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Abstract

In this article, we review our recently introduced methods for obtaining strictly positive lower bounds
on the top Lyapunov exponent of high-dimensional, stochastic differential equations such as the weakly-
damped Lorenz-96 (L96) model or Galerkin truncations of the 2d Navier-Stokes equations. This hall-
mark of chaos has long been observed in these models, however, no mathematical proof had been made
for either deterministic or stochastic forcing.

The method we proposed combines (A) a new identity connecting the Lyapunov exponents to a
Fisher information of the stationary measure of the Markov process tracking tangent directions (the
so-called “projective process”); and (B) an L'-based hypoelliptic regularity estimate to show that this
(degenerate) Fisher information is an upper bound on some fractional regularity. For L96 and GNSE, we
then further reduce the lower bound of the top Lyapunov exponent to proving that the projective process
satisfies Hormander’s condition. We review the recent contributions of the first and third author on the
verification of this condition for the 2d Galerkin-Navier-Stokes equations in a rectangular, periodic box
of any aspect ratio. Finally, we briefly contrast this work with our earlier work on Lagrangian chaos in
the stochastic Navier-Stokes equations. We end the review with a discussion of some open problems.
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1 Lyapunov exponents for stochastic differential equations

Understanding the “generic” long-term dynamics of high (or infinite) dimensional nonlinear systems far
from equilibrium remains a daunting task. In physical applications of interest, many such systems are both
subject to unpredictable external forcing and observed to be chaotic in the sense of being very sensitive to the
initial condition and forcing. Hence, for all practical purposes, the exact dynamics of any specific trajectory
cannot be predicted far in advance and any controlled experiments will not be exactly repeatable. Instead of
reckoning such systems one trajectory at a time, a common practice is to view initial conditions as random,
i.e., distributed according to some probabilistic law, and to attempt to understand how this law evolves
as it is transported by the dynamics. In this context, the relevant “time-invariant” objects are equilibrium
probabilistic laws on the phase space of the system, often referred to as invariant measures or stationary
measures.

There is a well-developed abstract theory (smooth ergodic theory) for understanding the invariant mea-
sures of chaotic systems, their geometric properties, and how these relate to the asymptotic regimes of
trajectories initiated from “typical” initial conditions. On the other hand, it is quite hard to verify math-
ematically that this abstract program applies to systems of practical interest. There are already extremely
challenging open problems for vastly simplified 2d toy models of the kinds of chaotic behavior seen in fluid
dynamics, e.g., the Chirikov standard map discussed below in Section 1.1.

It turns out that verifying and understanding chaotic properties is far more tractable for systems subjected
to random noise. The kinds of systems we have in mind are, for example, hydrodynamical settings such as
with wind over a sail, a weather or climate system, or nonlinear wave systems. In these settings it has long
been suggested to study the random dynamical system generated by the PDE or ODE subjected to random
external forcing, and this is often done in applied mathematics (see e.g. [27,70] and the references therein).
Even with the simplifications coming from the random forcing, and despite considerable efforts, a thorough,
mathematically rigorous, understanding of these random systems is still in its infancy, with many basic open
questions remaining.

In this article we will review existing work and our recent contributions [16,21] in proving that a given
system of interest modeled by a stochastic differential equation is chaotic as in high sensitivity to initial
conditions for trajectories initiated at Lebesgue-typical points in phase space. The specific systems we apply
our methods to are the Lorenz-96 system [67] and Galerkin truncations of the 2d Navier-Stokes equations in
a rectangular, periodic box (of any aspect ratio), provided they are subjected to sufficiently strong stochastic
forcing' (equivalently, sufficiently weak damping) and are sufficiently high dimensional. These are the first
results of this type for such models, despite overwhelming numerical evidence (see e.g. [27,54, 70, 74]).
Specifically we prove for these models that if the damping parameter is ¢, then the top Lyapunov exponent
(see Sections 1.1 and 1.2 for definition) satisfies

€
lim ﬁ =00
e—0 €

as € — 0 and in particular, Jey > 0 such that for all € € (0, €p), A] > 0.
Outline

In Section 1 we give background on Lyapunov exponents for stochastic differential equations (SDEs). Sec-
tion 2 concerns formulae of Lyapunov exponents through the stationary statistics of tangent directions and
contains both classical results and our recent results from [16] which connects Lyapunov exponents to a
certain Fisher information-type quantity. We discuss in Section 3 how to connect the Fisher information to
regularity using ideas from hypoellipticity theory (also original work from [16]), and in Section 4 we discuss
applications to a class of weakly-driven, weakly-dissipated SDE with bilinear nonlinear drift term (original

"The deterministic case remains very far out of reach.



work in [16] for Lorenz-96 and for Galerkin Navier-Stokes in [21]). In Section 5 we briefly discuss our
earlier related work on Lagrangian chaos in the (infinite-dimensional) stochastic Navier-Stokes equations
[17]. Finally, in Section 6 we discuss some open problems and potential directions for research.

1.1 Lyapunov exponents and their challenges

Let ®! : R* — Rt € R>o be a flow (autonomous or not) with differentiable dependence on initial
conditions. The Lyapunov exponent at x € R™, when it exists, is the limit

1
MNz) = tligloglog|Dx<I>t|,

where D, ®! is the Jacobian of ®! at z, i.e. the derivative with respect to the initial condition. Hence, \(z)
gives the asymptotic exponential growth rate of the Jacobian as t — oo.
The exponent \(z) contains information about the divergence of trajectories: heuristically at least, if
d(x,y) is small then
d(@'(z), 9 (y)) =~ 'd(z,y)

and hence A\(x) > 0 implies exponential sensitivity with respect to initial conditions, commonly popularized
as the “butterfly effect”. Morally, a positive Lyapunov exponent at a ‘large’ proportion of initial conditions
x € R" is a hallmark of chaos, the tendency of a dynamical system to exhibit disordered, unpredictable
behavior. In this note we refer to a system such that A(x) > 0 for Lebesgue a.e. z as chaotic®.

The existence of Lyapunov exponents is usually justified using tools from ergodic theory, and forms a
starting point for obtaining more refined dynamical features, such as stable/unstable manifolds in the moving
frame along ‘typical’ trajectories. These ideas form the fundamentals of smooth ergodic theory, which aims
to study statistical properties of chaotic systems, such as decay of correlations, i.e. how ®*(z),¢ > 1 can
‘forget’ the initial x € R", and probabilistic laws such as a strong law of large numbers or central limit
theorem for g o ®¢(x), where g : R® — R is a suitable observable of the system; see e.g. discussions in
[8,11,66,83,85].

A discrete-time example

Unfortunately, estimating \(z) or proving A(x) > 0 for specific systems turns out to be extremely challeng-
ing. A simple, classical model which shows the challenges is the Chirikov standard map family [30], written
here as

Fr:T? 0, Fr(z,y) = (22 + Lsin(2rz) — y, ),

where T? is parametrized as [0, 1)? and both coordinates in F' := F}, are taken modulo 1. Here, L > 0
is a fixed parameter which for purposes of the discussion here will be taken large. The diffeomorphism
F is smooth and volume-preserving, and ergodic theory affirms that the Lyapunov exponent \(z,y) =
lim,, 1 log | D (5,4 F'| exists for Leb. a.e. x and satisfies A(z,y) > 0 where it exists. The Chirikov standard
map itself is frequently used as a toy model of more complicated chaotic systems, e.g., the Navier-Stokes
equations in transition from laminar flow to turbulence [69].

Observe that when L >> 1 and away from an O(L ™) neighborhood of {cos(27x) = 0}, the Jacobian
D ;. F' exhibits strong expansion along tangent directions roughly parallel to the x-axis (matched by strong
contraction roughly parallel to the y-axis). In view of this, it is widely conjectured that {\(z) > 0} has
positive Lebesgue measure. Nevertheless this standard map conjecture remains wide open [33,75]. A
key obstruction is ‘cone twisting’: on long timescales, vectors roughly parallel to the x-axis are strongly
expanded until the first visit to ‘critical strip’ near {cos(27wx) = 0}, where DF is approximately a rotation

>We caution the reader that there is no single mathematical definition of “chaos”. Some definitions refer to the existence of
a subset of phase space exhibiting chaotic behavior, e.g., Li-Yorke chaos or the presence of a hyperbolic horseshoe. The results
discussed in this note pertain to the long-time behavior of Lebesgue-typical initial conditions.



by 90 degrees. At this point, vectors roughly parallel to the z axis are rotated to be roughly parallel to the
y axis, where strong contraction occurs and previously accumulated expansion can be negated. Indeed, an
estimate on a Lyapunov exponent requires understanding the asymptotic cancellations in the Jacobian as
t — oo. One manifestation of the subtlety is the wildly tangled coexistence of hyperbolic trajectories [46]
and elliptic islands [36].

The problem of estimating Lyapunov exponents for the standard map is far more tractable in the presence
of noise / stochastic driving. Let us consider the standard map subjected to small noise: let wi,wo, - be
IID random variables uniformly distributed in [—e, €] for some € > 0, and consider the random compositions

F'"=F, o---oF, , F,(z,y)=F(x+uw,y).

One can show show that Ve > 0, the corresponding Lyapunov exponent A = \(z,y) is deterministic
(independent of the random samples almost surely) and constant (independent of (x, y)) with probability 1.
It is a folklore theorem that A > 0 Ve > 0, while for L. > 1 and ¢ > e~ L, one can show \ > %log L,
commensurate with exponential expansion in the z-direction over the bulk of phase space [24]; in a related
vein, see also [23,25, 26,64, 80].

1.2 Lyapunov exponents for SDE

The topic of this note is to discuss developments in the context of the random dynamical systems generated
by stochastic differential equations (SDE), i.e., ODE subjected to Brownian motion driving terms. In this
continuous-time framework, numerous additional tools not present in the discrete-time setting become avail-
able, e.g., infinitesimal generators, which as we show below, connects the estimation of Lyapunov exponents
to regularity estimates (e.g., Sobolev regularity) of solutions to certain (degenerate) elliptic PDE. A highlight
of this approach is our application to the Lyapunov exponents of a class of weakly-driven, weakly-forced
SDE, including famous models such as Lorenz 96 and Galerkin truncations of the Navier-Stokes equations.

For simplicity, in this note we restrict our attention to SDE on R"™, however, our more general results
apply to SDE posed on orientable, geodesically complete, smooth manifolds; see [16]. Let Xg, X1,..., X, :
R™ — R™ be smooth vector fields on R™, and let W}, ..., W/ be a collection of independent, real-valued
Brownian motions, with 2 denoting the corresponding canonical space with probability P and (F;):>0
denoting the increasing filtration generated by {WF, s < t}%._,. We consider continuous-time processes
(z¢) on R™ solving the SDE

.
day = Xo(z,) dt + > Xj () o dWY, (1.1)
k=1
for fixed initial data xo € R™.

Under mild conditions on the vector fields X, ..., X, (for example, regularity and the existence of a
suitable Lyapunov function to rule out finite time blow-up), global-in-time solutions (z;) to (1.1) exist, are
unique, and have differentiable dependence of x; on x¢; in particular, for P-a.e. w € (2 and all ¢t > 0, there
exists a stochastic flow of diffeomorphisms <I>fu such that Vzy € R", the law of the process (z);>¢ solving
(1.1) is the same as that of the process (P!, (z0)):>0; see e.g. [61] for the details and general theory of SDEs
and stochastic flows.

This stochastic flow of diffeomorphisms ®!, is the analogue of the flow ®! corresponding to solutions of
the initial value problem of an ODE. However, the external stochastic forcing implies a time-inhomogeneity
which must be accounted for. One can show that there exists a P-measure preserving semiflow 6% : Q O, ¢ >
0 corresponding to time-shifts on the Brownian paths, i.e., shifting the path (W;)s>0 to (Wiprs — Wi)s>0.
Equipped with this time shift, one has the following with probability 1 and for all s,¢ > 0:

I = Dl 0 D5 (1.2)



We now set about summarizing the ergodic theory tools used to study such stochastic flows. First, we note
that the trajectories z; = ®! () for fixed initial zo € R™ form a Markov process adapted to the filtration
(F:). Moreover, ®, has independent increments: Vs, t > 0, ®% and ),  are independent.

1.2.1 Stationary measures and long-term statistics

Markov semigroups. We write P;(z, A) = P(®! (z) € A) for the time- transition kernel of (z;). Let P;
denote the Markov semigroup associated to (), defined for bounded, measurable observables h : R™ — R
by

Pih(x) = E[h(zy) |20 = 2] = / h(y)P;(z,dy).

n

This semigroup gives the expected value of a given observable given a fixed initial condition. Via the
pairing of functions and measures we derive the (formal) dual P}, which gives the evolution of the law of
the solution (x;) given a distribution for the initial condition: for a probability measure 19 € P(R™) and
Borel set A C R",

Piuo(A) = [ Pz, A)duo(x).
]Rn
That is, P/ o is the law of z; assuming p is the law of xg.
Taking a time derivative 0;, we (formally) obtain the backward Kolmogorov equation

1 T
OPih(x) = LPh(x), where L =Xo+ 5 > X7, (1.3)
=1

where, for a given vector field X and f € C°°, X f denotes the derivative of f in the direction X. The
differential operator L is called the (infinitesimal) generator. Assuming that the law of z; has a density p;
with respect to Lebesgue, the formal dual of (1.3) is the Fokker-Plank equation (or Forward Kolmogorov
equation) given by the following PDE

Owpe = L7py (1.4)

where £* denotes the formal L? adjoint of £. See e.g. [61] for mathematical details.

Stationary measures. We say a measure . is stationary if P} = p. That s, if xg is distributed with law g,
then x; is distributed with law? j for all + > 0. We say that a set A C R™ is invariant if P;(x, A) = 1 for all
x € Aandt > 0, and we say that a stationary measure y is ergodic if all invariant sets have u-measure 0 or
1. By the pointwise ergodic theorem, ergodic stationary measures determine the long-term statistics of a.e.
initial datum in their support [34]: if 1 is an ergodic stationary measure, then for any bounded, measurable
¢ :R" - Rand p x P-a.e. (x,w) we have that

T

i 7 [ e@b@)d= [ pdut).
T—oo T’ 0 n

Unlike for deterministic systems, stationary measures are usually much easier to characterize for SDEs. In

particular, it is often possible to show there exists a unique stationary measure and that it has a smooth

density with respect to Lebesgue. In such a case, Leb. generic initial conditions all have the same long-term

statistics, a property often observed in nature and experiments for the physical systems we are interested in.

31t is important to note that (z;) itself is not constant in ¢; consider e.g. water flowing past a stone in a river.



Existence of stationary measures. If the domain of the Markov process were compact (e.g., T™ instead of
R™) then existence of stationary measures follows from a standard Krylov-Bogoliubov argument: given an
initial probability measure 19 € P(R"™), one considers the time-averaged measures

1 t
fiy = t/ P o ds.
0

Weak-* compactness of probability measures on a compact space ensures the sequence { /i }+>0 has a weak-
* limit point p which by construction must be stationary (assuming some mild well-posedness properties
for the original SDE). On a non-compact domain, one must show tightness of the measures { it }+>0 (this is
essentially saying that solutions do not wander off to infinity too often) and use Prokorov’s theorem to pass
to the limit in the narrow topology. This is often achieved using the method of Lyapunov functions*/drift
conditions [71], or by using a special structure and the damping in the system (such as the case for e.g. the
Navier-Stokes equations [60]).

Uniqueness of stationary measures. The Doob-Khasminskii theorem [34] implies uniqueness is con-
nected to (A) irreducibility and (B) regularization of the Markov semigroups5 and in particular, one can
deduce that any stationary measure is unique if these properties hold in a sufficiently strong sense.

Let us first discuss irreducibility. For a Markov process (z;) on R™, we say that (x) is topologically
irreducible if for all open U C R", 3t = t(U, x) > 0 such that

Pt([B,U) >0.

That is, every initial condition has a positive probability of being in U. This is stronger than necessary to
deduce uniqueness, but is sufficient for our discussions.
Regularity is a little more subtle. A sufficient condition is the requirement of strong Feller:

Vo :R"™ - R bounded, measurable, P;p € C(R";R), ¢>0.

For finite dimensional SDEs, it is reasonably common and there exists machinery to characterize this®.
When Span{X;(x),1 < i < r} = R"atall z € R", L is elliptic and hence strong Feller follows from
classical parabolic regularity theory [65] applied to (1.3) (assuming suitable regularity conditions on the
{X;}). Absent this direct spanning (e.g., when r < n), then L is only degenerate elliptic. However, nearly
sharp sufficient conditions for regularization due to £ were derived by Hormander [51], who obtained a
condition (now called Hormander’s condition), in terms of the Lie algebra generated by the vector fields
{X;,0 <i <r}. We will return to this important topic of hypoellipticity in Section 3.1.

1.2.2 Lyapunov exponents

We saw that by the ergodic theorem, the long-term behavior of scalar observables is determined by stationary
measures. A more sophisticated ergodic theorem connects stationary measures to Lyapunov exponents.
Given z € R",v € R"\{0} (v being considered a direction here) and a random sample w € (2, the
Lyapunov exponent at (w, x, v) is defined as the limit (if it exists)

1
Mw,z,v) = tlggo . log | D, ®! v|.

The following (truncated) version of Oseledets’ Multiplicative Ergodic Theorem (MET) addresses the exis-
tence of the limit [56,73,77].

“These are the probabilistic analogue of Lyapunov’s “first method’ for ODE, used to ensure convergence to compact attractors.
This is not to be confused with Lyapunov exponents, which refer to Lyapunov’s ‘second method’.

Morally, this is equivalent to how z +— P;(z, -), i.e., how trajectories with nearby initial conditions have similar statistics.

%In infinite dimensions it is much more rare; luckily it is stronger than what is required just to prove uniqueness (see e.g.
[48,59]).



Theorem 1.1. (Oseledets’ multiplicative ergodic theorem [73]) Let p be an ergodic stationary measure,
and assume a mild integrability condition (see, e.g., [56,73]) then, there exist (deterministic) constants
AL > Ay > - > Ag > —o0 such that for P X p-almost all (w,x) € Q x R™ and for all v € R™\{0}, the
limit defining \(w, z,v) exists and takes one of the values \;,1 < i < /L.

Moreover, there exists a P x u-measurably-varying flag of strictly increasing subspaces

0 =:Fry1(w,z) C Fp(w,z) C...C Fi(w,z) :=R"

such that for P x p-a.e. (w,z) and Vv € F; \ Fj 1 there holds
Aj = lim +log|D,@Lu] = A
]_ti{gogog| T wv|_ (CL),CC,’U).

In particular the top Lyapunov exponent \1 is realized at P X p-a.e. (w,z) and all v € R" outside a
positive-codimension subspace Fy(w,x) C R"™.

We note that under very mild conditions, if the stationary measure p is unique, it is automatically er-
godic; otherwise, each distinct ergodic stationary measure admits its own set of Lyapunov exponents.

The sign of the largest Lyapunov exponent \; is the most relevant to the stability analysis of typical
trajectories, in view of the fact that A(w,x,v) = A; for v in an open and dense set. For this reason we
frequently refer to \; as “the” Lyapunov exponent. The sum Lyapunov exponent also turns out to be crucial:

¢
!
Ao =Y my)j = Jim —log|det D, ®! |,
j=1

which gives the asymptotic exponential expansion/compression of Lebesgue volume under the flow. Here,
m; = dim F}j — dim F 1 is the multiplicity of the j-th Lyapunov exponent.

2 Formulae for the Lyapunov exponents

Throughout this section, we assume !, is the stochastic flow of diffeomorphisms corresponding to the SDE
(1.1) with associated Markov process z; = ®! (z),x € R".

2.1 The projective process

As we have seen, Lyapunov exponents are naturally viewed as depending on the tangent direction v € R"
at which the derivative D, ®! is evaluated. For this reason, to estimate Lyapunov exponents it is natural to
consider an auxiliary process on tangent directions themselves. To this end, let SR” = R" x S*~! denote
the unit tangent bundle of R", where S"~! is the unit sphere in R”. Given fixed initial (z,v) € SR”, we

define the process (v;) on S"~! by

v — qu)fu(v)
" DL (v)]

The full process z; = (x¢,v;) on SR™ is Markovian, and in fact solves an SDE
~ r ~ .
dze = Xo(ze)dt + > Xi(z) 0 dW, |
i=1

where the ‘lifted’ fields X, ; are defined as

Xi(z,v) = (X;(z), I = II,)VX;(x)v) .



Here, we have written IT, = v ® v for the orthogonal projection onto the span of v € S*~!. Below, we
denote the corresponding generator by

- - 1 < - )
=1
Lyapunov exponents and stationary measures. Let (x¢,v;) be a trajectory of the projective process with
fixed initial (z,v) € SR™, and observe that at integer times ¢ € Z~(, we have by (1.2)
1 =
T log | D, (v)] = 7 Z; log | Dy, @}, 1.
1=

Hence, log |D,®! | is an additive observable of (xy,v;), i.e., a sum iterated over the trajectory (¢, vy).
Therefore, the strong law of large numbers for a Markov chain implies the following formula for the Lya-
punov exponent:

Proposition 2.1 (See e.g. [56]). Let v be an ergodic stationary measure for (¢, v;). Assuming the integral
is finite, for v-a.e. initial (z,v) € SR" ! and t > 0 we have

tANw, z,v) = E/log |D,® v| dv(z,v) .

with probability 1 (E denotes integration with respect to dP(w)).
Moreover, if v is the unique stationary measure for the (x, v;) process, then for p-a.e. x, and allv € R"™,
there holds \y = \(w, x, v) with probability 1 and

tA1 = E/log |D,®! v|dv(x,v). 2.1)

Remark 2.2. This latter statement can be interpreted as saying that the existence of a unique stationary
measure for the projective process gives a kind of non-degeneracy of the Oseledets’ subspace Fi(w, ) with
respect to w [56].

A time-infinitesimal version: the Furstenberg-Khasminskii formula. One of the key benefits of the
SDE framework is the ability to take time derivatives, which turns dynamical questions (e.g., estimates of
Lyapunov exponents, identification of stationary densities) into functional-analytic ones (e.g., solutions of
degenerate elliptic or parabolic equations) for which many tools are available. Taking the time derivative of
(2.1) gives what is known as the Furstenberg-Khasminskii formula (see e.g. [8,55]):

Proposition 2.3. Assume (z,v;) admits a unique stationary measure v on SR™ projecting to a stationary
measure |, on R™ for (x;). For (x,v) € SR", define

Q(z) = div Xo(z) + % ; X; div X;(z),

- o e~ ~ . =~
Q(z,v) = div Xo(z,v) + 3 z;Xi div X;(x,v).

Then, provided Q € L'(dp) and Q € L'(dv), there holds
Ay = /Q dp  and

nA1 — Ay = Qdu — Qdv.
R" SRn

8



The first formula expresses Q(z) as the time-infinitesimal rate at which D,®! compresses/expands
Lebesgue measure, which in this formula is directly related to the asymptotic exponential volume growth/contraction
rate Ay. Similarly, Q(az, v) is the time-infinitesimal rate at which D, ®! compresses/expands volume on the
sphere bundle SR™ = R"™ x S™~1. Roughly speaking, contraction of volumes along the S”~! coordinate is
associated with expansion in the Jacobian, while expansion of S”~!-volume is related to contraction in the
Jacobian; this reversal is the reason for the minus sign in front of Q. For some intuition, observe that (1,0)

is a sink and (0, 1) is a source for the discrete-time system v,, = A"v/|A"v| on S1, where A = <(2) 1(/)2> .

2.2 Sign-definite formulas for Lyapunov exponents

The Furstenberg-Khasminskii formula is highly remarkable in that it reduces the problem of estimating Lya-
punov exponents to computing the ensemble average of a single deterministic observable, Q, with respect
to the stationary measure of (2;,v;). On the other hand, the formula itself is sign-indefinite, as Q(z, v)
takes on both positive and negative values as (x, v) is varied. This is reflective of the cancellation problem
mentioned earlier in the estimation of Lyapunov exponents: tangent growth previously accumulated can be
‘canceled out’ by rotation into contracting directions later on in the trajectory. Hence, without a very precise
characterization of v, it would be very challenging to obtain any useful quantitative estimates on A; from
this formula.

Given the above, it makes sense to seek a sign-definite formula for the Lyapunov exponent. Below, given
measures A\, 77,17 < A on measurable space X, the relative entropy H (n|\) of ) given X is defined by

(1% = [ 10g (jj) dn.

Observe that H(n | A) > 0, while by strict convexity of log and Jensen’s inequality, we have H (n|\) = 0 iff
n = A. We also write @fd : SR? ¢ for the stochastic flow associated to full lifted process (z¢, v;) on SR™;
that is, ! (0, vo) = (x, v;). Lastly, given a diffeomorphism ® of a Riemannian manifold M and a density
gon M, we define ®,g to be the density

®,g(x) = god () det D7,

noting that if z is distributed like g dVolyy, then ®(z) is distributed like ®..g dVoly,.

The following deep formula has its roots in Furstenberg’s seminal paper [41] and ideas a la Furstenberg
have been developed by a variety of authors (e.g., [13,29, 63,79, 82]), and can be stated as follows: if v €
P(SR™) is a stationary probability measure for the projective process (x¢,v;) and dv(z,v) = dvg(v)du(z)
the disintegration of v, then for all ¢ > 0 there holds the following identity (often an inequality in more
general settings).

Proposition 2.4 (See e.g. [13] ). Assume (¢, v:) admits a unique stationary measure v with density [ = fli—’;,

where dg = dVolsgn is Riemannian volume measure on SR™ = R™ x S*~1. Let j1 be the corresponding
stationary measure for (xy) with density p = j—’x‘. Writing

ft = ((i)fu)*fa Pt = ((I)Z;)*[%
we have (under the same integrability condition as Theorem 1.1)
EH (pi|lp) = —tAs, and EH(f|f)=1t(nA\1 —2\y).

At least in simple settings, such as for SDEs with a unique stationary measure for the projective pro-
cess, the formula follows from a slightly more subtle analysis of volume compression/expansion on SR"



suitably combined with ergodic theory. Furstenberg [41] was the first to relate relative entropy to Lyapunov
exponents; at the generality above, the proof is due to Baxendale [13].

To explore the consequences of Proposition 2.4, let us re-write it into a more suggestive form. Let
fz(v) = f(z,v)/p(x), fra(v) = fi(z,v)/p:(x) denote the conditional densities of f and f; along the fiber
S,R™ ~ S"~1. One can then combine the above formulae into the identity

H(fi|f) — BH(pilp) = / H(foal fo)dpu(z) = t(nds — As). 2.2)

The left-hand side of this identity is the expectation of a positive quantity, while the right-hand side is
non-negative due to the general inequality nA; > Ayx;. By the strict convexity, we have

nA\ =y <= fiz = f, with probability 1 for all £ > 0 and ;» almost every x.
Unraveling the definitions, f; ; = f, means that

(De®!)s fr = ot (2)

1.e., the matrices D$<I>fj, viewed as acting on S™1 embedded in R, transform the conditional density f,
into the density fg: () of tangent directions at ®! (z). This is a very rigid condition in view of the fact that
given any two (absolutely continuous) densities &, ' on S* 1,

{A€GL,(R): A,h =1}

has empty interior in the space of n X n matrices. One can obtain the following beautiful dichotomy by
a more detailed analysis of the rigidity in a group of matrices in SL,, that preserve a given probability
measure; see, e.g., [13,41,63].

Theorem 2.5 (Furstenberg Criterion). Suppose the same setting as Proposition 2.4. If n\1 = \x, then one
of the following holds:

(a) There is a continuously-varying family of inner products x — (-, -), with the property that D,®!,
an isometry from (-, ) to (-, ) ot () with probability 1 for all t > 0.

(b) There is a (locally) continuously varying family of proper subspaces x + L., C R with the property
that D, ®! (U; L) = U; L ot L (2) with probability 1 for all t > 0.

Remark 2.6. Note that in the above, the inner products and the L’ are deterministic, which is highly rigid
for many random systems. Note that they are also continuously-varying.

However, if one is interested in deducing A; > 0, this criterion is really only useful if Ay = 0, i.e.
the system is volume preserving, otherwise one only obtains the non-degeneracy nA; > Ay. Moreover,
Theorem 2.5 lacks any quantitative information, and so it cannot be used to obtain concrete estimates with
respect to parameters. Hence, it generally cannot be applied to dissipative systems, even weakly dissipative.

In the volume preserving case however, criteria a la Furstenberg can be a very powerful tool. In our
previous work [17], we used a suitable (partially) infinite-dimensional extension of Theorem 2.5 to show
that the Lagrangian flow map (i.e. the trajectories of particles in a fluid) is chaotic when the fluid evolves
by the stochastically forced 2D Navier-Stokes equations (called Lagrangian chaos in the fluid mechanics
literature). See Section 5 for more information.
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2.3 The best of both worlds: sign-definite and time-infinitesimal

Proposition 2.4 is, on its face, a quantitative and sign-definite formula for Lyapunov exponents, and this
leads to a strong and relatively easy-to-rule-out dichotomy for the degenerate scenario nA; = Ay. On the
other hand, the formula itself is not straightforward to work with, requiring both the stationary density f for
(z¢,v¢) as well as the time-¢ flow <I>fd and its derivative D;ECDL as w varies. In particular, it is unclear how to
glean quantitative information beyond the “soft” inequality nA; > Ay, as would be relevant for a damped
system (i.e., Ay < 0).
In view of the sign-indefinite formula (2.1) and its time-infinitesimal version, the Furstenberg-Khasminskii

formula, it is reasonable to hope that a time-infinitesimal version of Proposition 2.4 might exist. The authors
establish such a formula in our recent work [16].

Proposition 2.7 (Theorem A in [16]). Assume (x¢,v:) has a unique stationary measure v with density

f= %’ on SR™. Let u denote the corresponding stationary measure for (x;) on R™ with density p = du

dz*
Define the modified Fisher informations

L~ [ XS I~ [ Xl
FI(f)== ¢ d Fl(p) == ——dx.

Under a mild moment criterion (see [16]), we have

FI(p)=—-Xs, and FI(f)=n\ —2\y.
Recall that Xl* denotes the adjoint of X; viewed as an operator on L*(dq).

Remark 2.8. One can show that F'I(f) — FI(p) corresponds to an analogous Fisher information on the
conditional densities f,(v), providing the exact time-infinitesimal analogue of (2.2) (see [16]).

These Fisher-information-type formulas for Lyapunov exponents enjoy many of the best qualities of
the previous formulas: (A) they are sign-definite, like those in Proposition 2.4, and (B) are also time-
infinitesimal like those in Proposition 2.3, and so are inherently simpler, requiring only the stationary density
f for (x4, v¢) and how it is acted on by the first-order differential operators X 5.

A key feature of Proposition 2.7 is that a lower bound on F'I(f) implies a lower bound on nA; — 2\y.
The FI(f) itself has the connotation of a partial regularity of f along the forcing directions X;. This is
reminiscent of techniques in Hérmander’s theory of hypoelliptic operators, where partial regularity along
forcing directions implies regularity in all directions under an appropriate Lie algebra spanning condition
involving the drift X. This connection is explored in the next section.

3 Quantitative lower bounds by the Fisher information

Let us now set about obtaining quantitative estimates on Lyapunov exponents using the Fisher information
as in Proposition 2.7. For this, it will be most useful to consider the weakly-forced system

dary = X§(x,) dt + Ve Y Xf () 0 AW, (3.1)
k=1

where we have also allowed e dependence in the vector fields X7. In this case, Proposition 2.7 gives the
following Fisher information formula on the stationary density f¢ of the projective process associated to

(3.1)
LI
fe

% dg = n\; — 2\
j=1

11



If X ;j has a bounded divergence’, by Cauchy-Schwarz, 3C > 0 such that

S e ) nAi — 2y
M IX UG <C+FI(f) = Ct—).
j=1
Hence, we have related Ll-typg directional regularity in the forcing directions to the Lyapunov exponents. If
the lifted forcing directions {X }7]7:1 spanned the entire tangent space 7,,SR" everywhere, then we would
obtain a lower bound of the Lyapunov exponents of the type

7B 5 (14 "2 522). (32)
and so we find a straightforward lower bound on nA; — 2\y in terms of the regularity of f€. This kind
of lower bound is clearly most useful if Ay is small, especially O(¢), but crucially, it does not have to be
exactly zero. In this manner, we can treat systems which are close to volume preserving, but not necessarily
exactly volume preserving. This is at the crux of why we can treat systems like Lorenz-96 and Galerkin-
Navier-Stokes whereas traditional a la Furstenberg methods based on e.g. Theorem 2.5, cannot.

3.1 Hypoellipticity

It is not usually the case that {)A(; § }7]7:1 spans T, SR"™ and so the lower bound (3.2) is generally false. For

example, for additive noise, the lifts satisfy X; = (X, 0) and so clearly this fails to span T,SR", regardless
of whether or not {X; };7:1 spans 1,R™. Hence, in general, the Fisher information connects regularity in
the lifted forcing directions to the Lyapunov exponents, but a priori, not any other directions in 7°,SR". For
this, we need a concept known as hypoellipticity, by which solutions to Kolmogorov equations such as (1.3)
or (1.4), can be smooth even when L is degenerate, i.e. even when the forcing directions do not span the
tangent space. This effect was studied first by Kolmogorov [58] in 1934, however clarity on the effect was
not fully obtained until Hérmander’s 1967 work [51].

Let us discuss Hormander’s main insights from [51]. It will make sense to quantify fractional regular-
ity along a vector field X using the group e!* and the LP Holder-type semi-norm (brushing aside minor
technical details)

|h|x,s == sup |t|7s||etXh — hl|ze.
te(—1,1)
Hormander’s original work was based in L2 our work will be based in L!. For now, we set p=2.

There are two key ideas in [51]. The first, and simpler idea, comes from the Campbell-Baker-Hausdorff
formula, which implies for any two vector fields X, Y that (essentially, the Zassenhaus formula):

_ _ 2 3
e X Y X Y PXYIHO(E)

where here [X, Y] is the Lie bracket, i.e. the commutator (see [50] and [51]). In particular, marching
forward and then backward by two vector fields X,Y does not quite get back to where it started (unless
X, Y commute). Therefore we have (using that the e!X are bounded on LP),

2 3 — —
e YO — 1 S e = Tlle + 1€ = T + e = Ipe + e = I1a,

which suggests the remarkable property that any fractional regularity of a function A in directions X, Y,
ie. |h|x s+ |h|ly,s < oo, implies h also has (a little less) fractional regularity in the commutator direction
[X,Y]. Another version of Campbell-Baker-Hausdorff (see [51]) gives

SHXHY)

2
X Y FIXY]

"This is not the case for our examples, but this will not be important as we will eventually work only locally.
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where the ... corresponds to a formal product expansion of higher commutators of ¢X and ¢Y (and thus
higher powers in t). Combined with the previous formal discussion, this suggests that regularity in directions
X, Y should also supply regularity in the direction X +Y (and indeed, any linear combination). By iterating
these heuristics, we get the suggestion that a priori regularity along any set of vector fields { Z, ...Z, } should
imply that there should also be some regularity in any direction Z € Lie(Zy, ..., Z,), where the Lie algebra
is given by the span of all possible combinations of commutators

Lie(Zo, ..., Z,) :=span{ad(Yy,) ...ad(Y1)Yy : Y € {20, Z1, ..., Z, } m > 0},

and where ad(X)Y := [X,Y]. In [51], these heuristics are made rigorous with the following functional
inequality: Suppose that Vz € R", Lie,(Z,...,Z,) = {Z(z) : Z € Lie(Zy,...,Z,)} = T,R™. Then
Vs; € (0,1), s, such that forall 0 < s < s,, VR > 0, and Vh € C°(B(0, R)) there holds

s Sr A2+ 1Bz .- (3.3)
=0

In particular, this inequality holds a priori for any h € C2°(Bg(0)) and it has nothing to do directly with
solutions to any PDE. Making this rigorous requires dealing with the errors in the CBH formulas used above.
At any step of the argument, these errors are lower regularity but in new directions, and so dealing with this
requires a little finesse and interpolations to close the argument.

Inequality (3.3) is already an interesting observation that can expand the directions of regularity. In
particular, one can use an L' analogue of (3.3) to provide a lower bound on the Fisher information based
on regularity in any direction contained in the Lie algebra of the forcing directions {f( Lo X r }. However,
Hormander was far from done. Indeed, this is clearly unsatisfying to some degree as this will not even
depend on the underlying deterministic dynamical system under consideration, encoded in the drift vector
field )?0. Moreover, for additive forcing, (3.3) fails to add anything at all. For Hérmander’s second main
insight, consider the backward Kolmogorov equation

1 T
Ly =Zog+ 3 Y Zig=F. (3.4)
j=1

Assuming {Z; }§=0 have bounded divergence® one obtains the standard L? “energy” estimate:

T
Y 1Ziglze S lglze + 1F17.
j=1
After applying a smooth cutoff yr(xz) = x(x/R) where x € C°(B2(0)), 0 < x < land x(z) = 1
for |x| < 1 and dealing with the commutators as in a Caccioppoli estimate, the functional inequality (3.3)
combined with this estimate implies that if Lie.(Z1,...,Z,) = T.R™ at all z, then we would obtain an
estimate like

Ixrgllzs Sk N9 L2(Br0) + 1F I L2(Bym(0))-

However, as discussed above, this condition on the vector fields is often too strong to be useful for us here.
However, another natural a priori estimate on g is available from (3.4). Indeed, pairing (3.4) with a test
function ¢ we obtain
T

I .. 1
‘/SOZofde‘ < 52 1Z5ell2l1Zjgllze < 52(”@”52 + 1 Zjellz2) (lgllze + [[F ]l 22) -
j=1 j=1

8 Alternatively, one can consider the estimates suitably localized.
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This simple observation shows that for solutions of £g = F, H'-type regularity in the forcing directions
automatically provides a corresponding dual H ~!-type regularity on Zyg. The cornerstone of [51] is the fol-
lowing functional inequality (i.e. again, not directly related to solutions of any PDEs): if Lie,(Zy, Z1,...2Z,) =
R™ everywhere, then 3s € (0, 1) such that if R > 0 and h € C°(Bg(0)), then

1Pllzs < MRl + sup

r
} [ ozt + SNzl = Wl - G
eillellp2+35—1 1256l L2 <1 P

Jj=1

The key heuristic behind this functional inequality is the following observation

%%Het%h — h||3s = (e'?°h — h, Zye'h)
r
< | Il + D2 1Z5e % (e %on = Wlgz | gl
j=1
Therefore, if we had something like
r r
DNz (e h = m)lie Y1 Zhll ez, (3.6)
j=1 Jj=1

then we could combine the L? estimate on {Z; }37:1 with the corresponding dual negative regularity in the
Z direction to obtain some positive fractional regularity in the Zj direction, specifically we would have 1/2
regularity from

le"#h — hl|7> < tlal7, -
yp

Unfortunately (3.6) doesn’t generally hold®, and Hormander uses a rather ingenious regularization argument
to turn this heuristic into reality. We shall henceforth call functional inequalities of the type (3.5) Hormander
inequalities.

The gain in regularity from (3.5) combines with the Kolmogorov equation to get the estimate

lgxrllzs S 19llL2(Byr0)) + 1F 1 L2(Byr(0))

and so provides an analogue of the gain of regularity when studying elliptic equations (though only fractional
regularity). As in that theory, this regularity gain can be iterated to imply that any L? solution of Lg = F is
C>®if F e C* [51].

3.2 Uniform hypoellipticity

Next, we want to make the arguments which are quantitative with respect to parameters, and hence we will
introduce the notion of uniform hypoellipticity. Let us formalize the definition of Hérmander’s condition
for elliptic-type and parabolic-type equations. For a manifold M, we denote X (M) the set of smooth vector
fields on M.

Definition 3.1 (Hormander’s condition). Given a manifold M and a collection of vector fields { Zy, Z1,...,Z,} C
X (M), we define collections of vector fields 2y C 27 C ... recursively by

L1 = %kU{[ZJ’,Z} : Ze€ 2y, j=>0}.

?As in the easier inequalities above, the heuristic (3.6) neglects the creation of higher order commutators, in fact one requires
regularity in many other directions in Lie(Zo, ..., Z,) as a result.
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We say that {Z;}]_, satisfies the parabolic Hormander condition if there exists k such that for all w € M,
span{Z(w) : Z € Ly} = TyM.
We say that {Z;}7_, satisfies the (elliptic) Hormander condition if this holds with 2o = {Z; : j > 0}.

Note that the parabolic Hormander condition is slightly stronger than the elliptic Hormander condition.

Definition 3.2 (Uniform Hérmander’s condition). Let M be a manifold, and let { Z§, Z5, ..., Z¢} € X(M)
be a set of vector fields parameterized by € € (0, 1]. With 2}, defined as in Definition 3.1 in the parabolic
case (resp. elliptic), we say {Z§, Z, ..., Z:} satisfies the uniform parabolic (resp. elliptic) Hormander
condition on M if 3k € N, such that for any open, bounded set U C M there exist constants { £, }7°,
such that for all € € (0, 1] and all z € U, there is a finite subset V' (z) C 2} such that V¢ € T, M,

<Ko > |2 > 11Zllen < Ka.

ZeV(x) ZeV(x)

This definition stipulates that any e dependence is locally (on the manifold) uniform in terms of both
regularity and spanning. Now we are ready to state the uniform L'-type Hormander inequality suitable for
use with the Fisher information, proved in [16]. There are many works extending Hormander’s theory in
various ways see e.g., [2,5,20,45,57,62,72] and the references therein. However, as far as the authors are
aware, there are no works in the L' — L> framework. We also need to consider the forward Kolmogorov
equation L*f=0,as opposed to the case of the backward Kolmogorov equation considered by Hormander
[51]; this changes some details but little of significant consequence is different.

Theorem 3.3 (L'-type uniform Hormander inequality; Theorem 4.2 [16]). let {X§, X5, ..., X<} be a col-
lection of vector fields on SR satisfying the uniform elliptic Hormander condition as in Definition 3.2.
Then, 3s, € (0,1) such that if Br(zo) C R™ is an open ball and h € C>°(Bg(z¢) x S* 1), then for
all 0 < s < sy, 3C = C(R, 0, s) such that Ve € (0,1) there holds the following fractional regularity'”
estimate uniformly in e

Whllwsa < C | ||kl + sup
@illepllnoe +325 1 1X5epllLoe <1

[ ox hdq\ Z 1(X)* Rl

In particular;, applying a smooth cutoff xr = x(x/R) for some x € Cg°(Ba(0)) with 0 < x < 1 and
X = lif|z| < 1to the Kolmogorov equation L* f€ = 0 (assuming also || f€|| ;1 = 1) and suitably estimating
the commutators, we obtain

IXRSZsn Sk 1+ FI(f9). (3.7)

Remark 3.4. Hypoellipticity plays a classical role in the theory of SDEs. In particular, the parabolic
Hoérmander condition of Definition 3.1 is exactly the condition most often used to deduce that the Markov
semigroup P; is strong Feller (the exposition of [47] is especially intuitive). The parabolic Hérmander
condition also often plays a role in proving irreducibility via geometric control theory (see discussions in
[43,49,53] and specifically in [16] in regards to the projective process). For many applications, it is likely
that the parabolic Hormander’s condition will be used to prove that there exists a unique stationary measure

"%For s € (0, 1) we may define W*'! on a geodesically complete, n-dimensional Riemannian manifold with bounded geometry

M as
ol =l + ([ f wlexpeh) = o)l 4pqq() )
M J heTy M:|h|<do R

where exp,, : T M — M is the exponential map on M and dg is the Riemannian volume measure. See e.g. [81] for more details.
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v for the projective process (via Doob-Khasminskii [34]), as required to apply Proposition 2.7. Hence the
condition of uniformity-in-e¢ in Definition 3.2 will usually be the only additional information required to
apply Theorem 3.3.

Remark 3.5. Quantitative arguments based on L? Hérmander inequalities can be found in [3,20] (completed
concurrently with or after [16]). Thinking about hypoellipticity in terms of functional inequalities, rather
than qualitative statements about regularity of solutions to PDEs, has other important advantages as well,
for example, it is easier to adapt classical elliptic and parabolic PDE methods, such as De Giorgi or Moser
iterations, into hypoelliptic equations [20,45,72].

Obtaining the above Theorem 3.3 follows an argument generally based on Hormander’s original paper
[51], however, the L' — L™ framework, as opposed to the self-dual L? framework in [51], necessitates a more
complicated regularization argument than that used [51] (which was already quite delicate!). Moreover, as
we are always interested in sphere bundles here, one cannot avoid working on smooth manifolds, which
at least under the assumption of geodesic completeness, only adds some technical complexity rather than
fundamental difficulties.

Let us briefly see, heuristically, how one would approach the proof of Theorem 3.3. Motivated by
the above discussion regarding [51], the main challenge is to obtain 1/2 of a derivative of L' Holder-type
regularity in the X, o “direction”. By a bootstrap-type argument, we may assume that we have corresponding
regularity along all of the other vector fields in Lie, (Xo, X Ty enny Xr) (see [16] for details). Let S; be a
(carefully designed) regularization operator S; : LP — LP. We obtain for any w € C°(Br(0) x S*71),

leX6w — w1 < X8 (Szw —w) |1+ |S5w — wil g1 + (1858 S2w — Skl 1.

We eventually set 7 ~ 4/t and the regularization operator will be designed so that the first two terms are
O(7) so we need mainly to work on the latter term, which by duality is estimated by

t -
/ /S (e*Xov) XS wdgds|,
0 NG

tX* ok *
0S*w — Stwl||r < sup
[oll Lo <1

le

and for any fixed v € L* we have

/SR (STeSX%)XS‘w dq‘

< |le¥X0v]| pos ||[Xo, Sr] w11 + (HSTeSXoUHOO +)° HXjSTeSX%HLoo)”D(w),
j=1

/ <e5*0v>xas:wdq\g / <e5*0v>[)20,54*wdq'+
SR™ SR™

where

D(h):= sup
GillllLoo+57_ 11X sll oo <1

[ ey,

Hence, the challenge is designing a regularizer such that the commutator [Xo, Sr]* loses only o(t™h using
no a priori regularity in the Xy direction and similarly that S, regularizes the forcing fields X like O(771).
To do this, we let S be a modified version of Hormander’s regularizer, which averages the functlon along
directions in LleZ(Xo, X ) a corresponding amount (higher commutators corresponding to less regular-
ization) in a carefully ordered way. Specifically, because these ‘directional mollifiers’ do not commute, the
order in which they are applied is very important. Hormander regularized with S, whereas we are funda-
mentally regularizing with its adjoint S, which reverses the delicate ordering. Despite the added difficulty,
this turns out to be an important choice for our framework.
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4 Chaos for 2d Galerkin-Navier-Stokes and related models

In this section, we outline how to apply the above ideas to prove a positive Lyapunov exponent for Galerkin
truncations of the stochastic 2d Navier-Stokes. A general class of models with similar bilinear drift term,
which we call Euler-like systems, are given by the following SDE:

daf = (B(af, af) — eAxf)dt + Y XpdWf (4.1)
k=1

Here, {X k}2:1 is a collection of constant (x-independent) forcing vector fields (i.e. additive forcing) while
B :R™ x R® — R"™ is a nontrivial (not identically zero) bilinear drift that satisfies

divB=0, z-B(x,z)=0,

so in particular the unforced e = 0 dynamics preserve the norm'!, given by 1|z, and volume in R"
(i.e. the Liouville property). The term —eA provides weak linear damping, where A is assumed to be a
symmetric, positive-definite n X n matrix. Stochastically forced versions of the Lorenz 96 model (L96)
[67], Galerkin truncations of 2d and 3d Navier-Stokes on a torus (of arbitrary aspect ratio) [21,37,78] and
truncations of commonly used shell models for turbulence [35,44, 68, 84] can be cast in this form. The 2D
stochastic Galerkin-Navier-Stokes equations will be described in more detail in Section 4.3 below.

The bilinearity of B implies that solutions can be naturally rescaled into a weakly-damped, weakly-
driven system, and the two scalings are equivalent as far as Lyapunov exponents are concerned. Indeed,
while the scaling (4.1) is common among models of complex real-world systems, the stationary measure
has characteristic energy [ |z|?du(z) =~ 1. Since we are concerned with the regime € < 1, it is natural to
rescale and consider a weakly-damped, weakly-driven system. Hence, it is more natural to re-scale so that
the long-time behavior remains bounded and non-vanishing as € — 0. By rescaling z§ — \ﬁmfﬁt, replacing

¢ — ¢%/2, and using the self-similarity of Brownian motion is equivalent in law to the weakly-driven, weakly
damped form

da§ = (B(xf, 25) — eAzf)dt + ey XpdW/. 4.2)
k=1

Most importantly, this rescaling does not affect our results on Lyapunov exponents, since upon setting

¢ = €%/2, the Lyapunov exponent 5\§ of (4.2) with parameter € is related to the Lyapunov exponent A\ of

(4.1) by the identity § = ’\?i This kind of scaling is sometimes called fluctuation-dissipation due to the
balance between the forcing and the dissipation.

For this class of systems (4.1), our result below gives a sufficient condition for a positive Lyapunov
exponent in terms of projective hypoellipticity, i.e., if the lifted vector fields {Xg, X1,... f(r} corresponding
to the projective process (xf, vf) (denoting X§(z) = B(z, x) —eAx) satisfy Hormander’s condition on SR”.

Theorem 4.1 (Theorem C; [16]). Assume that

(i) {X§, X1,..., X} satisfy the elliptic Hérmander’s condition uniformly in ¢ € (0,1) as in Definition
3.2;

(ii) the bilinear term B is nontrivial, i.e., B(z,x) # 0 for some x € R"; and

(iii) the process (x§,v§) admits a unique stationary density f€.

""In the case of the vorticity form of the 2D Navier-Stokes equations that we will be studying below, this quantity is the enstrophy.
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Then, the limit defining the Lyapunov exponent \{ of (4.1) exists, and satisfies
Af

lim — = .
e—0 €

In particular, 3eq > 0 such that for all € € (0, o) there holds A > 0.

A sketch of the proof of Theorem 4.1 is given in Section 4.1 below. The most difficult part of applying
this result to a concrete system, e.g., Galerkin-Navier-Stokes, is to prove the parabolic Hérmander condition
for the projective process: general comments on this problem are given in Section 4.2, while the issue of
affirming this for Galerkin-Navier-Stokes is taken up in Section 4.3.

Given parabolic Hormander’s condition, unique existence of f¢ follows, via the Doob-Khasminskii the-
orem, from topological irreducibility of (zf, vf), i.e., the ability to approximately control random trajectories
by controlling noise paths. For Euler-like models such as (4.1), this follows from geometric control theory
arguments and the following well-known cancellation condition on B(z, ) (known to hold for many models
such as Galerkin Navier-Stokes, c.f. [43,49]): there exists a collection of vectors {ey,...es} C R™ with

span{ei,...es} =span{Xy,..., X, }
such that for each 1 < k < s, B(eg, ) = 0. For more details see Section 5.3 of [16].

Remark 4.2. The inverse Lyapunov exponent (A)~! is sometimes called the Lyapunov time, and is the
“typical” length of time one must wait for tangent vectors to grow by a factor of e. Thus, the estimate
XS > e implies that the Lyapunov time is < ¢~1. On the other hand, ¢! is the typical amount of time it
takes for the Brownian motion /€W to reach an O(1) magnitude; for this reason it is reasonable to refer to
e~1 as a kind of “diffusion timescale”. So, stated differently, our results indicate that as e — 0, arbitrarily
many Lyapunov times elapse before a single “diffusion time” has elapsed, indicating a remarkable sensitivity
of the Lyapunov exponent to the presence of noise.

Based on these ideas, one would like to assert that the scaling A{ >> e implies that the deterministic
dynamics are “close” to positive Lyapunov exponent dynamics, agnostic as to whether the zero-noise system
has a positive exponent on a positive area set. However, this assertion does not follow from the scaling
A{ > e alone: even if the Brownian motion itself is small, there could already be a substantial difference
between random and corresponding deterministic (zero-noise) trajectories well before time e !, e.g., if there
is already strong vector growth in the deterministic dynamics. For more on this, see the open problems in
Section 6.

4.1 Zero-noise limit and rigidity: Proof sketch of Theorem 4.1

Applying the Fisher information identity (Proposition 2.7) to the Euler-like system (4.2) and using that
S, = —etr A, we obtain

€
nA{

€

FI(f) = + 2tr A.

By the regularity lower bound (3.7), this implies that for each open ball Br(0) we have the lower bound
> Af
xRS yer SR+,

where the regularity s € (0, 1) and the implicit constant C = C'i are independent of e.

From this, we see that if lim inf, 6_1)\i were to remain bounded, then f¢ would be bounded in Wlicl
uniformly in €. As W*! is locally compactly embedded in L' and f€ naturally satisfies certain uniform-in-e
moment bounds, one can deduce, by sending ¢ — 0, that at least one of the following must hold true (see
Proposition 6.1, [16] for details):
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(a) either lim._,q § = 00; or
(b) the zero-noise flow (z?,v?) admits a stationary density f° € L!(SR").

Let us consider alternative (b). While it is natural and common for the projective processes of SDE to ad-
mit stationary densities, the existence of an absolutely continuous invariant measure f°dgq for the projective
process of the e = 0 problem

.’i’)t = B(l‘t, l‘t), (43)

is quite rigid. Indeed, in view of the fact that vector growth implies concentration of Lebesgue measure in
projective space (c.f. the discussion in Section 2.1 after Proposition 2.3), the existence of an invariant density
essentially rules out any vector growth for the ¢ = 0 projective process (z?,v?). Precisely, a generalization
of Theorem 2.32 in [9] (see [16] for details) implies that there is a measurably varying Riemannian metric
2+ g, such that ®' is an isometry with respect to g, namely

9o (D2 @', Dy @'w) = got(y)(v,w), v, w € TLR",

where ®* : R™ — R is the flow associate to the e = 0 dynamics (4.3). Hence, we see that if lim inf,_, e\ <
00, then the deterministic, measure-preserving ¢ = 0 dynamics must be in a situation analogous to possibil-
ity (a) in Theorem 2.5.

In our setting, we show that there is necessarily some norm growth as ¢ — oo for the ¢ = 0 dynamics
due to shearing between conserved energy shells {x € R™ : |z|?> = E}. This is straightforward to check:
due to the scaling symmetry ®'(ax) = a®*(z), a > 0, we have the following orthogonal decomposition
of the linearization D, ®! in the direction x € R™:

D,®'z = ®'(z) + tB(®'(z), ®'(z)),
noting that y - B(y,y) = 0 for all y € R™. Hence, one obtains the lower bound

| B(P'(x), ®'(x))]
|z]

|D,®| >t

for each x € R™\{0} and each ¢ > 0. This contradicts the existence of the Riemannian metric g, via a
Poincaré recurrence argument and the fact that the set of stationary points {x € R" : B(z,z) = 0, |2|?> <
R} is a zero volume set. This is summarized in the following proposition (a proof of which is given in [16]).

Proposition 4.3 (Proposition 6.2 [16]). Assume that the bilinear mapping B is not identically 0. Let v be
any invariant probability measure for &t (the flow corresponding to the (deterministic) e = 0 projective
process) with the property that v(A x S*=1) = u(A), where u < Lebgn. Then, v is singular with respect
to volume measure dq on SR".

4.2 Verifying projective hypoellipticity: A sufficient condition

We address here the challenge of verifying the parabolic Hérmander condition on the sphere bundle SR™.
Recall that given a smooth vector field X on R™ we define its lift X to the sphere bundle SR™ by

X(z,v) = (X(z), VX (z)v —v{v, VX (2)v)),

where VX (x) denotes the (covariant) derivative of X at = and is viewed as a linear endomorphism on
T,R"™. Many of the following general observations about the lifted fields were made in [13]; see also [16]
for detailed discussions.

An important property is that the lifting operation can be seen to be a Lie algebra isomorphism onto
its range with respect to the Lie bracket, i.e., [X,Y] = [X,Y]. Using this observation, the parabolic
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Hormander condition (see Definition 3.1) on SR™ for the lifts of a collection of vector fields { Xy, X1,..., X, } C
X(R™) can be related to non-degeneracy properties of the Lie sub-algebra m,(Xo; X1, ..., X, ) of s[(T,R"™)
defined by

my(Xo; X1,...,X,) == {VX(2) — 1divX(z)Id : X € Lie(Xo; X1,...,X,), X(z) =0},

where
Lie(X(); Xl, e ,XT) = Lie(Xl, e ,XT, [XQ,XI], ey [X(),X,«]),

is the zero-time ideal generated by { Xy, X1, ..., X, }, with X{ a distinguished “drift” vector field (recall
that sl,, (7, R™) is the Lie algebra of traceless linear endomorphisms of 7,,R™).

Particularly, if for each z € R™, m,(Xo; X1, ..., X,.) acts transitively on S" ! in the sense that for each
(z,v) € SR™ one has

{Av —v(v, Av) : A € mp(Xo; X1,..., X))} =T,S" 1, (4.4)

then the parabolic Hormander condition for { X, X1, ..., X, } on R™ is equivalent to the parabolic Hérmander
condition for the lifts {X’O, Xi,..., X’r} on SR™. Moreover, the uniform parabolic Hormander condition is
satisfied on SR” if and only if it is satisfied on R™ and (4.4) holds uniformly in the same sense as Definition
3.2. Since s[(IR™) acts transitively on R™\{0} (see for instance [28]), a sufficient condition for transitivity
on S" 1 is
my (Xo; X1,... X,) = sl(T,R").
In the specific case of Euler-like models (4.2) with X§(z) = B(x,x) — €A and {X},}},_, as in (4.2),

the situation can be simplified if Lie(Xo; X1, ..., X,) contains the constant vector fields {0, }}_;. In this
case, the family of x and e-independent endomorphisms

Hk :v[axkvXS]:v[a$k’B]7 ]{):1,...71,

generate the Lie algebra m,(X§; X1,...,X,) atall z € R"™. This argument implies the following sufficient
condition for projective spanning.

Corollary 4.4 (See [16]). Consider the bilinear Euler-like models (4.2). If Lie(Xo; X1, ..., X,) contains
{0, 11—y, then {XS, X1,... X, } satisfy the uniform parabolic Hsrmander condition (in the sense of Defi-
nition 3.2) on SR if

Lie(H,..., H") = sl(R").

This criterion is highly useful, having reduced projective spanning to a question about a single Lie algebra
of trace-free matrices.

In [16], we verified this condition directly for the Lorenz 96 system [67], which is defined for n un-
knowns in a periodic array by the nonlinearity B given by

By(z,x) = xpp120-1 — Ty_2T¢1. 4.5)
The traditional case is n = 40, but it can be considered in any finite dimension. In particular we proved the
following.

Corollary 4.5 (Corollary D; [16]). Consider the L96 system given by (4.2) with the nonlinearity (4.5) and
X = qrex fork € {1,...r}, qr € R, and ey, the canonical unit vectors. If q1,q2 # 0 and n > 7, then

A
lim 2L = .
e—0 €

In particular Jeg > 0 such that \{ > 0 if € € (0, ).
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4.3 Projective hypoellipticity for 2d Galerkin-Navier-Stokes

Let’s now see how we can go about verifying the projective hypoellipticity condition for a high-dimensional
model of physical importance, namely Galerkin truncations of the 2d stochastic Navier-Stokes equations
on the torus of arbitrary side-length ratio T = [0, 27) x [0, 27”) (periodized) for » > 0. Recall that the
Navier-Stokes equations on T2 in vorticity form are given by

Gtw—l—u- Vw — eAw = \/EWt,

where v is the divergence free velocity field satisfying the Biot-Savart law u = V+(—A)~!w and Wyisa
white-in time, colored-in-space Gaussian forcing which we will take to be diagonalizable with respect to the
Fourier basis with Fourier transform supported on a small number of modes.

In the work [21] by the first and last authors of this note, we consider a Galerkin truncation of the 2d
stochastic Navier-Stokes equations at an arbitrary frequency N > 1 in Fourier space by projecting onto the
Fourier modes in the truncated lattice

ZaN = {(k1, k2) € Z2\{0} : max{|ki|, |k2|} < N} C Z2,

giving rise to an = |Z 5| = (2N + 1)? — 1 dimensional stochastic differential equation with the reality

constraint w_j, = wy, for w = (wy) € (CZg,N (that is, the vector is indexed over Z(QJ, ) governed by
dwy, = (B (w, w) — €|k|?wy)dt + /edW*, (4.6)

where |k|2 := k? + r2kZ, and W} = akWta’k + iﬂkWtb’k are independent complex Wiener processes
satisfying WF = W, g (Wta’k, Wf’k are standard iid Wiener processes) with oy, () arbitrary such that
ay = 0 < [ = 0. The symmetrized non-linearity By (w, w) is given by

Bi(w,w) := % Z CjewjwWe,  Cjgp = (Gt 0), <€12 — 12)
R R
where the sum runs over all j,¢ € Z& n such that j + ¢ = k and we are using the notation ( jl,€>r =
r(j201 — j1l2). In what follows the coefficient c; o always depends on r but we suppress the dependence for
notational simplicity.

We will regard the configuration space C%N asa complex manifold with complexified tangent space
spanned by the complex basis vectors {0y, : k € Z% N} (Wirtinger derivatives) satisfying 0, , = 5wk'
See [52] for the notion of complexified tangent space and [21] for discussion on how to use this complex
framework for checking Hérmander’s condition. In this basis, we can formulate the SDE (4.6) in the canon-
ical form

dw; = X§(wy) + Y Vedy, AW},
kez0
where the drift vector field X is given by X§(w) := Zkezg N(Bk(w, w) — €|k|?wy)0y, and the set of
driving modes Z° is given by 29 := {k ¢ ZaN : ag, B # 0}.

As in the setting of [37,48], we consider very degenerate forcing and study how it spreads throughout

the system via the nonlinearity By(w, w). Specifically, we define the sets

Zh={lely t=j+k jEZ k€ Z" ¢jr #0}, n>0

and assume that the driving modes Z° satisfy (J,5o 2" = Zg y. Under this assumption on Z it can
be shown (see [16] Proposition 3.6 or [37,48]) that the complexified Lie algebra Lie(X§; {0y, : k €
ZY}) contains the constant vector fields {9y, : k € Za ~} and therefore satisfies the uniform parabolic

N .. 72
Hormander condition on C™0.~
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4.3.1 A distinctness condition on a diagonal subalgebra

As discussed in Section 4.2, in order to verify projective hypoellipticity for the vector fields X§; {0y, : k €
Z0}, it suffices to study the generating properties of a suitable matrix Lie algebra. In [21], we show this can
be reformulated to a condition on the constant, real valued matrices H* = ¥V [Ow X B),k € Zg, N> represented
in {Oy, } coordinates by (H¥)y; = Ou, 0w, Be(w, w) = ¢j k0¢—jtk. After obtaining this reformulation, the
main result of [21] is the following non-degeneracy property of the matrices { H*}.

Theorem 4.6 (Theorem 2.13, [21] (see also Proposition 3.11)). Consider the 2d stochastic Galerkin Navier-
Stokes equations with frequency truncation N on T2 and suppose that N > 392. Then, the following holds:

Lie({H" : k € Z§ n}) = slzz (R), (4.7)

where s [Zg N (R) denotes the Lie algebra of real-valued traceless matrices indexed by the truncated lattice

Z(Z), ~- Therefore projective hypoellipticity holds for (4.2) and by Theorem 4.1 the top Lyapunov exponent
satisfies lim,_,q 6*1)\5 = 0.

Remark 4.7. Verifying the Lie algebra generating condition (4.7) can be quite challenging due to the fact
that there there are n = |Z(2)7 | matrices and n? — 1 degrees of freedom to span. The matrices are also banded
in the sense that for each k, (H") ¢, couples most of the lattice values £, j along the band k = £ — j and
therefore it is extremely challenging to isolate elementary matrices (matrices with only one non-zero entry)
as one can do in “local in frequency” models like L96 (4.5) (see [16]). Moreover, brute force computational
approaches that successively generate Lie bracket generations and count the rank by Gaussian elimination
(such as the Lie-Tree algorithm in [38]) are only available for fixed r € R} and N € Z, and can be subject
to numerical error (for instance if 7 is chosen irrational) which destroy the validity of the proof.

In order to show that (4.7) holds, in [21] we take an approach inspired by the root-space decomposi-

tion of semi-simple Lie algebras and study genericity properties of the following diagonal sub-algebra of
Lie({H*})
b :=span{D”* : k € Z&N},

where DF = [H*, H—*] are a family of diagonal matrices with diagonal elements D* = (D¥);; given b
y g g i g y
]D)iC = Ci,kci—o—k,klzg N(i + ]C) — Ci,kci—hk]lZaN (Z — k‘)

Using that, for a given diagonal matrix D € sl N(R), the adjoint action ad(D) : slz2 N(]R) —
slyz N(R), where ad(D)H = [D, H], has eigenvectors given by the elementary matrices £%/ (i.e. a ma-
trix with a one in the ith row and jth column and zero elsewhere) ad(D)E*/ = (D; — D;)E*J, means that
ad(ID) has a simple spectrum if the diagonal entries of ID have distinct differences, D; — D; # Dy — Dy,

(i,7) # (i',4"). This implies that if H is a matrix with non-zero non-diagonal entries and D has distinct
differences, then for M = n? — n, the Krylov subspace

span{H,ad(D)H, ad(D)2H, ... ,ad(D)M 1 H}

contains the set { E“J : i,j € Z2 , i # j}, which is easily seen to generate sly2 N(R).

However in our setting the diagonal matrices D* have an inversion symmetry D* ; = —D¥ and therefore
there cannot be a matrix in h with all differences distinct. Moreover, we do not have a matrix with all
off diagonal entries non-zero due to the degeneracies present in c; j and the presence of the Galerkin cut-
off. Nevertheless, in [21] we are able to deduce the following sufficient condition on the family {D*} that
ensures (4.7) holds:
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Proposition 4.8 (Corollary 4.9 and Lemma 5.2 [21]). Let N > 8. If for each (i,j,¢,m) € (Z§ 5)*
satisfyingi +j+L+m=0and (i +j,0+m) #0, (i +£,5+m)#0, (i+m,j+ L) #0, there exists a
ke Z(Q)’N such that

D} + D¥ + Dj + D, #0, (4.8)
then (4.7) holds.

The proof of Proposition 4.8 is not straightforward. However, its proof uses some similar ideas as the
proof of (4.8) but is otherwise significantly easier, so we only discuss the latter.

4.3.2 Verifying the distinctness condition using computational algebraic geometry

The distinctness condition (4.8) is not a simple one to verify. Indeed, ignoring the Galerkin cut-off /N for
now, }D)f are rational algebraic expressions in the variables (i, k, ) (being comprised of products and sums
of the coefficients c; ), and therefore proving (4.8) amounts to showing that the family of Diophantine
equations'?

D} + DY+ D; + D}, =0, foreach ke Z§y (4.9)

have no solutions (i, j, £, m, r) satisfying the constraints of Proposition 4.8. Due to the complexity of the ex-
pression for ]D)f, there is little hope to verify such a result by hand (the resulting polynomials are degree 16 in
9 variables). However, if one extends each of the 9 variables (i, j, ¢, m,r) = (i1, i2, j1, j2, {1, {2, M1, M2, T)
to the algebraically closed field C, then (4.9) along with ¢ + 5 + ¢ + m = 0 defines a polynomial ideal I
with an associated algebraic variety V(I) in C°. Such a high dimensional variety is rather complicated due
to the inherent symmetries of the rational equation in (4.9), however its analysis is nonetheless amenable
to techniques from algebraic geometry, particularly the strong Nullstellensatz and computer algorithms for
computing Grobner bases (see [31] for a review of the algebraic geometry concepts). Indeed, without the
Galerkin cut-off (the formal infinite dimensional limit), in [21] we proved, by computing Grobner bases in
rational arithmetic using the F4 algorithm [39] implemented in the computer algebra system Maple [1], that
the identity V(I) = V(g) holds, where ¢ is the following “saturating” polynomial

g(i, 5, €,m,r) = Pl |FRIZm (2 + 517+ 10+ ml2) (13 + 67 + 17+ mlZ) (i + mlE + 15+ 417)

whose non-vanishing encodes the constraints in Proposition 4.8, thereby showing that (4.8) holds.

Dealing with the Galerkin truncation adds significant difficulties to the proof as the associated rational
system (4.9) is instead piecewise defined (depending on k£ and N) and therefore doesn’t easily reduce to
a problem about polynomial inconsistency. Nonetheless, by considering 34 different polynomial ideals
associated to different possible algebraic forms, in [21] we were able to show that if [V is taken large enough
(bigger than 392 to be precise) then (4.8) still holds with the Galerkin truncation present and therefore
Theorem 4.6 holds.

Finally, it is worth remarking that even without the Galerkin cut-off, the system of rational equations
(4.9) is complex enough to become computationally intractable (even for modern computer algebra algo-
rithms) without some carefully chosen simplifications, variable orderings, choice of saturating polynomial
g and sheer luck; see [21] for more details.

5 Lagrangian chaos in stochastic Navier-Stokes

At present, the results above based on Proposition 2.7 are restricted to finite dimensional problems. In-
deed, even while the Fisher information can potentially be extended to infinite dimensions under certain

conditions'3, for any parabolic SPDE problem, we will always have Ay, = —o0. The existence of positive
12 At least considering = 1 or another fixed, rational number.
BIf X*v <« v and we define f%- := dz(;v, then FI(f) = % o 18%. Hi?(u)’ and there is no explicit dependence on any

reference measure or Riemannian metric; see [16] for more details.
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Lyapunov exponents for the infinite-dimensional, stochastic Navier-Stokes equations remains open as of the
writing of this note.

However, there is another important problem in fluid mechanics where we have been able to make
progress. Consider the (infinite-dimensional) 2d Navier-Stokes equations'* in T2,

Opuy + (uy - Vg + Vp — vAu) = > quepWF,  divuy =0, (5.1)
k

where the g;, € R and ey, are eigenfunctions of the Stokes operator. The Lagrangian flow map gofu’u :T? —
T? is defined by the trajectories of particles moving with the fluid

d
7305.),71(1") = ut(@fd,u(l'))v so?u7u(x) =7,

dt

where note that the diffeomorphism @i,u depends on the initial velocity u and the noise path w and is
therefore a co-cycle over the skew product ©; : Q x H® O, where O;(w, u) = (fyw, ¥! (u)) and V!, : H* O
is the 2d Navier Stokes flow on H? associated with (5.1). One can naturally ask whether or not (u;) is
chaotic, as we have done in previous sections, or if the motion of particles immersed in the fluid is chaotic,
e.g., if the Lagrangian Lyapunov exponent is strictly positive. The latter is known as Lagrangian chaos
[4,6, 10,27, 32,42, 86] (to distinguish it from chaos of (u;) itself, which is sometimes called Eulerian
chaos). While both are expected to be observed in turbulent flows, Lagrangian chaos is not incompatible
with Eulerian “order”, i.e., a negative exponent for the (u;) process.

In [17] we proved, under the condition that |gx| =~ |k|~“ for some o > 10, that 3\; > 0 deterministic
and independent of initial « and initial velocity u such that the following limit holds almost-surely:

.1
Jim. n log | Dyl .| = A1 > 0. (5.2)

This Lagrangian chaos was later upgraded in [18, 19] to the much stronger property of uniform-in-diffusivity,
almost-sure exponential mixing. To formulate this notion, we consider (g;) a passive scalar solving the
(random) advection-diffusion equation

09t +up - Vg = kAgy,  go =9,

for k € [0,1] and a fixed, mean-zero scalar g € L?(T?). In [18, 19], we proved that there exists a (determin-
istic) constant ¢ > 0 such that for all x € [0, 1] and initial divergence free u € H*® (for some sufficiently
large s), there exists a random constant D = D(w, x,u) such that for all g € H I (mean-zero)

gell -1 < De™"||g|| i

where D is almost-surely finite and satisfies the uniform-in-x moment bound (for some fixed constant ¢ and
for any n > 0),

ED? <, (1+ |Jul )%l

One can show that this result is essentially optimal up to getting sharper quantitative estimates on g and
D, at least if K = 0 [18,19]. This uniform, exponential mixing plays the key role in obtaining a proof of
Batchelor’s power spectrum [12] of passive scalar turbulence in some regimes [15].

Let us simply comment on the Lagrangian chaos statement (5.2), as it is most closely related to the rest
of this note. The main step is to deduce an analogue of Theorem 2.5 for the Lagrangian flow map, using that
while the Lagrangian flow map depends on an infinite dimensional Markov process, the Jacobian ngofd’u

'“The 3D Navier-Stokes equations can be treated provided the —vAuw; is replaced with the hyperviscous damping vA%u.
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itself is finite dimensional. This is done in our work [17] by extending Furstenberg’s criterion to handle
general linear cocycles over infinite dimensional processes in the same way that Dmgof%u depends on the
sample paths (uy).

The Lagrangian flow is divergence-free, and thus the Lagrangian Lyapunov exponents satisfy Ax;, = 0
and \; > 0, so ruling out the degenerate situations in Theorem 2.5 would immediately imply A; > 0. A key
difficulty in this infinite-dimensional context is to ensure that the rigid invariant structures (now functions
of the fluid velocity field v and the Lagrangian tracer position x) in our analogue of Theorem 2.5 vary
continuously as functions of u and x. It is at this step that we require the non-degeneracy type condition on
the noise |gx| = |k| ™, which is used to ensure that the Markov process (u¢, ¢! (z)) is strong Feller.

At the time of writing, it remains an interesting open problem to extend our works [17-19] to degenerate
noise such as that used in [48] or [59]. It bears remarking that the methods of [48] apply to the one-
point process (uy, @' (x)) (this is used in our work [18]), however, it is nevertheless unclear how to prove
Lagrangian chaos without a sufficiently strong analogue of Theorem 2.5, and it is unclear how to obtain
such a theorem without the use of the strong Feller property.

6 Looking forward
The work we reviewed here raises a number of potential research directions.

Tighter hypoelliptic regularity estimates. The scaling \{ > e that naturally follows from our above
analysis is surely suboptimal — even if the deterministic problem were to be completely integrable, the
scaling is likely to be O(€”) for some y < 1 depending on dimension (see e.g. [14,76]). To begin with, one
may attempt to strengthen the hypoelliptic regularity estimate by refining the ¢ scaling to something like

nAS — 2X5

2
£ e S 1+ P,

for some constant 0 < ~y < 1. If such an estimate were true, the same compactness-rigidity argument of
Theorem 4.1 would imply a scaling like \{ 2 €7. An improvement of this type seems plausible given the
proof of Theorem 3.3. It might be necessary, in general, to use a more specialized norm on the left-hand
side, but local weak L' compactness, i.e. equi-integrability, is all that is really required for the compactness-

rigidity argument to apply.

Beyond compactness-rigidity. Compactness-rigidity arguments may remain limited in their ability to ob-
tain optimal or nearly optimal scalings for A\, regardless of the ways one can improve Theorem 3.3. Another
approach is to find some way to work more directly on € > (. This was essentially the approach of works
[14,76], however, the method of these papers only applies if one has a nearly-complete understanding of the
pathwise random dynamics. We are unlikely to ever obtain such a complete understanding of the dynamics
of models such as .96 or Galerkin-Navier-Stokes, but there may be hope that partial information, such as
the isolation of robust, finite-time exponential growth mechanisms, could be used to obtain better lower
bounds on || f¢||yys«.1. An approach with a vaguely related flavor for random perturbations of discrete-time
systems, including the Chirikov standard map, was carried out in the previous work [24].

Finer dynamical information: moment Lyapunov exponents. Lyapunov exponents provide asymptotic
exponential growth rates of the Jacobian, but they provide no quantitative information on how long it takes
for this growth to be realized with high probability. One tool to analyze this is the study of large deviations
of the convergence of the sequences % log | D, ®! v|. The associated rate function is the Legendre transform
of the moment Lyapunov exponent function p — A(p) := lim;_, o % log E|D,®! v|P (the limit defining A(p)
exists and is independent of (x, v, w) under fairly general conditions [7]). It would be highly interesting to
see if the quantitative estimates obtained by e.g. Theorem 4.1 extend also to quantitative estimates on the
moment Lyapunov exponents. We remark that the moment Lagrangian Lyapunov exponents play a key role
in our works [18,19].
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Lyapunov times of small-noise perturbations of completely integrable systems The phase space of a
completely integrable Hamiltonian flow is foliated by invariant torii along which the dynamics is a trans-
lation flow— such systems are highly ordered and non-chaotic. On the other hand, small perturbations of
the Hamiltonian are known to break the most “resonant” of these torii, while torii with sufficiently “non-
resonant” frequencies persist due to KAM theory. It is an interesting and highly challenging open problem
to prove that this ‘breakage’ results in the formation of a positive-volume set admitting a positive Lyapunov
exponent. For the most part such problems are wide open, and related to the standard map conjecture dis-
cussed in Section 1.1. The recent work of Berger and Turaev [22] established a renormalization technique
for proving the existence of smooth perturbations resulting in a positive Lyapunov exponent, but it remains
open to affirm how ‘generic’ such perturbations actually are.

The following is a closely related stochastic dynamics problem: starting from a completely integrable
system and adding a small amount of noise, how many Lyapunov times elapse for the random dynamics
before the “stochastic divergence” timescale when the deterministic flow and the stochastic flow differ by
O(1)? Estimating the stochastic divergence timescale is essentially a large deviations problem, and has
already been carried out for small random perturbations of completely integrable systems; see, e.g., [40]. On
the other hand, estimating Lyapunov times beyond the crude (\)~! estimate is a large deviations estimate
for the convergence of finite-time Lyapunov exponents to their asymptotic value \{. The associated rate
function in this case is the Legendre transform of the moment Lyapunov exponent A(p) mentioned earlier;
a positive result for the program described above would require quantitative-in-e estimates on A(p).

More general noise models. One simple potential extension is Theorem 4.1 to different types of mul-
tiplicative noise. Another important extension would be to noise models which are not white-in-time, for
example noise of the type used in [59], which is challenging because our work is deeply tied to the elliptic
nature of the generator L. A simpler example of non-white forcing can be constructed from ‘towers’ of
coupled Ornstein-Uhlenbeck processes, which can be built to be C* in time for any k& > 0 (see, e.g., [17,18]
for details).

Lagrangian chaos. There are several directions of research to extend our results in [17-19], such as study-
ing degenerate noise as in [48,59], extending to more realistic physical settings such as bounded domains
with stochastic boundary driving, and extending Proposition 2.7 to the Lagrangian flow map in a variety
of settings, which would help to facilitate quantitative estimates (note one will have to use the conditional
density version so that one does not see the effect of the Ay associated to the Navier-Stokes equations
themselves).
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