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Nonlinear Multiple Input Multiple Output Process as a Final Project:
Bringing Motivation to the Control Classroom

Abstract

This paper presents the results of applying a final project in an undergraduate chemical
engineering control class. The final project is a nonlinear simulation of a process that has 3 or
more inputs and outputs that must be regulated. The simulation includes additional disturbances
such as input/output noise and load disturbances such as changes in feed concentration. The
purpose is to bring the sometimes-esoteric world of control which is often taught
overwhelmingly in the linear Laplace domain back to the reality of actual process applications
that are tricky to control. Not only does this provide motivation for the students to learn control
but is introduced throughout the course in parts to accentuate this reality prior to each exam in
the class. Overall, the students have shown increased efficacy resulting in higher grades for the
second and third exams due to the final project being introduced. It also is nice way to introduce
something that has similar complexity for regulating actual unit operations in industry.

Introduction
Control Space

The vastness of control theory is summarized in Figure 1. Control is a subject taught to all
engineers except for civil, and yet seems like an island of its own. The unique jargon taken from
mechanical, electrical, etc. can be daunting to an undergraduate student. Coupled with the often
overreliance of dealing with linear systems in the Laplace Domain and control can come across as
a very esoteric subject that has little meaning in the real world. Seniors take to and light up when
learning and implementing their final design projects. There is a sense that all the courses led to
this moment and now it can be applied to building an actual process. And yet control is the subject
arguably most critical to a graduating chemical engineer that most likely will have a first industrial
job as a process engineer. What does a process engineer do? Well, she is responsible for
maintaining a process of unit operation(s) to run at specified conditions 7 days a week, 24 hours a
day. Yes, she is essentially doing control. Look again at Figure 1. Realize that those of us that are
control engineers, the applied mathematicians of the engineering world, do not cover all the space
on the control map of theory. Even after many courses in advanced control or mathematics. Now
consider this space of topics. Which of them should be taught to undergraduate students? And to
how much depth? Are we preparing students to go into the field of control? Or are we getting them
ready to face industrial equipment, seasoned operators, and an intimidating Distributed Control
System board containing tens to hundreds of control loops? And that does not include the fact that
the processes are often highly nonlinear with little to no fundamental modeling available. Actual
disturbances come from either poor control upstream or the fact that the multiple loops on a single
unit operation interact with one another leading to effective process gains very different than when
all the loops are open, and inputs are manipulated manually. And even though the beauty of a
proportional integral and derivative (PID) controller is its simplicity and utility; it is severely
hampered by being restricted to single pairs of one input to one output and that it has no idea what
the actual input constraints are for the system.
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Flgure 1 Map of Control Theory [1]
Chemical Engineering Control Classes

There have been discussions as far back as 2006 at various chemical engineering education
symposiums where faculty have strongly considered removing process control from the
curriculum, that it is a mature field, that it is unlikely to have much future impact on discovery of
new technology [2]. And as stated earlier, the primary job of a process engineer is control. The
pressure on control as a class increases with the advent of a strong push to reduce curriculums
from 130+ credits to 120 credits to increase enrollment into engineering and make in theory
retention of students in engineering easier. There have been papers published trying to push major
changes in control education methodologies many limiting or removing Laplace Domain usage
and increasing use of nonlinear simulations, and yet not happened to large extent [2],[3],[4],[5].[6]-
Perhaps best summarized as follows: “Process control is a core course in the chemical engineering
undergraduate curriculum, yet it sometimes suffers from an over-emphasis on analytical
mathematics without proper motivation from real process challenges”[7].

What Is Industry Looking for?

From Bequette 2019, [7] shows surveys from industry in 2006 to academic coverage in 2015
shown in Figure 2. Fascinating to look at industry needs which cover many advanced topics
that are not covered in much depth or at all in academia at the single undergraduate course level.
Much of the focus from industry appears to be fundamental modeling leveraged to optimization
and advanced control. In Bequette 2019 [7] lists typical chemical engineering control curriculum
where modeling, nonlinear dynamics or control optimization get one to two weeks at most. Not



sufficient to meet what industry is requiring and another symptom of any control class is back
to Figure 1 on control map of theory, does the course suffer scope creep and become more of a
survey class than one with depth and real expertise obtained by the students.

Industry Needs (2006) Academic Coverage (2015)

(86) Optimization PID design and tuning (92)
(72) Statistical analysis \ / Empirical modeling (88)
(70) Physical modeling > Physical modeling (68)

(69) Empirical modeling Frequency response (50)
(66) Multivariable interactions Nonlinear dynamics (43)
(53) SPC & process monitoring Multivariable interactions (38)
(51) PID design and tuning Statistical analysis (14)
(39) Nonlinear dynamics SPC & process monitoring (14)
(24) Frequency response Optimization (11)
(19) Expert systems, Al > Expert systems, Al (not surveyed)

Figure 2. Survey 2006 Industry Mapped to Academia 2015 [7]
Keeping It Real: Need To Teach Operating Regions

There are many reasons to have the students focus and spend time on actual nonlinear systems.
The obvious one is to make the simulation they are controlling seem much more relevant and
interesting. But the real purpose that is often lost in most control textbooks is that the reliance on
the Laplace Domain has robbed the students of understanding the very key point of what an
operating region is. There are many control papers in the literature let alone in textbooks that will
simply represent this complicated nonlinear process as a matrix of transfer functions. And yes,
they will include input constraints. But all these transfer functions do not hold over the range of
inputs given for the real process. It is almost comical if it did not have real world repercussions.
Students need to understand the key concept that when perturbing the system and fitting it to some
reduced transfer function such as a first order plus dead time model that is now going to be used
for controller design that this is a linearization of the process and is only accurate within the
baseline operating region. And that is true only if the magnitude of the perturbation did not exceed
the operating region they are trying to model. Every time a student is taught to use a model for a
system in the Laplace Domain only, they lose the fact that the controller designed will not work
over the whole range of the input constraints. In fact, that is more a rarity than the norm. Transfer
functions for lime kilns, cardiac arrest patients, reactive etchers, etc. do not hold for the range of
inputs outlined in final projects given to students[8]. Representing a nonlinear multivariable
process by a matrix of transfer functions leads to real repercussions for students that think these
are at least close to accurate models that reflect a dynamic range of responses over the input
constraints. And instead end up with a system that a single controller can regulate. There are no
operating regions. Operating region is not an easy concept to teach. But it is an easy one to show
when using proper simulations for the nonlinear system. Use transfer functions for controller
design not to simulate the actual process. Make students understand that PID control design is in



its essence a linear controller based on a linearization about one operating point. How well that
controller will hold at different input values will depend on how nonlinear the system is. When
the controller starts to fail the system is in a new operating region, and a new linearized model for
new PID tuning will be needed. The straightforward next step to nonlinear control by applying
gain scheduling is easily introduced this way. All disturbances to the system can be seen as
perturbations to the system that may have moved it to a new operating region.

Proposed Chemical Engineering Curriculum

The authors provided an outline of their chemical engineering curriculum in [9]. It can be
summarized as an abbreviated first exam on linear control theory covering Laplace Domain to get
to what are process zeros and their importance on dynamic responses and process poles determine
process time constants. Then applying controller direct synthesis to see how right half plane zeros
cannot be canceled, and that controller affects primarily closed loop poles or eigenvalues. The
second exam is on nonlinear control of a single input single output process using internal model
based PID controller tuning. Large set point changes and other disturbances are applied. The third
exam is on a nonlinear 2 input 2 output multiple input multiple output (2x2 MIMO) system.
Students use relative gain analysis for control loop pairing and tuning rules.

The additional work here is inclusion of a final project that has more complexity than can be given
in an in-class exam that is motivational for students to use throughout the course to introduce new
concepts and have students complete that section prior to when it will be used in an exam. Instead
of a final students work on closing all the multivariable single input single output loops make any
necessary tuning adjustments and then test the controller on various setpoint changes and
disturbances.

Final Project General Framework

Nonlinear MIMO setup with more than 2 inputs by 2 outputs. Not a take home test. Have
input/output noise to make it more realistic. Students would submit parts throughout the
course to help prepare for the exams too. Each section is then graded and corrected prior to
going on to the next stage of the project. Can not work with another student but feel free to ask
the instructor questions.

Part 1: Step Responses and Process Gains. (20 pts) Students perturb the process by doing a
Step response for each input and then calculate all process gains. Done prior to
Nonlinear Single Input Single Output Exam 2.

Part 2: Determine the Relative Gain Array, Input-Output Pairings. (20 pts) Students use the
process gains found in Part 1 to calculate the Relative Gain Array then determine the
controller input output pairs and their tuning strategies. Done prior to Nonlinear
Multiple Input Multiple Output (2x2) Exam 3.

Part 3: First Order Plus Dead Time Models and Individual Controller Tuning (40 pts)
Students use the step responses done in Part 1 along with the calculated controller pairs
to find each process time constant and delay. Then using these models and the tuning
rules from Part 2 students obtain Multiple Variable Single Input Single Output
(MV-SISO controllers). Done prior to Exam 3.

Part 4: MIMO Control. (20 pts) All MV-SISO controllers are now closed at same time



(not individually as in Part 3 using the best tuning from Part 3. The control of the
complete process is evaluated and any additional tweaking in tuning done at various
setpoint combinations and disturbances. This is handed in during the Finals Week.

Wastewater Treatment 3x3 System

The wastewater treatment process has a bioreactor, settler with recycle, and aerator. The process
has very different time scales and can exhibit changes in gain sign and inverse responses. A process
block diagram of the system see fig. 1. The bioreactor is essentially an aerobic digester.

Influent Aerated bioreactor X. DO. S, (1+1D ) Effluent
> 5 X. DO . Settler >
Sin, DO,D__, o X S, (1-p)D
v
"W air flow
Recycled sludge Waste sludge
X,, r-D X, pD

Figure 2. Process Block Diagram Wastewater Treatment Process

The objective is to regulate cell concentration (X), dissolved oxygen level (DO), and substrate
concentration (S) by manipulating the dilution rate (flow of feed into the process, D), the gas
dilution rate/flow (W), and recycle fraction (r). There is some noise present in the measurements
and occasionally there is a disturbance in the feed substrate concentration, Sin.

Table 1 Inputs for Wastewater Treatment

Input Baseline Final Step Constraints
(initial)
Dilution Rate | D=0.13 hr! D=0.15 hr! Dmin = 0 hr! Dmax = 0.4 hr!
Gas Rate W =110 hr! W =100 hr'! Wmin = 0 hr! Wmax = 400 hr!
Recycle % =0.6 =0.7 rmin=0 rmax =1

Distubance Input
Sin=200 g/L. Baseline Sin_dist = 180 g/L (during a disturbance)

Table 2 Outputs for Wastewater Treatment

Output Baseline (initial) Final Setpoint
Cell Biomass X=400 g cells/L X =420 gcells/L
Dissolved Oxygen DO =1.783 mg O»/L DO=1.65 mg O»/L
Substrate S=280 mg/L S=260 mg/L
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Figure 3. Realistic Bioreactor Setup [10]

Growth Model, Kinetics and Consumption

Growth kinetics in yeast cultures are commonly described by models based on the Monod equation
which accounts for substrate inhibition only (Eq. 1) [11]. The maintenance term for substrate
consumption (Eq. 3) is the amount of substrate required for the cell to remain alive but not increase
in density. The volume in and out of the reactor is equal, thus, is assumed constant.

Temp (°C) pH

Figure 4. 3-dimensional representation of specific product formation rate [12]

Specific Product Formation Rate

This function (Eq. 6) is the product of three separate terms. The first term up_ ,is the characteristic
on the given heterologous protein (rHSA). The second term describes the influence of [H'] on the
specific production formation rate and the third term describes the effect of temperature which can
either enhance or hinder product formation as shown in Figure 4 [12].



There are over 500 proteins that can be expressed using P. pastoris systems and product formation
rates vary greatly. The product to biomass yield, Ypx is usually assumed as constant which is
untrue. Zhang et al. [11] provides data for the variation of Ypx with time and substrate concentration
respectively (Eq. 7).

Oxygen Consumption and Transfer

Dissolved oxygen concentration in aerobic fermentations is one of the most important parameters
and most difficult to accurately model. This varies slightly with most other bioreactor models for
oxygen consumption (Eq. 8) as it includes the concentration changes due to dilution with the
addition of substrate and ammonium hydroxide. One difficulty with oxygen transfer models is
predicting the oxygen solubility in the fermenter media with respect to oxygen solubility in pure
water [11]. For oxygen solubility in pure water (Eq. 10), we chose to model this as a function of
both temperature and pressure using Henry’s law (Eq. 9) as is explained by Doran [13]. Nagy [14]
uses a Stechnov type equation to account for decrease in oxygen solubility (Eq.11) due to dissolved
salts in the fermentor media. At this point, our model does not have a detailed account for the
decrease in solubility of oxygen due to dissolved salts. Predicting the mass transfer coefficient,
kia, accurately presents another problem, this done using the Van’t Reit correlation (Eq. 12).

Energy Balance and Temperature Control

Temperature (Eq. 13) is an essential parameter to be monitored in bioprocesses. These equations
are very similar to those used by Nagy [14] with the exception of the ammonium hydroxide flow
term. The heat generation term uses the heat of reaction as well as the oxygen yield per biomass
(g/g). The reactor temperature ODE has a negative sign because heat is usually lost from the reactor
to the jacketed fluid (Eq. 14) causing the reaction to be exothermic.

pH Changes and Control

It is assumed that the ammonium hydroxide added to control pH is enough to provide the cells
with a nitrogen source. Solving the electron neutrality equation (Eq. 16) determines the
concentration of [H']. The phosphoric acid (4) is fed at a concentration of 4;,. The consumption
of phosphorous (Eq. 15) is considered negligible to amount present. The concentration of
ammonia and phosphoric acid is in units of moles/L and the yield is converted by dividing by
mwnns [11].

The objective is to regulate dissolved oxygen level (DO), substrate concentration (S),
temperature (T) and pH. The inputs are the feed flow rate, Fin, the ammonia flow rate, Fnin, the
jacket flow rate, Fj, and the volumetric gas flow rate, Vdot.

Table 3 Inputs for Bioreactor

Baseline (initial) Final Step Constraints
Fin =65 L/hr Fin =63 L/hr Fin_min =0 L/hr Fin_max = 150 L/hr
Fnin=6.2 L/hr Fnin =6.3 L/hr Fnin_min =0 L/hr Fnin_max =10 L/hr
Fj=7000 L/hr Fj= 6800 L/hr Fj_ min=0 L/hr Fj_max=10,000 L/hr
Vdot=0.015m?/s | Vdot=0.017 m*/s | Vdot_ min=0 m%/s Vdot_max=0.03 m?/s




Table 4 Outputs for Bioreactor

Output Baseline (initial) Final Setpoint
Dissolved Oxygen DO =32.93 % DO=25%
Substrate S=1.761 g substrate/L S=1.65 g/L or 2.0 g/L
Temperature T=22.92 C T=25Cor15C
pH pH=5.38 pH=6.3

Results & Discussion
Wastewater Treatment 3x3 System
Final Project Part 1: Step Response for Process Gains

For sample results, will show for the wastewater treatment only due to space considerations. For
final project part 1 the students each are responsible for one input. She then does a step response
in the input and then calculates all the process gains relative to that input. Figure 5 shows a
change in the recycle fraction. The process gains by the recycle fraction are quite large with
some outputs exceeding the hundreds.

420

415 —
<
Z 410 —
]
8
© 405 [—
£%3

400 |=

sa \ | ! | !
20 30 40 50

(=}
=

280

275 j\

S (g siL)

20 30 40 50

r (fraction)
=i
2 3

T

o6 \ \ | \ !
] 10 20 30 40 50

Time (hr)

Figure 5. Step Response due to recycle fraction, r, in wastewater treatment.



Final Project Part 2: Relative Gain Array

For the students to obtain the best set of controller pairings, they use the relative gain array. The
relative gain array is the open loop (manual) process gain between an input and output over the
process gain for the same pairing when all the other inputs and outputs are perfectly regulated
[8]. Ifthe value is a fraction the system is considered amping since interactions make the
process gain effectively larger than when the system is completely open. If the value is greater
than one the system is crunching. The interactions due to the other controlled or closed loops
actually make the effective process gain less. The objective is to choose the pairings so that the
relative gain array is closest to one where system acts as if it is decoupled e.g. no interactions
from the other loops. The relative gain array also helps in tuning the individual controllers cause
one can plan for the interactions when all loops will be closed. The overall objective is that
when all loops are closed each loop is slightly underdamped (small overshoot past change in
setpoint) or slightly overdamped (approaching the setpoint quickly but not crossing over it).
Table 5 has the process gain matrix and shows why this is such a difficult system since process
gains go from single digits to thousands. Process time constants also change dramatically from
different input/output combinations. This part is done as a group.

Table 5 Process Gain Matrix

Inputs
Outputs Dilution Rate D Gas Rate W Recycle Fraction r
Cell Biomass X -4.6E+3 4.00 205.5
Substrate S -1.8E+3 1.52 -150.0
Dissolved Oxygen DO 39.8 -0.005 -0.82

Table 6 shows the calculated relative gains for all the input and output combinations. Highlighted
in yellow in Table 6 is the best set of controller pairings (closest relative gain value to 1.0).

Table 6 Relative Gain Array

Inputs
Outputs Dilution Rate D Gas Rate W Recycle Fraction r
Cell Biomass X -0.29 0.95 0.34
Substrate S 0.13 0.21 0.66
Dissolved Oxygen DO 1.16 -0.16 0.00

Table 7 shows the tuning rules for each individual pairing when done individually prior to closing
all the loops for the process.

Table 7 Tuning Pairs and Rules

Pairing System Type Tuning Rule Individually

Xvs W Slightly Amping Tune for slightly overdamped.
Svsr Somewhat Amping Tune for fairly to somewhat overdamped.

DO vs D Slightly Crunching Tune for slightly underdamped.




Final Project Part 3: Individual Controller Tuning

In part 3, each student is individually responsible to design a single PID controller for a specific
input/output pair that follows the tuning rules determined in Table 7. Initial controller tuning is
obtained by fitting a first order plus dead time model for the step response for that input/output
pair. The students use the resulting model with internal model based PID control tuning where the
only tuning parameter is a desired closed loop time constant that is typically chosen (if no inverse
response present) from the dead time plus one third to one half the process time constant calculated
for the simplified first order plus dead time approximation [8]. The student then tweaks controller
gain, integral or derivative time constant tuning parameters to get the desired control response
from Table 7. Control performance statistics such as percent overshoot, rise time, and settling time
are calculated, and brief description of control response performance and robustness provided.
Figure 6 shows the controller for recycle fraction, r, regulating substrate, S. The tuning rules in
Table 7 is to design this loop so its control response is fairly to somewhat overdamped.

Actual

278 — Desired

0 20 40 60 80 100 120 140 160 180 200

Actual
072 B Calculated

T ! ! ! ! ! ! ! ! !
o 20 40 60 80 100 120 140 160 180 200

Time (hrs)

Figure 6. Control response of recycle fraction, r, to substrate, S
Final Project Part 4: MIMO Control

As a group, the students take the tuning parameters for each individual controller done in Part 3 as
the starting tuning for the complete system to be regulated. The expectation is that by following
the tuning rules in Table 7 the interactions between control loops can be mitigated somewhat so
that each loop is slightly underdamped to overdamped in response to a setpoint change. Given
that the system is nonlinear there still may be quite a lot of tweaking of control parameters for one
or more of the control loops. There are trade offs in performance versus magnitude of disturbances
that may be caused in the other control loops. It is important for the students to realize that there
is no single set of ideal tuning parameters. Always there will be trade offs between performance
and robustness and how large a magnitude interactions between loops is acceptable. For some
processes product may still be of good quality even though a setpoint has not been quite reached
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yet. Or it is possible that some disturbance could result in product that is off specification. Each
process has its unique challenges, and it is critical to have students run different ones to gain greater



exposure. Figure 7 shows the hardest combination for the system with a fairly large setpoint change
in biomass, X, while maintaining both substrate concentration and dissolved oxygen at baseline
levels. Results of the interactions are fairly to somewhat underdamped even after some detuning
from the individual tunings in Part 3. Any more detuning hurts the performance for the other
setpoint combinations. It is important for students to gain an appreciation for what is good control
or not is dependent on the system being regulated. Some systems are much more challenging and
expectations cannot be as high. Here have a system with process gains of a thousandfold different
and time constants that are three to five fold different as well.

Student Performance on Nonlinear 2x2 Control Exam

The culmination of the control course is to have the students successfully be able to determine
proper pairing of two inputs to two outputs for a nonlinear process and design a set of controllers
that takes into account the interactions present between the control loops. The exam is given
timed with three hours. In Table 8, can see how the students performed with no final project (as
outlined in this paper) versus when they had a final project to motivate the students and to
provide more graded practice. As seen the results are impressive. Not only is the average score
higher (91.6 to 84.7) but has much less variation with a standard deviation of 7.3 as compared to
11.8.

Table 8 Student Performance on Nonlinear Multiple Input Multiple Output Exam

No Final Project Final Project
Years Taught 4 3
Mean 84.7 91.6
Standard Deviation 11.8 7.3

Future Work and Conclusion

In the future, the goal is to add more nonlinear systems with three or more inputs and outputs.
Initial work has been done on a distillation column with condenser and partial reboiler, and
simulation of a tabletop experiment [15] where a tank is heated, and fluid level is measured that
has a feed stream and salt stream entering with gravity flow exiting the tank to conductivity and
temperature sensors. The long-term objective is to design sufficient unit operations so that the
whole class can participate in plant-wide control project. The simulated nonlinear processes are
also ideal for students to use for learning gain scheduling where control parameters change with
input or output values. The models presented here have been used with dynamic matrix control
and multiple model predictive controllers by the authors. The simulated systems could be
readily used to teach design of experiments as well as different post and online parameter/output
estimation.

The key point is that students have a straightforward methodology to handle nonlinear multiple
input multiple output systems and feel comfortable applying this knowledge on a real industrial
process. Two students have gone on to industry (one as a process engineer and the other on a
research internship) where within the first month of work they re-tuned all the PID controllers
for their respective processes. One did so for a Campbell Soup production process and the other



for a research pilot plant. Neither student was the top student in his class getting grades of B+
and A- in the control course. Yet both due to the number and quality of nonlinear process
simulations felt completely comfortable to seize the opportunity to use what they had learned in
an industrial setting receiving praise and in the Campbell Soup case placement on more
advanced projects. It is critical to have our students work on as realistic case studies as possible
to not only learn the nuances and downfalls of applying controllers in different operating regions,
but to gain critical confidence in their abilities to succeed in the real world. This simply cannot
be done adequately using linear transfer functions as system models.
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Appendix
Wastewater Treatment Modeling Equations and Baseline Conditions

The system is governed by the following set of non-linear differential equations:

dx
E:ﬂx—0(1+r)x+rpx,
Bt pa+n
— =—Xx-D(1+7)S + DS,
dt v "
dDo u
——= Ko =X = D(1+7)D0 + DDO,, + aW [P0, ~ DO]

dx,
" D(1+r)X -D(B+1)X,

S DO
— X
Kg+S Kpo+DO

Growth rate depends on both substrate (S) and dissolved oxygen (DO): U = ey X

TABLE 2: BASELINE CONDITIONS

Variable Large set point Feed Units
change disturbance
186.9028 399.1684 g cells/I
196.8017 278.5263 g substrate/I
DO 1.9471 1.7817 mg O, /I
Xr 373.6888 798.3367 g cells/I
D 0.1227 0.13 hrt
w 50.88 110 hrt




r 0.6005 0.6 -
Sin 200 200 g cells/g substrate
Hmax 0.15 0.15 g substrate/I
Y 0.65 0.65 mg 0, /I
Ks 100 100 mg 02/ g substrate
Koo 2 2 hrt
KO 0.5 0.5 -
a 0.018 0.018 -
B 0.2 0.2 mg 0, /I
DO 0.5 0.5 mg 0, /I
DOmax 10 10 g cells/I

Pichia pastoris Bioreactor Modeling Equations and Baseline Conditions

S
%52 S > Serit
Growth kinetics u=<sK+S+ (—)
1 (Monod equation) ki
0 0<S< Seie
Serie = MsX
2 Cell growth Z_f S WX + ux
Substrate ds Fy Fin + Fyin
3 consumption - 75in - v S — (Ysxu + myX
_ .umax S
4  Substrate inhibiton ~ # = I
(K +S5+ f)
L
Nitrogen dN Fyin Fin + Fyin
5 consumption = "y N — N YupX
g  Specific product o Ky [H*] _{a ox (— 1) Cbeex (—AGz)}
formation rate Bp=He " K+ K, - [HY] + [H ]2 P\RT P\"rT
. , dP Fi + Fyi
7 Protein production ==- WTN“”L+ kaw " tp - X
Oxygen do F; Fin + Fy;
8 consumption Frinl $0in - L= v =0 — YoxuX + kya(0*—0)
) 1 1
9  Henry's law by Hrefe(_c(m_ﬁf))
10 Oxygen solubility in . _ PrYp
pure water pured,0 = T g
11 oxvgen solubility in s o k
the fermentor media media = YpureH,0%salt
Van't Reit (mass _ 2 (Pe\™" o
12 transfer) correlation kpa = (2'6 x10 (V_L) Vs> ) 3600
13 Reactor temperature a_ l(F- + Fyin)(Tin + T) + (AHren) - U (T+T1))
dt % in Nin in 28pCp 1z VpCp J
Jacket reactor afy _ F UAp
— = LT T, T+T,
14 temperature ac = v T ])+ijcpj( +17))
15 Phosphoric acid d_A _ ﬁ Fip + Fnin 4
consumption e~y “finT v
. (10K,, + K,[NH;D)[H*]* — QK2 + K, K41 [H,PO, ) [H*]?
16  Electron Neutralit w w woa
Y — KyyKazKas [H,POS[HY] = Kyy Koz Koz Koy [H,P0] = 0
Parameters Value Parameters Value
Max. specific growth rate(h~") Umax 0.146 Oxygen conc. in inlet stream (g/L) 0 O




Const. growth rate (MeOH/L) K 1.5 Nitrogen conc. (g/L) Ny, 14.7678
Growth Rate: s inhibit (MeOH/L) K; 8.86 H2PO4 conc. (g/L) An O
Maintenance term (MeOH/g) mg  0.0071 Substrate inlet temp. (°C) Ty, 20
Yield coeff. (s/cell) (MeOH/g) Ysx 0.84 Inlet temp. jacketed fluid (°C) Tj;m  6.779
Yield coeff.( NHs/cell) (NHs/g) Yvx 0.14 Heat transfer coeff. (J/hm2K) U 3.6E5
Protein production (mg g™ h™")  pup ~ 6.4417 Volume of jacket (g/L) V; 200
Michaelis pH function (mol L") K, 2.1195E-5 Heat transfer area (m?) A, 20
K, 2.39E-7 Density: reactor media (g/L) p 1080
Parameters of Arehenius eqn. a 1.4858 Specific heat capacity media (J/gK) Cp 4.18
b 3.6512 Density: jacket fluid (J/gK) p; 1113
Regnault const.(J mol~" K-") R2 0.9178 Specific heat capacity of fluid (J/gK)  ¢p;, 2.2
Apparent Gibbs energy (J mol™') AG, 42.1682 Heat of rxn (kJ/mol Oz const.) AH,., 300000
AG, 69.1584 13t step of H3PO4 diss. (mol/L) K., 7.25E-3
DCW to WCW ratio kaw 3.3 2"dstep of H3PO4 diss. (mol/L) K,, 6.31E-8
Solubility of media vs. pure H20 kg, 0.702 3" step of H3PO4 diss.(mol/L) K,; 3.98E-13
Gram substrate per gram cells Ysx 0.84 Equilibrium constant for water Ky  1E-14
Gram oxygen per gram cells Yox  1.452 Dissociation constant for NH3 Ky 1.8E-8
Gram nitrogen per gram cells Yvx 0.14 System pressure (atm) Py 1
Cell conc. inlet stream (g/L) X O Mole fraction of Oz in gas Yoo 1
Product conc. (g/L) P; 0
Inputs Symbol Baseline Min  Max Outputs Symbol Initial
Value Value
Substrate conc. (g/L) Sin 160 - - Reactor temp(°C) T 22.92
Flow into the Jacket (L/hr)  F; 7000 0 25000 | O2 (%) DO 32.93
Volumetric gas flow (m%/s)  V,,; 0.015 0 0.025 | pH in reactor pH 5.386
Flowrate in (L/hr) Fin 55 0 150 Product conc. (mg/L) P 2266
Flowrate of NHs(L/hr) Frin 6.2 0 15 Substrate conc. (g/L) S 1.761
Cell conc.(g/L) X 153.6




