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Abstract

We present a dynamic risk-based process design and multi-parametric model
predictive control optimization approach for real-time process safety manage-
ment in process systems. A dynamic risk indicator is used to monitor process
safety performance considering fault probability and severity, as an explicit
function of safety-critical process variables deviation from nominal operat-
ing conditions. Process design-aware risk-based multi-parametric model pre-
dictive control strategies are then derived which o↵er the advantages to:
(i) integrate safety-critical variable bounds as path constraints, (ii) control
risk based on multivariate process dynamics under disturbances, (iii) provide
model-based risk propagation trend forecast. A dynamic optimization prob-
lem is then formulated, the solution of which can yield optimal risk control
actions, process design values, and/or real-time operating set points. The po-
tential and e↵ectiveness of the proposed approach to systematically account
for interactions and trade-o↵s of multiple decision layers toward improving
process safety and e�ciency is showcased in a real-world example, the safety-
critical control of a continuous stirred tank reactor at T2 Laboratories.
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1. Introduction1

Process safety management (PSM) is a top priority in process opera-2

tions to prevent the occurrence of accidents and the resulting severe human3

and financial losses with pressing impacts on the society and environment4

[1, 2, 3]. Process safety evaluation methods, such as hazard and operabil-5

ity study (HAZOP) [4] and quantitative risk analysis (QRA) [5], have been6

widely applied in current industrial practice which identify process hazards7

and add on protection layers (e.g., dike, relief valve) based on a static nom-8

inal design configuration. However, the recent burgeoning trends toward9

industry decarbonization, digital innovation, and advanced manufacturing10

have posed new challenges and opportunities to PSM with more complex,11

integrated, and automated plants under increasingly dynamic and volatile12

business, market, and supply chain environments [6]. Online process safety13

monitoring and smart risk management under disturbances become instru-14

mental during daily process operations to safeguard the promises of real-time15

decision making for enhanced profitability, energy e�ciency, and sustainabil-16

ity [7, 8]. Therefore, it is imperative to bridge the link between safety-critical17

decision making with systems-based real-time operation, which are normally18

performed independently without considering the interactions and trade-o↵s.19

To support real-time PSM, quantitative process safety performance in-20

dicator is a key enabling factor which should account for the time-variant21

impacts of process design, operation, and disturbances. Conventional QRA22

approaches adapt risk as the indicator, estimated as the product of “fault23

probability” and “consequence severity” for a process facility [9, 10]. Some24

examples of process faults include reactor runaway, pipe rupture, liquid level25

sensor failure, etc. which can lead to consequences of fire, explosion, toxic re-26

lease, etc. These approaches evaluate a steady-state snapshot of the process27

designs, which cannot provide a dynamic risk picture under operating con-28

dition variations. The use of generic failure data also challenges the process-29

specific estimation preciseness [11, 12]. Dynamic risk analysis strategies [13]30

are thus developed to address these gaps, the first of which was proposed by31

Meel and Seider in 2006 [14]. The majority of available dynamic risk anal-32

ysis approaches [15, 16, 17, 18] employed Bayesian theory to determine the33
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posterior fault probability distribution based on a prior distribution using34

generic historical data (e.g., database in [5]), however after any new occur-35

rence of abnormality events or faults during operation. The consequence36

severity was then updated using a bow-tie, event tree, or fault tree model to37

capture the “cause-barrier-abnormality-consequence” relationships. The loss38

of intrinsic physics-based process dynamics and relationships hinders a joint39

decision making basis to integrate these approaches with process control and40

real-time optimization.41

From the aspect of process control, the prevention of fault occurrence42

is mostly addressed by controlling safety-critical process variables (typically43

state variables) within their bounds. Model predictive control (MPC) has44

been leveraged to this purpose which was first proposed by Leveson and45

Stephanopoulos in 2013 [19]. However, an overall process safety performance46

indicator is missing which can assess the cumulative impacts of state transi-47

tions and disturbances. Research e↵orts have also been made to theoretically48

characterize a safe and stable dynamic state space operating region. Albal-49

awi et al. [20, 21] developed a safeness index-based Lyapunov economic MPC50

(LEMPC) strategy, in which a safety zone was defined in the state space as51

a subset of the stability region determined by the Lyapunov level set. In the52

case of process states deviating from the safety zone, LEMPC control actions53

would drive states back to safety zone in finite time. Another work by Venki-54

dasalapathy and Kravaris [22] used pertinent systems theory to calculate a55

set of initial states, starting from which the safety-critical constraints could56

be satisfied at all times despite potential safety threatening disturbances dur-57

ing dynamic operation. It remains a critical yet open research question on58

how to quantify the bounding conditions of uncertainties, for both process59

disturbances and modeling uncertainties, within which the above robust and60

safe control can be theoretically guaranteed.61

To detect fault proactively at an early developing stage, Ahooyi et al. [23]62

developed a model-predictive safety system approach which could generate63

predictive alarm signals based on whether the process can satisfy its operabil-64

ity constraints using the most aggressive, feasible, manipulated input profiles.65

Bhadriraju et al. [24] applied model predictive control for fault prognosis, in66

which the control moving horizon estimation was utilized to predict potential67

fault occurrence. The forecast of fault propagation trajectory thus accounted68

for the process mechanistic, closed-loop control actions, and disturbances uti-69

lizing the real-time information of both measured and unmeasured process70

variables. In case of any potential fault occurrence during the next output71
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horizon, alarms would be triggered ahead of time. A dynamic risk indicator72

was incorporated in [24]. A major limitation of these approaches lies in the73

tight coupling of controller output horizon with fault prognosis horizon (i.e.,74

equal to each other). In this way, the fault prognosis capability is restricted75

by the online control requirement and computational power. Process design76

represents another key factor a↵ecting process safety performance, which has77

mostly been investigated at steady state from the aspect of inherently safer78

design. Recent works [25, 26, 27, 28] indicated that process safety consid-79

erations could result in significant and non-intuitive design changes in the80

optimal process solution, compared to that driven by economics and sustain-81

ability objectives. This highlights the need to fully integrate the decision82

making of process design, real-time operation, and dynamic risk manage-83

ment across multiple time scales, despite a unified methodology is currently84

lacking.85

To address the above challenge, in this work we develop a dynamic risk-86

based process design and operational optimization approach based on the87

PAROC (PARametric Optimization and Control) framework [29]. The re-88

maining of the paper is organized as follows: Section 2 introduces the pro-89

posed risk-based optimization approach integrating dynamic risk analysis90

and multi-parametric control. Section 3 demonstrates this approach step-91

by-step for the safety-critical control of a real-world T2 continuous stirred92

tank reactor. Section 4 presents concluding remarks and future work.93

2. The Risk-based Optimization Approach94

2.1. Overview of the Proposed Approach95

This work aims to develop a general methodology framework for risk-96

based process design and operational optimization. A schematic of the pro-97

posed framework is shown in Fig. 1, which features:98

• A dynamic risk-based multi-parametric model predictive controller for99

optimal risk control at short term. The dynamic risk indicator is formu-100

lated as an explicit function of safety-critical process variable deviations101

during online operation.102

• A dynamic optimizer at long term for safety and economics optimiza-103

tion. The time scale for the dynamic optimizer is independent of the104

controller time scale.105
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Figure 1: The integration of risk-based process design and control optimization.

Note that the decision making of controller and optimizer is fully inte-106

grated: the controller takes optimal design and/or operating decisions from107

the optimizer, while the optimizer is aware of the closed-loop dynamics. The108

potential and versatility of the framework are demonstrated through the fol-109

lowing three classes of applications and illustrated in Fig. 2:110

• Application 1: Model-based risk control and fault prognosis via moving111

horizon estimation – In this case, long-term dynamic optimizer is not112

used. The controller will forecast potential fault occurrence during the113

next output horizon and to raise alarms when necessary.114

• Application 2: Simultaneous design and control optimization with dy-115

namic risk considerations – This can be utilized to investigate interac-116

tions and trade-o↵s between design variables, operating variables, and117

safety performance metrics at the early design stage.118

• Application 3: Integrated fault-prognostic real-time optimization and119

risk-based control – This can support online operation (i.e., design is120

fixed at this stage) to guide optimal state transitions while preserving121

desired process safety under disturbances. In this case, fault prognosis122

is achieved by the dynamic optimizer which can forecast into a longer123

time horizon independent of control output horizon as needed in certain124

processes with fast dynamics, long shutdown time, etc.125
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Figure 2: Applications of the general framework for risk-based design and operation.
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A (mixed-integer) dynamic optimization problem (Eq. 1) is formulated126

to mathematically realize Fig. 1, synergizing dynamic risk analysis [30] and127

multi-parametric control [31]. Specifically, Eq. 1a defines the objective func-128

tion for the optimizer which can account for process safety, product quality,129

and/or economics (e.g., design and/or operating costs). Optimization vari-130

ables can include design variables and input/output set point values when131

applicable. Control actions at each time step are not optimization variables132

as they are calculated from the explicit functions of multi-parametric control133

law given in Eqs. 1e-f. Eqs. 1b-c describe the mechanistic dynamic model134

for the process and safety system (typically nonlinear). Design variables,135

continuous and/or discrete, can be included to consider their impact on con-136

trol and risk. Eq. 1d adapts the dynamic risk indicator developed by Bao137

et al. [30], which quantifies risk as an explicit function of safety-critical vari-138

ables deviation from nominal conditions to instantly reflect real-time process139

safety performance changes. This method will be detailed later in Section140

2.2. Eqs. 1e-f give the multi-parametric model predictive control (mp-MPC)141

laws, calculated as piecewise a�ne functions of parameters including design142

variables and the risk indicator. The ability to obtain the mp-MPC control143

laws o✏ine in priori serves as the key to connect two separate time scales144

(i.e., controller and optimizer) in a single dynamic optimization problem as145

well as to maintain tractable online computational load. The derivation of146

multi-parametric control laws will be detailed in Section 2.3. Eqs. 1g-i de-147

fine the process operating constraints for state, input, and output variables148

in terms of lower and upper bounds. More generalized time-varying process149

operating constraints, i.e. g(x(t), u(t), d(t))  0, can also be incorporated150

when applicable following prior work [32, 33]. Eqs. 1j-k define the bounds151

for design and risk variables. A dual layer of process safety management is152

actually provided by this approach: (i) the control of dynamic risk as an153

overarching process safety performance indicator, (ii) the bounded operation154

of safety-critical variables via mp-MPC path constraints.155

min
De,Y,yR

F =

Z ⌧

0

P (x(t), y(t), u(t), d(t), De, Y, RI(t))dt (1a)

s.t. dx(t)/dt = f(x(t), y(t), u(t), d(t), De, Y ) (1b)

y = g(x(t), u(t), d(t), De, Y ), Y 2 {0, 1}q (1c)

RI = s(x(t), u(t), d(t), De, d(t)) (1d)
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uk = Ki✓k + ri, ✓k 2 CRi = {CRA
i ✓  CRb

i} (1e)

✓k = [xk, yk, y
R
k , dk, De,RIk] (1f)

x  x(t)  x (1g)

u  u(t)  u (1h)

y  y(t)  y (1i)

De  De  De (1j)

RI  RI(t)  RI (1k)

where x(t) are states, u(t) are input variables, y(t) are output variables, d(t)156

are disturbances, Y are binary variables, De are process design variables,157

RI(t) is dynamic risk indicator, ✓(t) are parameters for mp-MPC, CR are158

critical regions. Subscripts k denotes discerete time step, i is index for critical159

regions. CRA and CRb are coe�cient matrices to define critical regions.160

Superscript R denotes set point.161

2.2. Dynamic Risk Modeling162

In what follows we discuss the dynamic risk model proposed by Bao et al.163

[30] and its extension in this work to enable risk-based control. Abnormality164

identification is first performed for the specific process system by surveying165

historical incident cases and/or performing near miss studies, which aims to166

identify any potential faults and the associated safety-critical process vari-167

ables x(t). The real-time data of x(t) can be either directly measurable via168

online monitoring or implicitly inferential via the mechanistic dynamic pro-169

cess model (Eqs. 1b-c). The risk indicator RI(t) is defined in terms of the170

real-time deviation of x(t) from nominal operating conditions. Two factors171

are considered for risk assessment, i.e. fault probability P (x(t)) and conse-172

quence severity S(x(t)) as shown in Eq. 2.173

RI(t) = P (x(t))⇥ S(x(t)) (2)

Fault Probability174

The safety-critical process variables x(t) are assumed to follow statistical175

distributions, e.g. normal distribution characterized by the means (µ) and176

standard deviations (�). The values of µ and � are determined from the177

survey of industrial practice, historical cases, and open literature. µ stands178

for the x(t) nominal operating points. µ ± 3� defines the upper and lower179
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control limit (UCL, LCL). Statistically, 99.7% of the x(t) values would fall180

within this three-sigma region (i.e., three-sigma rule). The fault probability181

P (x(t)) is calculated as the probability density function of normal distribu-182

tion (Eq. 3), particularly stressing the fault occurrence possibility when x(t)183

deviate away from the three-sigma region.184

P (x(t)) =

8
<

:
�[x(t)�(µ+3�)

� ] =
R x(t)

�1
1p
2⇡�

e�
[t�(µ+3�)]2

2�2 dt, when x(t) � µ

�[x(t)�(µ�3�)
� ] =

R x(t)

�1
1p
2⇡�

e�
[t�(µ�3�)]2

2�2 dt, when x(t) < µ

(3)
Consequence Severity185

Consequence severity S(x(t)) quantifies the severity of the potential hazard186

due to x(t) deviation. An exponential function is used to calculate S(x(t)) as187

shown in Eq. 4. Importantly, the consequence severity will grow increasingly188

faster as the safety-critical variables deviate further away from the nominal189

operating point.190

S(x(t)) =

(
100

x(t)�(µ+3�)
x(t)�µ , when x(t) � µ

100
(µ�3�)�x(t)

µ�x(t) , when x(t) < µ
(4)

Using Eqs. 3-4, the overall form of risk indicator RI(t) follows a pseudo-191

exponential function. To provide a more concrete idea, Fig. 3 depicts a192

generic dynamic risk profile for RI(t) against x(t). The occurrence of a fault193

is defined by the risk exceeding a pre-specified threshold value determined194

from historical case analyses.195

Major advantages of this dynamic risk model are summarized below:196

• Instantaneity – Fault probability and severity data are updated in-197

stantly based on safety-critical process variable changes, which can ef-198

fectively support real-time process safety monitoring199

• Standardization – At µ± 3�, P (x(t)) is mathematically set at 0.5 and200

S(x(t)) at 1 which provide a uniform basis to benchmark various pro-201

cesses design and operating conditions,202

• Multivariate – RI(t) can capture the independent or dependent interac-203

tions between multiple process variables, e.g. via the use of multivariate204

joint distribution function developed in [34],205
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• Prediction – A linear trend risk propagation forecast is utilized in [30].206

Model-based forecast will be implemented in this work taking advan-207

tage of the model predictive control and optimization capabilities.208

To enable the use of linear model predictive control in Section 2.3, piece-209

wise linearization is performed to the RI(t) function as illustrated in Fig.210

4. Note that the linearized RI(t) values are over-estimators of the original211

nonlinear RI(t) values. Binary variables can be introduced to reformulate212

the piecewise RI(t) functions into a unified mathematical form as shown in213

Eq. 5. In addition, the piecewise functions can actually characterize distinct214

operating regions based on the varying risk propagation speeds. The process215

and risk control priorities can thus be auto-adjusted, e.g. to majorly sustain216

stable operation in Region 1, to start prioritizing risk control in Region 2,217

and to adapt increasingly aggressive risk control in Regions 3 and 4.218

Figure 3: Dynamic risk modeling.
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Figure 4: Piecewise linearization of dynamic risk.

RI(t) =

8
>>><

>>>:

m1x(t) + b1, x(t) 2 [ x1, x1 )

m2x(t) + b2, x(t) 2 [ x2, x2 )

m3x(t) + b3, x(t) 2 [ x3, x3 )

m4x(t) + b4, x(t) 2 [ x4, x4 ]

(5)

()

RI(t) = Mx(t) + b
X

i

miyi(t) = M,
X

i

biyi(t) = b

X

i

xiyi(t) = x,
X

i

yi(t) = 1

xiyi(t)  xi(t)  xiyi(t), yi(t) 2 {0, 1}
i 2 {1, 2, 3, 4}
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2.3. Design-dependent Risk-based mp-MPC219

The MPC problem with dynamic risk considerations is formulated as Eq.220

6. Eq. 6a defines the control objective function for output/input setpoint221

tracking and disturbance rejection. Eqs. 6b-c represent the discrete state222

space model linearized from the original mechanistic process model which can223

be obtained using model reduction, system identification, machine learning224

techniques, etc. [35, 36, 37] The piecewise linearized RI functions can thus be225

readily integrated with the linear process state space model by treating risk226

as an output variable (Eqs. 6c-e). Eqs. 6f-h are the path constraints for state,227

input, output, design, and risk variables. It is also worth clarifying that the228

linearized process model and dynamic risk model are only employed here for229

the design of a linear model predictive controller. The closed-loop controller230

validation and long-term dynamic optimization are conducted against the231

original mechanistic-based nonlinear models (Eqs. 1b-d). Design variables232

De can be explicitly considered in two forms depending on the specific process233

system: (i) in the state space model [38, 39], and (ii) in path constraints as234

the upper or lower bounds of process variables. The case study in Section 3235

will investigate design considerations belonging to the latter case.236

minu J = xT
NPxN +

OH�1X

k=1

�
(yk � yRk )

TQRk

�
yk � yRk

��

+
CH�1X

k=0

�
uk � uR

k

�T
Rk

�
uk � uR

k

�
(6a)

s.t. xk+1 = Axk +Buk + C[dk;De] (6b)


yk
RIk � b

�
=


D
M

�
xk +


E
0

�
uk (6c)

X

i

miyi = M
X

i

biyi = b
X

i

xiyi = x (6d)

X

i

yi = 1 xiyi  xi  xiyi yi 2 {0, 1} (6e)

x  xk  x u  uk  u (6f)

y  yk  y d  dk  d (6g)

De  De  De RI  RIk  RI (6h)
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where P is terminal weight, QR and R are controller weights, CH and OH237

are respectively control and output horizons.238

MPC problems can be reformulated into multi-parametric quadratic pro-239

gramming (mp-QP) problems as Eq. 7. More theoretical fundamentals on240

multi-parametric programming and its application in model predictive con-241

trol can be found in the recent authored book from Pistikopoulos et al. [31].242

Due to the existence of binary variables for piecewise risk functions, the243

design-dependent risk-based MPC formulation in Eq. 6 will finally result in244

a mixed-integer multi-parametric quadratic programming (mp-MIQP) prob-245

lem. Decomposition-based mp-MIQP solution algorithms can be used which246

leverage global optimization to identify candidate binary solutions and ac-247

celerate mp-QP solution e�ciency via parallel computation [40].248

minu f(u, ✓) = 1
2u

TQu+ uTHT ✓ + ✓TQ✓✓ + cTuu+ cT✓ ✓ + cc

s.t. Nu  b+ F✓

CRA✓  CRb

u 2 Rn, ✓ 2 Rm, Q � 0

(7)

The multi-parametric solution of Eq. 7 generates an optimal partition249

of the parameter space into a list of critical regions CR. Each critical re-250

gion is dictated by a unique active set of constraints to attain optimality251

in Eq. 7. As shown in Eq. 8, the optimal control actions on each criti-252

cal region can be explicitly expressed as an a�ne function of the parameter253

set. To the interest of this work, the parameters include states, outputs,254

setpoints, and disturbances as well as design variables (continuous and/or255

discrete) and risk indicator. Therefore, the MPC problem which typically256

requires online dynamic optimization can be replaced by an online function257

evaluation process using the optimal multi-parametric/explicit control laws258

generated o✏ine in priori. A closed-loop validation step is performed to test259

the resulting mp-MPC controller for process and risk control and enhance260

the tuning parameters if necessary.261

uk = Ki✓k + ri ✓k 2 CRi = {CRA
i ✓  CRb

i}

✓k = [xk, yk, y
R
k , dk, De,RIk]

(8)
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3. Case Study: Exothermic CSTR at T2 Laboratory262

In this section, we apply the proposed dynamic risk-based design and263

operational optimization approach on an exothermic CSTR process adapted264

from [22] based on a major process safety accident at T2 Laboratories Inc.265

CSTR with runaway reactions is a classical benchmark example to test safety-266

critical control strategies (e.g., [19, 20, 22]).267

3.1. Process Description268

A reactive chemical explosion accident took place at T2 Laboratories Inc.269

in Florida on December 19, 2007 which unfortunately resulted in 28 injuries270

and 4 fatalities [41]. The T2 process produced methylcyclopentadienyl man-271

ganese tricarbonyl, an Ecotane brand gasoline additive. A runaway chemical272

reaction occurred during the first production step in a 2500-gallon batch re-273

actor. The two exothermic reactions involved in this batch reactor are given274

below. The second reaction rate becomes significant only at elevated temper-275

ature. Due to the inadequate cooling system, the pressure and temperature276

within the reactor increased uncontrollably which eventually ignited hydro-277

gen as a major reaction product and other flammable byproducts.278

Reaction 1: Methylcyclopentadiene (A) + Sodium (B)279

Diglyme(S)������! Sodium Methylcyclopentadiene (C) + Hydrogen (D)280

Reaction 2: Diglyme (S)
Sodium(B)������! Hydrogen (D) + Byproduct281

In this work, we investigate the use of a CSTR at similar conditions to the282

original T2 batch reactor as per [22]. The process can be conceptualized as283

Fig. 5. There are two feed streams to the CSTR, one consisting of reactant284

A in solvent S and the other of reactant B. To initiate the reactions, the feed285

streams are preheated before entering the reactor. Reactor temperature T is286

selected as the safety-critical process variable, which should be controlled at287

a setpoint (e.g., 460 K) despite possible fluctuations of feed inlet temperature288

T0. Cooling is provided via an evaporating water jacket, the heat transfer289

coe�cient U of which can be adjusted via cooling water flow rate mc. For290

simplification, U is considered as the manipulated variable in this study. The291

maximum value of heat transfer coe�cient Umax is then utilized as the cooling292

system design parameter. The high risk region is defined as T � 480K, in293

which thermal runaway is at higher probability to occur due to the rapidly294

14



Figure 5: The T2 CSTR process.

increasing reaction rates (particularly of reaction 2). The research objectives295

of this case study are to:296

1. Control the risk at a desired level under disturbances.297

2. If thermal runaway cannot be prevented, attenuate the risk propagation298

speed and consequence severity while raising the alarm ahead of fault299

occurrence time for operator response (e.g., � 10 minutes).300

3. Identify the optimal design configuration and closed-loop control ac-301

tions under disturbances with constrained dynamic risk.302

4. Achieve optimal and safe operation via real-time optimization with303

process-tailored fault prognosis horizon.304

In the second objective, the 10-min fault prognosis horizon is used as305

an indicative minimum allowable operator response time based on industrial306

practice [42]. The underlying assumption is that, if alarm can be raised307

10 minutes before actual fault occurrence, operators can prudently perform308

the shutdown. Longer time horizon can also be used (e.g., � 20 minutes) to309

enable ample time for response and/or to tailor process-specific requirements310

[43]. Though the proposed methodology framework is generally applicable,311

it is a trade-o↵ decision on how to optimally determine the fault prognosis312

horizon (and also the risk threshold to raise alarm). A longer fault prognosis313

horizon enables more time for operator response while may result in more314

conservative control actions based on estimated disturbances and process315

conditions in future time steps.316
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3.2. T2 CSTR Risk-based Optimization317

In what follows, we present the step-by-step application of the proposed318

approach to this T2 CSTR case study. The step-wise procedure is summa-319

rized in Fig. 6 based on the PAROC framework [29].320

Figure 6: The step-wise procedure for controller and optimizer implementation.

3.2.1. Mechanistic Dynamic Modeling321

We first develop a mechanistic dynamic model for the process (and safety)322

system of interest. An ideal CSTR with constant reactor volume is assumed323

to be in use. The nonlinear dynamic model is given in Eq. 9. Eqs. 9a-324

c describe the dynamic mass balances for reactants A, B, and S. Eq. 9d325

describes the dynamic energy balance in reactor. A list of the major process326

variables are summarized in Table 9. The kinetics and process parameter327

values are provided in Appendix A.328

dCA(t)

dt
=

FA,in

V
� qout

V
CA(t)� k1(T (t))CA(t)CB(t) (9a)

dCB(t)

dt
=

FB,in

V
� qout

V
CB(t)� k1(T (t))CA(t)CB(t) (9b)
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dCS(t)

dt
=

FS,in

V
� qout

V
CS(t)� k2(t)CS(t) (9c)

dT (t)

dt
=

qout
V

(Tin(t)� T (t)) +

P
(��Hk)rk(t)

⇢cp
� UAx(T (t)� Tc)

⇢cpV
(9d)

Table 1: List of CSTR process variables.

Symbol Definition Variable(s) Physical Description Unit

x(t) States
CA, CB, CS Concentrations mol/l
T Reactor temperature K

u(t) Input U Heat transfer coe�cient kJ/(K · h · m2)
d(t) Disturbance T0 Feed inlet temperature K
De Design Umax Maximum heat transfer coe�cient kJ/(K · h · m2)

The mechanistic dynamic model is built in both MATLAB® and gPROMS®
329

ModelBuilder in preparation for the next step analyses. An open-loop simu-330

lation is performed to study reactor dynamics particularly regarding thermal331

runaway risk. A disturbance step change of �Tin = 25 K is introduced at332

t = 0 which can be resulted by a severe malfunction of the feed preheater.333

As shown in Fig. 7, reactor temperature increases to the high risk region334

after ⇠ 9 hours (T � 480 K), following which thermal runaway occurs.335

Figure 7: T2 CSTR open-loop simulation.
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3.2.2. Model Reduction336

The nonlinear CSTR model is then linearized around steady state using337

Jacobian matrices calculated by MATLAB® jacobian function. A discrete338

linear state space model is obtained as given in Eq. 10.339

2

664

CA

CB

CS

T

3

775

k+1

= A

2

664

CA

CB

CS

T

3

775

k

+BUk + CT in,k, Ts = 1 min (10)

where the deviation variables are defined as X = X � Xss. The coe�cient340

matrix values are:341

A =

2

664

0.9506 �0.0047 0 �0.0003
�0.0484 0.9943 0 �0.0003

0 0 0.9990 �1.5740⇥ 10�6

0.6970 0.0678 0.0002 1.0030

3

775

B =

2

664

0
0
0

�0.0007

3

775 C =

2

664

0
0
0

0.0010

3

775

The linearized CSTR model is validated against the original nonlinear342

model in Fig. 8. The two models match well up to T ⇡ 480 K while the343

linearized model cannot capture the temperature surge in high risk region.344

This also highlights the importance to apply the original nonlinear model for345

closed-loop control validation in Section 3.2.4 and dynamic optimization in346

Section 3.2.5.347

In case that significant deviations exist between the Jacobian-based lin-348

earization model and the original nonlinear model, linear state space model349

can be generated using other techniques such as model reduction, system350

identification, and machine learning [35, 36, 37]. Moreover, in the current351

work, the approximated model is generated by sampling over the entire ex-352

pected operating region. Strategies have also been developed in recent inte-353

grated design and control literature which aimed to approximate and validate354

the overall dynamic optimization problem against a specific operating point355

(e.g., worst-case variability point) using trust-region approach [44], back-o↵356

approach [45, 46], etc. Online model updating and nonlinear model pre-357

18



Figure 8: Comparison of linearized vs. nonlinear CSTR model.

dictive control provide alternative ways to overcome model approximation358

errors, which are briefly discussed in the concluding remarks section.359

3.2.3. Dynamic Risk Modeling360

We proceed to model the dynamic risk as a function of reactor tempera-361

ture, namely the safety-critical variable for this T2 CSTR process. Following362

the methodology presented in Section 2.2, the reactor temperature is as-363

sumed to follow normal distribution. The nominal operating temperature is364

adapted at µ = 460 K as per open literature data. The standard deviation is365

set at � = 5 K which gives the upper control limit as UCL = µ+3� = 475 K.366

The risk threshold is defined at RI � 2.82 according to the high risk region367

at T � 480 K. In other words, if the risk value exceeds 2.82 during operation,368

a fault occurs. The dynamic risk can thus be quantified using Eqs. 3 and 4369

(only x � µ is of interest). To linearize the risk model as per Fig. 4, four370

piecewise a�ne functions are identified with the expressions listed in Eq. 11.371

RIk = RIk � b = M

2

664

CA

CB

CS

T

3

775

k

(11)
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M =

2

664

0
0
0
m

3

775

T

, m =

8
>>><

>>>:

0.0078, T 2 [460, 472]

0.2147, T 2 [472, 477]

0.5496, T 2 [477, 481]

0.7629, T 2 [481, 495]

, b =

8
>>><

>>>:

�0.1165, T 2 [460, 472]

�0.7374, T 2 [472, 477]

�0.0662, T 2 [477, 481]

1.2120, T 2 [481, 495]

Up to this step, an integrated linear state space model has been obtained372

for dynamic process and risk modeling, which will be used for the next step373

controller design:374

2

664

CA

CB

CS

T

3

775

k+1

= A

2

664

CA

CB

CS

T

3

775

k

+BUk + CT in,k

RIk = M

2

664

CA

CB

CS

T

3

775

k

Ts = 1 min

(12)

3.2.4. Design-dependent Risk-based Multi-Parametric Controller design375

A mp-MPC problem is formulated as per Eq. 6 using the above integrated376

linear state space model. Risk is incorporated as the output variable and377

bounded via the path constraints. The cooling system design variable Umax378

is considered through the path constraints U  U  Umax. This step is379

implemented in MATLAB® using the POP Toolbox [47].380

We first investigate dynamic risk management solely with mp-MPC and381

fault prognosis relying on moving horizon estimation. An output horizon382

of OH = 10 is selected which allows a 10-min risk forecast horizon (or fault383

prognosis). In other words, the controller computes the optimal action at the384

current time point by optimizing the disturbance rejection performance over385

the next 10 min. However, if the risk is projected to exceed the threshold386

value (RI � 2.82) during the next output horizon, an alarm will be raised387

around 10 minutes earlier to alert the operator. This will enable the operator388

to prudently plan for abnormality response or process shutdown. The mp-389
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MPC tuning parameters are listed in Table 2 and path constraints in Table390

3 (in terms of deviation variables).391

Since only 4 binary variables are involved in this case study while being392

mutually exclusive, we solve the resulting mp-MIQP problem by enumerating393

all the four possible integer solutions. A superset of four mp-QP solution394

maps is generated and the solution of mp-MIQP is determined by searching395

through the mp-QP maps (illustrated in Fig. B1). Each mp-QP problem396

is solved to have 59 critical regions with 8 parameters. The parameter set397

includes CA, CB, CS, and T as 4 state variables, RI as output variable, RI
R

398

setpoint, T in as disturbance, and Umax as design variable.399

Table 2: mp-MPC tuning parameters.

OH CH QR R
10 1 104 10�6

Table 3: mp-MPC path constraints.

CA, CB, CS, T RI U T in

Max 10, 10, 10, 25 25 Umax
* 100

Min -10, -10, -10, -15 -3 -55* -20
* Umax is the design variable
** CSTR heating duty is also available (U < 0)

The resulting mp-MPC controller is applied to the nonlinear CSTR and400

risk model for closed-loop control using the following three scenarios:401

• Scenario 1: Control at low risk level402

The CSTR initial states are at CA = 0.4 mol/l, CB = 1.5 mol/l, CS = 2.5403

mol/l, and T = 460 K. A step change of the disturbance is introduced at t = 0404

with �Tin = 25K. As shown in Fig. 9, the open-loop process (i.e., without405

controller) enters the high risk region after approximately 9 hours. On the406

other hand, the risk-based multi-parametric controller can e↵ectively control407

the CSTR at low risk level (RI ⇡ 0.00175) with a set point at RIR = 0.408
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Figure 9: Scenario 1 – Closed-loop control at low risk level.

• Scenario 2: Control at medium risk level409

Sometimes it may be desired to operate the reactor at higher temperatures410

despite the increase of risk, for example to attain higher productivity. Given411

this, the controller is tested against a risk set point of RIR = 0.74 which lies412

between the upper control limit and the high risk limit. Fig. 10 shows the413

closed-loop results. The controller adapts an initial heating step to rapidly414

increase the reactor temperature to the desired temperature setpoint but is415

able to stabilize the process afterwards in prevention of further risk surge.416

• Scenario 3: Fault prognosis and alarm raising417

In certain cases, the process risk cannot be prevented from entering the418

high risk region due to notably large disturbances, insu�cient cooling water419

availability, or more stringent risk limit. With the mp-MPC output horizon420

as 10 min, a ten-minute fault prognosis horizon can be achieved using model-421

based risk forecast. An example is shown in Fig. 11. At t = 11.13 h,422

the mp-MPC forecasts that the risk will enter the high risk region in the423

next 10 minutes. An alarm is thus raised to alert the operator. At t =424

11.35 h, the real-time risk value reaches the high risk region, i.e. a fault425

happens. The 13.2 minutes between alarming raising and fault occurrence426
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will be crucial for the operator to take response actions in a proactive manner.427

Importantly, the controller can continue mitigating the risk at the same time,428

to significantly reduce its propagation speed and fault severity compared to429

open-loop operation.430

Figure 10: Scenario 2 – Closed-loop control at medium risk level.

Figure 11: Scenario 3 – Control-aware fault prognosis and alarm raising.

t = 11.13 h: alarm raised, t = 11.35 h: fault happens
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We have demonstrated the proposed approach for dynamic risk manage-431

ment and fault prognosis exclusively via predictive control, which restricts432

the risk forecast horizon equal to control output horizon. In certain pro-433

cess systems such as with very fast dynamics, it is challenging to achieve a434

su�cient fault prognosis horizon for the operator from process safety man-435

agement aspect. In Section 3.2.5, we will augment the risk-based controller436

with a control-aware dynamic optimizer to empower decision making across437

distinct time scales. This will also extends the strategy for integrated design,438

economics, and safety optimization. To relax the control decision horizon,439

in what follows we will use a new mp-MPC controller with OH = 2 and440

CH = 1. Closed-loop validations are performed which have justified the risk441

control e�cacy under Scenarios 1 and 2. The corresponding explicit control442

laws are included in Appendix B.443

3.2.5. Control-aware Safety and Economics Optimization444

We investigate two classes of applications for the integration of risk-based445

mp-MPC with dynamic optimization as per Fig. 1: (i) simultaneous risk-446

based process design and control optimization, (ii) fault-prognostic real-time447

optimization and control. For this specific case study, the economic consid-448

erations comprise the process design and operating cost (i.e., utility cost).449

As the operation of this exothermic CSTR is considered at high temperature450

under potential runaway risk, we assume that the product specification for451

C (the only liquid product) will always be satisfied when reactor tempera-452

ture is above 460 K. In certain other case studies, o↵-spec products may be453

generated due to insu�cient control far from the set point (e.g., if higher454

temperature results in less productivity or selectivity) while it takes time for455

risk to propagate to high limit. Economic losses during this o↵-spec period456

can be readily incorporated to the objective function.457

This step is implemented in gPROMS® ModelBuilder using CVP SS as458

the dynamic optimization solver. The multi-parametric control laws de-459

rived from Section 3.2.4 are exported from MATLAB® and embedded in460

gPROMS®.461

• Application 1: Simultaneous Risk-based Design and Control462

The control-aware dynamic optimization formulation for this T2 CSTR case463

study is given in Eq. 13. In the objective function,
R ⌧

0 U dt/⌧ quantifies the464

average operating cost given that U is a pseudo-linear function of cooling465

water flowrate. WUmax indicates the design cost. Umax is considered as466
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a time-invariant design variable. W is a weighting factor to balance the467

operating and design cost, which currently takes the value of 1. The dynamic468

optimization is performed under a worst-case scenario (e.g., with step change469

�Tin = 25 K) over ⌧ = 100 h to ensure the risk dynamics reach a new steady470

state (though much longer than enough).471

Umax is treated as the only degree of freedom for this optimization prob-472

lem. Note that the multi-parametric control laws generated o✏ine will com-473

pute the optimal control actions based on the real-time values of states,474

disturbances, risk indicator, and design variable. In other words, the mp-475

MPC control laws are designed a priori but the optimal control actions are476

calculated in real time and a↵ected by the design variable (see Appendix477

B for an example of mp-MPC explicit control laws). The values of process478

initial states and risk set point remain same with the above control studies.479

By varying the risk tolerance at the end point of ⌧ , a list of optimal cost480

objective values are obtained with the associated design variable values. For481

example, to achieve the end-point RI  0.00175 (i.e., low risk level control482

in Scenario 1), the optimal design variable Umax is 48.2 kJ/(K · h · m2)483

compared to the nominal value used earlier as 55 kJ/(K · h · m2). Fig. 12484

quantitatively depicts this trade-o↵ to assist decision making for the optimal485

design and operation of safety-critical process systems.486

min F =
R ⌧

0 U(t) dt/⌧ +WUmax Cost-objective function

s.t. dx(t)/dt = f(x(t), u(t), d(t), De, Y ) Nonlinear CSTR model (Eq. 9)

RI = s(x(t), u(t), d(t), De, Y ) Nonlinear risk model (Eqs. 2-4)

uk = Ki✓k + ri Multi-parametric control laws

✓k 2 CRi = {CRA
i ✓  CRb

i} (OH = 2, CH = 1)

✓k = [xk, yk, yRk , dk, De,RIk] (Section 3.2.4, Eq. B1)

x  x(t)  x Below are path constraints

u  u(t)  Umax, y  y(t)  y

De  De  De, RI  RI(t)  RI

(13)
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Figure 12: Optimal cost versus end-point risk limit.

• Application 2: Fault-Prognostic Real-Time Optimization and Control487

Herein, we consider Umax as a time-variant variable which can be adjusted488

in real time. In this context, the dynamic optimizer in Eq. 13 takes the489

role of real-time optimization to determine the cost-optimal Umax value si-490

multaneously with dynamic risk management and fault prognosis. If the491

risk is predicted to exceed the threshold, an alarm will be raised in advance.492

It is worth highlighting that the dynamic optimizer is aware of the closed-493

loop process, risk, and control dynamics. As illustrated in Fig. 13, the494

fault-prognostic optimizer forecast horizon ⌧ is selected to be 30 min as an495

example. The resulting optimal Umax is then passed to the risk-aware con-496

troller. However, when applicable, the dynamic optimizer tends to strictly497

meet the end-point risk tolerance in exchange for lower design and operating498

cost which will then challenge the risk control in the next 30 min. Given499

this, the fault-prognostic optimizer is set to be activated in every 20 min to500

start the next round economics and safety optimization. Note that the char-501

acteristic times can be flexibly selected tailored to the process-specific need.502

For consistency, we again test the strategy to operate this T2 CSTR under503

a step change of �Tin = 25 K with RI  0.00175 at end of every optimizer504

forecast horizon ⌧ . The results are shown in Fig. 14, in which the real-time505

Umax values can e↵ectively guide the controller for dynamic risk management506

with cost-optimality at each step.507
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Figure 13: Integration scheme for fault-prognostic optimizer and risk-aware controller.

Figure 14: Real-time optimization of cooling water consumption.
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4. Concluding Remarks508

We have introduced a general framework for process design and opera-509

tional optimization with online process safety monitoring and proactive risk510

management. A model-based risk control strategy is developed via multi-511

parametric programming, which also enables fault prognosis and alarm man-512

agement via moving horizon estimation. The risk-based control is further513

augmented with dynamic optimization to address optimal decision making514

across multiple decision layers with potentially distinct characteristic time515

scales (i.e., design, real-time optimization, control, and fault prognosis). The516

e�cacy and applicability of the approach has been demonstrated on the517

safety-critical operation of an exothermic CSTR at T2 Laboratory, Inc.518

The current work utilizes linear model predictive control which inevitably519

introduces model approximation errors against the original nonlinear mecha-520

nistic model. Robust (multi-parametric) model predictive control provides a521

classical solution to address bounded errors due to model approximation [48].522

Online model updating o↵ers another option which can leverage Bayesian ap-523

proach [49], neural network [50, 51], and other machine learning techniques524

[52] to achieve reliable model predictive control by continuously learning pro-525

cess mechanistic. More recently, nonlinear model predictive control (NMPC)526

has gained increasing momentum with significant algorithmic improvement527

to speed up computational times and enhanced fundamental understanding528

on stability and robustness properties [53, 54, 55]. NMPC strategies have529

been developed for highly nonlinear processes [56], economic MPC [57, 58],530

and integration with design or higher level operational decisions (e.g., real-531

time optimization [59, 60], simultaneous design and control [44]). Multi-532

parametric programming has also been extended to obtain explicit NMPC533

laws in prior work, e.g. for convex quadratically constrained control prob-534

lems [61] and for generalized nonlinear process control based on balancing535

of empirical gramians [36]. Ongoing work is addressing the comparison of536

multi-parametric linear control versus nonlinear control particularly in the537

safety-critical chemical processes.538
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Appendix A: T2 CSTR Reaction Kinetics and Process Parameters544

The reaction rate expressions and CSTR reactor parameter definitions545

are given below adapted from [22].546

Reaction 1: r1 = �k1CACB, where k1 = k10exp(� E1
RT )547

Reaction 2: r2 = �k2CS, where k2 = k20exp(� E2
RT )548

Table A1: List of CSTR process parameters.

Variable Description Value Unit

FA,in Feed flowrate (A) 1050 mol/h
FS,in Feed flowrate (S) 525 mol/h
FB,in Feed flowrate (B) 1250 mol/h
⇢AS Feed molar density (AS) 7.33 mol/l
⇢B Feed molar density (B) 36 mol/l
⇢ Mixture molar density in CSTR 7.31 mol/l
k10 Rate constant (reaction 1) 4⇥ 1014 l/mol
k20 Rate constant (reaction 2) 1⇥ 1084 1/h
E1 Activation energy (reaction 1) 1.28⇥ 105 J/mol/K
E2 Activation energy (reaction 2) 8⇥ 105 J/mol/K
�H1 Heat of reaction 1 �45400 J/(mol B)
�H2 Heat of reaction 2 �3.2⇥ 105 J/(mol S)
V Reactor volume 4000 l
Cp Average specific heat 430.91 J/mol/K
Tc Coolant temperature 373 K
Ax Heat transfer area 5.3 m2
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Appendix B: Multi-Parametric/Explicit Control Laws549

This appendix presents more detail for the design-dependent risk-aware550

mp-MPC with OH = 2, CH = 1 (Section 3.2.4). The resulting mp-MIQP551

problem is solved by enumerating 4 mp-QP problems, which are partitioned552

as per the temperature ranges for RI piecewise linearization. Namely, T553

respectively in [460, 472], [472, 477], [477, 481], and [481, 495] (Eq. 11). The554

conceptualization is illustrated in Fig. B1. Each mp-QP problem is solved555

to have 11 critical regions with 8 parameters.556

Figure B1: mp-MIQP solutions as a superset of mp-QPs.

To provide a more concrete idea on the form of multi-parametric/explicit557

control laws, the optimal control solution on Critical Region 1 of the mp-QP558

problem for T 2 [460, 472] is listed below. Fig. B2 further gives a geometrical559

view of critical regions at the CSTR initial states. ✓5 is the deviation variable560

for disturbance (i.e., T in) and ✓6 is the deviation variable for risk (i.e., RI).561

Critical Region 1 (CR01):562

• ✓ = [CA, CB, CS, T , T in, RI
R
, Umax]563

• u = K1✓ + r1564

K1 = [130.34, 12.68, 0.033, 0.56, 0.19, 2.41⇥ 104, �2.41⇥ 104, 0]565

r1 = 0566

• CR1 = {CRA
1 ✓  CRb

1}567

Constraints for upper and lower bounds of parameters are skipped for568

brevity, but can be found in Table 3.569
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