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POVNet: Image-Based Virtual Try-On Through
Accurate Warping and Residual

Kedan Li"¥, Jeffrey Zhang

Abstract— Virtual dressing room applications help online shop-
pers visualize outfits. Such a system, to be commercially viable,
must satisfy a set of performance criteria. The system must produce
high quality images that faithfully preserve garment properties,
allow users to mix and match garments of various types and support
human models varying in skin tone, hair color, body shape, and so
on. This paper describes POVNet, a framework that meets all these
requirements (except body shapes variations). Our system uses
warping methods together with residual data to preserve garment
texture at fine scales and high resolution. Our warping procedure
adapts to a wide range of garments and allows swapping in and
out of individual garments. A learned rendering procedure using
an adversarial loss ensures that fine shading, etc. is accurately
reflected. A distance transform representation ensures that hems,
cuffs, stripes, and so on are correctly placed. We demonstrate
improvements in garment rendering over state of the art resulting
from these procedures. We demonstrate that the framework is
scalable, responds in real-time, and works robustly with a variety
of garment categories. Finally, we demonstrate that using this
system as a virtual dressing room interface for fashion e-commerce
websites has significantly boosted user-engagement rates.

Index Terms—Virtual try-on, image generation, generative
adversarial networks, positional encoding, warping, image in-
painting, application.

I. INTRODUCTION

HE fashion retail industry is going through a rapid tran-

sition from brick and mortar stores to e-commerce plat-
forms [1]. Online fashion shops typically showcase products
using neutral garmentimages and images of a single model wear-
ing the garment. In this framework shoppers cannot mix & match
garment combinations nor visualize outfits on themselves [2].
A virtual dressing room could restore this experience and sig-
nificantly increase user-engagement and conversion rates [3].
However, traditional methods for enabling virtual try-on are
expensive — often requiring 3D models, 3D garments, or special
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images for every item. A significant body of recent research
investigates image-based virtual try-on [4], [5], [6], [7], [8], [9],
(101, [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].
A virtual try-on system maps one or more neufral garment
images — which show a garment in some neutral configuration,
for example a shirt with arms laid flat — to an image of a model
wearing those garments. Some specification of the model’s pose
might be used to obtain a good image. For a virtual try-on system
to be commercially viable it should have important properties.

1) Faithful Representation: Images generated by the system
must faithfully represent all the attributes of the garments.
This includes the shape, the material, the prints and logos,
the trims and borders, and every other detail of the specific
garment. This is important, because a consumer misled by
a faithless image will likely return a purchase, which is
expensive.

2) Image Quality: Rendered images should appear photo-
realistic and should have high resolution. Aliasing effects,
often caused by fine garment stripes, are intolerable. This
is important, because users will ignore an interface that
produces low quality images.

3) Mix & Match: The method must be able to render a com-
plete outfit consisting of selected garments from different
categories (for example, tops and outerwear and trousers).
This is important, because users will be puzzled by an
interface that allows them to see only one type of garment.

4) Scalability: The system must be scalable and interactive.
This is important, because users will ignore a slow inter-
face, and because vendors want to display a full catalog
of garments.

5) Garment Variety: The system must support a wide variety
of garment types.

6) Model Control: Users should be able to see garments on
diverse models, varying by at least hair style, ethnicity,
skin tone, and body shape. This is important, because
different users will want to evaluate garments for quite
different bodies.

T) Garment Swapping: Users should be able to swap one
garment at a time, while maintaining the state of the model
and the rest of the garments. This is important to support
the metaphor that the interface is “like” a dressing room.

These properties are not entirely independent (for example,

one can’thave 3 without 5), but are distinct (for example, one can
have 5 without 3). Some are much more demanding technically
than others — for example, accurately representing the appear-
ance of garments as body shape changes remains elusive —but all
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Our method faithfully represents garments and renders high quality images. Faithful representation means the neutral garment and the garment rendered

on the model should be the same garment. Boxes identify effects of particular interest (box-free images, see in supplemental materials for details). Notice: detailed
garment textures are preserved (e.g., patterns on the denim jacket and the skirt in Outfit B; logos on the jacket and pattern on the shirt in C, ties on the shirt in F,
the hood in G, prints on the jeans in H); structural properties are preserved (e.g., collar and cuff on shirt and wide trouser leg in A; collar, sleeve cuff and ribbon
on the top and length of short in D, lines and ribbons in E, white trouser leg in F); natural interaction between the garment and the model’s body (e.g., drape of the
trouser leg in A; folds at the cuff caused by the hand A, B; shadow cast on the leg by the skirt B; shadow on inner leg A, D); the natural split and cast shadow in G

and the realistic skin.

are important. We have listed these properties according to our
rough estimate of their importance. These properties provide a
sobering view of the state of current research (Section II). Much
of the literature can achieve some, but not other, properties.
GAN-based image generation methods [22], [23], [24], [25]
can produce photo realistic try-on images at high resolution
but cannot accurately represent specific garments. Image-based
virtual try-on methods [4], [5], [6], [71. [8], [9], [11], [12], [13],
[14], [16], [17], [19], [20], [21] preserve garment attributes, but
typically operate on one garment of a single category per image
(prior work mostly focused on tops). There are methods [10],
[26], [27], [28] that support multi-garment interactions, but
cannot preserve garment details.

A. Precise Outfit Visualization Net

We describe Precise Outfit Visualization Net (POVNet) — an
extended version of OVNet [29] which can achieve all of the
above properties to some extent. POVNet can produce accurate
textures, necklines, and hemlines, and layers multiple garments
with realistic overlay and shadows. The drapes adapt to the
body pose and generate natural creases, folds, and shading. Skin
and background are also synthesized with appropriate shadows
casted from the garments. Our method significantly outperforms
the state-of-the-art in multi-garment image synthesis (Figs. 9
and 12).

During inference, POVNet accepts a starting image y of a
model wearing clothing and an optional desired skin tone {.
POVNet produces a new image ' where the model is wearing
a neutral garment of type c depicted in a neutral garment image
x, as well as all clothes not of type ¢ shown in y. The model in
y has skin tone ¢ if ¢ is provided, but otherwise has the original
skin tone. This architecture allows the user to replace clothes
one at a time (take 3/ and feed it into POVNet with a different
).

POVNet consists of four main components. The semantic
layout generator (SLG - Giayous) predicts a semantic layout
(m’). This is a segmentation map indicating where garments
lie in the image. Giayows accepts z, a map of the pose (p) of
the model in ¥, and an initial layout (m;). The resulting m' is
used to guide image generation, particularly to resolve details
of garment overlap. The mulfi-warp garment generator (MGG
- Ggarment) produces y'. This generator accepts m' from the
semantic layout generator, = and y. It operates in two stages:
first, a warping module produces several interacting warps of
the neutral garment to the target image; second, an inpainting
module (trained with an adversary) fuses these images together
with partial layout information and ¢ to produce a convincing
image. Finally, the residual enhancement module maps patterns
from the generated image back to the neutral garment image,
computes a residual, then uses this to enhance resolution.

Although swapping an outfit during inference involves multi-
ple applications of G'garment, the operations re-use m' sothat the
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Fig. 2.  Faithful representation means applying the same set of neutral gar-
ments to different models in different poses should result in images of different
models in different poses wearing the same garments. This figure shows results
for garments with rich design elements. Length, cut, pattern, texture, collar, cuff,
and details like the fraying at the knees are preserved. Note how the bell-bottom
jeans break at the foot in some poses, as they should. In some poses, the skirt
binds against a forward leg; when it does, there is a natural shadow. The skirt
casts shadows on the legs (as it should), and they are affected by pose. Models
can have widely varied skin tones, which are rendered realistically.
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Fig. 3. A sequence of outfit visualizations produced by our method on two
different models, representing the user experience of swapping in one garment
at a time. Our method operates by applying a neutral garment to an existing
image, producing a new image (which can have another new garment applied,
etc.). Notice: faithful representation, as in Fig. 1 — while garment appearance
can vary with model pose and attitude (tucked in; tucked out), garments look the
same across models; existing garments are preserved, and new garments interact
with them naturally; and garments drape naturally with pose.

process is relatively efficient and much of the generated image is
unchanged when applying one new garment (in contrast to [10],
which must change the whole layout each time one garment
is changed). The sequential process also brings the benefit of
allowing users to modify one garment at a time while the rest of
the image remains untouched (Fig. 3). Users do not expect that
swapping a garment will cause changes in the rest of the image
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Fig. 4. Garments drape naturally as model pose changes. The figure shows
renderings of the same outfit worn by the same model in different poses. Notice:
faithful representation, as in Figs. 1 and 3; garments drape naturally with pose;
inside leg shading and garment folds are consistent with pose; when a hand is
a pocket of a garment, the garment plumps up and interacts naturally with the
other garments (Poses 2 & 5).

TABLEI
THIS TABLE COMPARES SSIM [86], IS [87] AND FID [88] REPORTED ON THE
ORIGINAL VITON TEST SET. NUMBERS FOR PRIOR WORKS ARE TAKEN FROM
THE ORIGINAL WORK. POVNET+DENSEPOSE [WHICH ADAPTS STYLE-BASED
FLow [17] TO OUR P'[PEL]NE) OUTPERFORMS ALL PRIOR WORKS WHILE
POVNET ALSO YIELDS STRONG PERFORMANCE

Methods SSIM{ | ISt | FIDJ
VITON [4] 783 | 265 | 557
CP-VTON [5] 745 276 245
GarmentGAN [63] - 2.77 -
VTNFP [62] 803 | 278 -
SieveNet [11] 766 2.82 -
ClothFlow [8] 841 23.68
ACGPN [9] 845 283 | 166
OVNet [29] 852 | 2.85 | 15.78
ZFlow [16] 885 - | 1517
DCTON [13] 838 2.85 | 14.82
Dress Code [18] .890 284 | 13.71
RT-VTON [19] - - | 11.66
SDAFN [20] - - 9.46
HR-VITON [21] 864 - 938
Style-Based Flow [17] 910 - 8.89
POVNet 891 2.87 | 13.37
POVNet+DensePose 918 2.92 8.82

— for example, changing a top should not cause the model’s
feet to move. Other benefits emerge from the details of each
element.

POVNet contains a number of technical innovations which re-
sult in measurable improvements in accuracy. Because publicly
available try-on datasets do not contain rich garment categories,
we test on a dataset with all major garment categories from multi-
ple fashion e-commerce websites. Evaluation on this new dataset
shows that using multiple warps consistently outperforms single
warp baselines in this new setting, demonstrated both quantita-
tively (Table III) and qualitatively (Fig. 8). Our try-on system
also produces higher quality images compared to prior works
on both single and multi-garment generation (Tables I and II,
and Figs. 9 and 12). The residual enhancement yields clear
improvement to garment details (Fig. 10) and super-resolution
further increases the details captured by the generated image (as
in Fig. 11).
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TABLE II
THIS TABLE COMPARES SSIM [86] SCORE AND THE FID, [89] SCORE ON THE
MULTI-GARMENT DATASET. POVNET OUTPERFORMS DRESS CODE [18] AND
THE ORIGINAL OVNET [29]. THE ABLATION STUDIES SUGGEST THAT EACH
MODULE CONTRIBUTES. IN CONTRAST TO TABLE I, POVNET+DENSEPOSE
PERFORMS SIGNIFICANTLY WORSE THAN POVNET ON THE MULTI-GARMENT

DATASET

Methods SSIM 1T FID« |
Dress Code [18] 821 912
Original OVNet [29] 840 874
POVNet+DensePose 834 894
POVNet w /o Distance Transform 846 867
POVNet w/o Inpainter Formulation Change 852 854
POVNet w /o Residual Enhancement 856 849
Full POVNet 862 846

The purpose of POVNet is to solve practical commercial
problems. To show the results have practical consequences, we
have deployed our system on real e-commerce sites, where users
can select garments and see generated visualizations in real-time.
We show that user engagement is significantly improved when
users can interact with POVNet. A live demo of a virtual try-on
shopping interface powered by the latest version of our frame-
work is publicly available.'

1) Warping, Inpainting and Residual: POVNet is designed
around a warping process, because warping is known to be
helpful in detail preservation [4], [5], [6], [7], [8], [9], [12],
[13], [14], [16], [17], [19], [20], [21].

We warp one garment at a time onto the target image. Warping
image features creates difficulties when one wants to apply
more than one garment (for example, should the shirt be tucked
in or out). An alternative is to encode garments into feature
vectors and then broadcast the vectors onto a layout as O-VITON
does [10]; this allows interactions between multiple garments,
but makes it difficult to synthesize texture details precisely. In
contrast to previous work, OVNet [29] uses multiple warpers for
each garment (so dealing with the difficulties presented by, say,
jackets, which often appear as two disjoint regions). Using mul-
tiple coordinated warps produces substantial quantitative and
qualitative improvements over prior single-warp methods [4],
(51, [71, [81, [9], [11].

We recognized that insufficiently controlled warps can result
in images of a similar, but different, garment from the intended.
For example, a warp might result in stripes that are too thick or
too thin; a hemline that is too low or too high; or an oddly shaped
collar. This could be controlled by allowing the warper to see
a range of configuration features (binary masks or sparse body
keypoints, as in [4], [5], [6], [7], [8]. [9], [12], [13], [14], [19],
[20], [21]). Alternately, one could use DensePose [30] style rep-
resentations (as in [16], [17], [19]), but our experiments suggest
that garments and poses are strongly correlated in training data,
meaning that one encounters nasty generalization difficulties at
run time (see supplemental materials for details). Unlike any
prior work, POVNet uses a distance transform representation to
ensure that warps do not distort the garment. Results in Fig. 9
shows a strong improvement in the warp coherence.

Ihttps://demo.revery.ai
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One advantage of warping is that one can compare the final
rendered garment with the original neutral garment using the
inverse of the warp. POVNet uses the resulting residual to correct
minor errors, resulting in significant improvements in detail at
high resolution.

In brief, POVNet made the following important improvements
on top of the original OVNet [29]: (1) We use distance transform
to significantly improve the coherence of the warp with respect
to the body. (2) We recognize the difference between the warp
garment and the generated image (the residual), and leveraging it
to enhance the rendering quality. (3) We improve the formulation
of the inpainting module.

II. RELATED WORK

The general question of rendering people wearing prescribed
garments admits a wide range of approaches. Key technologies
are generating images of people and image warping. We re-
view the literature through the lens of our properties. Faithful
representation is a subtle and demanding property — we want
any image generated from an example garment to be an image
of a person wearing that particular garment, rather than some
garment or a garment quite like it. Because current datasets
usually contain at most one image of a person in a given garment,
an adversarial loss can ensure that generated images look real-
istic, but cannot enforce the faithful representation requirement.
There is a strong focus in the literature on image quality, but
not all methods have mix&match properties. Scalability means
that we focus on methods that use garment images, because
alternatives — for example, obtain and use 3D models of person
and garment [31], [32], [33] — are not at present scalable. Recent
methods mostly study a variety of garments. Full model control
is elusive, but some methods are able to vary models. Finally,
recent methods tend to allow garment swapping.

A. Generating Images of People

Virtual try-on methods need to know some representation of
pose and body shape of the target person. One might estimate
the shape of the human body [34], [35], clothing items [36],
[37] or both [38], [39] through 2D images. Tsiao et al. [40] learn
a shape embedding to enable matching between human bodies
and well-fitting clothing items. The DensePose [30] descriptor
helps model the deformation and shading of clothes and has been
adopted by recent work [41], [42], [43], [44], [45].

Zhu et al. [28] uses a conditional GAN to generate images
based on pose skeletons and text descriptions of garments. Swap-
Net [46] learns to transfer clothes from person A to person B by
disentangling clothing and pose features. Hsiao et al. [27] learn
a fashion model synthesis network using per-garment encodings
to enable minimal edits to specific items. Han et al. [44], [47]
propose an inpainting method to complete missing clothing
items on people. Dong et al. [48] introduce a framework that
enables manipulation to person or garment attributes through
sketch and color strokes using a novel conditional normalization
method. Recently, Men et al. [49] propose a novel person im-
age synthesis method, controllable through interpolating style
and pose representations. Recently Cui et al. [26] proposed a
method to iteratively dressing multiple garments on a model
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with different styling option. However, the methods do not
preserve structured spatial patterns (such as logos or prints)
because they encode garment appearance into feature vectors to
enable attributes manipulation. Chen et al. [50] extends try-on to
different view points through sequence of poses, but the method
have difficulties preserve garment attributes due to missing view

points.

B. Image Warping

Image warping is the process of applying a parametric defor-
mation to an image region; early methods are reviewed in [51],
[52]. Spatial transformer networks estimate geometric transfor-
mations using neural networks [53]. Subsequent work learns
networks to warp one object onto another. Warping works with
images of rigid objects [54], [55] and non-rigid objects (e.g.,
clothing) [4], [5], [56]. While imputing a warp from a neutral
garment image to a target image can be difficult, warping is
extremely good at preserving details, and POVNet uses a warper
for that reason.

At run-time, the warper must impute a warp from some
representation of the garment image and the target. The choice
of representation is important: there needs to be enough infor-
mation so that the warper can tell when a garment is being
distorted inappropriately. The standard choices [4], [5], [6], [7],
[8], [9], [12], [13], [14], [19], [20], [21] are a combination of
a binary layout mask and sparse body key points. This leads
to problems, because the feature maps give relatively sparse
information about the distortions in a warp.

Ayush et al. [16] improve the warping mechanism by in-
corporating 3D priors (through DensePose [30], which gives
a dense representation of body configuration). He et al. [17]
show that a flow-based architecture achieves better images.
However, DensePose presents a challenge to the multi-garment
settings: garments and poses are strongly correlated in training
data and some garment-pose pairs are absent. For instance, if
a user wants to render a missing garment-pose pair, there will
be problems. For example, people wearing jackets are predicted
to have significantly wider shoulders than people wearing shirts
(see Supplementary Fig. 2). This effect is particularly significant
when there are multiple garment categories. We discuss the ef-
fects in details in the Supplementary material, which is available
online.

An alternative strategy is to provide a relatively rich rep-
resentation of where points lie (roughly) on the source, so
that the warper can avoid distortions that are unlikely. This
is a form of positional encoding, now common in NLP [57],
[58], [59] and shown to help convolution operators [60].
POVNet uses a distance transform procedure (after [61]) to
control distortions produced by the warp and achieve faithful
representation.

C. Image-Based Virtual Try-On

We review two classes of image-based methods — those that
work on one garment (Section II-C1), and those that handle mul-
tiple garments (Section II-C2). Warping methods offer the best
prospect of texture accuracy, but the specific details of how the
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TABLE III
THiIS TABLE REPORTS THE FID., [89] SCORE (SMALLER IS BETTER) OF OUR
METHOD ON THE NEW MULTI-CATEGORY DATASET. WE COMPARE THE
PERFORMANCE USING DIFFERENT NUMBERS OF WARPS. RESULTS SHOW THAT
USING MORE WARPS YIELD HIGHER QUALITY SYNTHESIS AND THE QUALITY
ARE MOSTLY CONSISTENT ACROSS CATEGORY (EXCEPT FOR FULL-BODY
WHICH 1S UNDER PRESENTED IN THE DATASET)

warp | bottoms full-body tops outerwear | overall
1 1.837 4.053 2194 1.983 1.374
2 1.438 2219 1.314 1.337 904
4 1412 1.947 1.042 1.309 846
8 1.407 1.954 1.068 1.277 .845

warper is constructed are important. Obtaining high resolution
synthesis presents particular challenges (Section II-C3).

1) Single-Garment Virtual Try-On: Single garment virtual
try-on methods (SG-VITON) map a single garment onto a model
image with emphasis on the faithful representation garments’
identity. There is a strong emphasis on warping methods. VI-
TON [4] first proposed using a thin plate spline (TPS) transfor-
mation to create a warp, followed by a generation network to
synthesize the final output. CP-VTON [5] improves this method
by using a differentiable component for TPS transformation.
Other improvements are proposed to stabilize the TPS warper
forthe task [9], [15]. Hanet al. [8] uses a flow estimation network
to enable more degrees of freedom for the warp. Issenhuth et
al. [12] propose a teacher-student training paradigm to warp
without relying on human parsing and Ge et al. [14] further
refine the method using a different formulation for knowledge
distillation. To enable shape changes (e.g., short sleeve to long
sleeve), a common procedure has been to predict a semantic
layout of body segments and clothes to assist with image gener-
ation [8], [9], [11], [62], [63]. Other works propose architectural
improvements toward better preservation of details [63], [64]
and adding adversarial training during the refinement phase to
improve image realism [7], [9], [62], [63]. Ge et al. [13] propose
using cycle-consistency to improve try-on results. The virtual
try-on task has also been extended to multi-view scenarios and
videos [56], [65]. Others follow similar procedures [66], [67],
[68].

Generally, these methods faithfully represent garment prop-
erties, can produce high quality images, and are scalable, at the
cost of working with single garments of a single type (mostly
tops). POVNet extends warping to preserve these properties,
while working with multiple garments over multiple categories
and allowing garment swapping.

2) Multi-Garment Virtual Try-On: Multi-garment virtual
try-on is more challenging than SG-VTON, because one must
ensure proper layering and accurate modeling of the interactions
between garments. O-VITON [10] constructs a visual feature
encoding which is broadcast into a layout using a learned pro-
cedure that allows interactions between multiple garments. The
visual feature encoding causes a loss of texture detail, but an
online optimization step (fine-tune a generator for every query)
can repair this loss, at the expense of scalability. Model control
is not available, nor is garment swapping. Morelli et al. [18]
claimed to support multi-garments try-on, but the work lacks
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Fig.5. POVNet accepts a starting image y of a model wearing clothing and an optional desired skin tone ¢. POVNet produces a new image 3’ where the model

is wearing a neutral garment of type ¢ depicted in a neutral garment image =, as well as all clothes not of type ¢ shown in y. The model in y has skin tone ¢ if £
is provided, but otherwise has the original skin tone. There are two main components. The semantic layout generator (SLG - Gqyoq¢) predicts a semantic layout
(m'), a segmentation map indicating where garments lie in the image. Gqyout accepts x, a map of the pose (p) of the model in y, and an initial layout (m;). The
resulting m’ is used to guide image generation, particularly to resolve details of garment overlap. The multi-warp garment generator (MGG - G ggrment) produces
y'. This generator accepts m' from the semantic layout generator, z and y. It operates in two stages: first, a warping module produces several interacting warps of
the neutral garment to the target image; second, an inpainting module (trained with an adversary) fuses these images together with partial layout information and ¢
to produce a convincing image. Finally, we apply a residual enhancement technique to improve rendering quality by restoring the missing details. We first compute
the residual r —the difference between the warps w . . .wj, and generated image y' conditioned on the garment region. Then, we retrieve the high frequency patterns

r¢ from the residual r and adding these details back to %/, resulting in the enhanced image z (see Fig. 7 for details).

TABLE IV
THiIS TABLE REPORTS THE INFERENCE TIME OF OUR METHOD FOR OUTFITS OF
DIFFERENT NUMBERS OF ITEMS. THE RESULTS ARE MEASURED ACROSS 200
SAMPLES. THE RESULT SHOWS THAT OUR METHOD CAN DELIVER (4)
REAL-TIME RESPONSE

Number of items in the outfit Inference Time (Second)
1 item (Dress) 0.378 + 0.023
2 items (Top + Bottom) 0.502 + 0.024
3 items (Top + Bottom + Outerwear) 0.617 &+ 0.032

descriptions of how it handles the interaction between multiple
garments during inference.

In contrast, POVNet follows SG-VTON methods by adopting
a warping based approach to achieve significantly better quality
(Fig. 12) with high efficiency (see Table IV for running time
analysis). POVNet uses a human parse to sort out the layering
effects allow us to support interactive swapping.

3) High Resolution Virtual Try-On: Resolution is difficult.
The industry demands high-resolution imagery to highlight
garment details, but research methods operate at relatively low
resolution [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [15].
One might apply single-image super-resolution methods to vir-
tual try-on results [69], [70], [71], but such methods must be
guessing at fine texture details. Choi et al. [72] demonstrate
virtual try-on at 1 k resolution using a residual architecture. The
method produces realistic 1 k resolution images, but cannot faith-
fully represent garment properties (e.g., [72], Fig. 1). VITON-
HR [21] prevents occlusion through an improved architecture
that predicts the warp and layout jointly. However, the method
stretched the garment textures in undesired ways(e.g., [21],
Fig. 1 bottom right, white flowers on the left sleeve and bot-
tom torso went missing). In contrast, POVNet uses a resid-
ual to obtain high resolution images without loss of faithful
representation.

ITI. PRECISE OUTFIT VISUALIZATION NET

We have designed Precise Outfit Visualization Net (POVNet)
to support the essential properties for VTON methods to be
commercially successful. To achieve faithful representation and
fast inference, our image generator adopts a warping-based
approach instead of an encoding/fembedding-based approach
because of its obvious advantage in detail preservation and
speed of inference. To support a variety of garments and obtain
high quality images of open outerwear, we use a novel warping
procedure that coordinates multiple warps. To enable mix &
match of garments, layering effects and interactive edit of outfits,
we use a novel framework for predicting partial layouts based
on garments and poses, and allow manipulations of those lay-
outs during inference. To ensure faithful representation across
garment categories, we use a distance transform to produce a
feature representation that enhances warping accuracy. Finally,
to obtain high accuracy at high resolution, we use a residual
enhancement strategy.

The semantic layout generator (SLG) Giayou: (Fig. 5 left)
must produce a detailed semantic segmentation of the image to
be generated. Each pixel mustbe labelled with background or the
type of the garment on that pixel. The layout must be realistic,
and must be guided by the model’s pose.

The multi-warp garment generator (MGG) G garment (Fig. 5
right) must produce a realistic image of a model wearing a
specified garment. The MGG accepts a model image y, a layout
m registered to the model image and produced by the SLG, and
a garment image z° of class ¢ and predicts the realistic image.
G garment consists of two modules — a warper, and an inpainting
module.

A. The Semantic Layout Generator

The SLG is a U-Net which accepts a neutral garment image
¢, an initial (incomplete) layout m;, and a pose p, and predicts
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a complete layout m’ = Gigyout ([2°, m;, p]). Using an incom-
plete layout forces the U-Net to generalize.

The initial layout m; is a layout that hides the details of
one garment. For example, we choose to generate a layout
associated with a top; then m; is obtained by taking the ground
truth layout m and setting the top, neckline, and arm classes
to the background class. Further details of the procedure (see
Supplementary material).

The SLG is trained with pairs of neutral garment images =°
and images y of models wearing that garment. The semantic
layout m of y is recovered using an off-the-shelf human parsing
model [73]. The pose map p is recovered using OpenPose [74],
[75], [76], [77]. The initial layout m; is obtained by setting the
pixels in m labelled with the category of ¢ to the background
class. The network is trained using a pixel-wise cross-entropy
loss and an LSGAN [78] loss to encourage the generated seman-
tic layouts to resemble real semantic layouts. The total training
loss for Giayous is then

Liayous = MLce + r2Llean, (1)

where A; and Ay are the weights for each loss. Because the
argmax function is non-differentiable, we adopt the Gumbel
softmax trick et al. [ 79] to discretize the layout generator’s output
such that the gradient generated by the discriminator can flow
back to the generator.

B. MGG: The Warping Module

The warper aligns the garment image = with the semantic
layout of the garment class m® (obtained as the c-labelled pixels
in m). The warper uses distance transform features to control
deformation of the garment. In contrast to prior work (which
uses a single warp [4], [5], [8], [9]), the warper uses multiple
coordinated warps, each of which has relatively few degrees
of freedom, rather than a single warp with many degrees of
freedom. Each warp is not required to fit perfectly as long as
the other warps can make up for the misaligned regions. There
are several advantages: warps with fewer parameters are easier
to estimate; rigid warps are easier to regularize and more ro-
bust to non-regular shapes; multiple warps can naturally handle
disconnected regions (e.g., split outerwear).

The inpainting module must generate the final image given
all the warps, the predicted semantic layout m’, the skin color
of the model s (median color of the face), and the incomplete
model image y; where the target garment, skin, and background
are masked out. The inpainting module is trained jointly with
the warper, and so learns to combine warps. Other garments are
kept to support garment swapping.

1) Distance Transform Features: Garments deform signifi-
cantly, so the warp must deform the source significantly, but
many kinds of deformation are not acceptable — for example,
stretching a short skirt so that its hem lies at the ankle wholly
misrepresents the garment. This means that learning to warp a
neutral garment image to the position of a target mask accurately
is very challenging, and in turn learning the warper may be
simplified by providing features that help distinguish between
acceptable and unacceptable warps. Prior work has used a binary
mask of the target region(s) and human posture to as features to
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1.4

2.2

Distance Transform

Fig. 6. The figure shows an example of distance transform & for garment
image x. The background region of the garment is filled with zeros. The distance
transform of each foreground pixel is computed as the euclidian distance between
itself and its closest background pixel. The distance transform me for the
semantic layout is computed through the same procedure.

inform the warper [4], [5], [6]. [7], [8]. [9], [12], [13], [14], [16],
[17], [18], but this approach denies the warper information about
the details of deformation. For example, a binary mask feature
cannot inform the warper when cloth is being overstretched in
the interior of the garment.

The distance transform for any pixel in the mask region is
computed as the euclidean distance between itself and its nearest
border pixel, as shown in Fig. 6. We replace the binary mask of
the target region m° with a distance transformed version m¢, and
provide a distance transform ¢ for the source garment image x°
as well. The advantage of doing so is that a simple convolutional
layer can determine the strain on the cloth implied by a particular
warp by looking at derivatives of the distance transform. There
is a scale issue: the garment layout on the person m* is usually
smaller than the garment image z°. To avoid difficulties, we
normalize the distance transform by the square root of the total
number of non-zero pixels in the distance transform map.

2) The Warper: The warper network resembles a spatial
transformer network [53]. A regressor takes in the garment
image ¢, its distance transform ¢ and the distance transform
of the mask m¢, and predicts k sets of spatial transformation
parameters 6;...605. It then generates a grid for each set of
transformation parameters, and samples grids from the garment
image z°¢ to obtain k warps wy..wy where wy = W(z®, 61).
The warps are optimized to match the garment worn by the
target model m® ® y using per pixel £, loss. Inspired by [8],
we impose a structure loss to encourage the garment region z (a
binary mask separating garment foreground and background as
in Fig. 5) of ° to overlap with the garment layout of the garment
mask m® on the model after warping. The warping loss is then

Lyarp(k) = [W(z,0) — (m® O y)| + BIW(z, ;) —m?,
2
where /3 controls the strength of the structure loss. This loss is
sufficient to train a single warp baseline method. The choice of
warper here is not crucial, but in our implementation, we use 2D
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affine transformations. Our choice of warps are more rigid, and
thus easy to estimate.

3) The Cascade Loss: When k > 1, the j’th warp w; is
trained to address the mistakes made by previous warps w; where
¢ < j. For the jth warp, we compute the minimum loss among
all the previous warps at every pixel location, written as

':(:"Ifm:l min(ﬂwarp(l) (u,lv)--ﬂwarp(j)(u,v) )

WH ’

3)
where u, v are pixel locations; W, H are the image width and
height; and Lyarp(T)(w,v) i the loss of the rth warp at pixel
location u, v. The cascade loss computes the average loss across
all warps. An additional regularization term is added to encour-
age the transformation parameters of all later warps to stay close
to the first warp. Our final cascade loss is written as

Sht Luarp() | (Lo 1165 — 64
k j—1 '

Ateach pixel location, the loss is the minimum among all warps,
meaning if one warp does well in a region, other warps are not
penalized for making mistakes in the same region. In practice,
we observe 80% of the garment pixels are taken from the 1st
warp. The subsequent warps often fill in the irregular regions
caused by the complex interactions between the garment and
the person (e.g., the gap between the first warp and the arm, the
halves of open outerwear, the edge of neckline/hemline, etc.).
The cascade loss also enforces a hierarchy among all warps,
making it more costly for an earlier warp to make a mistake than
for a later warp. This prevents oscillation during the training
(multiple warps competing for the same objective).

The idea is comparable with boosting — using multiple simple
warpers (weak learners), each with a small degree of freedom
can handle complex geometric shapes when combined. Warpers
interact with each other differently compared to classifiers —
all the warps are predicted in parallel (not sequentially) in
the forward pass of the network. But the loss for each warp
is computed in a cascade (sequential) manner to coordinate
multiple warps. This means that at training time the generator
can reason about geometry, but at test time the warps are quickly
computed. Training the warper and the image generator jointly
allows the warps to adjust according to each other and the image
generator to guide the warpers.

Ewarp(j) =

£casc(j) =

)

C. MGG: The Inpainting Module

The inpainting Module accepts all warps wy ..wy, applied to the
neutral garment image, the semantic layout without the garment
mask m @ (1 — m®) (orm’ ® (1 — m*’) during inference), and
the incomplete image y;, and produces the final image y' of the
model wearing the neutral garment = and all other garments
shown in y. This is not a standard inpainting task because the
exact content to inpaint is provided through the input channels,
but may be in the wrong place (in contrast to filling in missing
portions of an image [80], [81], [82], [83]). We use a U-Net
architecture to encourage copying information from the input.
In addition to the cascade loss L.q.., We train the network to
reconstruct the ground truth image using a per-pixel £; loss,
a perceptual loss Lp.r. [84], and a Spectral Norm GAN with
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Fig.7. The residual enhancement procedure computes the difference between
the warped garment image w and the generated image y'; this is masked using
the binary mask for the garment type (obtained from m) to produce the residual
r. This is median filtered to yield ry = r — M(r), an estimate of missing high
spatial frequencies. Finally, we add r back to the generated image ¥/, and
multiply by a hyper-parameter « to control the magnitude. As the figure shows,
both the letter “VI” and the buttons become visible after the augmentation.

A B C D E

Multi-

Warps

Results &
Single

Warp

Results ]

| \
Fig. 8. Two or more warpers are better than one. When using a single warp:

the buttons are in the wrong place in A and D; there are problems with sleeve
boundaries in E; there is a severe misalignment in C; and there is a misplaced
tag in B. All problems are fixed in multi-warp results.

hinge loss L5 an [85]. The total loss for training G garmen: With
k warps is written as

cgarm(k) = 'Tlfccasc(k) + '}"chl + 'TSprerc + ’)’4CGAN: (5)

where ~1, 2, 73 and 74 are the weights for each loss.

Note an important modification over the original OVNet [29]
— the inpainter does not see m’ or m¢'. Following He et al. [17],
the generated garment layout m’ is often smoothed and in-
accurate, and so providing the m® as input encourages the
network to adopt the m*, often resulting in a loss of details
in the garment shape. In contrast, we knock out m®’ and provide
m' ® (1 — m*®') as the input —so the type of garment that must be
placed does not appear in the mask. Because the garment warps
computed through the distance transform already suggest the
position of the garment, the inpainting network does not require
the garment layout to generate the final output image. These
modifications yield significant improvements both qualitatively
(Fig. 9) and quantitatively (Fig. 1).
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POVNet POVNet

) ¢ Outfit E

OVNet

Fig.9. Qualitative comparison between POVNet and an earlier version (OVNet - no residual enhancement and no distance transform) significantly favors POVNet.
While differences may appear small, POVNet faithfully represents garments in ways that OVNet does not. For example, in outfit A OVNet crops the trouser cuffs
and POVNet does not; in E, OVNet crops the hem — so misstating the pattern of the garment, and POVNet does not. Similar effects on trouser cuffs/hems in B, C,
F. As another example, the layout of texture on the blouse in F is wrong for OVNet (crossing too close to hem) and right for POVNet. Similar effects in C, D, E.
Garments tend to follow the body pose better with POVNet. For example, the blue cross is slightly off center in POVNet F (as it should be), but not in OVNet E.
Similar effects in B, D. Improvements to fine detail like this are difficult to capture with FID, but are crucial to shoppers who rely on the images to understand the
appearance of the garments. Errors can result in expensive returns; for example, a shopper who bought the jersey in E based on the OVNet image might return it

for having too thick a gray stripe at the bottom.

D. Residual Enhancement

Our residual enhancement is a scheme to ensure generated
images show garment detail at the highest available resolution.
Consider pixels lying on the generated garment in the generated
image. The pipeline has produced these pixels by applying a set
of warps to the neutral garment image, then combining these
pixels with other information in the inpainting module. This
means that the generated garment is different from the warped
neutral garment, and comparing the two provides a residual. This
residual is informative because the inpainting module tends to
supply shading details, which are at relatively low spatial fre-
quency. In turn, any high spatial frequency residual components
are a sign of missing texture detail.

Residual enhancement allows us to produce generated images
at a resolution higher than the training resolution, when neutral
garment images are available at that resolution. While the quan-
titive improvement is small (Table II), there is good qualitative
evidence that details are better preserved (Figs. 7, 10, and 11).
The procedure is simple and quick, and helps ensure faithful
representation.

1) Simple Residual Enhancement: For a single warped ver-
sion w of a neutral garment image, the residual is straightforward
to compute. We compute r = (w — ¢') @ m€ (recall ¢/ is the
generated image and m* is a mask that preserves all pixels of

Garments No Residual Simple Residual End2end Residual

Fig. 10. A qualitative comparison between not using residual enhancement,
using simple heuristic-based residual enhancement, and using residual enhance-
ment with end-to-end training shows that residual enhancement can produce
better quality images. Note that letters and the thin lines become more visible
with even the simple enhancement. When the residual is applied using a heuristic,
there are minor artifacts on the boundary (the edge of the skirt) that appear
unnatural in certain regions. Using end-to-end training can produce smooth
edges for the residuals. Note the vertical words “THE SUPERSTARS” become
legible (greenbox).

garment type ¢). Here m® is recovered from the SLG. We now
compute 7y = — M(r), where M is a median filter. Finally,
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Residual Residual 2x

Fig. 11. Residual enhancement allows our pipeline to produce images at
resolutions greater than those it was trained for (super-resolution). Given a
high-resolution x, we can generate a y where the top stitches around the pocket
became clearly visible (here x is 2 x training resolution). The “Off White™ text
on the waistline belt also becomes more readable (zoom in to see). Details on the
skin are not augmented because there is no residual to copy from, but garment
details are more important than skin details for a virtual dressing room.

the augmented image is z = y' + ary. The full procedure is
illustrated in Fig. 7 and Algorithm 1 (supplementary material).

When there are multiple warped versions w; of the neutral
garment, computing the residual requires care. One must decide
which warp accounts for which pixel in the generated image. A
reasonable procedure is to rank the warps by the magnitude of the
residual in ascending order, then apply the residual from warps in
order. When applying the residual for a given warp, we exclude
any pixels that already have a non-zero residual applied from
a previous warp as illustrated in Algorithm 2 available online.
This means that, in general, at each pixel the most accurate warp
with a high frequency residual component will be used to correct
the pixel. This heuristic procedure has drawbacks. It produces
residual artifacts at the boundary of the garment (Fig. 10), likely
because the boundaries of the semantic layout do not always
exactly match those of the generated image. Furthermore some
regions can have unnatural looking high brightness (Fig. 10),
likely because the filter is not perfect.

2) End-to-End Training of Residual Enhancement: A more
sophisticated use of the residual is to learn a pixel classifier
network to that predict the residual from which warp should be
applied at each pixel location. The residual classifier network

12231

consists of two convolution layers with ReL.U activation follow-
ing the intermediate layer and Softmax activation following the
final layer. The network takes the features from the last hidden
layer of the garment generator G garmen: a8 input and outputs a
4D tensor u of shape (B, k + 1, W, H) where B is the batch size
and k is the total number of warps. We then compute a softmax
of the k£ + 1 channels. Write s; for the resulting softmax value
for the ith channel; s; . . . s; correspond to each of the warps, and
si+1 allows the residual to be zero. We now obtain the residual
= ZLI s; @ 7y, by multiplying the softmax for each channel
with the residuals computed from the corresponding warp and
summing (Algorithm 3 in supplementary material). All this is
differentiable, so we can train the multi-warp residual enhance-
ment jointly with POVNet using identical training losses. The
adversarial loss is able to capture and suppress the artifacts and
smoothen the residual as shown in Fig. 10.

3) Garment Texture Super Resolution: Now assume we have
a neutral garment image x;, at resolution higher than that used
in training. Residual enhancement allows us to use this reso-
lution without retraining the whole network. At run-time, we
downsample z;, to get x at the training resolution. We apply the
pipeline to obtain appropriate spatial transform parameters for
each warp, then apply these spatial transforms to x5, to obtain
high resolution warps wy p, . . . wy,. We then upsample the gen-
erated image ' to obtain y},, and apply residual enhancement
to y}, using the high resolution warps. While this procedure
yields accurate high resolution garment images without needing
to be trained on high-resolution images, it cannot produce high
resolution skin or background. Users focused on garments may
not be bothered by lower resolution skin.

IV. EXPERIMENTS
A. Datasets and Experiment Setup

To demonstrate that our method works with various garment
type, we experiment on a dataset of 321 k fashion products
obtained from several fashion e-commerce websites through
affiliate marketing program. Revery. Al has the right to use these
images through an affiliate partnership with the source websites.
The dataset contains all the available garment categories. Each
product includes a neutral garment image (front-view, laying
flat, plain background), and a model image (single person,
front-view). Garments are grouped into four types (top, bottoms,
outerwear, or full-body). We randomly split the data into 80%
for training, 5% for validation, and 15% for testing. Because the
model images do not come with body parsing annotation, we use
off-the-shelf human parsing models [73] to generate semantic
layouts as training labels.

We also compare with single garment methods by training
and testing our method on the VITON dataset [4]. Following
prior work, we report SSIM [86], Inception Score (IS) [87] and
FID [88] score on the original VITON test set [4].

We compare with Dress Code [18] and the original
OVNet [29] on the multi-category dataset. We report Frechet
Inception Distance Infinity [89] (FID.) as Chong et al. [89]
shown that it is a more reliable metric than FID [88]. Other
details about network architectures, training procedures, and
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Fig. 12.  Qualitative comparison between O-VITON [10] and POV Net favors
POVNet. Particularly significant are improvements in faithful representation and
image quality. The top rows show the garments in the outfit and the bottom row
shows the generated try-on results. For a fair comparison, we found garment
images that most closely resemble the garments chosen in [10] in terms of
style, color, and texture. Image results for O-VITON are directly taken from
their paper as no code is available. There is a substantial difference in quality
between results. The unnaturally flat torso and uneven shoulders of A-1 are not
present in B-1. In A-2, the buttons on the jacket are distorted/missing, whereas
B-2 represents them accurately. In A-3, the jacket and top lack realism due to
missing creases, folds, and bumps compared to B-3. Properties of the arms are
also kept intact in B-3.

hyper parameters are provided in the Supplementary material.
Quantitative comparison against Neuberger et al.’s [10] is im-
possible because their implementation is not released. Thus, we
compare with them qualitatively on Fig. 12 and more extensively
in the Supplementary, available online.

We implement a variation of our method — POVNet+
DensePose — by adapting the warper and the image generator
of Style-Based Flow [17] (which consumes DensePose) to our
pipeline (see Supplementary for implementation details, avail-
able online). We evaluate POVNet+DensePose on both datasets
to understand how using DensePose impacts the performance
on single-garment versus multi-garment setting.

B. Results

Faithful Representation. Detail preservation is crucial but
difficult to evaluate through quantitative metrics. Thus, we rely
mostly on qualitative figures. Evaluation can be quite subtle.
One should check to see that in all the figures, the exact details
(such as the prints, the patterns, the logos, the color, the trims,
the ribbons, the collars, the pockets, the buttons, etc.) are all
preserved. Fig. 9, demonstrates POVNet improvements over the
original OVNet, largely obtained by the distance transform. The
ribbons and the cuffs are often cut off or slightly misaligned in
OVNet, but are perfectly aligned in POVNet (for example, outfits
A, B, E and F); the internal patterns of the garment are sometimes
stretched in OVNet but are perfectly aligned in POVNet (for
example outfits C, D and E). Having multiple warpers is helpful
and Fig. 8 shows that having multiple warpers can significantly
improve and correct the details for split outerwear. The buttons
and the zips in the center are often cut-off or misaligned in
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the single warp example but are addressed with multiple warps.
Fig. 2 demonstrates that we preserve garment attributes con-
sistently across different poses and models. Pay attention to
the coherence of the length, shape, textures and details of the
garment.

Image Quality. Using standard image quality metrics, our
method outperforms prior work in single and multi-garment
try-on. (Tables I and II). Qualitative comparison against O-
VITON [10] (Fig. 12) shows that our synthesis appears much
more realistic: the natural split of the blazer, the shape edge, and
the casted shade on each side of the short (A-1 versus B-1); the
natural overlay of the blazer, the smooth interaction between the
neck and the collar and convincing fabric properties (A-2 versus
B-2); the natural weight shift of the pose and details of the hands
and skin (A-3 versus B-3).

An ablation study performed against the original OVNet [29]
reveals how the different components improve the generation
quality. As shown in Table II: adding distance transform yields
significant enhancement as the warper gains access to more
meaningful feature representations; removing the garment lay-
out from the inpainting module yields better results because
the network can rely on the warp to synthesize the garment
shape rather than relying on the predicted mask. Residual en-
hancement also yields improvements but is less prominent on
the quantitative metrics. Note that using DensePose yield worse
results (even though it outperforms on VITON dataset). This
confirms our hypothesis that the bias in human body representa-
tion can negatively impact the generalization of multi-garment
try-on methods. See Supplementary for more evidence, which
is available online.

Qualitatively, residual enhancement is helpful to preserve
fine-grained details of the garment (shown in Fig. 10). The
heuristic procedure yields minor artifacts, but these are fixed
by the end-to-end trained version. Fig. 11 shows an example
of super-resolution. By applying the residual using a higher
resolution garment image, we recover details that are previously
unidentifiable.

Mix & Match. Figs. 1, 2, 3,9, 12 and other examples in the
Supplementary, which is available online, show a large number
of outfits in neutral garmentimages paired with on-model images
synthesized by our method. These examples demonstrate that
our method can render arbitrary combination of garments.

Scalability. Our system is efficient enough to power an inter-
active interface, as Table I'V shows. The latency of our inference
is around half a second on a 1 NVIDIA Tesla T4 (AWS’s slowest
GPU). As our inference is iterative, the inference time is longer
when there are more garments in the outfit, with 3 garments
outfits being 0.61 s. Each T4 machine can process 4 inference
jobs in parallel.

Garment Variety. In our qualitative examples, we showed
examples of various garment types (blouse, t-shirt, shirt,
tank tops, sweaters, hoodies, blazers, jackets, coats, trousers,
shorts, skirts, full-body garments, etc.) across both genders to
demonstrate the wide range of garments we support. Table III
shows that our method performs mostly consistently on tops,
bottoms, outerwear, and less well with full-body garments
(which are rare in the dataset). Fig. 8 shows that the multi-warp
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method improves rendering of split outerwear, which single
warp methods find difficult.

Model Control. Fig. 4 shows that our method can render an
outfit selection on a chosen model with a diverse set of poses.
The garments’ properties are consistent across all poses (e.g.,
changed stances and hand/arm positions), suggesting that the
network has learned a robust garment representation. The skin-
tone, body ratio and appearance also appear consistent across
different images. Pay attention to Pose 2 & 5 when the hands are
in the pockets; the sleeve interacts seamlessly with the pocket.
Fig. 2 shows that our system can render on models of different
skin tone and hair styles. Full model control remains elusive
because managing the effects of body shape is so hard.

Garment Swapping. Fig. 3 shows our method supports inter-
active swapping of garments. Note when one garment changes,
the other garments and the model’s pose remains consistent. The
interaction between garments appears natural, with a shadow
cast by the garment when it is untucked and a clear waistline
when the garment is tucked. Note the inpainting module changes
the shaded area when the model swaps from a skirt to slacks.

Bias in Body Pose Representation. Results show that
POVNet+DensePose outperforms POVNet on the single gar-
ment VITON dataset (Table I) but performs worse than POVNet
on the multi-garment dataset (Table II). This validates our as-
sumption that using DensePose is suboptimal on multi-garment
try-on settings because DensePose representation is biased by
the garment worn on the person (Supplementary, Fig. 2, available
online). Although OpenPose also has such bias (Supplemen-
tary, Fig. 3, available online), Openpose’s bias is more subtle
than DensePose because its representation is simpler. Thus, we
recommend using OpenPose over DensePose for multi-garment
try-on. See Supplementary Section 2 for more discussions,
which is available online.

C. A Case Study

We performed a live study to demonstrate that our method
is ready to power a live virtual dressing room interface for
commercial use. We partnered with Zalora, one of the largest
fashion e-commerce platforms in South East Asia. We deployed
a virtual dressing room interface that allows users to mix &
match any garment combination and visualize the outfit on a
model (with an example in Fig. 13).

During a 3-month pilot, about 103 k users (3.5% of the site’s
traffic) interacted with the experience during the pilot. The small
percentage of adoptions makes an A/B test difficult to show sig-
nificance. Instead, we identified the cohort of users who engaged
with the dressing room and compare it with their engagement and
conversion rate before and after they adopted the dressing room.
Results in Table V shows that the interface powered by the pro-
posed method significantly increases the user engagement and
conversion rate. The results strongly indicate that the proposed
method can support commercial applications by satisfying most
of the requirements defined in the Introduction.
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Fig. 13. A virtual dressing room interface powered by our method, deployed
on a fashion e-commerce website (Zalora). Shoppers can click on any garment
on the right side and the system instantly renders an image of the selected
model wearing the chosen garment. Shoppers can also choose between models
of different skin tones and ethnicities. A live demo is available at https://demo.
revery.ai.
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TABLE V
THE TABLE SHOWS USER ENGAGEMENT AND CONVERSION STATISTICS
COLLECTED DURING A 3-MONTH PILOT OF A VIRTUAL DRESSING ROOM
(VDR) INTERFACE POWERED BY OUR METHOD. RESULTS SHOW THAT THE
SAME COHORT OF USERS SPEND ABOUT 1.4X TIMES LONGER ON THE SITE
AND HAVE A CONVERSION RATE INCREASE OF 21% AFTER THEY ADOPT THE
VIRTUAL DRESSING ROOM

Session Length (MM:SS)  Conversion Rate
04:03 -
05:29 +21.3%

Without VDR
With VDR

V. CONCLUSION

In this work, we outlined the 7 important characteristics to en-
able commercially viable virtual dressing room experience and
propose a framework that meets all the major requirements (with
an emphasis on detail preservation and multi garment try-on).
Several design choices are crucial: combining a warping based
generation method and using human parsing to allow layering,
coordinating multiple warps, leveraging distance transform to
improve the accuracy of warping, using the residuals further
enhance the details, etc.

Despite the success, our method can be improved in many
aspects. Our method can handle variations in body pose, hair
style and skin tone, but not body shape, variations. The other
aspect we do not address yet are facial expressions, shoes, bags
and accessories. Enabling these would get us one step closer
to a full virtual fitting room experience that can directly work
with consumers’ photos (a very challenging task). To solve this
problem, other challenges involves a the main challenge lies in
handling out of distribution user-uploaded photos. Additionally,
enabling try-on for shoes, bags, and other accessories would
make the outfit generation complete.
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