)·P ∗(i,k′)
∑

j′∈[mc]
ŵc(x∗,j′)·C∗(j′,k′)

12 for k′ ∈ [n]|C∗
j,k′ > 0 do

13 while λ̂(x∗, k′) ≤ λ0(x
∗) · (1 + 5 · ǫ) do

14 Boost(k’) // See Algorithm 2

15 λ̂(x∗, k) =

∑
i∈[mp]

ŵp(x∗,i)·P ∗(i,k)
∑

j′∈[mc]
ŵc(x∗,j′)·C∗(j′,k)

16 while λ̂(x∗, k) ≤ λ0(x
∗) · (1 + 5 · ǫ) do

17 Boost(k) // See Algorithm 2

18 if λ̂0(x
∗) < λ0(x

∗) · (1− ǫ) then

19 Iterate() // See Algorithm 1
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Boost subroutine (Algorithm 2): when Boost(k) is called then elements of wp(x
∗, i)|P ∗(i, k) > 0 and

wp(x
∗, j)|C∗(j, k) > 0, wc(x

∗), wp(x
∗) and λ0(x

∗) are updated. Afterwards UpdatePWeights(k) and

UpdateCWeights(k) are called. These subroutines check variables ŵp(x
∗, i)|P ∗(i, k) > 0 and ŵp(x

∗, j)|C∗(j, k) >
0 and update them to enforce the requirements of Invariant C.4. Boost(k) might be called by subroutines

Iterate, UpdateP and UpdateC. Each of these subroutines call Iterate if the last requirement of Invariant C.4

(λ̂0(x
∗) < λ0 ·(1−ǫ) is violated. As Invariant C.4 can’t compile (as it calls itself) until λ̂0(x

∗) ≥ λ0 ·(1−ǫ)
all of Invariant C.4 will be satisfied after a boost operation.

UpdateP subroutine (Algorithm 3): UpdateP(i, k,∆) doesn’t affect constraint weights by define. The only

variable it needs to update is λ̂(x∗, k) because of the change in P ∗(i, k). As argued previously, Invariant C.4

is restored by the Boost calls inside of UpdateP.

UpdateC subroutine (Algorithm 4): UpdateC makes changes to wc(x
∗, j), wc(x

∗) and λ0(x
∗) and updates

the approximate variables accordingly to fit Invariant C.4. As argued previously the invariant is restored after

proceeding Boost calls.

Claim C.2. Whenever the algorithm halts without returning an answer the extended LP is infeasible.

Proof. By Claim C.1 we can assume that Invariant C.4 is satisfied whenever the algorithm halts without

returning an answer. Following the proof of Property 3.3 from Section B.1 if at any time for all k ∈ [n] we

have that λ(x∗, k) < λ0(x
∗) then the linear program is infeasible. We will argue that Invariant C.4 implies

∀k ∈ [n] : λ(x∗, k) < λ0(x
∗). Fix k ∈ [n] for this proof.

By Invariant C.4 we always have that λ̂(x∗, k) ≥ λ(x∗, k). Say whenever the algorithm checked if

λ̂(x∗, k) ≤ λ0(x
∗) · (1 + 5 · ǫ) that the algorithm has checked the price of coordinate k. After a coordinates

price is checked it is boosted until λ(x∗, k) ≥ λ̂(x∗, k) > λ0(x
∗) · (1 + 5 · ǫ). Each coordinates price is

checked at least once at initialization. Let λ−
0 (x

∗) and λ+
0 (x

∗) represent the value of λ0(x
∗) after the last

time coordinate k-s price was checked and at compilation respectively. Let λ̂0(x
∗)∗ represent the value of

λ̂0(x
∗) at both of these time points (note that if λ̂0(x

∗) would have been updated between the last price

checking of coordinate k and compilation a new call to Iterate() would have been made, hence k-s price

would have been checked again). By Invariant C.4 we have that λ̂0(x
∗)∗ ≤ λ−

0 (x
∗) and λ̂0(x

∗)∗ ≥ λ+
0 (x

∗) ·
(1− ǫ). Therefore, λ+

0 (x
∗) ≤ λ+

0 (x∗)
1−ǫ .

λ(x∗, k)-s value might only have reduced since the last time k-s price was checked as at every in-

stance it’s price might increase it is checked. Therefore, we have that at that whenever the algorithm halts

λ(x∗, k) ≥ λ0(x
∗) · (1 + 5ǫ) · (1− ǫ) ≥ λ0(x

∗) if ǫ ≤ 4/5 which concludes the claim.

Claim C.3. At all times the algorithm satisfies that P ∗x∗ ≤ 1 · (1 + 200 · ǫ) (given ǫ < 1/10).

Proof. We will show that the following invariant is maintained throughout the run of algorithm:

max
i∈[mp]

{P ∗
i x

∗} ≤ min
i∈[mc]

{C∗
i x

∗} · (1 + 50ǫ) + 100ǫ

Initially the inequality holds and the inequality will be affected by 3 kinds of changes: updates to P ∗,

C∗ and x∗. Notice, that whenever C∗ is updated only the right hand size of the inequality may change

and it may only increase. Similarly, a decrease of P ∗ may only decrease the left hand side. However, the

algorithm does increase the last column of P ∗ whenever an decrease of P ∗ occurs. Note however, that the

last coordinate of x∗ is is always 0 as coordinate n+1 is never boosted (due to the last column of C∗ being

0 λ(x∗, n+ 1) is unbounded hence coordinate n+ 1 is never cheap).
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It remains to argue that during Boost calls the inequality is maintained. Assume coordinate i is boosted

by δ and at the start of the boosting process the inequality holds. Define fp(x
∗) = η·log(∑i∈[mp]

exp(ηP ∗
i x

∗))

and fc(x
∗) = −η · log(∑i∈[mc]

exp(−ηC∗
i x

∗)) analogously to Section ??. Following the proof of Prop-

erty 3.4 we get that fp(x
∗ + δ · ei) − fp(x

∗) ≤ (fc(x
∗ + δ · ei) − fc(x

∗)) · (1 + 50 · ǫ) (note that a

different constant 50ǫ appears as the amount of slack the algorithm uses is different). As both function are

monotonous in x∗ and relaxing updates may only increase fc(x
∗) and reduce fp(x

∗) we have that at all

times fc(x
∗) · (1 + 50 · ǫ) ≥ fp(x

∗).

By the properties of fc(x
∗) and fp(x

∗) (stated in Section 3.1 as Equation 3.2 we can conclude that

maxi∈[mp]{P ∗
i x

∗} ≤ mini∈[mc]{C∗
i x

∗}·(1+50·ǫ)+ǫ·(1+50·ǫ)) ≤ mini∈[mc]{C∗
i x

∗}·(1+50·ǫ)+100·ǫ
at all times.

Let δ stand for the value of the last boost. By definition C∗δ ≤ 1·ǫ hence at all times minj∈[mc]{C∗
j x

∗} ≤
1 + ǫ. Therefore at all times maxi∈[mp]{P ∗

i x
∗} ≤ (1 + 50ǫ) · (1 + ǫ) + 100ǫ ≤ 1 + 200ǫ that is

P ∗x∗ ≤ 1 · (1 + 200ǫ).

Corollary C.5. If ǫ ≤ 1/200 then at all times wp(x
∗) ≤ exp(3 · η) and wx(x

∗) ≥ exp(2 · η), hence

λ0(x
∗) ≤ exp(5 · η).

Proof. wp(x
∗) ≤ mp · exp(η · maxi∈[mp]{P ∗

i x
∗}) ≤ exp(η(2 + 200 · ǫ)) ≤ exp(η · 3). As argued in

the proof of Claim C.3 we have that minj∈[mc]{C∗
j x

∗} ≤ 1 + ǫ at all times, hence wc(x
∗) ≥ exp(−η ·

minj∈[mc]{C∗
j x

∗}) ≥ exp(−2 · η)..

Lemma C.6. Whenever the algorithm halts without returning an answer the extended linear program is

infeasible. If the algorithm may only return an O(ǫ) approximate solution to the extended linear program.

Proof. The lemma follows from Claim C.2 and Claim C.1

C.4 Running Time

Claim C.4. For any k ∈ [n] Boost(k) may be called at most O( log
2(m+U/L)

ǫ2
) = O( log(m+U/L)·η

ǫ ) number

of times.

Proof. Fix a coordinate k ∈ [n] for the rest of the proof.

Consider any call to the BOOST(x∗) subroutine during the course of our dynamic algorithm, which

increases coordinate k of the vector x∗ ∈ Rn
≥0 by some amount δ > 0. From Algorithm 2, observe that just

before this specific call to the subroutine, either there exists a packing constraint i ∈ [mp] with P ∗(i, k) ·δ ≤
ǫ/η, or there exists a not-too-large covering constraint j ∈ [mc]

17 with C(j, k) · δ ≤ ǫ/η. In the former

(resp. latter) case, we refer to the index i (resp. j) as the pivot and the current value of P (i, k) (resp. C(j, k))
as the pivot-value corresponding to this specific call to the subroutine BOOST(k).18

Due to Assumption C.2 we can assume that U = 2τ · L for some integer τ = O(log n). Partition the

interval (L,U ] into τ segments I0, . . . ,Iτ−1, where Iℓ =
(

L · 2ℓ, L · 2ℓ+1
]

for all ℓ ∈ {0, . . . , τ − 1}.

Claim C.5. Consider any ℓ ∈ {0, . . . , τ − 1}. Throughout the duration of our dynamic algorithm, at most

16η/ǫ calls with pivot-values in Iℓ and pivots in [mc] are made to the BOOST(k) subroutine.

17We say that a covering constraint j ∈ [mc] is not-too-large iff C∗
j x

∗ < 2.
18Note that the values of the entries in the constraint matrix change over time due to the sequence of updates. The pivot-value of

a call to BOOST(x,k) refers to the value of the concerned entry in the constraint matrix just before the specific call to BOOST(k).
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Proof. Let xk ∈ R≥0 denote the kth coordinate of the vector x ∈ Rn
≥0. For ease of exposition, we say that

a call to BOOST(k) is covering-critical iff its pivot is in [mc] and its pivot-value is in Iℓ. We wish to upper

bound the total number of covering-critical calls made during the course of our dynamic algorithm.

Consider any specific covering-critical call to BOOST(k) with pivot j ∈ [mc] and pivot-value α ∈
Iℓ =

(

L · 2ℓ−1, L · 2ℓ
]

. From the definition of Algorithm 2, it follows that this call increases xk by δ =
ǫ/(ηα · 4) ≥ ǫ/(ηL2ℓ+2).

Suppose that T covering-critical calls have been made to the BOOST(x, k) subroutine, where T >
16 · η/ǫ. Let us denote these calls in increasing order of time by: Γ1,Γ2, . . . ,ΓT . Thus, for all t ∈ [T ],
we let Γt denote the tth covering-critical call made during the course of our dynamic algorithm. From the

discussion in the preceding paragraph, each of these critical calls Γt increases xk by at least ǫ/(ηL2ℓ+2).
Since xk = 0 initially and it increases monotonically over time, just before the last critical call ΓT we

have xk ≥ (T − 1) · ǫ/(ηL2ℓ+2) ≥ (16η/ǫ) · ǫ/(ηL2ℓ+2) = 1/(L2ℓ−2). Let jT ∈ [mc] be the pivot of the

call ΓT . Since the pivot-value of ΓT lies in Iℓ, it follows that C(jT , k) > L · 2ℓ−1 just before the call ΓT .

Thus, just before the call ΓT , we have CjT ·x ≥ C(jT , k) ·xk > L2ℓ−1 · 1/(L2ℓ−2) = 2. But if CjT ·x > 2
just before the call ΓT , then jT cannot be the pivot of ΓT . This leads to a contradiction. Hence, we must

have T ≤ 16 · η/ǫ, and this concludes the proof of the claim.

Claim C.6. Consider any ℓ ∈ {0, . . . , τ − 1}. Throughout the duration of our dynamic algorithm, at most

16 · η/ǫ calls with pivot-values in Iℓ and pivots i ∈ [mp] are made to the BOOST(k) subroutine.

Proof. (Sketch) As in the proof of Claim C.5, let xk ∈ R≥0 denote the kth coordinate of the vector x ∈ Rn
≥0.

Say that a call to BOOST(k) is packing-critical iff its pivot is in [mp] and its pivot-value is in Iℓ.
Suppose that T covering-critical calls have been made to the BOOST(k) subroutine, where T > 16 ·η/ǫ.

Let us denote these calls in increasing order of time by: Γ1,Γ2, . . . ,ΓT . Thus, for all t ∈ [T ], we let Γt

denote the tth packing-critical call made during the course of our dynamic algorithm. Let iT ∈ [mp] be the

pivot of the last packing-critical call ΓT . Following the same argument as in the proof of Claim C.5, we

conclude that PiT · x > 2 just before the call ΓT . By Claim C.3 this leads to a contradiction (assuming

ǫ < 1/200). Thus, it must be the case that T ≤ 16η/ǫ, and this concludes the proof of the claim.

Any call to the subroutine BOOST(k) has pivot in [mp] ∪ [mc] and pivot-value in Iℓ for some ℓ ∈
{0, . . . , τ − 1}.19 Accordingly, from Claim 3.1 and Claim 3.2, it follows that the total number of calls made

to the BOOST(k) during the course of our dynamic algorithm is at most 2 · τ · (16η/ǫ) = O( log
2(m+U/L)

ǫ2
).

Claim C.7. All calls to UpdatePWeights and UpdateCWeights be handled in O( log
2(m+U/L)·N

ǫ2
) total time.

Proof. As each call to Boost calls the weight update functions once by Claim C.4 they will be called a

total of O( log(m+U/L)·η
ǫ · n) times. Fix k ∈ [n]. UpdatePWeights(k) and UpdateCWeights(k) will be called

O( log(m+U/L)·η
ǫ ) times. Hence, the outer loops of both function will take O(N · log(m+U/L)·η

ǫ ) total time to

handle.

Without loss of generality focus on UpdatePWeights. For any i ∈ [mp] between any two updates to

ŵp(x
∗, i) wp(x

∗, i) must increase by a factor of 1 + Ω(ǫ). Due to Corollary C.5 this may happen at most

O(log2(m + U/L)/ǫ2) times. After updating ŵp(x
∗, i) the algorithm will spend O(RP

i ) time updating

λ̂0(x
∗)(x∗, k) values. Therefore, over all i ∈ [mp] the total work to maintain λ̂0(x

∗)(x∗, k) values will

19This holds because the pivot-values lie in the range (L, U ], and this range has been partitioned into subintervals: I0, . . . , Iτ−1.

46



be in O( log
2(m+U/L)

ǫ2
). The proof proceeds similarly for the work UpdateCWeights does on maintaining

λ̂0(x
∗)(x∗, k) values.

Claim C.8. The total time spent by the algorithm through calls to the Boost subroutine is in O( log
2(m+U/L)·N

ǫ2
)

Proof. Each call to Boost(k) requires 3 non-constant time tasks. Firstly an estimate of δk has to be sampled.

By Claim C.11 and Claim C.4 these samplings will take O(N · log(m+U/L)
ǫ2

) total time.

Afterwards the algorithm updates all wp(x
∗, i) for i ∈ [mp]|P ∗(i, k) > 0 and wc(x

∗, j) for j ∈
[mc]|C∗(j, k) > 0 in O(NP

k + NC
k ) time. Over all calls to boost this will take total O(N · log2(m+U/L)

ǫ2 )
time by Claim C.11.

Finally, the algorithm makes calls to UpdatePWeights(k) and UpdateCWeights(k) (see Algorithms 4 and

3). This will take total time O(N · log2(m+U/L)·N
ǫ2

) by Claim C.7.

Claim C.9. The total time by the UpdateP and UpdateC subroutines (outside of calls to Iterate and Boost)

is bounded by O( log
2(m+U/L)·N

ǫ2
+ t).

Proof. The only action UpdateP does which is not in O(1) is the while loop. Due to Claim C.4 the while

loops will test a coordinates price at most O(n · log2(m+U/L
ǫ2

+ t) time over the total run of the algorithm.

Similarly, the while loops of UpdateC may also only have O(n · log2(m+U/L
ǫ2 + t) iterations due to

Claim C.4. The only other non-constant time operation of UpdateC is the process of updating ŵc(x
∗, j)

and affected λ̂(x∗, k′) values. Whenever ŵc(x
∗, j) is updated RC

j values of λ̂(x∗, k′) will be updated. As

an update to ŵc(x
∗, j) increases its value by a multiplicative factor of at least 1 + ǫ due to Assumption C.2

there can be at most O(log(N)/ǫ) updates of ŵc(x
∗, j). Therefore, the maintenance of the slack parameters

will take at most O(N ·log(N)
ǫ + t) total time for UpdateC. This finishes the proof.

Lemma C.7. Algorithm 1 runs in O(N ·log2(m+U/L)
ǫ2 + t) deterministic time.

Proof. The time spent by calls to Boost or updates is handled in O(N ·log2(m+U/L)
ǫ2

+ t) total time by

Claim C.8 and Claim C.9. Between each call to iterate λ0(x
∗) increases by a factor of 1/(1 − ǫ). As

λ0(x
∗) ≤ exp(5 · η) by Corollary C.5 there will be at most O(η/ǫ) = O(log(m + U/L)/ǫ2) calls to Iter-

ate() which will take O(N ·log2(m+U/L)
ǫ2

) to complete (apart from Boost calls). This completes the lemma.

C.5 Maintenance of an estimate of δk for Algorithm 2

To imitate the increments of the static algorithm described by Figure 9 when Boost(k) is called we would like

to find δ = maxδ{max{maxi P
∗(i, k) · δ,maxj|C∗

j x
∗<2 C

∗(j, k) · δ} = ǫ/η. Unfortunately, under dynamic

relaxing updates returning the exact δk is too slow. Therefore, we will implement an efficient oracle which

returns δ ∈ [δk · (1− ǫ), δk] when queried in O(1) time.

Max-Heap: Using folklore data structures we will assume that a max-heap on at most m = mc + mp

objects is a black-box tool which can handle the following actions:

• In O(1) the max-heap returns the maximum-element stored in the heap

• In O(log(m)) time an element can be removed from the heap
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• In O(log(m)) time an element can be added to the heap

Initialization: At initialization the oracle implements n max heaps Hk : k ∈ [n], one for each coordinate of

x∗. We will now describe the implementation of a specific heap Hk. Hk will consist of at most NC
k +NP

k

objects each representing a non-zero element of the k-th column of C∗ or P ∗. Each non-zero element of

these two columns will be inserted into the heap with it’s initial value and an identifier. Hence, the top

element of Hk will represent the largest value in the k-th column of C∗ and P ∗.

Update to P ∗: Assume that due to a relaxing update P ∗(i, k) reduced by ∆ to some P ∗
+(i, k). The oracle

will look-up the value P ∗(i, k) currently represented under in Hk, say this value is P ∗
−(i, k). If P ∗

−(i, k) > 2·
P ∗
+(i, k) then the oracle will remove P ∗

−(i, k) from Hk and re-enter it as P ∗
+(i, k). If P ∗

−(i, k) ≤ 2 ·P ∗
+(i, k)

then the oracle doesn’t change anything in the heap Hk.

Update to C∗: Assume that due to a relaxing update C∗(j, k) increased by ∆ to some C∗
+(j, k). If pre-

viously to the update (C∗)ix
∗ < 2 however after the update (C+

∗ )ix
∗ ≥ 2 the oracle proceeds over all

non-zero entries of the j-th row of C∗ (iterate over all k′ ∈ [mc]|C∗(j, k′) > 0) of the form C∗(j, k′) > 0
and removes them from their corresponding heaps. Otherwise the oracle proceeds similarly to its behaviour

under a packing update: say that the value of C∗(j, k) stored in Hk is C∗
−(j, k). If C∗

−(j, k) < 2 · C∗
+(j, k)

then the oracle removes the C∗
−(j, k) node from the heap and re-enters it as the current value C∗

+(j, k). If

C∗
−(j, k) ≥ 2 · C∗

+(j, k) the oracle rests.

Query of δk: Let the top element of heap Hk when the query is made be κ. The oracle will return value

δ = η
ǫ·κ/2 . Afterwards, the oracle proceeds to adjust it’s max-heaps to the boost of coordinate k. Let x∗+ and

x∗− represent the state of x∗ after and before having been incremented by δ ·ek through Boost(k) respectively.

The oracle iterates through all j ∈ [mc] such that C∗(j, k) > 0. For any such j if (C∗
−)jx

∗ < 2 however

(C∗
+)jx

∗ > 2 the oracle proceeds as follows: for all k′ ∈ [n]|C∗(j, k′) > 0 the oracle removes C∗(j, k′) (or

the value stored as the representative of C∗(j, k′) which might be somewhat smaller) from heap Hk′.

Claim C.10. If the oracle is queried to return an estimate of δk it returns a value in [δk/4, δk]

Proof. Assume Boost(k) was called and the oracle is queried to return an estimate of δk. Observe, that at

all time points the heap Hk contains an object corresponding to each non-zero elements of the k-th column

of P ∗. Furthermore, Hk contains an element for each C∗(j, k) : j ∈ [mc]|C∗
j < 2. Fix an element of P ∗

represented in Hk, say P ∗(i, k) and let P ∗
−(i, k) stand for the value it is represented under in the heap Hk.

Observe that by construction P ∗
−(i, k) ≤ P ∗(i, k) ≤ P ∗

−(i, k). Fix an element of C∗ represented in Hk,

say C∗(j, k) and let it’s representation in Hk have value C∗
−(j, k). Similarly, observe by construction that

C∗
−(j, k) · 2 ≥ C∗(j, k) ≥ C∗

−(j, k).
Define κ = max{maxi∈[mp] P

∗(i, k),maxj∈[mc]|C∗
j x

∗<2C
∗(j, k)}. By the observations above we can

conclude that the maximum element of Hk is in [κ/2, κ · 2]. Therefore, the oracle returns a value in

[ ǫ
4·κ·η ,

ǫ
κ·η ] = [δk/4, δk ].

Claim C.11. Let Bk : k ∈ [n] represent the number of times Algorithm 1 calls subroutine Boost(k). The

total time it takes to maintain the oracle and return it’s queries is in O(
∑

k∈[n]BkN
C
k +N · log2(N) + t).

Proof. Say that the oracle re-adjust a constraint parameter P ∗(j, k) or C∗(i, k) whenever it removes their

outdated value for heap Hk and inserts their current value in the constraint matrix. Whenever a replacement

of a constraint parameter occurs it’s value in Hk has to double if it’s a member of C∗ or halve if its a

member of P ∗ respectively. By Assumption C.2 non-zero parameters of constraint matrices always lie in

[1/poly(N), poly(N)] therefore each constraint element may has its value re-adjusted at most O(log(N))
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times. This means that handling re-adjustments of all elements of the heaps maintained by the oracle can be

completed in O(N · log2(N)) total time.

When an update is made to P ∗ the oracle checks the value of a single element in the heap, therefore

it’s work outside of possibly re-adjusting said value can be completed in O(1) time. This means O(N ·
log2(N) + t) upper bounds the work of the oracle handling packing constraint updates.

When an update is made to C∗, say to C∗(j, k), the oracle first has to check weather C∗
j x

∗ has exceeded

2 for the first time. Checking the value of C∗
j x

∗ can be completed in O(1) time (assuming the algorithm

keeps track of each constraints progress at all times). The value of C∗(j, k) may only exceed 2 once over

the total run of the iteration. At this point the oracle removes RC
j elements from it’s heaps. All of these

removals therefore will take at most O(N · log(N)) total time. Therefore, O(N · log2(N)+ t) upper bounds

the work of the oracle handling covering constraint updates.

When a coordinate k is boosted by Algorithm 2 the oracle has to iterate over all non-zero elements of

the k-th column of C∗ which takes O(NC
k ) time. For all j ∈ [mc]|C∗(j, k) > 0 the oracle calculates C∗

j x
∗

in O(1). Afterwards, the oracle may proceed to remove all elements in any such line of C∗, however each

element may only be removed at most once. Therefore, all work of the oracle due to boosting queries can

be upper bounded by O(
∑

k∈[n]BkN
C
k +N · log(N) + t). This finishes the proof.

C.6 The Handling of Translation Updates

Using Theorem C.1 as a black-box statement we will show how the algorithm can handle translation updates

in addition to element-wise updates without incurring any blow-up in the total running time. To re-iterate

a mixed packing covering linear program defined by constraint matrices (P,C) is the problem of finding

x such that Px ≤ 1, Cx ≥ 1. A relaxing translation update of the packing constraint could formalized

as follows: for some coordinate i : i ∈ [mp] and γ > 0 we update the linear program such that we are

looking for x satisfying Px ≤ 1 + γ · ei, Cx ≥ 1. Similarly, a relaxing translation update to the covering

matrix is an updated defined by some j ∈ [mc] and γ > 0 such that we update the linear program to

Px ≤ 1, Cx ≥ 1 − γ · ej .

Observation C.8. Let ∆P ∈ ℜmp

≥0 and ∆C ∈ ℜmc
≥0 where 0 ≤ ∆P ≤ 1 · ǫ and 0 ≤ ∆C ≤ 1 · ǫ. If x

is an ǫ-approximate solution to the linear program defined by constraint matrices (P,C) then x is a 2 · ǫ
approximate solution to the linear program defined by (P +∆P , C −∆C).

As demonstrated by Observation C.8 if the algorithm ignores translation updates until any constraint is

translated by more than an ǫ factor the solution returned is still O(ǫ) approximate to the linear program. Once

a constraint (say the i-th pacing constraint) is translated by at least an ǫ factor the algorithm can simulate

this relaxation through RP
i entry updates of the packing matrix by relaxing all elements in the i-th row of

P by the same multiplicative factor. Assuming similarly as in Assumption C.2 that all input parameters lie

in the [1/poly(N), poly(N)] range we can be certain that each constraint will need to be updated at most

O(log1+ǫ(poly(N)) = O( log(N)
ǫ ) times due to being translated by more than an ǫ factor. Hence, the total

number of entry-wise updates required to handle all translation updates will be bounded by O(N · log(N)
ǫ ).

Therefore, the algorithm can handle translation updates with O(N · log(N)
ǫ + t) additional time (where t

here stands for the number of translation updates) as the algorithm of Theorem C.1 runs in linear time with

respect to the number of entry wise updates. This implies that Theorem C.1 can be extended to work for

translation updates without incurring any loss in running time.
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