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Abstract

We present a dynamic risk-based process design and multi-parametric model
predictive control optimization approach for real-time process safety manage-
ment in process systems. A dynamic risk indicator is used to monitor process
safety performance considering fault probability and severity, as an explicit
function of safety-critical process variables deviation from nominal operat-
ing conditions. Process design-aware risk-based multi-parametric model pre-
dictive control strategies are then derived which offer the advantages to:
(i) integrate safety-critical variable bounds as path constraints, (ii) control
risk based on multivariate process dynamics under disturbances, (iii) provide
model-based risk propagation trend forecast. A dynamic optimization prob-
lem is then formulated, the solution of which can yield optimal risk control
actions, process design values, and/or real-time operating set points. The po-
tential and effectiveness of the proposed approach to systematically account
for interactions and trade-offs of multiple decision layers toward improving
process safety and efficiency is showcased in a real-world example, the safety-
critical control of a continuous stirred tank reactor at T2 Laboratories.
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1. Introduction

Process safety management (PSM) is a top priority in process opera-
tions to prevent the occurrence of accidents and the resulting severe human
and financial losses with pressing impacts on the society and environment
[1, 2, 3]. Process safety evaluation methods, such as hazard and operabil-
ity study (HAZOP) [4] and quantitative risk analysis (QRA) [5], have been
widely applied in current industrial practice which identify process hazards
and add on protection layers (e.g., dike, relief valve) based on a static nom-
inal design configuration. However, the recent burgeoning trends toward
industry decarbonization, digital innovation, and advanced manufacturing
have posed new challenges and opportunities to PSM with more complex,
integrated, and automated plants under increasingly dynamic and volatile
business, market, and supply chain environments [6]. Online process safety
monitoring and smart risk management under disturbances become instru-
mental during daily process operations to safeguard the promises of real-time
decision making for enhanced profitability, energy efficiency, and sustainabil-
ity [7, 8]. Therefore, it is imperative to bridge the link between safety-critical
decision making with systems-based real-time operation, which are normally
performed independently without considering the interactions and trade-offs.

To support real-time PSM, quantitative process safety performance in-
dicator is a key enabling factor which should account for the time-variant
impacts of process design, operation, and disturbances. Conventional QRA
approaches adapt risk as the indicator, estimated as the product of “fault
probability” and “consequence severity” for a process facility [9, 10]. Some
examples of process faults include reactor runaway, pipe rupture, liquid level
sensor failure, etc. which can lead to consequences of fire, explosion, toxic re-
lease, etc. These approaches evaluate a steady-state snapshot of the process
designs, which cannot provide a dynamic risk picture under operating con-
dition variations. The use of generic failure data also challenges the process-
specific estimation preciseness [11, 12]. Dynamic risk analysis strategies [13]
are thus developed to address these gaps, the first of which was proposed by
Meel and Seider in 2006 [14]. The majority of available dynamic risk anal-
ysis approaches [15, 16, 17, 18] employed Bayesian theory to determine the
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posterior fault probability distribution based on a prior distribution using
generic historical data (e.g., database in [5]), however after any new occur-
rence of abnormality events or faults during operation. The consequence
severity was then updated using a bow-tie, event tree, or fault tree model to
capture the “cause-barrier-abnormality-consequence” relationships. The loss
of intrinsic physics-based process dynamics and relationships hinders a joint
decision making basis to integrate these approaches with process control and
real-time optimization.

From the aspect of process control, the prevention of fault occurrence
is mostly addressed by controlling safety-critical process variables (typically
state variables) within their bounds. Model predictive control (MPC) has
been leveraged to this purpose which was first proposed by Leveson and
Stephanopoulos in 2013 [19]. However, an overall process safety performance
indicator is missing which can assess the cumulative impacts of state transi-
tions and disturbances. Research efforts have also been made to theoretically
characterize a safe and stable dynamic state space operating region. Albal-
awi et al. [20, 21] developed a safeness index-based Lyapunov economic MPC
(LEMPC) strategy, in which a safety zone was defined in the state space as
a subset of the stability region determined by the Lyapunov level set. In the
case of process states deviating from the safety zone, LEMPC control actions
would drive states back to safety zone in finite time. Another work by Venki-
dasalapathy and Kravaris [22] used pertinent systems theory to calculate a
set of initial states, starting from which the safety-critical constraints could
be satisfied at all times despite potential safety threatening disturbances dur-
ing dynamic operation. It remains a critical yet open research question on
how to quantify the bounding conditions of uncertainties, for both process
disturbances and modeling uncertainties, within which the above robust and
safe control can be theoretically guaranteed.

To detect fault proactively at an early developing stage, Ahooyi et al. [23]
developed a model-predictive safety system approach which could generate
predictive alarm signals based on whether the process can satisfy its operabil-
ity constraints using the most aggressive, feasible, manipulated input profiles.
Bhadriraju et al. [24] applied model predictive control for fault prognosis, in
which the control moving horizon estimation was utilized to predict potential
fault occurrence. The forecast of fault propagation trajectory thus accounted
for the process mechanistic, closed-loop control actions, and disturbances uti-
lizing the real-time information of both measured and unmeasured process
variables. In case of any potential fault occurrence during the next output
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horizon, alarms would be triggered ahead of time. A dynamic risk indicator
was incorporated in [24]. A major limitation of these approaches lies in the
tight coupling of controller output horizon with fault prognosis horizon (i.e.,
equal to each other). In this way, the fault prognosis capability is restricted
by the online control requirement and computational power. Process design
represents another key factor affecting process safety performance, which has
mostly been investigated at steady state from the aspect of inherently safer
design. Recent works [25, 26, 27, 28] indicated that process safety consid-
erations could result in significant and non-intuitive design changes in the
optimal process solution, compared to that driven by economics and sustain-
ability objectives. This highlights the need to fully integrate the decision
making of process design, real-time operation, and dynamic risk manage-
ment across multiple time scales, despite a unified methodology is currently
lacking.

To address the above challenge, in this work we develop a dynamic risk-
based process design and operational optimization approach based on the
PAROC (PARametric Optimization and Control) framework [29]. The re-
maining of the paper is organized as follows: Section 2 introduces the pro-
posed risk-based optimization approach integrating dynamic risk analysis
and multi-parametric control. Section 3 demonstrates this approach step-
by-step for the safety-critical control of a real-world T2 continuous stirred
tank reactor. Section 4 presents concluding remarks and future work.

2. The Risk-based Optimization Approach

2.1. QOwerview of the Proposed Approach

This work aims to develop a general methodology framework for risk-
based process design and operational optimization. A schematic of the pro-
posed framework is shown in Fig. 1, which features:

e A dynamic risk-based multi-parametric model predictive controller for
optimal risk control at short term. The dynamic risk indicator is formu-
lated as an explicit function of safety-critical process variable deviations
during online operation.

e A dynamic optimizer at long term for safety and economics optimiza-
tion. The time scale for the dynamic optimizer is independent of the
controller time scale.
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Figure 1: The integration of risk-based process design and control optimization.

Note that the decision making of controller and optimizer is fully inte-
grated: the controller takes optimal design and/or operating decisions from
the optimizer, while the optimizer is aware of the closed-loop dynamics. The
potential and versatility of the framework are demonstrated through the fol-
lowing three classes of applications and illustrated in Fig. 2:

e Application 1: Model-based risk control and fault prognosis via moving
horizon estimation — In this case, long-term dynamic optimizer is not
used. The controller will forecast potential fault occurrence during the
next output horizon and to raise alarms when necessary.

e Application 2: Simultaneous design and control optimization with dy-
namic risk considerations — This can be utilized to investigate interac-
tions and trade-offs between design variables, operating variables, and
safety performance metrics at the early design stage.

e Application 3: Integrated fault-prognostic real-time optimization and
risk-based control — This can support online operation (i.e., design is
fixed at this stage) to guide optimal state transitions while preserving
desired process safety under disturbances. In this case, fault prognosis
is achieved by the dynamic optimizer which can forecast into a longer
time horizon independent of control output horizon as needed in certain
processes with fast dynamics, long shutdown time, etc.
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Application 3: Fault-prognostic real-time optimization and
control.

Figure 2: Applications of the general framework for risk-based design and operation.
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A (mixed-integer) dynamic optimization problem (Eq. 1) is formulated
to mathematically realize Fig. 1, synergizing dynamic risk analysis [30] and
multi-parametric control [31]. Specifically, Eq. 1la defines the objective func-
tion for the optimizer which can account for process safety, product quality,
and/or economics (e.g., design and/or operating costs). Optimization vari-
ables can include design variables and input/output set point values when
applicable. Control actions at each time step are not optimization variables
as they are calculated from the explicit functions of multi-parametric control
law given in Eqgs. le-f. Egs. 1b-c describe the mechanistic dynamic model
for the process and safety system (typically nonlinear). Design variables,
continuous and/or discrete, can be included to consider their impact on con-
trol and risk. Eq. 1d adapts the dynamic risk indicator developed by Bao
et al. [30], which quantifies risk as an explicit function of safety-critical vari-
ables deviation from nominal conditions to instantly reflect real-time process
safety performance changes. This method will be detailed later in Section
2.2. Egs. le-f give the multi-parametric model predictive control (mp-MPC)
laws, calculated as piecewise affine functions of parameters including design
variables and the risk indicator. The ability to obtain the mp-MPC control
laws offline in priori serves as the key to connect two separate time scales
(i.e., controller and optimizer) in a single dynamic optimization problem as
well as to maintain tractable online computational load. The derivation of
multi-parametric control laws will be detailed in Section 2.3. Eqs. 1g-i de-
fine the process operating constraints for state, input, and output variables
in terms of lower and upper bounds. More generalized time-varying process
operating constraints, i.e. g(z(t),u(t),d(t)) < 0, can also be incorporated
when applicable following prior work [32, 33]. Egs. 1j-k define the bounds
for design and risk variables. A dual layer of process safety management is
actually provided by this approach: (i) the control of dynamic risk as an
overarching process safety performance indicator, (ii) the bounded operation
of safety-critical variables via mp-MPC path constraints.

Dg,lii/,I;R F:/OT P(xz(t),y(t),u(t),d(t), De, Y, RI(t))dt (1a)
s.t. (t)/dt = f(z(t),y(t),u(t),d(t), De,Y) (1b)
y =g(x(t), ut),d(t), De,Y), Y €{0,1}1 (1c)

RI = s(x(t),u(t), d(t), De, d(t)) (1d)
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upy = Kib, +ri, 60y € CR; = {CR'0 < CR}} (le)

O = [, yr, Uit di, De, RIy)] (1f)

z<a(t) <7 (1g)

u<u(t)<u (1h)

y<y@t)<y (11)

De < De < De (1))

RI < RI(t) < RI (1k)

where x(t) are states, u(t) are input variables, y(t) are output variables, d(t)

are disturbances, Y are binary variables, De are process design variables,
RI(t) is dynamic risk indicator, 0(t) are parameters for mp-MPC, CR are
critical regions. Subscripts k£ denotes discerete time step, ¢ is index for critical
regions. CRA and CR’ are coefficient matrices to define critical regions.
Superscript R denotes set point.

2.2. Dynamic Risk Modeling

In what follows we discuss the dynamic risk model proposed by Bao et al.
[30] and its extension in this work to enable risk-based control. Abnormality
identification is first performed for the specific process system by surveying
historical incident cases and/or performing near miss studies, which aims to
identify any potential faults and the associated safety-critical process vari-
ables x(t). The real-time data of z(¢) can be either directly measurable via
online monitoring or implicitly inferential via the mechanistic dynamic pro-
cess model (Egs. 1b-c). The risk indicator RI(t) is defined in terms of the
real-time deviation of x(¢) from nominal operating conditions. Two factors
are considered for risk assessment, i.e. fault probability P(x(t)) and conse-
quence severity S(z(t)) as shown in Eq. 2.

RI(t) = P(x(t)) x S(z(t)) (2)
Fault Probability

The safety-critical process variables z(t) are assumed to follow statistical
distributions, e.g. normal distribution characterized by the means (u) and
standard deviations (o). The values of p and o are determined from the
survey of industrial practice, historical cases, and open literature. p stands
for the z(¢) nominal operating points. p £ 30 defines the upper and lower

8
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control limit (UCL, LCL). Statistically, 99.7% of the z(t) values would fall
within this three-sigma region (i.e., three-sigma rule). The fault probability
P(z(t)) is calculated as the probability density function of normal distribu-
tion (Eq. 3), particularly stressing the fault occurrence possibility when x(¢)
deviate away from the three-sigma region.

(8 (1430 oty 1 —l=@asa)?
¢ ®) ET#+3 )] = [ e 202 dt, when x(t) > p
P(a(t)) = P,

p[2O=le=30)] _ =) L a2 dt,  when x(t) < p
(3)

Consequence Severity

Consequence severity S(z(t)) quantifies the severity of the potential hazard
due to x(t) deviation. An exponential function is used to calculate S(z(t)) as
shown in Eq. 4. Importantly, the consequence severity will grow increasingly
faster as the safety-critical variables deviate further away from the nominal
operating point.

(p—=30)—=(t) (4)

100" 50 hen (t) >

z(t)—p

S(a(t)) = : when z(t) > p
100 w== | when z(t) < p

Using Egs. 3-4, the overall form of risk indicator RI(t) follows a pseudo-
exponential function. To provide a more concrete idea, Fig. 3 depicts a
generic dynamic risk profile for RI(t) against z(¢). The occurrence of a fault
is defined by the risk exceeding a pre-specified threshold value determined
from historical case analyses.

Major advantages of this dynamic risk model are summarized below:

e Instantaneity — Fault probability and severity data are updated in-
stantly based on safety-critical process variable changes, which can ef-
fectively support real-time process safety monitoring

e Standardization — At u £ 30, P(z(t)) is mathematically set at 0.5 and
S(z(t)) at 1 which provide a uniform basis to benchmark various pro-
cesses design and operating conditions,

e Multivariate — RI(t) can capture the independent or dependent interac-
tions between multiple process variables, e.g. via the use of multivariate
joint distribution function developed in [34],



206

207

208

209

210

211

212

213

214

215

216

217

218

e Prediction — A linear trend risk propagation forecast is utilized in [30].
Model-based forecast will be implemented in this work taking advan-
tage of the model predictive control and optimization capabilities.

To enable the use of linear model predictive control in Section 2.3, piece-
wise linearization is performed to the RI(t) function as illustrated in Fig.
4. Note that the linearized RI(t) values are over-estimators of the original
nonlinear RI(t) values. Binary variables can be introduced to reformulate
the piecewise RI(t) functions into a unified mathematical form as shown in
Eq. 5. In addition, the piecewise functions can actually characterize distinct
operating regions based on the varying risk propagation speeds. The process
and risk control priorities can thus be auto-adjusted, e.g. to majorly sustain
stable operation in Region 1, to start prioritizing risk control in Region 2,
and to adapt increasingly aggressive risk control in Regions 3 and 4.

When x(t) = u

X

|78

X

X

Q

I

L

[~

x(t)=p u+30 x(t)

Figure 3: Dynamic risk modeling.
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Figure 4: Piecewise linearization of dynamic risk.

miz(t) + by, x(t) € [x,,71)
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RI() = maz(t) + b3, x(t) € [x4,T3)
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RI(t) = Mz(t) + b
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2.3. Design-dependent Risk-based mp-MPC

The MPC problem with dynamic risk considerations is formulated as Eq.
6. Eq. 6a defines the control objective function for output/input setpoint
tracking and disturbance rejection. Eqgs. 6b-c represent the discrete state
space model linearized from the original mechanistic process model which can
be obtained using model reduction, system identification, machine learning
techniques, etc. [35, 36, 37] The piecewise linearized RI functions can thus be
readily integrated with the linear process state space model by treating risk
as an output variable (Egs. 6¢c-e). Eqgs. 6f-h are the path constraints for state,
input, output, design, and risk variables. It is also worth clarifying that the
linearized process model and dynamic risk model are only employed here for
the design of a linear model predictive controller. The closed-loop controller
validation and long-term dynamic optimization are conducted against the
original mechanistic-based nonlinear models (Eqgs. 1b-d). Design variables
De can be explicitly considered in two forms depending on the specific process
system: (i) in the state space model [38, 39], and (ii) in path constraints as
the upper or lower bounds of process variables. The case study in Section 3
will investigate design considerations belonging to the latter case.

OH-1
min, J= ryPry + Z ((ye — yi) " QRy (yx — i)
k=1
o T 8
+ Z (uk — uf) Ry, (uk — ukR)
k=0
s.t. Tyl = A:ck + Buk + C[dk; De] (6b>
il o] =[]+ ] 6
> myi=M Y byi=b > miyi=x (6d)
Zyi =1 2y < 1 < Ty yi € {0,1} (6¢)
<1, <T u<up,<u (61)
y<uy <7 d<dy<d (6g)
De < De<De RI<RI, <RI (6h)
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where P is terminal weight, QR and R are controller weights, CH and OH
are respectively control and output horizons.

MPC problems can be reformulated into multi-parametric quadratic pro-
gramming (mp-QP) problems as Eq. 7. More theoretical fundamentals on
multi-parametric programming and its application in model predictive con-
trol can be found in the recent authored book from Pistikopoulos et al. [31].
Due to the existence of binary variables for piecewise risk functions, the
design-dependent risk-based MPC formulation in Eq. 6 will finally result in
a mixed-integer multi-parametric quadratic programming (mp-MIQP) prob-
lem. Decomposition-based mp-MIQP solution algorithms can be used which
leverage global optimization to identify candidate binary solutions and ac-
celerate mp-QP solution efficiency via parallel computation [40].

min,  f(u,0) = su” Qu+u" H'0 4+ 07 Qo) + clu+ c¢§ 0 + c.
S.t. Nu<b+ F0O

CRA9 < CRY

ueR” HeR™ Q=0

The multi-parametric solution of Eq. 7 generates an optimal partition
of the parameter space into a list of critical regions CR. Each critical re-
gion is dictated by a unique active set of constraints to attain optimality
in Eq. 7. As shown in Eq. 8, the optimal control actions on each criti-
cal region can be explicitly expressed as an affine function of the parameter
set. To the interest of this work, the parameters include states, outputs,
setpoints, and disturbances as well as design variables (continuous and/or
discrete) and risk indicator. Therefore, the MPC problem which typically
requires online dynamic optimization can be replaced by an online function
evaluation process using the optimal multi-parametric/explicit control laws
generated offline in priori. A closed-loop validation step is performed to test
the resulting mp-MPC controller for process and risk control and enhance
the tuning parameters if necessary.

up = Kby +r; 0 € CR' = {CR < CR’}

ek - [xlm Yk, y]]ja dka De? R[k]
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Reaction 2:  Diglyme (S)

3. Case Study: Exothermic CSTR at T2 Laboratory

In this section, we apply the proposed dynamic risk-based design and
operational optimization approach on an exothermic CSTR process adapted
from [22] based on a major process safety accident at T2 Laboratories Inc.
CSTR with runaway reactions is a classical benchmark example to test safety-
critical control strategies (e.g., [19, 20, 22]).

3.1. Process Description

A reactive chemical explosion accident took place at T2 Laboratories Inc.
in Florida on December 19, 2007 which unfortunately resulted in 28 injuries
and 4 fatalities [41]. The T2 process produced methylcyclopentadienyl man-
ganese tricarbonyl, an Ecotane brand gasoline additive. A runaway chemical
reaction occurred during the first production step in a 2500-gallon batch re-
actor. The two exothermic reactions involved in this batch reactor are given
below. The second reaction rate becomes significant only at elevated temper-
ature. Due to the inadequate cooling system, the pressure and temperature
within the reactor increased uncontrollably which eventually ignited hydro-
gen as a major reaction product and other flammable byproducts.

Reaction 1: ~ Methylcyclopentadiene (A) + Sodium (B)

Lislyme®), 3o dium Methylcyclopentadiene (C) + Hydrogen (D)

Zodm®), Hydrogen (D) + Byproduct

In this work, we investigate the use of a CSTR at similar conditions to the
original T2 batch reactor as per [22]. The process can be conceptualized as
Fig. 5. There are two feed streams to the CSTR, one consisting of reactant
A in solvent S and the other of reactant B. To initiate the reactions, the feed
streams are preheated before entering the reactor. Reactor temperature 7' is
selected as the safety-critical process variable, which should be controlled at
a setpoint (e.g., 460 K) despite possible fluctuations of feed inlet temperature
Ty. Cooling is provided via an evaporating water jacket, the heat transfer
coefficient U of which can be adjusted via cooling water flow rate m,.. For
simplification, U is considered as the manipulated variable in this study. The
maximum value of heat transfer coefficient U, is then utilized as the cooling
system design parameter. The high risk region is defined as T" > 480K, in
which thermal runaway is at higher probability to occur due to the rapidly

14
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Figure 5: The T2 CSTR process.

increasing reaction rates (particularly of reaction 2). The research objectives
of this case study are to:

1. Control the risk at a desired level under disturbances.

2. If thermal runaway cannot be prevented, attenuate the risk propagation
speed and consequence severity while raising the alarm ahead of fault
occurrence time for operator response (e.g., > 10 minutes).

3. Identify the optimal design configuration and closed-loop control ac-
tions under disturbances with constrained dynamic risk.

4. Achieve optimal and safe operation via real-time optimization with
process-tailored fault prognosis horizon.

In the second objective, the 10-min fault prognosis horizon is used as
an indicative minimum allowable operator response time based on industrial
practice [42]. The underlying assumption is that, if alarm can be raised
10 minutes before actual fault occurrence, operators can prudently perform
the shutdown. Longer time horizon can also be used (e.g., > 20 minutes) to
enable ample time for response and/or to tailor process-specific requirements
[43]. Though the proposed methodology framework is generally applicable,
it is a trade-off decision on how to optimally determine the fault prognosis
horizon (and also the risk threshold to raise alarm). A longer fault prognosis
horizon enables more time for operator response while may result in more
conservative control actions based on estimated disturbances and process
conditions in future time steps.
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3.2. T2 CSTR Risk-based Optimization

In what follows, we present the step-by-step application of the proposed
approach to this T2 CSTR case study. The step-wise procedure is summa-

rized in Fig.

Control-aware Safety & Economics

6 based on the PAROC framework [29].

Output

Dynamic Mechanistic Modeling
(incl. design variables)

<

! =
Model Reduction %
= v o g
2 Integrated Approximate Model k5 E
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multiparametric control policies
Input Setpoint

Figure 6: The step-wise procedure for controller and optimizer implementation.

3.2.1. Mechanistic Dynamic Modeling

We first develop a mechanistic dynamic model for the process (and safety)
system of interest. An ideal CSTR with constant reactor volume is assumed
to be in use. The nonlinear dynamic model is given in Eq. 9. Eqgs. 9a-
¢ describe the dynamic mass balances for reactants A, B, and S. Eq. 9d
describes the dynamic energy balance in reactor. A list of the major process
variables are summarized in Table 9. The kinetics and process parameter
values are provided in Appendix A.

dCA(t> _ FA,in N Gout

dt 7 7 Calt) = k(T()Ca(t)C(t) (9a)
dCZ@) - Fén - q‘o}” Cp(t) — ki(T(£)Ca(t)Cp(t) (9b)
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334
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dCS(t) _ FS,in B Qout

Cs(t) — ko(t)Cs(t 9¢c
500 _ T oy 1) — gy 0)C5(0) (9

dT'(t)  Qout S(=AH)re(t) UAL(T(t)—1T,)

T ot 1)~ 10) + - (94)

dt V PCp pcpV'
Table 1: List of CSTR process variables.
Symbol Definition Variable(s) Physical Description Unit
o Cy,Cp,Cq Concentrations mol/1

z(t) States T Reactor temperature K
u(t) Input U Heat transfer coefficient kJ/(K - h - m?)
d(t) Disturbance Tp Feed inlet temperature K
De Design Unnaz Maximum heat transfer coefficient kJ/(K - h - m?)

The mechanistic dynamic model is built in both MATLAB® and gPROMS®
ModelBuilder in preparation for the next step analyses. An open-loop simu-
lation is performed to study reactor dynamics particularly regarding thermal
runaway risk. A disturbance step change of AT}, = 25 K is introduced at
t = 0 which can be resulted by a severe malfunction of the feed preheater.
As shown in Fig. 7, reactor temperature increases to the high risk region
after ~ 9 hours (7" > 480 K), following which thermal runaway occurs.

500 T T T T T T

495 - b

490 F _

'S
@
3]
T
1

Temperature (K)
» S

~ (o]

(6] o

470 J

465 4

460 L 1 1 1 1 1
0 2 4 6 8 10 12 14

Time (h)

Figure 7: T2 CSTR open-loop simulation.
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3.2.2. Model Reduction

The nonlinear CSTR model is then linearized around steady state using
Jacobian matrices calculated by MATLAB® jacobian function. A discrete
linear state space model is obtained as given in Eq. 10.

Ca Ca

Cs _a |l + BU +CTiny, T,=1min (10)
Cs Cs |

T k+1 T k

where the deviation variables are defined as X = X — X,,. The coefficient
matrix values are:

0.9506 —0.0047 0 —0.0003
A —0.0484 0.9943 0 —0.0003
n 0 0 0.9990 —1.5740 x 107°

0.6970  0.0678 0.0002 1.0030

0 0

0 0

B = 0 C 0

—0.0007 0.0010

The linearized CSTR model is validated against the original nonlinear
model in Fig. 8. The two models match well up to 7' ~ 480 K while the
linearized model cannot capture the temperature surge in high risk region.
This also highlights the importance to apply the original nonlinear model for
closed-loop control validation in Section 3.2.4 and dynamic optimization in
Section 3.2.5.

In case that significant deviations exist between the Jacobian-based lin-
earization model and the original nonlinear model, linear state space model
can be generated using other techniques such as model reduction, system
identification, and machine learning [35, 36, 37]. Moreover, in the current
work, the approximated model is generated by sampling over the entire ex-
pected operating region. Strategies have also been developed in recent inte-
grated design and control literature which aimed to approximate and validate
the overall dynamic optimization problem against a specific operating point
(e.g., worst-case variability point) using trust-region approach [44], back-off
approach [45, 46|, etc. Online model updating and nonlinear model pre-
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Figure 8: Comparison of linearized vs. nonlinear CSTR model.

dictive control provide alternative ways to overcome model approximation
errors, which are briefly discussed in the concluding remarks section.

3.2.3. Dynamic Risk Modeling

We proceed to model the dynamic risk as a function of reactor tempera-
ture, namely the safety-critical variable for this T2 CSTR process. Following
the methodology presented in Section 2.2, the reactor temperature is as-
sumed to follow normal distribution. The nominal operating temperature is
adapted at u = 460 K as per open literature data. The standard deviation is
set at o = 5 K which gives the upper control limit as UCL = pu+30 = 475 K.
The risk threshold is defined at RI > 2.82 according to the high risk region
at T' > 480 K. In other words, if the risk value exceeds 2.82 during operation,
a fault occurs. The dynamic risk can thus be quantified using Eqs. 3 and 4
(only = > pu is of interest). To linearize the risk model as per Fig. 4, four
piecewise affine functions are identified with the expressions listed in Eq. 11.

hS

RI,=RI,—b=M

QlQl Al
m

(11)

SIS
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Up to this step, an integrated linear state space model has been obtained
for dynamic process and risk modeling, which will be used for the next step
controller design:

Bl 4+ BU, + CTins

k+1

Q
[95)
| S

RI, =M T, =1 min

3.2.4. Design-dependent Risk-based Multi-Parametric Controller design

A mp-MPC problem is formulated as per Eq. 6 using the above integrated
linear state space model. Risk is incorporated as the output variable and
bounded via the path constraints. The cooling system design variable U, 4.
is considered through the path constraints U < U < U,e,. This step is
implemented in MATLAB® using the POP Toolbox [47].

We first investigate dynamic risk management solely with mp-MPC and
fault prognosis relying on moving horizon estimation. An output horizon
of OH = 10 is selected which allows a 10-min risk forecast horizon (or fault
prognosis). In other words, the controller computes the optimal action at the
current time point by optimizing the disturbance rejection performance over
the next 10 min. However, if the risk is projected to exceed the threshold
value (RI > 2.82) during the next output horizon, an alarm will be raised
around 10 minutes earlier to alert the operator. This will enable the operator
to prudently plan for abnormality response or process shutdown. The mp-
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MPC tuning parameters are listed in Table 2 and path constraints in Table
3 (in terms of deviation variables).

Since only 4 binary variables are involved in this case study while being
mutually exclusive, we solve the resulting mp-MIQP problem by enumerating
all the four possible integer solutions. A superset of four mp-QP solution
maps is generated and the solution of mp-MIQP is determined by searching
through the mp-QP maps (illustrated in Fig. B1l). Each mp-QP problem
is solved to have 59 critical regions with 8 parameters. The parameter set
includes C'4, Cp, Cg, and T as 4 state variables, RI as output variable, RI"
setpoint, T, as disturbance, and U,,,, as design variable.

Table 2: mp-MPC tuning parameters.

OH CH QR R
10 1 10* 10°°

Table 3: mp-MPC path constraints.

C4,Cp,Cs, T |RI|U Tin
Max | 10, 10, 10, 25 25 | Upae | 100
Min | -10, -10, -10, -15 | -3 | -55" | -20

* U nae is the design variable
" CSTR heating duty is also available (U < 0)

The resulting mp-MPC controller is applied to the nonlinear CSTR and
risk model for closed-loop control using the following three scenarios:

e Scenario 1: Control at low risk level

The CSTR initial states are at C4 = 0.4 mol/l, Cg = 1.5 mol/l, Cg = 2.5
mol/l, and T' = 460 K. A step change of the disturbance is introduced at t = 0
with AT}, = 25K. As shown in Fig. 9, the open-loop process (i.e., without
controller) enters the high risk region after approximately 9 hours. On the
other hand, the risk-based multi-parametric controller can effectively control
the CSTR at low risk level (RI ~ 0.00175) with a set point at RI® = 0.
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Figure 9: Scenario 1 — Closed-loop control at low risk level.

e Scenario 2: Control at medium risk level

Sometimes it may be desired to operate the reactor at higher temperatures
despite the increase of risk, for example to attain higher productivity. Given
this, the controller is tested against a risk set point of RIT* = 0.74 which lies
between the upper control limit and the high risk limit. Fig. 10 shows the
closed-loop results. The controller adapts an initial heating step to rapidly
increase the reactor temperature to the desired temperature setpoint but is
able to stabilize the process afterwards in prevention of further risk surge.

e Scenario 3: Fault prognosis and alarm raising

In certain cases, the process risk cannot be prevented from entering the
high risk region due to notably large disturbances, insufficient cooling water
availability, or more stringent risk limit. With the mp-MPC output horizon
as 10 min, a ten-minute fault prognosis horizon can be achieved using model-
based risk forecast. An example is shown in Fig. 11. At ¢t = 11.13 h,
the mp-MPC forecasts that the risk will enter the high risk region in the
next 10 minutes. An alarm is thus raised to alert the operator. At t =
11.35 h, the real-time risk value reaches the high risk region, i.e. a fault
happens. The 13.2 minutes between alarming raising and fault occurrence
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will be crucial for the operator to take response actions in a proactive manner.
Importantly, the controller can continue mitigating the risk at the same time,

to significantly reduce its propagation speed and fault severity compared to
open-loop operation.

15 T T T T T T
= = = = High Risk Limit
Open-Loop
125 Risk-Aware Control | -

10
14
~ 1.5
L
14
5
25
0 1 1 1 1 1 1 ]
0 2 4 6 8 10 12
Time (h)
3 T T T T T T
- = = = High Risk Limit
Risk-Aware Control
251
4
4
L
o

15 . , , . \ \
1" 1.1 11.2 1.3 1.4 11.5 11.6 1.7
Time (h)

Figure 11: Scenario 3 — Control-aware fault prognosis and alarm raising.
t = 11.13 h: alarm raised, ¢t = 11.35 h: fault happens
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We have demonstrated the proposed approach for dynamic risk manage-
ment and fault prognosis exclusively via predictive control, which restricts
the risk forecast horizon equal to control output horizon. In certain pro-
cess systems such as with very fast dynamics, it is challenging to achieve a
sufficient fault prognosis horizon for the operator from process safety man-
agement aspect. In Section 3.2.5, we will augment the risk-based controller
with a control-aware dynamic optimizer to empower decision making across
distinct time scales. This will also extends the strategy for integrated design,
economics, and safety optimization. To relax the control decision horizon,
in what follows we will use a new mp-MPC controller with OH = 2 and
CH = 1. Closed-loop validations are performed which have justified the risk
control efficacy under Scenarios 1 and 2. The corresponding explicit control
laws are included in Appendix B.

3.2.5. Control-aware Safety and Economics Optimization

We investigate two classes of applications for the integration of risk-based
mp-MPC with dynamic optimization as per Fig. 1: (i) simultaneous risk-
based process design and control optimization, (ii) fault-prognostic real-time
optimization and control. For this specific case study, the economic consid-
erations comprise the process design and operating cost (i.e., utility cost).
As the operation of this exothermic CSTR is considered at high temperature
under potential runaway risk, we assume that the product specification for
C (the only liquid product) will always be satisfied when reactor tempera-
ture is above 460 K. In certain other case studies, off-spec products may be
generated due to insufficient control far from the set point (e.g., if higher
temperature results in less productivity or selectivity) while it takes time for
risk to propagate to high limit. Economic losses during this off-spec period
can be readily incorporated to the objective function.

This step is implemented in gPROMS® ModelBuilder using CVP_SS as
the dynamic optimization solver. The multi-parametric control laws de-
rived from Section 3.2.4 are exported from MATLAB® and embedded in
gPROMS®.

e Application 1: Simultaneous Risk-based Design and Control

The control-aware dynamic optimization formulation for this T2 CSTR case
study is given in Eq. 13. In the objective function, fOT U dt/T quantifies the
average operating cost given that U is a pseudo-linear function of cooling
water flowrate. WU,,., indicates the design cost. U, is considered as
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a time-invariant design variable. W is a weighting factor to balance the
operating and design cost, which currently takes the value of 1. The dynamic
optimization is performed under a worst-case scenario (e.g., with step change
AT}, = 25 K) over 7 = 100 h to ensure the risk dynamics reach a new steady
state (though much longer than enough).

Uinae 1s treated as the only degree of freedom for this optimization prob-
lem. Note that the multi-parametric control laws generated offline will com-
pute the optimal control actions based on the real-time values of states,
disturbances, risk indicator, and design variable. In other words, the mp-
MPC control laws are designed a priori but the optimal control actions are
calculated in real time and affected by the design variable (see Appendix
B for an example of mp-MPC explicit control laws). The values of process
initial states and risk set point remain same with the above control studies.
By varying the risk tolerance at the end point of 7, a list of optimal cost
objective values are obtained with the associated design variable values. For
example, to achieve the end-point RI < 0.00175 (i.e., low risk level control
in Scenario 1), the optimal design variable U,,,, is 48.2 kJ/(K - h - m?)
compared to the nominal value used earlier as 55 kJ/(K - h - m?). Fig. 12
quantitatively depicts this trade-off to assist decision making for the optimal
design and operation of safety-critical process systems.

min F = [JU®)dt/T +WUpa Cost-objective function

sit. dx(t)/dt = f(x(t),u(t),d(t), De,Y) Nonlinear CSTR model (Eq. 9)
RI = s(x(t),u(t),d(t), De,Y) Nonlinear risk model (Eqgs. 2-4)
up = K;0, +r; Multi-parametric control laws
0, € CR, = {CRA < CR} (OH =2, CH = 1)
Or = [z, Y, Y, dy, De, RI}) (Section 3.2.4, Eq. B1)
z<z(t)<T Below are path constraints

u<u(t) <Upa, y<yt)<7
e < De<De, RI<RIt) <RI

S

(13)
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Figure 12: Optimal cost versus end-point risk limit.

e Application 2: Fault-Prognostic Real-Time Optimization and Control
Herein, we consider U,,., as a time-variant variable which can be adjusted
in real time. In this context, the dynamic optimizer in Eq. 13 takes the
role of real-time optimization to determine the cost-optimal U,,,, value si-
multaneously with dynamic risk management and fault prognosis. If the
risk is predicted to exceed the threshold, an alarm will be raised in advance.
It is worth highlighting that the dynamic optimizer is aware of the closed-
loop process, risk, and control dynamics. As illustrated in Fig. 13, the
fault-prognostic optimizer forecast horizon 7 is selected to be 30 min as an
example. The resulting optimal U, is then passed to the risk-aware con-
troller. However, when applicable, the dynamic optimizer tends to strictly
meet the end-point risk tolerance in exchange for lower design and operating
cost which will then challenge the risk control in the next 30 min. Given
this, the fault-prognostic optimizer is set to be activated in every 20 min to
start the next round economics and safety optimization. Note that the char-
acteristic times can be flexibly selected tailored to the process-specific need.
For consistency, we again test the strategy to operate this T2 CSTR under
a step change of AT, = 25 K with RI < 0.00175 at end of every optimizer
forecast horizon 7. The results are shown in Fig. 14, in which the real-time
Uinae values can effectively guide the controller for dynamic risk management
with cost-optimality at each step.

26



[ Fault-Prognostic Optimizer
[ Risk-Aware Controller

_‘JL
' | U

0 20 40 60 Time (min)

Figure 13: Integration scheme for fault-prognostic optimizer and risk-aware controller.

x1073

151 b

Risk RI

05 b

60 T T T T T T

50 - ]

40+ 1

30 [ b

20 b

Heat Transfer Coeffient U

0 L . . . I I L
0 0.5 1 1.5 2 25 3 35 4

Time (h)

Figure 14: Real-time optimization of cooling water consumption.
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4. Concluding Remarks

We have introduced a general framework for process design and opera-
tional optimization with online process safety monitoring and proactive risk
management. A model-based risk control strategy is developed via multi-
parametric programming, which also enables fault prognosis and alarm man-
agement via moving horizon estimation. The risk-based control is further
augmented with dynamic optimization to address optimal decision making
across multiple decision layers with potentially distinct characteristic time
scales (i.e., design, real-time optimization, control, and fault prognosis). The
efficacy and applicability of the approach has been demonstrated on the
safety-critical operation of an exothermic CSTR at T2 Laboratory, Inc.

The current work utilizes linear model predictive control which inevitably
introduces model approximation errors against the original nonlinear mecha-
nistic model. Robust (multi-parametric) model predictive control provides a
classical solution to address bounded errors due to model approximation [48].
Online model updating offers another option which can leverage Bayesian ap-
proach [49], neural network [50, 51], and other machine learning techniques
[52] to achieve reliable model predictive control by continuously learning pro-
cess mechanistic. More recently, nonlinear model predictive control (NMPC)
has gained increasing momentum with significant algorithmic improvement
to speed up computational times and enhanced fundamental understanding
on stability and robustness properties [53, 54, 55]. NMPC strategies have
been developed for highly nonlinear processes [56], economic MPC [57, 58],
and integration with design or higher level operational decisions (e.g., real-
time optimization [59, 60|, simultancous design and control [44]). Multi-
parametric programming has also been extended to obtain explicit NMPC
laws in prior work, e.g. for convex quadratically constrained control prob-
lems [61] and for generalized nonlinear process control based on balancing
of empirical gramians [36]. Ongoing work is addressing the comparison of
multi-parametric linear control versus nonlinear control particularly in the
safety-critical chemical processes.
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Appendix A: T2 CSTR Reaction Kinetics and Process Parameters

The reaction rate expressions and CSTR reactor parameter definitions

are given below adapted from [22].

Reaction 1: ry = —k1C4Cpg, where k; = kloexp(—%)

Reaction 2: ro = —koCg, where ky = kzoexp(—%)

Table Al: List of CSTR process parameters.

Variable Description Value Unit
Fyin Feed flowrate (A) 1050 mol/h
Fsin Feed flowrate (S) 525 mol/h
Fpin Feed flowrate (B) 1250 mol/h
pAs Feed molar density (AS) 7.33 mol/1

PB Feed molar density (B) 36 mol/1

p Mixture molar density in CSTR 7.31 mol/1

k1o Rate constant (reaction 1) 4 x 101 1/mol

koo Rate constant (reaction 2) 1 x 10% 1/h

E, Activation energy (reaction 1)  1.28 x 10°  J/mol/K
E, Activation energy (reaction 2) 8 x 10° J/mol/K
AH, Heat of reaction 1 —45400 J/(mol B)
AH, Heat of reaction 2 —3.2x 10> J/(mol S)
V Reactor volume 4000 1

C, Average specific heat 430.91 J/mol/K
T, Coolant temperature 373 K

A, Heat transfer area 5.3 m?

29



549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

Appendix B: Multi-Parametric/Explicit Control Laws

This appendix presents more detail for the design-dependent risk-aware
mp-MPC with OH = 2, CH = 1 (Section 3.2.4). The resulting mp-MIQP
problem is solved by enumerating 4 mp-QP problems, which are partitioned
as per the temperature ranges for RI piecewise linearization. Namely, T
respectively in [460, 472], [472, 477], [477, 481], and [481, 495] (Eq. 11). The
conceptualization is illustrated in Fig. B1l. Each mp-QP problem is solved
to have 11 critical regions with 8 parameters.

mp-QP 1 mp-QP 2 mp-QP 3 mp-QP 4
S /
\Q1<91S§1 9,<6,<6, 0; < 6; <65 94994354/

mp-MIQP Solutions

Figure B1: mp-MIQP solutions as a superset of mp-QPs.

To provide a more concrete idea on the form of multi-parametric/explicit
control laws, the optimal control solution on Critical Region 1 of the mp-QP
problem for T € [460, 472] is listed below. Fig. B2 further gives a geometrical
view of critical regions at the CSTR initial states. 65 is the deviation variable
for disturbance (i.e., T,) and 0 is the deviation variable for risk (i.e., RI).

Critical Region 1 (CRO1):

o 0= [€A>€BaésaTa TinamR7Umax]

® U = K10 + 1
K, = [130.34, 12.68, 0.033, 0.56, 0.19, 2.41 x 10*, —2.41 x 10%, 0]
r = 0

e CR, = {CR}0 < CR:}
Constraints for upper and lower bounds of parameters are skipped for
brevity, but can be found in Table 3.
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