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Nonlinear Multiple Input Multiple Output Process as a Final Project: 
Bringing Motivation to the Control Classroom 

Abstract 

This paper presents the results of applying a final project in an undergraduate chemical 
engineering control class.  The final project is a nonlinear simulation of a process that has 3 or 
more inputs and outputs that must be regulated.  The simulation includes additional disturbances 
such as input/output noise and load disturbances such as changes in feed concentration. The 
purpose is to bring the sometimes-esoteric world of control which is often taught 
overwhelmingly in the linear Laplace domain back to the reality of actual process applications 
that are tricky to control.  Not only does this provide motivation for the students to learn control 
but is introduced throughout the course in parts to accentuate this reality prior to each exam in 
the class. Overall, the students have shown increased efficacy resulting in higher grades for the 
second and third exams due to the final project being introduced.  It also is nice way to introduce 
something that has similar complexity for regulating actual unit operations in industry.   

Introduction 

Control Space 

The vastness of control theory is summarized in Figure 1. Control is a subject taught to all 
engineers except for civil, and yet seems like an island of its own.  The unique jargon taken from 
mechanical, electrical, etc. can be daunting to an undergraduate student.  Coupled with the often 
overreliance of dealing with linear systems in the Laplace Domain and control can come across as 
a very esoteric subject that has little meaning in the real world.  Seniors take to and light up when 
learning and implementing their final design projects. There is a sense that all the courses led to 
this moment and now it can be applied to building an actual process. And yet control is the subject 
arguably most critical to a graduating chemical engineer that most likely will have a first industrial 
job as a process engineer.  What does a process engineer do? Well, she is responsible for 
maintaining a process of unit operation(s) to run at specified conditions 7 days a week, 24 hours a 
day. Yes, she is essentially doing control.  Look again at Figure 1.  Realize that those of us that are 
control engineers, the applied mathematicians of the engineering world, do not cover all the space 
on the control map of theory. Even after many courses in advanced control or mathematics. Now 
consider this space of topics.  Which of them should be taught to undergraduate students? And to 
how much depth? Are we preparing students to go into the field of control? Or are we getting them 
ready to face industrial equipment, seasoned operators, and an intimidating Distributed Control 
System board containing tens to hundreds of control loops? And that does not include the fact that 
the processes are often highly nonlinear with little to no fundamental modeling available. Actual 
disturbances come from either poor control upstream or the fact that the multiple loops on a single 
unit operation interact with one another leading to effective process gains very different than when 
all the loops are open, and inputs are manipulated manually. And even though the beauty of a 
proportional integral and derivative (PID) controller is its simplicity and utility; it is severely 
hampered by being restricted to single pairs of one input to one output and that it has no idea what 
the actual input constraints are for the system. 



 

 

 
Figure 1. Map of Control Theory [1] 

Chemical Engineering Control Classes 

There have been discussions as far back as 2006 at various chemical engineering education 
symposiums where faculty have strongly considered removing process control from the 
curriculum, that it is a mature field, that it is unlikely to have much future impact on discovery of 
new technology [2]. And as stated earlier, the primary job of a process engineer is control. The 
pressure on control as a class increases with the advent of a strong push to reduce curriculums 
from 130+ credits to 120 credits to increase enrollment into engineering and make in theory 
retention of students in engineering easier. There have been papers published trying to push major 
changes in control education methodologies many limiting or removing Laplace Domain usage 
and increasing use of nonlinear simulations, and yet not happened to large extent [2],[3],[4],[5],[6]. 
Perhaps best summarized as follows: “Process control is a core course in the chemical engineering 
undergraduate curriculum, yet it sometimes suffers from an over-emphasis on analytical 
mathematics without proper motivation from real process challenges”[7]. 

What Is Industry Looking for? 

From Bequette 2019, [7] shows surveys from industry in 2006 to academic coverage in 2015 
shown in Figure 2.  Fascinating to look at industry needs which cover many advanced topics 
that are not covered in much depth or at all in academia at the single undergraduate course level. 
Much of the focus from industry appears to be fundamental modeling leveraged to optimization 
and advanced control. In Bequette 2019 [7] lists typical chemical engineering control curriculum 
where modeling, nonlinear dynamics or control optimization get one to two weeks at most. Not 



 

 

sufficient to meet what industry is requiring and another symptom of any control class is back 
to Figure 1 on control map of theory, does the course suffer scope creep and become more of a 
survey class than one with depth and real expertise obtained by the students. 

 
Figure 2. Survey 2006 Industry Mapped to Academia 2015 [7] 

Keeping It Real: Need To Teach Operating Regions 

There are many reasons to have the students focus and spend time on actual nonlinear systems.  
The obvious one is to make the simulation they are controlling seem much more relevant and 
interesting.  But the real purpose that is often lost in most control textbooks is that the reliance on 
the Laplace Domain has robbed the students of understanding the very key point of what an 
operating region is. There are many control papers in the literature let alone in textbooks that will 
simply represent this complicated nonlinear process as a matrix of transfer functions.  And yes, 
they will include input constraints.  But all these transfer functions do not hold over the range of 
inputs given for the real process. It is almost comical if it did not have real world repercussions. 
Students need to understand the key concept that when perturbing the system and fitting it to some 
reduced transfer function such as a first order plus dead time model that is now going to be used 
for controller design that this is a linearization of the process and is only accurate within the 
baseline operating region.  And that is true only if the magnitude of the perturbation did not exceed 
the operating region they are trying to model. Every time a student is taught to use a model for a 
system in the Laplace Domain only, they lose the fact that the controller designed will not work 
over the whole range of the input constraints.  In fact, that is more a rarity than the norm.  Transfer 
functions for lime kilns, cardiac arrest patients, reactive etchers, etc. do not hold for the range of 
inputs outlined in final projects given to students[8]. Representing a nonlinear multivariable 
process by a matrix of transfer functions leads to real repercussions for students that think these 
are at least close to accurate models that reflect a dynamic range of responses over the input 
constraints. And instead end up with a system that a single controller can regulate. There are no 
operating regions. Operating region is not an easy concept to teach.  But it is an easy one to show 
when using proper simulations for the nonlinear system. Use transfer functions for controller 
design not to simulate the actual process.  Make students understand that PID control design is in 



 

 

its essence a linear controller based on a linearization about one operating point.  How well that 
controller will hold at different input values will depend on how nonlinear the system is.  When 
the controller starts to fail the system is in a new operating region, and a new linearized model for 
new PID tuning will be needed.  The straightforward next step to nonlinear control by applying 
gain scheduling is easily introduced this way. All disturbances to the system can be seen as 
perturbations to the system that may have moved it to a new operating region.  

Proposed Chemical Engineering Curriculum 

The authors provided an outline of their chemical engineering curriculum in [9]. It can be 
summarized as an abbreviated first exam on linear control theory covering Laplace Domain to get 
to what are process zeros and their importance on dynamic responses and process poles determine 
process time constants. Then applying controller direct synthesis to see how right half plane zeros 
cannot be canceled, and that controller affects primarily closed loop poles or eigenvalues. The 
second exam is on nonlinear control of a single input single output process using internal model 
based PID controller tuning. Large set point changes and other disturbances are applied.  The third 
exam is on a nonlinear 2 input 2 output multiple input multiple output (2x2 MIMO) system. 
Students use relative gain analysis for control loop pairing and tuning rules. 

The additional work here is inclusion of a final project that has more complexity than can be given 
in an in-class exam that is motivational for students to use throughout the course to introduce new 
concepts and have students complete that section prior to when it will be used in an exam. Instead 
of a final students work on closing all the multivariable single input single output loops make any 
necessary tuning adjustments and then test the controller on various setpoint changes and 
disturbances. 

Final Project General Framework 

Nonlinear MIMO setup with more than 2 inputs by 2 outputs. Not a take home test. Have 
input/output noise to make it more realistic. Students would submit parts throughout the 
course to help prepare for the exams too.  Each section is then graded and corrected prior to 
going on to the next stage of the project. Can not work with another student but feel free to ask 
the instructor questions. 

 
    Part 1: Step Responses and Process Gains. (20 pts)  Students perturb the process by doing a  

     Step response for each input and then calculate all process gains. Done prior to   
     Nonlinear Single Input Single Output Exam 2. 

    Part 2: Determine the Relative Gain Array, Input-Output Pairings. (20 pts)  Students use the   
                process gains found in Part 1 to calculate the Relative Gain Array then determine the  
                controller input output pairs and their tuning strategies. Done prior to Nonlinear  
                Multiple Input Multiple Output (2x2) Exam 3.  
    Part 3: First Order Plus Dead Time Models and Individual Controller Tuning (40 pts)   
                Students use the step responses done in Part 1 along with the calculated controller pairs  
                to find each process time constant and delay.  Then using these models and the tuning  
                rules from Part 2 students obtain Multiple Variable Single Input Single Output  
                (MV-SISO controllers). Done prior to Exam 3. 
    Part 4: MIMO Control. (20 pts) All MV-SISO controllers are now closed at same time  



 

 

                (not individually as in Part 3 using the best tuning from Part 3. The control of the  
                complete process is evaluated and any additional tweaking in tuning done at various 
                setpoint combinations and disturbances. This is handed in during the Finals Week. 

Wastewater Treatment 3x3 System 

The wastewater treatment process has a bioreactor, settler with recycle, and aerator. The process 
has very different time scales and can exhibit changes in gain sign and inverse responses. A process 
block diagram of the system see fig. 1.  The bioreactor is essentially an aerobic digester. 
 

 

Figure 2. Process Block Diagram Wastewater Treatment Process 
 
The objective is to regulate cell concentration (X), dissolved oxygen level (DO), and substrate 
concentration (S) by manipulating the dilution rate (flow of feed into the process, D), the gas 
dilution rate/flow (W), and recycle fraction (r).  There is some noise present in the measurements 
and occasionally there is a disturbance in the feed substrate concentration, Sin. 

 
Table 1 Inputs for Wastewater Treatment 

Input Baseline 
(initial) 

Final Step Constraints 

Dilution Rate D = 0.13 hr-1                               D = 0.15 hr-1                               Dmin = 0 hr-1                               Dmax = 0.4 hr-1                               
Gas Rate W = 110 hr-1                               W = 100 hr-1                               Wmin = 0 hr-1                               Wmax = 400 hr-1                               
Recycle % r=0.6 r=0.7 rmin=0 rmax  = 1 

 
Distubance Input 
Sin=200 g/L   Baseline   Sin_dist = 180 g/L (during a disturbance) 
 

Table 2 Outputs for Wastewater Treatment 
Output Baseline (initial) Final Setpoint 

Cell Biomass X= 400 g cells/L X = 420 g cells/L 
Dissolved Oxygen DO = 1.783 mg O2/L DO=1.65 mg O2/L 

Substrate S=280 mg/L S=260 mg/L 

 
 

W air flow 



 

 

 

Therapeutic Production Bioreactor 4x4 System 

 
Figure 3. Realistic Bioreactor Setup  [10] 

 
Growth Model, Kinetics and Consumption 
Growth kinetics in yeast cultures are commonly described by models based on the Monod equation 
which accounts for substrate inhibition only (Eq. 1) [11]. The maintenance term for substrate 
consumption (Eq. 3) is the amount of substrate required for the cell to remain alive but not increase 
in density. The volume in and out of the reactor is equal, thus, is assumed constant.  

 

Figure 4. 3-dimensional representation of specific product formation rate [12] 

Specific Product Formation Rate  
 
This function (Eq. 6) is the product of three separate terms. The first term 𝜇௉బ ,is the characteristic 
on the given heterologous protein (rHSA). The second term describes the influence of [H+] on the 
specific production formation rate and the third term describes the effect of temperature which can 
either enhance or hinder product formation as shown in Figure 4 [12].  
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There are over 500 proteins that can be expressed using P. pastoris systems and product formation 
rates vary greatly. The product to biomass yield, YPX is usually assumed as constant which is 
untrue. Zhang et al. [11] provides data for the variation of YPX with time and substrate concentration 
respectively (Eq. 7).  

Oxygen Consumption and Transfer 

Dissolved oxygen concentration in aerobic fermentations is one of the most important parameters 
and most difficult to accurately model. This varies slightly with most other bioreactor models for 
oxygen consumption (Eq. 8) as it includes the concentration changes due to dilution with the 
addition of substrate and ammonium hydroxide. One difficulty with oxygen transfer models is 
predicting the oxygen solubility in the fermenter media with respect to oxygen solubility in pure 
water [11]. For oxygen solubility in pure water (Eq. 10), we chose to model this as a function of 
both temperature and pressure using Henry’s law (Eq. 9) as is explained by Doran [13]. Nagy [14] 
uses a Stechnov type equation to account for decrease in oxygen solubility (Eq.11) due to dissolved 
salts in the fermentor media. At this point, our model does not have a detailed account for the 
decrease in solubility of oxygen due to dissolved salts. Predicting the mass transfer coefficient, 
kla, accurately presents another problem, this done using the Van’t Reit correlation (Eq. 12). 

Energy Balance and Temperature Control 

Temperature (Eq. 13) is an essential parameter to be monitored in bioprocesses. These equations 
are very similar to those used by Nagy [14] with the exception of the ammonium hydroxide flow 
term. The heat generation term uses the heat of reaction as well as the oxygen yield per biomass 
(g/g). The reactor temperature ODE has a negative sign because heat is usually lost from the reactor 
to the jacketed fluid (Eq. 14) causing the reaction to be exothermic. 

 pH Changes and Control 

 It is assumed that the ammonium hydroxide added to control pH is enough to provide the cells 
with a nitrogen source.  Solving the electron neutrality equation (Eq. 16) determines the 
concentration of [H+]. The phosphoric acid (A) is fed at a concentration of Ain. The consumption 
of phosphorous (Eq. 15) is considered negligible to amount present. The concentration of 
ammonia and phosphoric acid is in units of moles/L and the yield is converted by dividing by 
mwNH3

 [11]. 

The objective is to regulate dissolved oxygen level (DO), substrate concentration (S), 
temperature (T) and pH. The inputs are the feed flow rate, Fin, the ammonia flow rate, Fnin, the 
jacket flow rate, Fj, and the volumetric gas flow rate, Vdot. 

 

Table 3 Inputs for Bioreactor 
Baseline (initial) Final Step Constraints 

Fin = 65 L/hr                               Fin = 63 L/hr                               Fin_min = 0 L/hr                               Fin_max = 150 L/hr                               
Fnin = 6.2 L/hr                              Fnin = 6.3 L/hr                              Fnin_min = 0 L/hr                               Fnin_max =10 L/hr                               
Fj= 7000 L/hr Fj= 6800 L/hr Fj_min=0 L/hr Fj_max=10,000 L/hr 
Vdot= 0.015 m3/s Vdot= 0.017 m3/s Vdot_min=0 m3/s Vdot_max=0.03 m3/s 



 

 

 
Table 4 Outputs for Bioreactor 

Output Baseline (initial) Final Setpoint 
Dissolved Oxygen DO = 32.93 % DO = 25 % 

Substrate S=1.761 g substrate/L S=1.65 g/L or 2.0 g/L 
Temperature T=22.92 C T=25 C or 15 C 

pH pH=5.38 pH=6.3 
 
Results & Discussion 

Wastewater Treatment 3x3 System 

Final Project Part 1: Step Response for Process Gains 

For sample results, will show for the wastewater treatment only due to space considerations. For 
final project part 1 the students each are responsible for one input.  She then does a step response 
in the input and then calculates all the process gains relative to that input.  Figure 5 shows a 
change in the recycle fraction.  The process gains by the recycle fraction are quite large with 
some outputs exceeding the hundreds.  

 
Figure 5. Step Response due to recycle fraction, r, in wastewater treatment. 

 

 



 

 

Final Project Part 2: Relative Gain Array 

For the students to obtain the best set of controller pairings, they use the relative gain array.  The 
relative gain array is the open loop (manual) process gain between an input and output over the 
process gain for the same pairing when all the other inputs and outputs are perfectly regulated 
[8].  If the value is a fraction the system is considered amping since interactions make the 
process gain effectively larger than when the system is completely open.  If the value is greater 
than one the system is crunching. The interactions due to the other controlled or closed loops 
actually make the effective process gain less. The objective is to choose the pairings so that the 
relative gain array is closest to one where system acts as if it is decoupled e.g. no interactions 
from the other loops. The relative gain array also helps in tuning the individual controllers cause 
one can plan for the interactions when all loops will be closed.  The overall objective is that 
when all loops are closed each loop is slightly underdamped (small overshoot past change in 
setpoint) or slightly overdamped (approaching the setpoint quickly but not crossing over it). 
Table 5 has the process gain matrix and shows why this is such a difficult system since process 
gains go from single digits to thousands.  Process time constants also change dramatically from 
different input/output combinations. This part is done as a group. 

Table 5 Process Gain Matrix 
 Inputs 

Outputs Dilution Rate D Gas Rate W Recycle Fraction r 
Cell Biomass X -4.6E+3 4.00 205.5 

Substrate S -1.8E+3 1.52 -150.0 
Dissolved Oxygen DO 39.8 -0.005 -0.82 

 
Table 6 shows the calculated relative gains for all the input and output combinations. Highlighted 
in yellow in Table 6 is the best set of controller pairings (closest relative gain value to 1.0).  
 

Table 6 Relative Gain Array 
 Inputs 

Outputs Dilution Rate D Gas Rate W Recycle Fraction r 
Cell Biomass X -0.29 0.95 0.34 

Substrate S 0.13 0.21 0.66 
Dissolved Oxygen DO 1.16 -0.16 0.00 

 
Table 7 shows the tuning rules for each individual pairing when done individually prior to closing 
all the loops for the process. 
 

Table 7 Tuning Pairs and Rules 
Pairing System Type Tuning Rule Individually 
X vs W Slightly Amping Tune for slightly overdamped. 
S vs r Somewhat Amping Tune for fairly to somewhat overdamped. 

DO vs D Slightly Crunching Tune for slightly underdamped. 
 
 



 

 

Final Project Part 3: Individual Controller Tuning 

In part 3, each student is individually responsible to design a single PID controller for a specific 
input/output pair that follows the tuning rules determined in Table 7.  Initial controller tuning is 
obtained by fitting a first order plus dead time model for the step response for that input/output 
pair. The students use the resulting model with internal model based PID control tuning where the 
only tuning parameter is a desired closed loop time constant that is typically chosen (if no inverse 
response present) from the dead time plus one third to one half the process time constant calculated 
for the simplified first order plus dead time approximation [8]. The student then tweaks controller 
gain, integral or derivative time constant tuning parameters to get the desired control response 
from Table 7. Control performance statistics such as percent overshoot, rise time, and settling time 
are calculated, and brief description of control response performance and robustness provided. 
Figure 6 shows the controller for recycle fraction, r, regulating substrate, S.  The tuning rules in 
Table 7 is to design this loop so its control response is fairly to somewhat overdamped.  

 

Figure 6. Control response of recycle fraction, r, to substrate, S 

 
Final Project Part 4: MIMO Control 

As a group, the students take the tuning parameters for each individual controller done in Part 3 as 
the starting tuning for the complete system to be regulated. The expectation is that by following 
the tuning rules in Table 7 the interactions between control loops can be mitigated somewhat so 
that each loop is slightly underdamped to overdamped in response to a setpoint change.  Given 
that the system is nonlinear there still may be quite a lot of tweaking of control parameters for one 
or more of the control loops.  There are trade offs in performance versus magnitude of disturbances 
that may be caused in the other control loops.  It is important for the students to realize that there 
is no single set of ideal tuning parameters.  Always there will be trade offs between performance 
and robustness and how large a magnitude interactions between loops is acceptable.  For some 
processes product may still be of good quality even though a setpoint has not been quite reached  



 

 

A. 

B. 

C. 

      Figure 7. Control responses all loops closed. A. W vs X   B. r vs S  C. D vs DO 

 
yet.  Or it is possible that some disturbance could result in product that is off specification.  Each 
process has its unique challenges, and it is critical to have students run different ones to gain greater 



 

 

exposure. Figure 7 shows the hardest combination for the system with a fairly large setpoint change 
in biomass, X, while maintaining both substrate concentration and dissolved oxygen at baseline 
levels.  Results of the interactions are fairly to somewhat underdamped even after some detuning 
from the individual tunings in Part 3.  Any more detuning hurts the performance for the other 
setpoint combinations.  It is important for students to gain an appreciation for what is good control 
or not is dependent on the system being regulated.  Some systems are much more challenging and 
expectations cannot be as high.  Here have a system with process gains of a thousandfold different 
and time constants that are three to five fold different as well. 

Student Performance on Nonlinear 2x2 Control Exam 

The culmination of the control course is to have the students successfully be able to determine 
proper pairing of two inputs to two outputs for a nonlinear process and design a set of controllers 
that takes into account the interactions present between the control loops.  The exam is given 
timed with three hours.  In Table 8, can see how the students performed with no final project (as 
outlined in this paper) versus when they had a final project to motivate the students and to 
provide more graded practice. As seen the results are impressive.  Not only is the average score 
higher (91.6 to 84.7) but has much less variation with a standard deviation of 7.3 as compared to 
11.8.   

Table 8 Student Performance on Nonlinear Multiple Input Multiple Output Exam 

 No Final Project Final Project 
Years Taught 4 3 

Mean 84.7 91.6 
Standard Deviation 11.8 7.3 

 

Future Work and Conclusion 

In the future, the goal is to add more nonlinear systems with three or more inputs and outputs. 
Initial work has been done on a distillation column with condenser and partial reboiler, and 
simulation of a tabletop experiment [15] where a tank is heated, and fluid level is measured that 
has a feed stream and salt stream entering with gravity flow exiting the tank to conductivity and 
temperature sensors. The long-term objective is to design sufficient unit operations so that the 
whole class can participate in plant-wide control project. The simulated nonlinear processes are 
also ideal for students to use for learning gain scheduling where control parameters change with 
input or output values. The models presented here have been used with dynamic matrix control 
and multiple model predictive controllers by the authors.  The simulated systems could be 
readily used to teach design of experiments as well as different post and online parameter/output 
estimation.   

The key point is that students have a straightforward methodology to handle nonlinear multiple 
input multiple output systems and feel comfortable applying this knowledge on a real industrial 
process.  Two students have gone on to industry (one as a process engineer and the other on a 
research internship) where within the first month of work they re-tuned all the PID controllers 
for their respective processes.  One did so for a Campbell Soup production process and the other 



 

 

for a research pilot plant.  Neither student was the top student in his class getting grades of B+ 
and A- in the control course. Yet both due to the number and quality of nonlinear process 
simulations felt completely comfortable to seize the opportunity to use what they had learned in 
an industrial setting receiving praise and in the Campbell Soup case placement on more 
advanced projects. It is critical to have our students work on as realistic case studies as possible 
to not only learn the nuances and downfalls of applying controllers in different operating regions, 
but to gain critical confidence in their abilities to succeed in the real world.  This simply cannot 
be done adequately using linear transfer functions as system models.   

Acknowledgments 

This work was supported by the National Science Foundation 568 under Grant # 1827820. 

References  

[1] Douglas, Brian, Engineering Media, Map of Control Theory figure. Retrieved from  
      https://engineeringmedia.com/map-of-control 

[2] Edgar, Thomas F., Babatunde A., Ogunnaike, James J., Downs, Kenneth R., Muske, and B. 
      Wayne Bequette, “Renovating the undergraduate process control course”, Computers &  
       Chemical Engineering, 30, 2006,1749–1762.  

[3] Haugen, Finn, and Kjell Erik, Wolden, “A Revised View on Teaching Basic Process  
      Control”, 10th IFAC Symposium Advances in Control Education, Sheffield, UK, 2013, 108- 
      113.  

[4] Bequette, B.Wayne, Schott, Kevin D., Prasad, Vekatesh, Natarajan, and Ramesh R., Rao,  
    “Case Study Projects in Undergraduate Process Control Course”, Chemical Engineering  
     Education, 32(3), 1998, 214-9.  

[5] Rossiter, J.A., B., Pasik-Duncan, Sebastian, Dormido, Ljubo, Vlacic, Bryn, Jones, and 
      Richard Murray, “A Survey of good practice in control education”, European Journal of  
      Engineering Education, Taylor & Francis, 2018, 1-23.  
 

[6] Omar, Hanafy M., “Enhancing automatic control learning through Arduino-based projects”,  
      European Journal of Engineering Education, 2017, 1-12.  

[7] Bequette, B. Wayne,”Process control practice and education: Past, present and  
      future”,Computers and Chemical Engineering, 128,2019, 538-556. 
 
[8] Bequette, B. Wayne, Process Control Modeling, Design and Simulation 1st Ed, Prentice Hall,  
      Upper Saddle River, NJ, 2002. 

[9] Aufderheide B, Wilkes MA. Process Control Class for the Future Process Engineer. 2019  
      ASEE Southeastern Section Conference Proceedings. 2019 March;(150). 
 



 

 

[10] Open Source Ecology, Real Life Bioreactor. Retrieved from 
         https://wiki.opensourceecology.org/wiki/File:Real_life_bioreactor.png 

[11] Zhang, W. Et al, 2000, Modeling Pichia pastoris Growth on Methanol and Optimizing the  
        Production of a Recombinant Protein, the Heavy- Chain Fragment C of Botulinum  
        Neurotoxin, Sterotype A. Biotechnol Bioeng. Vol. 70, 1-8. 
 
[12] Kupcsulik, B. et al, 2005, Optimization of specific product formation rate by statistical and  
       formal kinetic model descriptions of an HSA producing Pichia pastoris Muts strain, Chem  
       Biochem Eng Q., Vol.19, 99-108.  
 
[13] Doran, P.M. (1995) Bioprocess Engineering Principles. Elsevier Science & Technology  
        Books. P. 205-208 
 
[14] Nagy, Z.K. (2007) Model based control of a yeast fermentation bioreactor using optimally  
        designed artificial neural networks. Chem. Eng J, Vol. 127, 95-109. 
 
[15] Bequette BW, Aufderheide B, Prasad V, Puerta F. A Process Control Experiment Designed 
        for a Studio Course. Proceedings of the Topical Conference on Chemical Engineering  
        Education in the New Millenium at 2000 American Institute Chemical Engineering Annual  
        Meeting. 2000 November;315-320. 
 

Appendix 

Wastewater Treatment Modeling Equations and Baseline Conditions 

The system is governed by the following set of non-linear differential equations: 
𝑑𝑋

𝑑𝑡
= 𝜇𝑋 − 𝐷(1 + 𝑟)𝑋 + 𝑟𝐷𝑋𝑟 

𝑑𝑆

𝑑𝑡
=

𝜇

𝑌
𝑋 − 𝐷(1 + 𝑟)𝑆 + 𝐷𝑆𝑖𝑛 

𝑑𝐷𝑂

𝑑𝑡
= −𝐾0

𝜇

𝑌
𝑋 − 𝐷(1 + 𝑟)𝐷𝑂 + 𝐷𝐷𝑂𝑖𝑛 + 𝛼𝑊[𝐷𝑂𝑚𝑎𝑥 − 𝐷𝑂] 

𝑑𝑋𝑟

𝑑𝑡
= 𝐷(1 + 𝑟)𝑋 − 𝐷(𝛽 + 𝑟)𝑋𝑟 

Growth rate depends on both substrate (S) and dissolved oxygen (DO):     𝜇 = 𝜇௠௔௫ ×
ௌ

௄ೄାௌ
×

஽ை

௄ವೀା஽ை
 

 
TABLE 2: BASELINE CONDITIONS 

Variable Large set point 
change 

Feed 
disturbance 

Units 

X 186.9028 399.1684 g cells/l 
S 196.8017 278.5263 g substrate/l 

DO 1.9471 1.7817 mg O2 /l 
Xr 373.6888 798.3367 g cells/l 
D 0.1227 0.13 hr-1 
W 50.88 110 hr-1 



 

 

r 0.6005 0.6 - 
Sin 200 200 g cells/g substrate 

𝜇௠௔௫ 0.15 0.15 g substrate/l 
Y 0.65 0.65 mg O2 /l 
KS 100 100 mg O2 / g substrate 

KDO 2 2 hr-1 
K0 0.5 0.5 - 
α 0.018 0.018 - 
β 0.2 0.2 mg O2 /l 

DOin 0.5 0.5 mg O2 /l 
DOmax 10 10 g cells/l 

 

Pichia pastoris Bioreactor Modeling Equations and Baseline Conditions 

1 
Growth kinetics 
(Monod equation) 

𝜇 =  ൞

𝜇௠௔௫𝑆

𝐾 + 𝑆 + ൬
𝑆ଶ

𝐾௜
൰

𝑆 > 𝑆௖௥௜௧

0 0 ≤ 𝑆 <  𝑆௖௥௜௧

 

𝑆௖௥௜௧ = 𝑚௦𝑋 

2 Cell growth 
𝑑𝑋

𝑑𝑡
=  − 

𝐹௜௡ +  𝐹ே௜௡

𝑉
𝑋 +  𝜇𝑋 

3 
Substrate 
consumption 

𝑑𝑆
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4 Substrate inhibition 𝜇 =  
𝜇௠௔௫
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𝑆ଶ

𝐾௜
൰
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5 
Nitrogen 
consumption 

𝑑𝑁

𝑑𝑡
=  − 
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6 
Specific product 
formation rate 𝜇௉ = 𝜇௉బ ∙

𝐾ଵ ∙ [𝐻ା]
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7 Protein production 𝑑𝑃

𝑑𝑡
=  − 

𝐹௜௡ + 𝐹ே௜௡

𝑉
+ 𝑘ௗ௪ ∙ 𝜇௉ ∙ 𝑋 

8 
Oxygen 
consumption 

𝑑𝑂

𝑑𝑡
=  − 

𝐹௜௡

𝑉
𝑂௜௡ − 

𝐹௜௡ + 𝐹ே௜௡

𝑉
𝑂 − 𝑌ை௑𝜇𝑋 + 𝑘௅𝑎(𝑂∗ − 𝑂) 

9 Henry’s law 
𝐻 = 𝐻௥௘௙𝑒
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10 
Oxygen solubility in 
pure water 𝑂௣௨௥௘ுమை

∗ =  
𝑃்𝑌ைீ

𝐻
 

11 
oxygen solubility in 
the fermentor media 

𝑂௠௘ௗ௜௔
∗ = 𝑂௣௨௥௘ுమை

∗ 𝑘௦௔௟௧ 

12 
Van’t Reit (mass 
transfer) correlation 𝑘௅𝑎 =  ቆ2.6 𝑥 10ିଶ ൬

𝑃

𝑉௅
൰

଴.ସ

 𝑉௦
଴.ହቇ 3600 

13 Reactor temperature 
𝑑𝑇

𝑑𝑡
=  

1

𝑉
(𝐹௜௡ + 𝐹ே௜௡)(𝑇௜௡ + 𝑇) +  

(−∆𝐻௥௫௡)
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14 
Jacket reactor 
temperature 

𝑑𝑇௃

𝑑𝑡
=  

𝐹௃

𝑉
(𝑇௃ ,௜௡ − 𝑇௃) +

𝑈𝐴௛

𝑉𝜌௝𝑐௉ೕ
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15 
Phosphoric acid 
consumption 

𝑑𝐴

𝑑𝑡
=  − 

𝐹௜௡

𝑉
𝐴௜௡ − 

𝐹௜௡ + 𝐹ே௜௡

𝑉
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16 Electron Neutrality 
(10𝐾௪ + 𝐾௕[𝑁𝐻ଷ])[𝐻ା]ସ − (2𝐾௪

ଶ + 𝐾௪𝐾௔ଵ[𝐻ଶ𝑃𝑂ସ])[𝐻ା]ଶ

− 𝐾௪𝐾௔ଶ𝐾௔ଵ[𝐻ଶ𝑃𝑂ସ][𝐻ା] − 𝐾௪𝐾௔ଷ𝐾௔ଶ𝐾௔ଵ[𝐻ଶ𝑃𝑂ସ] = 0 
   

Parameters  Value Parameters  Value 
Max. specific growth rate(h–1) 𝜇௠௔௫  0.146 Oxygen conc. in inlet stream (g/L) 𝑂௜௡ 0 



 

 

Const.  growth rate (MeOH/L) 𝐾 1.5 Nitrogen conc.  (g/L) 𝑁௜௡ 14.7678 
Growth Rate: s inhibit (MeOH/L) 𝐾௜ 8.86 H2PO4 conc. (g/L) 𝐴௜௡ 0 
Maintenance term (MeOH/g) 𝑚௦ 0.0071 Substrate inlet temp. (°C) 𝑇௜௡ 20 
Yield coeff. (s/cell) (MeOH/g) 𝑌ௌ௑ 0.84 Inlet temp.  jacketed fluid (°C) 𝑇௝௜௡ 6.779 
Yield coeff.( NH3/cell) (NH3/g) 𝑌ே௑ 0.14 Heat transfer coeff. (J/hm2K) 𝑈 3.6E5 
Protein production (mg g–1 h–1) 𝜇௉బ  6.4417 Volume of jacket (g/L) 𝑉௝ 200 
Michaelis pH function (mol L-1) 𝐾ଵ 2.1195E-5 Heat transfer area (m2) 𝐴௛  20 
 𝐾ଶ 2.39E-7 Density: reactor media (g/L) 𝜌 1080 
Parameters of Arehenius eqn. 𝑎 1.4858 Specific heat capacity media (J/gK) 𝐶௉ 4.18 
 𝑏 3.6512 Density: jacket fluid (J/gK) 𝜌௝ 1113 
Regnault const.(J mol–1 K–1) 𝑅ଶ 0.9178 Specific heat capacity of fluid (J/gK) 𝑐௉ೕ

 2.2 

Apparent Gibbs energy (J mol–1) ∆𝐺ଵ 42.1682 Heat of rxn (kJ/mol O2 const.) ∆𝐻௥௫௡ 300000 
 ∆𝐺ଶ 69.1584 1st step of H3PO4 diss. (mol/L) 𝐾௔ଵ 7.25E-3 
DCW to WCW ratio 𝑘ௗ௪  3.3 2ndstep of H3PO4 diss. (mol/L) 𝐾௔ଶ 6.31E-8 
Solubility of media vs. pure H2O 𝑘௦௔௟௧  0.702 3rd step of H3PO4 diss.(mol/L) 𝐾௔ଷ 3.98E-13 
Gram substrate per gram cells 𝑌ௌ௑ 0.84 Equilibrium constant for water 𝐾ௐ 1E-14 
Gram oxygen per gram cells 𝑌ை௑ 1.452 Dissociation constant for NH3 𝐾௕ 1.8E-8 
Gram nitrogen per gram cells 𝑌ே௑ 0.14 System pressure (atm) 𝑃் 1 
Cell conc. inlet stream (g/L) 𝑋௜௡ 0 Mole fraction of O2 in gas 𝑌ைீ 1 
Product conc. (g/L) 𝑃௜௡ 0    

 

Inputs Symbol 
Baseline 
Value 

Min Max Outputs Symbol 
Initial 
Value 

Substrate conc. (g/L) 𝑆௜௡ 160 - - Reactor temp(°C) T 22.92 
Flow into the Jacket (L/hr) 𝐹௝ 7000 0 25000 O2 (%) 𝐷𝑂 32.93 
Volumetric gas flow (m3/s) 𝑉ௗ௢௧ 0.015 0 0.025 pH in reactor 𝑝𝐻 5.386 
Flowrate in (L/hr) 𝐹௜௡ 55 0 150 Product conc. (mg/L) 𝑃 2266 
Flowrate of NH3(L/hr) 𝐹௡௜௡ 6.2 0 15 Substrate conc. (g/L) 𝑆 1.761 
     Cell conc.(g/L) 𝑋 153.6 

 


