
Revisiting Black-box Ownership Verification for Graph Neural Networks

Ruikai Zhou∗, Kang Yang∗, Xiuling Wang†, Wendy Hui Wang†, Jun Xu∗

∗University of Utah, †Stevens Insititute of Technology

AbstractÐGraph Neural Networks (GNNs) have emerged as

powerful tools for processing graph-structured data, enabling

applications in various domains. Yet, GNNs are vulnerable

to model extraction attacks, imposing risks to intellectual

property. To mitigate model extraction attacks, model own-

ership verification is considered an effective method. However,

throughout a series of empirical studies, we found that the

existing GNN ownership verification methods either mandate

unrealistic conditions or present unsatisfactory accuracy under

the most practical settingsÐthe black-box setting where the

verifier only requires access to the final output (e.g., posterior

probability) of the target model and the suspect model.

Inspired by the studies, we propose a new, black-box GNN

ownership verification method that involves local independent

models and shadow surrogate models to train a classifier for

performing ownership verification. Our method boosts the ver-

ification accuracy by exploiting two insights: (1) We consider

the overall behaviors of the target model for decision-making,

better utilizing its holistic fingerprinting; (2) We enrich the

fingerprinting of the target model by masking a subset of

features of its training data, injecting extra information to

facilitate ownership verification.

To assess the effectiveness of our proposed method, we per-

form an intensive series of evaluations with 5 popular datasets,

5 mainstream GNN architectures, and 16 different settings.

Our method achieves nearly perfect accuracy with a marginal

impact on the target model in all cases, significantly outper-

forming the existing methods and enlarging their practicality.

We also demonstrate that our method maintains robustness

against adversarial attempts to evade the verification.

1. Introduction

Graph Neural Networks (GNNs) [15], [22], [48], [55],
[58] are a class of neural networks designed to operate on
graph data. GNNs leverage the inherent structure of graphs
to learn complex patterns in data, supporting downstream
tasks like node classification [11], [15], [22], [26], [48], [58]
and graph classification [7], [23], [62]. GNNs have gained
popularity and enabled applications in various domains,
such as social network analysis [8], [50], recommendation
systems [9], [56], cybersecurity [35], [66], etc.

Not surprisingly, the significance of GNNs has attracted
many attacks. A major family against GNNs is model ex-

traction attacks [12], [13], [42] where the adversaries extract
information through query access to a target model and
train a surrogate model to approximate the target model.

Commonly, model extraction attacks against GNNs work
in a black-box manner [6], [54]: The adversaries do not
require access to the internal parameters or structure of the
target model but instead, they only rely on its output for
pre-collected data samples.

Problem: Model extraction attacks severely threaten the
intellectual property of GNNs. To mitigate model extraction
attacks, model ownership verification [2], [18], [45], [61] is a
very useful method. Given a suspect model F?, model own-
ership verification determines whether F? is extracted from
the target model F or is an independent model (precisely, a
model independently trained by a benign third party). In this
paper, we explore model ownership verification for GNNs.
For better practicability, we focus on methods that operate
under the block-box setting where the verifier can query
F? and F for final output (e.g., posterior probability) but
cannot access more intermediate outcomes (e.g., embedding)
or model internals. We further require the method to carry
no assumptions restricting the attacker’s behaviors.

Study: We are not the first to study model ownership
verification for GNNs. Several existing methods [49], [57],
[64] can be applied directly or adapted easily to work in
black-box settings. However, through empirical studies, we
found that these methods either mandate assumptions that
restrict the attackers or fail to provide satisfactory accuracy.

One line of methods [57], [64], denoted as BboxVe,
adapt backdoor attacks to watermark the target model F .
Briefly, BboxVe plants backdoors into random nodes on the
training graph of F and assigns new, elaborated labels to
them. If a suspect model F? presents an accuracy higher
than a threshold on the backdoor nodes, F? is consid-
ered an extracted model. We reproduce the evaluation of
BboxVe presented in [57] (detailed in §4.1). It turns out that
BboxVe works well under a condition: the backdoor nodes

are accessed and reused by the attacker for model extrac-

tion. Without this condition, the performance of BboxVe is
close to random guess (see Table 3). To sum up, the success
of BboxVe requires the attacker’s ªcooperationº, limiting its
applicability in more practical scenarios.

Another line of methods exploits the fingerprinting (or
inherent behaviors) of the target model for ownership ver-
ification. GrOVe [49] is the representative method. It self-
builds local independent models and shadow surrogate mod-
els to respectively mimic independent models in the wild
and models extracted by adversaries. The two groups of
models are used to train an ownership verification classifier
Cown, which, provided the prediction output of a data point,

reports whether the output comes from a real independent
model or a real surrogate model. Given a suspect model
F?, its output for a set of nodes is obtained and tested
with Cown. If over 50% of nodes are predicted to be from
a surrogate model, F? is considered extracted. By design,
Cown aims at white-box ownership verification and uses the
embedding of nodes as the output. We adapt it to the black-
box setting by alternatively using the posterior probability as
the output and name the adapted method BGrOVe. To assess
BGrOVe, we replicate the evaluation presented in [57]
(detailed in §4.2). It shows that BGrOVe presents random
guess in most cases (see Table 4), failing to offer ownership
verification

Method: Motivated by our empirical studies, we aim to
design new, black-box methods for GNN ownership verifi-
cation without unrealistic conditions attached. We follow the
fingerprinting-based principle of BGrOVe, considering that
the watermarking-based idea adopted by BboxVe cannot get
rid of the aforementioned condition (see §5.1).

At a high level, our method also involves local inde-
pendent models and shadow surrogate models to train an
ownership verification classifier. However, it incorporates
two insights to boost the accuracy. ❶ Our classifier considers
the overall behaviors of a model instead of its output for
individual data samples to make decisions. This way, the
classifier utilizes holistic fingerprinting of the model rather
than its local behaviors, better distinguishing independent
models and surrogate models that carry less-evident differ-
ences. ❷ We enhance the fingerprinting of the target model
by masking a subset of features of all nodes in its training
data. This maneuvers the influence of those features on the
output of the target model, thus injecting extra fingerprint-
ing. The extra fingerprinting helps with ownership verifica-
tion because it never shows up in independent models but
will propagate to the surrogate models.

Evaluation: To measure the performance of our new
method, we run an intensive series of evaluations, involving
5 popular datasets, 5 mainstream GNN architectures, and
16 different settings. The results show that our method
can provide very high or even perfect verification accuracy
in all settings while only incurring a marginal impact on
the target model accuracy (0% - 5% of accuracy drop).
Compared to the existing methods, our method not only
offers much higher accuracy but also significantly extends
their applicable scopes. We further evaluate the robustness
of our method against three types of adversarial evasions
(fine-tuning, double extraction, and pruning). It shows that
our method successfully maintains its accuracy under all
three evasion attempts.

Contributions: Our main contributions are as follows.

• We perform empirical studies and analysis to understand
the performance of existing GNN ownership verification
methods, unveiling that those methods fall short under the
black-box settings.

• We introduce two new insights to enhance fingerprinting-
based GNN ownership verification and design a new

method incorporating the two insights to offer ownership
verification under black-box settings.

• We run intensive evaluations of our new method. The
results show that our method offers high accuracy in
all kinds of settings and presents robustness against the
existing evasion attempts. The source codes are released
at https://github.com/rkzhou/GNN OwnVer.

2. Background

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) work on graphs. A
graph G can be described as (V , E, A), where V means the
node set with vi ∈ V representing a single node, E stands
for the edge set with eij = (vi, vj) representing a single

edge, and A ∈ R|V |∗|V | denotes the adjacency matrix with
aij ∈ A setting to 1 if eij ∈ E or 0 otherwise. A node vi
can also carry a feature vector xi ∈ X and a ground truth
label yi ∈ Y .

GNNs take G’s adjacency matrix A and node features X
as input and generate the embedding (or final representation)
hvi

∈ H for each node vi. The embedding can be further
converted into posterior probability via linear transformation
(e.g., multilayer perceptrons) and softmax for downstream
tasks like node classification [11], [15], [22], [26], [48],
[58] or graph classification [7], [23], [62]. Following the
settings of previous research on ownership verification for
GNNs [49], we focus on node classification where the
GNNs predict labels of given nodes.

Overview: Modern GNNs mostly adopt the method of
neighborhood aggregation where the representation of a
node is progressively updated. Specifically, in each iteration,
the representation hvi

of node vi is updated by combining
hvi

’s current representation and the aggregated representa-
tions of its neighbors. Formally, the procedure is as follows:

hl
vi

= Update(hl−1
vi

, Aggregate({hl−1
vj

|vj ∈ N (vi)})) (1)

where hl
vi

stands for the representation of node vi after l

iterations with h0
vi

initialized using vi’s feature vector, and
Update(·) and Aggregate(·) are parameterized functions
with parameters learned through training.

Architectures: Depending on the design of Update(·) and
Aggregate(·), GNNs have five popular architectures:

▶ Graph Convolutional Network (GCN). GCN [22] is
inspired by convolutional neural networks. It combines
Update(·) and Aggregate(·) into the same function, for-
malized as below:

H l = σ(D̃− 1
2 ÃD̃− 1

2H l−1W l−1) (2)

Specifically, Ã (= A+ I) is the adjacency matrix with self-

connections. D̃ is the degree matrix of Ã and D̃− 1
2 ÃD̃− 1

2

normalizes Ã. W , representing the combined function, is
a layer-specific, trainable weight matrix to aggregate the
information from neighbors. σ(·) is a non-linear activation
function such as ReLU.

▶ Simple Graph Convolution (SGC). Hypothesizing that
the majority of the benefit of GCN arises from the local
averaging and the nonlinearity between GCN layers is non-
essential, SGC [55] removes the nonlinear transition func-
tion between two layers to produce a linear model. Simply
speaking, SGC can be described as:

H l = (D̃− 1
2 ÃD̃− 1

2)KH l−1W l−1 (3)

where K is the number of hops.

▶ Graph Attention Networks (GAT). GAT [48] has an archi-
tecture similar to GCN, except that GAT leverages attention
mechanisms [47] to adjust the weights of neighbors based
on their similarity to the current node vi. For example, GAT
with only one attention head can be formalized as:

hl
vi

= σ(αiiWhl−1
vi

+
∑

vj∈N (vi)

αijWhl−1
vj

) (4)

where aij is the attention coefficient derived from the sim-
ilarity between vi and vj , W is the linear transformation
weight matrix, and σ(·) is a non-linear activation function.

▶ GraphSAGE. GraphSAGE [15] first uses an aggregator to
combine the neighbors’ information and then concatenates
the combined results with the current node:

hl
vi

= Concat(hl−1
vi

, Aggregate({hl−1
vj

|vj ∈ N (vi)}))
(5)

The Aggregate(·) function can be a mean aggregator [15],
LSTM aggregator [16], or pooling aggregator [15].

▶ Graph Isomorphism Network (GIN). Based on Xu et.
al. [58], GraphSAGE is a special case of the Weisfeiler-
Lehman (WL) test [25]. Accordingly, they generalize the
idea and propose GINÐan architecture as powerful as WL
test for graph isomorphism:

hl
vi

= MLP l((1 + εl) · hl−1
vi

+
∑

vj∈N (vi)

hl−1
vj

) (6)

where εl can be a trainable parameter or a fixed scalar to
adjust the weight of hl−1

vi
, and MLP (·) represent multi-

layer perceptrons (MLPs) to aggregate the information of
hl−1
vi

and vi’s neighbors.

Training Paradigms: In practice, GNNs can follow two
different training paradigms:

▶Transductive Training. In this setting, a GNN model is
trained and tested on the same graph G(V,E,A) [22], [37],
[62]. The nodes for testing, which are not labeled, are still
involved in the aggregation operation but not used in the
loss computation.

▶Inductive Training. In this setting, a GNN model is trained
on one graph G(V,E,A) and tested on another unseen graph
G′(V ′, E′, A′) [15], [48], [58].

Given a GNN model trained under both paradigms, the
testing of a node vi will require all nodes’ features and the
entire G (or G′ under inductive settings) as input.

2.2. Model Extraction Attacks

Given a target model F , model extraction attacks [31],
[32], [43] aim to reconstruct a surrogate model Fs to ap-
proximate F based on prior knowledge about F and queries
to F . In the context of GNNs where F is trained on graph G
= (V , E, A) plus node features X , the existing attacks [6],
[41], [54] assume that the adversary has a surrogate graph
Gs = (Vs, Es, As) with node features Xs but no labels.
When training Fs, the adversary queries F with data from
Gs to obtain output O for target tasks like node classification
and minimizes the loss between O and Fs’s output Os:

minimize L(O,Os) (7)

where L(·) is a loss function such as cross-entropy loss or
root mean square error loss. Contingent on the responses of
F to the queries, output O can be node embedding matrix H ,
predicted posterior probability matrix Θ, t-SNE projection
matrix Υ, or simply the labels. Depending on the adversary’s
knowledge about F , the architecture and number of hidden
layers of F and Fs may or may not be the same.

Attack Paradigms: Given different relations between G and
Gs, model extraction attacks can have two paradigms:

▶ Inductive Model Extraction. In this paradigm, Gs and G
are disjoint, independent graphs, but they are assumed to
follow similar distributions [41].

▶Transductive Model Extraction. In this paradigm, Gs is
a sub-graph of G (or G itself), and the nodes on Gs are
assumed to be involved in the training of F [6], [54].

2.3. Model Ownership Verification

Model ownership verification [3], [19], [21], [24], [29],
[36], [51], [63], [65] is a mitigation against model extraction
attacks. In a practical setting as introduced by Waheed
et. al. [49], the verification process involves three actors:
Accuser (the owner of the target model F), Responder
(the owner of a suspect model F?), and V erifier (a trusted
verification agent). Before F is developed, Accuser is re-
quired to register it to V erifier with a secure timestamp.
When F? comes to attention, Accuser requests V erifier
to verify whether F? was derived from F via model ex-
traction attacks. In the context of GNN, attempts have been
made toward model ownership verification under both black-
box [57], [64] and white-box [49] settings.

Black-box Verification: In this setting, F and F? are opaque
to V erifier. Instead, V erifier can query the two mod-
els with data samples and obtain the prediction outcomes
(e.g., labels or posterior probability). To support ownership
verification under this setting, the existing methods [57],
[64], which we name BboxVe, adapt backdoor attacks to
watermark F . Given node classification as the downstream
task, the idea is to randomly pick nodes on the training
graph and watermark them by manipulating their features
(e.g., changing some features to a fixed value) and assigning
new, desired labels to them. F will then be trained on the

TABLE 1. IMPORTANT NOTATIONS USED IN THIS PAPER.

Notations Descriptions

G

E,V ,A
X

G refers to a graph where E, V , and A respectively represent
the graph’s edges, nodes, and adjacency matrix. X means
features of the nodes (see §2.1)

F The target model (see §2.2)

Fs The surrogate model extracted from F by attacker (see §2.2)

F? The suspect model. In real attacks, F? = Fs (see §2.3)

Fwm The target model trained with watermarked nodes (see §2.3)

F ∗

s Shadow surrogate models extracted by owner of F (see §2.3)

Find Independent models trained by owner of F (see §2.3)

Cown A classifier to detect surrogate models (see §2.3)

F train

ind
Independent models to train Cown (see §4.2)

F test

ind
Independent models to test Cown (see §4.2)

Fmask The target model trained with masked data (see §5.2)

watermarked graph to derive Fwm for public service. During
verification, F? is queried with the watermarked nodes, and
its accuracy on those nodes is measured using the water-
marked labels as the ground truth. If the accuracy exceeds
a threshold, F? is considered an extracted model, since an
independent model (i.e., a model trained independently by
a benign third party) shall present random behaviors and,
thus, low accuracy on those nodes.

White-box Verification: In this setting, F and F? are
assumed to be shared with V erifier. Waheed et. al. [49]
proposed GrOVe, the first method of ownership verification
for GNNs under this setting, considering node classification
as the downstream task. They exploit model fingerprinting,
namely using intrinsic model features to distinguish sur-
rogate models from independent models. Technically, the
Accuser prepares a set of independent models (notated as
Find) and a set of shadow surrogate models (notated as F ∗

s)
through local training. Find and F ∗

s are then used to train
an ownership classifier Cown, where the features are the
distances between the embedding generated by that model
for a designated dataset and the embedding produced by F
for the same dataset. Given Cown, V erifier can test if F?

is surrogate or independent.

2.4. Important Annotations

For easy reference, important annotations used in this
paper are summarized in Table 1.

3. Threat Model

In this paper, we revisit model ownership verifica-
tion for GNNs. We assume that the aforementioned veri-
fication scheme, which involves Accuser, V erifier, and
Responder, is adopted. Concerned that white-box verifica-
tion is less realistic due to its requirement of Accuser and
Responder’s cooperation to share their models, we focus on
black-box verification where Accuser and Responder only

TABLE 2. DATESETS USED IN OUR STUDY

Dataset # Nodes # Edges # Features # Classes

Cora [60] 2,708 10,556 1,433 7

CiteSeer [10] 4,230 10,674 602 6

Amazon [30] 7,650 238,162 745 8

DBLP [33] 17,716 105,734 1,639 4

PubMed [39] 19,717 88,648 500 3

deploy F and F? for remote queries. Precisely, we assume
that F and F? return the predicted posterior probability to a
query, following the common setup in the broad ownership
verification literature [4], [14].

We assume that the Accuser is benign, meaning it does
not aim to maliciously claim that F? is extracted from F .
In fact, as clarified by Waheed et. al. [49], the requirement
of registering F by Accuser to V erifier with a timestamp
will enforce this property. For generality, we do not make
assumptions about the model architectures (GCN, GAT,
GraphSAGE, GIN, etc.) or the training paradigm (transduc-
tive or inductive) that Accuser will adopt for F .

We further assume that the Responder might obtain
F? through extraction attacks on F . To align with the
verification scheme, the extraction attacks are assumed to be
performed using data samples decided by Responder and
the posterior probability output by F for those samples. We
do not restrict the knowledge Responder has about F : It
may or may not know the architecture and the number of
hidden layers. In addition, Responder may run transductive
or inductive model extraction.

4. Motivating Studies

As overviewed in §2.3, we are not the first one to explore
black-box ownership verification for GNNs. Some existing
methods [57], [64] are applicable directly. Further, certain
white-box methods (e.g., [49]) can be easily adapted for
use. However, we found that these methods either mandate

conditions that limit their practicality or fail to provide

satisfactory accuracy. In this section, we unveil our findings
through empirical studies and thus, motivate the need for
our research: accurate black-box GNN ownership verifica-

tion methods with no strings attached. Depending on the
designs, the existing methods are either watermarking-based
or fingerprinting-based, which we discuss separately.

4.1. Watermarking-based Methods

BboxVe [57], detailed in §2.3, is the only watermarking-
based black-box method. A key condition required by
BboxVe is Condition 1: the graph with backdoors injected
is reused by the attacker to support model extraction.
This condition is very strong as it mandates the owner
to publicize its graph with backdoors and the attacker’s
ªcooperationº to use that graph. Removing the condition
makes the method more practical, which, however, fails the
verification as we will show below.

TABLE 3. EVALUATION RESULTS OF WATERMARKING-BASED OWNERSHIP VERIFICATION (BBOXVE). ªWITHOUT BACKDOORº MEANS THE

SURROGATE MODEL IS EXTRACTED USING THE ORIGINAL GRAPH WITHOUT BACKDOOR (SETTING ❶ IN §4.1); IN CONTRAST, ªWITH BACKDOORº
INDICATES THE SURROGATE MODEL IS EXTRACTED USING THE GRAPH WITH BACKDOOR (SETTING ❷ IN §4.1). TCA, ECA, TBA, AND EBA

RESPECTIVELY REFER TO (1) CLEAN ACCURACY OF THE TARGET MODEL (I.E., F), (2) CLEAN ACCURACY OF THE SURROGATE MODEL (I.E., Fs), (3)
BACKDOOR ACCURACY OF THE TARGET MODEL, AND (4) BACKDOOR ACCURACY OF THE SURROGATE MODEL. BACKDOOR ACCURACY ABOVE THE

VERIFICATION THRESHOLD, INDICATING EXTRACTION ATTACKS, IS MARKED WITH RED OR RED OTHERWISE.

Dataset

GCN GAT GraphSAGE

With Backdoor (%) Without Backdoor (%) With Backdoor (%) Without Backdoor (%) With Backdoor (%) Without Backdoor (%)

TCA ECA TBA EBA TCA ECA TBA EBA TCA ECA TBA EBA TCA ECA TBA EBA TCA ECA TBA EBA TCA ECA TBA EBA

Cora 86.46 88.12 11.94 95.46 86.46 88.62 11.94 7.57 85.63 85.30 10.28 94.98 85.63 85.42 10.28 9.95 85.65 84.27 10.18 96.41 85.65 84.06 10.18 3.78

CiteSeer 78.31 76.70 16.22 98.25 78.31 75.96 16.22 7.00 79.97 79.94 14.94 97.57 79.97 79.77 14.94 7.42 74.82 73.50 13.97 98.75 74.82 72.15 13.97 5.72

Experimental Setup: In this study, we reproduce and eval-
uate BboxVe, following the method and setup described
in [57]. Specifically, we focus on node classification and
the transductive training paradigm. We reuse the datasets
covered by that paper (Cora and CiteSeer as detailed in Ta-
ble 2) and we consider all architectures studied in that paper
(GCN, GAT, and GraphSAGE). The nodes of each dataset
are split into three parts: Dtrain (20%) for training the target
model F , Dsurr (40%) for extracting the surrogate model
Fs, and Dtest (40%) for testing F and Fs.

To insert the backdoors, we randomly pick 15% of nodes
from Dtrain and randomly manipulate 35 of their features to
a pre-determined fixed value, as suggested by [57]. We fur-
ther assign each node with the label of the least-represented
class in the entire dataset. Via a similar process, we plant
backdoors into 10% of nodes from Dtest for testing. For
clarity, we use Fwm to represent the target model trained
with backdoors, which is released for public access.

We follow §2.2 to perform model extractions. Similar
to [57], we configure Fs to share the same architecture
and parameters (i.e., hidden layer number and hidden layer
dimensions) with Fwm. The extraction follows Equation 7,
using predicted posterior probability matrix Θ from Fwm/Fs

as O/Os. We repeat the attack twice under two settings: ❶

the attacker uses the original graph without backdoors for
model extraction1 and ❷ the attacker uses the original graph
with backdoors injected into Dtrain for model extraction.
Under the two settings, the outputs for Dsurr are different,
leading to different-behaving extracted models.

To verify the ownership of Fs, we measure two metrics
of Fs on Dtest, including (1) backdoor accuracy: accuracy
of Fs on backdoor samples in Dtest, using the backdoor
labels as ground truth and (2) clean accuracy: accuracy of
Fs on non-backdoor samples in Dtest. If the clean accuracy
of Fs approximates Fwm while the backdoor accuracy of Fs

is above a threshold2, we consider Fs an extracted model.

Evaluation Results: Following the settings above, we re-
peat the experiments five times and summarize the average
results in Table 3. Under both settings ❶ and ❷, the clean
accuracy of Fs approximates or even exceeds F . The cases
where Fs outperforms F are also reported in [57], possibly
because the extraction reduces model overfitting. In contrast,
the backdoor accuracy of Fs is contingent on the settings.

1. Recall §2.1 that testing any node requires the graph as a part of input.

2. Based on [57], the thresholds for Cora/CiteSeer are 50%/53% with
GCN, 51%/48% with GAT, and 48%/49.5% with GraphSAGE.

In setting ❶ where the backdoors are involved in model
extraction, Fs presents a backdoor accuracy way above the
threshold (similar results in all five experiments), leading
to 100% detection of model extractions. Further, Welch’s t-
test [53] on the five experiments shows that F and Fs have
statically significant differences in backdoor accuracy, indi-
cating a high verification confidence. However, in setting ❷

where backdoors are not used during model extraction, Fs’s
backdoor accuracy stays substantially below the threshold,
and Welch’s t-test shows no differences between F and Fs.
These evidence that the verification failed.

To sum up, Condition 1 is critical to BboxVe’s success.
Fundamentally, this is because watermarking only affects the
target model behavior on the backdoor nodes. When those
nodes are not involved in model extraction, the watermarks
are not propagated to the surrogate model and the verifica-
tion fails correspondingly. Hence, in principle, adopting the
watermarking-based strategy cannot get rid of Condition 1.

4.2. Fingerprinting-based Methods

No existing fingerprinting-based methods operate under
black-box settings. However, GrOVe, a white-box method
described in §2.3, can be adapted to work in a black-
box manner. Instead of using the embedding obtained from
involved models (F , F?, Find, and F ∗

s) to derive features
for training and testing the ownership verification classifier
Cown, we use the predicted posterior probability output by
those models. We refer to the adapted method as BGrOVe.

The evaluation setting of [49] and the public im-
plementations [1] include three conditions, under which
GrOVe presents extraordinary accuracy:

Condition A: the data samples used by Accuser to extract

the shadow surrogate models F ∗
s are also used by the

attacker to extract the real surrogate model Fs.

Condition B: the number of hidden layers in F ∗
s is the

same as the number of hidden layers in Fs.

Condition C: the architectures used by one or more models

in F ∗
s cover the architecture adopted by Fs.

Accordingly, we first study the performance BGrOVe given
the three conditions. To further understand BGrOVe in more
practical settings, we remove the conditions one by one and
re-perform the study.

Experimental Setup: Our study follows the setup of [49].
We focus on node classification and the inductive training
paradigm, using all the five datasets summarized in Table 2

TABLE 4. EVALUATION RESULTS OF FINGERPRINTING-BASED OWNERSHIP VERIFICATION (BGROVE) WITH AND WITHOUT CONDITION A.
SETTINGS I, II, III, AND IV ARE EXPLAINED IN §4.2. THE TABLE SHOWS 3 METRICS OF OWNERSHIP VERIFICATION: FPR (FALSE POSITIVE RATE),

FNR (FALSE NEGATIVE RATE), AND ACC (ACCURACY). FPR AND FNR ABOVE 10% ARE MARKED AS RED. THE NUMBERS FOLLOW THE FORMAT OF

Avestd WHERE Ave MEANS AVERAGED VALUE AND std MEANS STANDARD DEVIATION ACROSS ALL CONFIGURATIONS AND REPEATED TESTS.

.

With Condition A Satisfied (both Fs and F∗
s are extracted with Dsurr)

Dataset
Setting I (%) Setting II (%) Setting III (%) Setting IV (%)

FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC

Cora 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 33.33±57.7 83.33±28.9 0.00±0.0 16.67±28.9 91.67±14.4

CiteSeer 0.00±0.0 77.78±38.5 61.11±19.2 0.00±0.0 88.89±19.2 55.56±9.6 0.00±0.0 66.67±57.7 66.67±28.9 0.00±0.0 100.00±0.0 50.00±0.0

Amazon 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 20.00±0.0 83.33±28.9 48.33±14.4

DBLP 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0

PubMed 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0

With Condition A Not Satisfied (Fs are extracted with Dsurr and F∗
s are extracted with Dshadow surr)

Dataset
Setting I (%) Setting II (%) Setting III (%) Setting IV (%)

FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC

Cora 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 16.67±28.9 91.67±14.4 0.00±0.0 16.67±28.9 91.67±14.4

CiteSeer 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0

Amazon 0.00±0.0 77.78±38.5 61.11±19.2 0.00±0.0 88.89±19.2 55.56±9.6 3.33±2.9 83.33±28.9 56.67±13.8 40.00±13.2 33.33±57.7 63.33±22.4

DBLP 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0

PubMed 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 0.00±0.0 100.00±0.0 50.00±0.0 1.67±2.9 100.00±0.0 49.17±1.4

and including all five architectures explained in §2.1. We
split each dataset into four subsets by selecting the same
ratio of random nodes for each subset: Dtrain (30%) for
training the target model F and the independent models
Find, Dshadow surr (30%) for extracting the shadow surro-
gate models F ∗

s , Dsurr (30%) for extracting the real surro-
gate model Fs, and Dtest (10%) for testing all models. We
also disconnect edges among the four subsets to form four
graphs for accommodating the inductive setting, reusing the
strategy adopted by [49]. Two groups of Find are needed to
train and test the ownership classifier, which we respectively
refer to as F train

ind and F test
ind . Further, we follow the same

process in §4.1 to extract F ∗
s and Fs.

To train the ownership classifier Cown, we rely on
Dtrain. For each data point dp in Dtrain, we turn it into
a series of training samples. ❶ We calculate the distance
between F and each model in F train

ind on their predicted
posterior probability for dp, deriving a set of negative sam-

ples with the distance as the feature. ❷ Similarly, we get a
set of positive samples by calculating the distance between
F and each model in F ∗

s on dp. Negative and positive
samples obtained from the entire Dtrain are then used to
train Cown. Following [49], Cown is configured as a two-
layer MLP whose best hyperparameters are obtained using a
grid search. The hidden layer dimensions considered in the
search are 64 or 128, and the activation function is Tanh
or ReLU. Given F? for testing, we get the aforementioned
distance between F? and F for each sample in Dtrain and
run Cown to determine whether the sample is negative or
positive. If over half of the samples in Dtrain are reported
as positive by Cown, F? is considered extracted.

We perform the experiment twice, respectively with
Condition A (i.e., F ∗

s are extracted with Dsurr) and without
Condition A (i.e., F ∗

s are extracted with Dshadow surr). To
train Cown, we configure F , F train

ind , and F ∗
s to choose from

GCN, GAT, and GraphSAGE, all with 2 hidden layers and
256 dimensions in each layer. To test Cown, we diversify
F test
ind and Fs to create four settings, depending on whether

Condition B and Condition C are held:

▶Setting I (Condition B ✓; Condition C ✓): This setting
replicates [49]. In each test, we fix the target model F
to use one architecture, GCN or GAT or GraphSAGE.
We configure the shadow surrogate model F ∗

s and training
independent models F train

ind to enumerate GCN, GAT, and
GraphSAGE, all with 2 hidden layers and 256 dimensions
for each layer. For each combination of architecture and
hidden layer number, we train two different F ∗

s and two
different F train

ind by randomizing their initial parameters3.
In total, 6 F ∗

s and 6 F train
ind are used for training Cown.

We also set up the real surrogate model Fs and the testing
independent models F test

ind to enumerate GCN, GAT, and
GraphSAGE, all with 2 hidden layers and 256 dimensions
for each layer. 6 Fs and 6 F test

ind are used for testing Cown.

▶Setting II (Condition B ✗; Condition C ✓): This setting
inherits the first setting except that we change the number
of hidden layers in Fs and F test

ind to 3.

▶Setting III (Condition B ✓; Condition C ✗): In this
setting, we configure Fs and F test

ind to use GIN or SGC.
These two architectures are less used, which can better
represent more challenging attack scenarios. The number
of hidden layers in all models is kept at 2.

▶Setting IV (Condition B ✗; Condition C ✗): It combines
the hidden layer configuration of Setting II and the archi-
tecture configuration of Setting III for Fs and F test

ind .

Evaluation Results: We repeat each experiment five times
and measure the verification accuracy of BGrOVe with three
metrics: false positive rate (FPR, namely the portion of
independent models wrong detected as surrogate models),
false negative rate (FNR, namely the portion of surrogate
models wrong detected as independent models), and accu-
racy (TP+TN

TN+FP+TP+FN
). The results averaged over all config-

3. The evaluation in [49] only trains one shadow surrogate model for
each combination. The reason for using a small number of models is the
ownership verification classifier takes data samples as input. Thus, even a
single model, when applied to Dtrain, produces sufficient training data.

𝐷

𝐷

Target

Model

mask

train

train

extract

Ind. Model a

Ind. Model b

Ind. Model …

Shd. Surr. Model a

Shd. Surr. Model b

Shd. Surr. Model …

Post. Prob. 1, 2, …

Post. Prob. 1, 2, …

Post. Prob. 1, 2, …

Ownership

Classifier
Suspect

Model

Post. Prob. 1, 2, …

Post. Prob. 1, 2, …

Post. Prob. 1, 2, …

Label:

{Independent; Extracted}

𝐷

Post. Prob. 1, 2, …

Post. Prob. 1, 2, …

Post. Prob. 1, 2, …

𝐷

train

test

predict

Training Phase Testing Phase

𝐷

Figure 1. High-level design of our method. ªInd. Modelº, ªShd. Sur. Modelº, and ºPost. Prob.º are short for Independent Model, Shadow Surrogate Model,
and Posterior Probability, respectively.

urations and repeated tests are summarized in Table 44. For
clarity, all the target models present acceptable accuracy as
shown in Table 5.

On all datasets except for Cora and in most settings,
BGrOVe presents an accuracy close to random guess, show-
ing that BGrOVe prevalently fails the ownership verification
task. Zooming into the results in Table 4, the low accuracy is
mainly attributed to the extremely high FNR (100% in many
cases). This indicates that BGrOVe mistakenly considers
surrogate models as independent models, which offers a
key insight to derive our method (see §5.1). To sum up,
BGrOVe is ill-suited for GNN ownership verification in the

black-box setting, even Conditions A, B, and C are all met.

5. Ownership Verification with Holistic, En-

riched Fingerprinting

In this paper, we aim to design new, black-box methods
for GNN ownership verification without additional con-
ditions attached. As unveiled in §4, watermarking-based
methods cannot get rid of Condition 1. This inspires us to
focus on exploring fingerprinting-based methods.

5.1. Key Insights

At the high level, we follow the design of BGrOVe to
create shadow surrogate models and independent models to
train an ownership classifier. To escalate the accuracy, we
exploit two insights.

Insight 1: The classifier used by BGrOVe considers model
output for individual data samples to perform ownership ver-
ification (recall §4.2). This works well in white-box settings
where the model output is the embedding but does not in
black-box settings where the model output is the posterior
probability. Using t-SNE [46], Figure 2-(a) and Figure 2-
(b) visualize the output of an independent model and a
shadow surrogate model for verification on the CiteSeer
dataset under Condition A and Setting I. The embedding
output from the two models is indeed separable (Figure 2-
(a)). However, switching to the posterior probability, the two

4. For comparison, the results of using embedding as the output (i.e.,
the original GrOVe) are presented in Table 12 in Appendix.

80 60 40 20 0 20 40

40

20

0

20

40

60

80
Shadow Surrogate Model
Independent Model

−75 −50 −25 0 25 50 75
−80

−60

−40

−20

0

20

40

60

Shadow Surrogate Model
Independent Model

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

Shadow Surrogate Model
Surrogate Model

(a) Embedding (b) Posterior Probability (c) Posterior Probability

Figure 2. The t-SNE visualization of different output for Dtrain from the
CiteSeer dataset. Part (a) compares an independent model and a shadow
surrogate model on embedding; Part (b) compares an independent model
and a shadow surrogate model on posterior probability; Part (c) compares a
shadow surrogate model and the real surrogate model on posterior probabil-
ity. The circled regions in Parts (b) and (c) are where the shadow surrogate
model and the independent model differ while the shadow surrogate model
and the real surrogate model remain similar.

models are tangled together (Figure 2-(b)). Consequently,
given the posterior probability of a sample, the classifier
Cown faces problems predicting which model generates the
output, falling short of supporting ownership verification.

While the behaviors of independent models and sur-
rogate models on individual data samples are less distin-
guishable under black-box settings, we found that their
overall behaviors still differ. As illustrated in Figure 2-
(b), the shadow surrogate model and the independent model
are dissimilar in both the middle and the marginal areas
(the circled regions). In contrast, as shown in Figure 2-(c),
the shadow surrogate model and the real surrogate model
remain highly similar in those regions. This inspires us
to redesign the ownership verification classifier to consider
holistic model behaviors. At the high level, our classifier
regards each model as a single data sample and takes its
output for an entire dataset (e.g., Dtrain) as features. Given
a test model, the classifier directly reports whether the model
is extracted, without relying on other follow-up steps.

Insight 2: Incorporating holistic fingerprinting of the target
model helps ownership verification but can remain insuf-
ficient in challenging settings where the shadow surrogate
models and the real surrogate model share fewer properties
(e.g., Setting IV). As we will show in §6.3, even using holis-
tic fingerprinting, the accuracy of ownership verification can
still drop below 80% under Setting IV on certain datasets.

TABLE 5. CLASSIFICATION ACCURACY OF DIFFERENT MODELS INVOLVED IN THE EVALUATION. TARGET REFERS TO THE TARGET MODEL (F);
INDEPENDENT REFERS TO THE INDEPENDENT MODELS USED TO TRAIN AND TEST THE OWNERSHIP VERIFICATION CLASSIFIER (F train

ind
AND F test

ind
);

SHADOW SURROGATE REFER TO THE SHADOW SURROGATE MODELS (F ∗

s) FOR TRAINING THE OWNERSHIP VERIFICATION CLASSIFIER. THE

RESULTS OF THE REAL SURROGATE MODEL ARE SIMILAR TO SHADOW SURROGATE MODELS UNDER SETTING I. ALL THE RESULTS ARE AVERAGED

OVER DIFFERENT CONFIGURATIONS AND REPEATED EXPERIMENTS.

Dataset Target (%) Independent (%)

Surrogate Model

Setting I (%) Setting II (%) Setting III (%) Setting IV (%)

Accuracy Accuracy Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity Accuracy Fidelity

In
d

u
ctiv

e

Cora 67.81±1.4 63.28±4.8 63.70±3.4 72.43±2.6 63.91±3.3 72.46±2.5 63.01±5.4 70.45±3.9 62.48±5.7 69.65±4.9

CiteSeer 80.25±0.7 78.12±1.9 79.06±0.9 87.51±1.2 79.17±0.9 87.40±1.1 78.06±1.1 86.40±1.4 77.95±1.2 86.20±1.4

Amazon 89.18±2.6 84.03±9.0 87.65±3.0 90.01±3.4 87.86±3.0 90.15±3.4 84.93±3.2 87.54±3.7 83.31±4.9 85.59±5.2

DBLP 72.69±1.8 69.79±2.5 72.08±1.7 83.59±2.6 72.53±1.8 83.97±2.6 70.56±2.4 81.18±2.8 70.40±2.5 80.37±3.3

PubMed 83.61±1.2 82.35±1.9 82.86±1.6 90.91±1.9 83.10±1.5 91.04±1.9 82.43±2.3 90.23±2.4 82.50±2.2 90.19±2.4

T
ra

n
sd

u
ctiv

e

Cora 83.99±2.0 78.66±4.7 83.22±1.9 90.48±3.0 82.89±2.2 90.10±3.1 81.09±2.6 88.05±3.9 80.86±2.6 87.64±3.8

CiteSeer 93.43±0.4 92.37±1.7 92.98±0.7 97.24±1.0 92.83±0.9 97.04±1.1 92.30±1.3 96.67±1.4 92.13±1.2 96.40±1.3

Amazon 93.49±2.4 91.55±3.8 92.70±3.4 93.74±4.3 93.14±3.3 94.15±4.1 88.84±5.3 89.72±5.8 89.11±5.5 90.10±6.0

DBLP 82.05±1.1 80.79±1.6 80.84±1.4 86.54±3.2 81.02±1.4 86.74±3.0 79.90±1.0 85.14±2.4 80.02±0.9 85.16±2.4

PubMed 85.35±1.6 84.73±1.6 84.18±1.8 88.31±3.4 84.50±1.7 88.48±3.4 84.04±0.9 87.08±2.1 83.80±1.1 86.97±2.4

Fundamentally, the behaviors inherited by the shadow sur-
rogate models and the real surrogate models start differing
under those settings, sparking insufficient similarities to dis-
tinguish from the independent model. A visualized example
demonstrating this can be found in Figure 4.

To additionally boost ownership verification accuracy,
further exploring the intrinsic fingerprinting of the target
model may not work. This inspires us to enrich the fin-
gerprinting of the target model. Our idea is to ªmaskº
the training data of the target model for injecting extra
fingerprinting. Such fingerprinting is transparent to inde-
pendent models but will propagate to the surrogate models,
essentially facilitating ownership verification.

5.2. Method Design

Our method follows the design presented in Figure 1. It
trains a binary classifier Cown that takes an entire model as
input and predicts whether the model is extracted from the
target model. The training of Cown has three major steps.

Enriching Model Fingerprinting: Before building the tar-
get model F , we mask its training dataset Dtrain by flipping
a fixed subset of features of every node to derive Dmask

train .
We then use Dmask

train to train F and release F for public
service. To avoid confusion, we use Fmask to represent F
trained with masked data. The goal of data masking is to
enrich the fingerprinting of F . Precisely, we maneuver the
influence of the features we pick on the posterior probability
output of F , consequently injecting extra fingerprinting.
Our masking is principally different from backdoor-based
watermarking. First, we mask the same subset of features
for all nodes, thus tuning the overall behaviors of the target
model instead of its local behaviors on several nodes. Sec-
ond, we do not manipulate the label of training data, better
preserving the intrinsic behaviors of the target model on all
data points.

A key question is what features to consider. We find that
it is perfectly fine to randomly pick a subset of features to
mask. What matters is how many features we should pick.

As we will show in §6.3, masking more features will lead
to a higher ownership verification accuracy but inevitably
downgrade the target model performance. Fortunately, in
the context of GNNs, the graph structures (e.g., connect-
edness) are more important than node features to model
decisions. Thus, even masking a higher ratio of features
can still maintain the model performance. We observe that
ownership verification can become highly accurate before
the masking hurts the model performance too much. For
better verification accuracy, we suggest the users mask more
features until the target model accuracy drops by a certain
threshold (5% is sufficient based on our evaluations).

Building Local Models: To train the ownership verification
classifier Cown, we need to train a set of local independent
models and extract a set of shadow surrogate models. By
intuition, the quality of the two sets of models affects
the capacity and generality of Cown. However, we cannot
make unrealistic requirements like enumerating all possible
architectures and parameters that wild models or attackers
may adopt. To this end, we focus on building local models
that better represent challenging situations to train Cown.
First, we extract the shadow surrogate models using sam-
ples different from the training data of the target model
Fmask. Doing so helps Cown learn about surrogate models
further away from Fmask. Second, we configure the local
independent models to reuse the training settings of Fmask

(including the number of hidden layers, the dimensions
of each layer, the training method, and the training data).
This creates independent models closer to Fmask, aiding
Cown to identify benign models less distinguishable from
Fmask. Finally, we diversify the two sets of models to cover
popular GNN architectures (e.g., GCN, GAT, GraghSAG,
etc.), improving the generality of Cown.

Training Verification Classifier: We run each independent
model to output the posterior probability for every data
sample in Dtrain (i.e., the training data of the target model).
Concatenating the posterior probability together, we derive
a single vector to work as the features of the independent
model. The goal of merging the posterior probability is to

656667
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05

656667
Model Acc. (Set. II)

96

98

100
0.0

0.05

656667
Model Acc. (Set. III)

96

98

100
0.0

0.05

656667
Model Acc. (Set. IV)

96

98

100
0.0

0.05

Inductive

80.082.5
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

0.2
0.4

80.082.5
Model Acc. (Set. II)

96

98

100
0.0

0.05
0.1

0.2
0.4

80.082.5
Model Acc. (Set. III)

96

98

100
0.0

0.05
0.1

0.2
0.4

80.082.5
Model Acc. (Set. IV)

95

100
0.0 0.05

0.1
0.2

0.4

Transductive
(a) Cora

77.580.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05

77.580.0
Model Acc. (Set. II)

96

98

100
0.0

0.05

77.580.0
Model Acc. (Set. III)

96

98

100
0.0

0.05

77.580.0
Model Acc. (Set. IV)

96

98

100
0.0

0.05

Inductive

919293
Model Acc. (Set. I)

94

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

919293
Model Acc. (Set. II)

94

96

98

100 0.0 0.05
0.1

919293
Model Acc. (Set. III)

94

96

98

100 0.0
0.05

0.1

919293
Model Acc. (Set. IV)

94

96

98

100 0.0
0.05

0.1

Transductive
(b) CiteSeer

878889
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

878889
Model Acc. (Set. II)

94

96

98

100
0.0

0.05
0.1

878889
Model Acc. (Set. III)

92

95

97

100

0.0 0.05

0.1

878889
Model Acc. (Set. IV)

90

95

100

0.0 0.05

0.1

Inductive

9294
Model Acc. (Set. I)

94

96

98

100

Ve
ri

fic
at

io
n

Ac
c.

0.0
0.05

0.1

0.2
0.4

9294
Model Acc. (Set. II)

92

95

97

100

0.0

0.05
0.1

0.2

0.4

9294
Model Acc. (Set. III)

90

95

100

0.0

0.05
0.1

0.2

0.4

9294
Model Acc. (Set. IV)

85

90

95

100

0.0

0.05
0.1

0.2
0.4

Transductive
(c) Amazon

7072
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.2

0.05

0.1

7072
Model Acc. (Set. II)

96

98

100
0.0

0.2

0.05

0.1

7072
Model Acc. (Set. III)

96

98

100
0.0

0.2

0.05

0.1

7072
Model Acc. (Set. IV)

96

98

100
0.0

0.2

0.05

0.1

Inductive

8082
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

8082
Model Acc. (Set. II)

96

98

100
0.0

0.05
0.1

8082
Model Acc. (Set. III)

94

96

98

100 0.0 0.05
0.1

8082
Model Acc. (Set. IV)

80

90

100

0.0
0.05

0.1

Transductive
(d) DBLP

8283
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05

8283
Model Acc. (Set. II)

96

98

100
0.0

0.05

8283
Model Acc. (Set. III)

96

98

100
0.0

0.05

8283
Model Acc. (Set. IV)

94

96

98

100
0.0

0.05

Inductive

82.585.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

82.585.0
Model Acc. (Set. II)

94

96

98

100
0.0

0.05
0.1

82.585.0
Model Acc. (Set. III)

70

80

90

100

0.0

0.05

0.1

82.585.0
Model Acc. (Set. IV)

80

90

100

0.0
0.05

0.1

Transductive
(e) PubMed

Figure 3. Change of target model accuracy and ownership verification accuracy with the increase of masking level. The value above/below each point
represents the ratio of features getting masked (e.g., 0.05 indicates 5% of all features are masked). The point with ª0.0º indicates no masking is
applied. All the results are obtained without Condition A, namely the shadow surrogate models and the real surrogate models are extracted using different
data samples. ªModel Acc.º refers to target model accuracy and ªSet.º is short for Setting.

consider the model behaviors as a whole, thus leveraging
holistic fingerprinting. Similarly, we can produce the fea-
tures for every shadow surrogate model. Using the two sets
of models, we train Cown via mini-batch training with 10
samples in each batch. The resulting Cown is a two-layer
MLP classifier with dimensions of [128, 64] and ReLU as
the activation function.

6. Evaluation

6.1. Experimental Setup

To understand the performance of our method, we per-
form a series of evaluations following the settings described
in §4.2. We similarly repeat the evaluations under Settings
I-IV with and without Condition A (recall §4.2). As our
ownership verification classifier (Cown) takes models as
data points, we increase the number of independent models
(F train

ind) and the number of shadow surrogate models (F ∗
s)

for training Cown. Specifically, we build 20 F train
ind and 20

F ∗
s for each combination of architecture and number of

hidden layers. In total, we use 60 F train
ind and 60 F ∗

s to train
Cown. We follow a similar protocol to increase the number
of models to test Cown. In Settings I and Settings II, we
use 60 F test

ind and 60 F ∗
s for testing, and in Settings III and

Settings IV, we use 40 F test
ind and 40 F ∗

s for testing.
Different from §4.2, we consider both the inductive

paradigm and the transductive paradigm. Further, our
method requires masking some features of the training data
of the target model. In our evaluation, we repeat the exper-
iments by gradually increasing the ratio of random features
to mask (0%, 5%, 10%, 20%, 40%, and 60%) until the target
model accuracy drops by 5%.

6.2. Model Accuracy

The first evaluation question we aim to understand is
whether the GNN models involved in our evaluation present

satisfactory performance because otherwise, the verification
becomes meaningless. Accordingly, we measure the accu-
racy (TP+TN

TN+FP+TP+FN
) of different models and summarize the

results in Table 5.

The target model presents expected accuracy in all cases.
The results are similar to what is reported in related re-
search [49], [57] when considering overlapped datasets and
settings. The independent models for training and testing
COwn both share similar accuracy with the target model.
The accuracy difference is mostly ±2%. Our feature mask-
ing can indeed hurt the accuracy of the target model. In
general, the accuracy drops more when more features are
masked (see Figure 3 and Figure 6). However, we must
highlight that our method works very well when mandating
the model accuracy drop to not exceed 5%.

The results in Table 5 are averaged across Settings I-IV.
In Settings III and IV, the architectures of target models
(GCN, GAT and GraphSAGE) and independent models
(GIN and SGC) are different. GCN, GAT and GraphSAGE
have higher accuracy than GIN and SGC (see Table 11 in
Appendix), making target models appear more accurate.

The surrogate models approximate the performance of
the target model with a slightly reduced accuracy, which
aligns with the expectations. In Setting I where the surrogate
models share more properties with the target model, the
accuracy decrease is very minor (less than 2% in most
cases). In other settings where the properties of the model
groups further diverge, the accuracy drops a bit more but
still less than 5% in all cases. Further, the surrogate models
present high fidelityÐmeasured by the ratio of testing sam-
ples where the surrogate models predicted the same label as
the target model. In most cases, the fidelity is over 85%.

To sum up, our target models and independent models
offer satisfactory accuracy. Our surrogate models present
successful attacks. These provide the foundations for mean-
ingful evaluations of ownership verification.

6.3. Ownership Verification Accuracy

The second questionÐalso the key questionÐof our
evaluation is to understand the accuracy and the cost of
our ownership verification method. To this end, we mea-
sure the accuracy (TP+TN

TN+FP+TP+FN
) of our method under

different masking levels and different settings (inductive
and transductive; with and without Condition A; Settings
I-IV). In Figure 3 and Figure 6, we show the trade-off be-
tween target model accuracy and our ownership verification
accuracy without and with Condition A respectively. FPR
and FNR corresponding to the points in the two figures are
summarized in Table 13.

❶ Without any masking, our method already presents ex-
tremely high accuracy in many cases. In all settings under
the inductive training paradigm, our method achieves 100%
accuracy on Cora, CiteSeer, DBLP, and PubMed. Under the
transductive training paradigm, our method produces similar
accuracy given less challenging settings (Setting I and Set-
ting II). These results demonstrate the effectiveness of using
holistic fingerprinting for GNN ownership verification.

❷ Given the transductive training paradigm and the more
challenging settings (Setting III and Setting IV), our method
without masking no longer provides perfect accuracy. On

−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

Independent Model
Shadow Surrogate Model
Surrogate Model

−80 −60 −40 −20 0 20 40 60

−80

−60

−40

−20

0

20

40

60

80

Independent Model
Shadow Surrogate Model
Surrogate Model

(a) No Mask (b) 20% Mask

Figure 4. The t-SNE visualization of posterior probability for Dtrain from
the CiteSeer dataset in Setting IV. Part (a) compares the target model, a
shadow surrogate model, and the real surrogate model without masking;
Part (b) shows a similar comparison when masking 20% features. The
circled regions in Part (b) highlight where the target model differs from
the other two models.

datasets like PubMed, our verification accuracy can drop to
75%. This is understandable because in those settings (i)
the independent models use the same graph as the target
model for training, leading to higher similarity between
them, and (ii) the shadow surrogate models and the real
surrogate models share fewer properties and are less close.

Nevertheless, Our feature masking greatly helps those
cases. On Cora, CiteSeer, and DBLP, masking 10-20% of
the features can escalate our verification accuracy to 100%.
On Amazon and PubMed, feature masking does not lead to
perfect accuracy but still significantly increases the verifica-
tion accuracy (up to 98% and 92%). The results showcase
the success and the necessity of our feature masking in
challenging scenarios. To better illustrate how feature mask-
ing helps, we visualize the posterior probability output of
an independent model, a shadow surrogate model, and the
real surrogate model on the CiteSeer dataset under Setting
IV without Condition A, respectively without feature mask-
ing and with 20% feature masking. Evidently, our feature
masking enables the shadow surrogate model and the real
surrogate model to distinguish from the independent model,
justifying why feature masking helps.

❸ As shown in Figure 3 and Figure 6, our feature masking
is a trade-off between model accuracy and verification accu-
racy. Performing heavier masking leads to better verification
accuracy but reduces the model accuracy. However, as we
clarified in §5.2, node features play a less important role in
GNN decisions and thus, masking features imposes a lower
impact on model accuracy. Most critically, by only enforcing
masking with limited impact on model accuracy (a < 5%
drop), we can achieve perfect accuracy in nearly all cases.

A noticeable exception occurs on the PubMed dataset
under the transductive training paradigm and Settings III, IV.
Masking 10% of the features, we reduce the model accuracy
to about 5% but only increase the verification accuracy
to 92%. We need to mask around 40% of the features to
reach perfect verification accuracy, incurring a 10% model
accuracy decrease. Zooming into the results, we find that
the verification accuracy is mainly affected by cases where

TABLE 6. ADVERSARIAL ROBUSTNESS RESULTS: IMPACT OF FINE-TUNING ON THE ACCURACY OF OUR OWNERSHIP VERIFICATION METHOD. ORI.
ACC INDICATES THE VERIFICATION ACCURACY BEFORE FINE-TUNING IS PERFORMED.

Dataset

Setting I Setting II Setting III Setting IV

Ori. ACC (%)
Fine-Tuning (%)

Ori. ACC (%)
Fine-Tuning (%)

Ori. ACC (%)
Fine-Tuning (%)

Ori. ACC (%)
Fine-Tuning (%)

FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC

In
d

u
ctiv

e

Cora 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

CiteSeer 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

Amazon 100.00 0.00 0.00 100.00 98.40 3.66 0.00 98.17 99.81 0.25 0.00 99.88 97.53 5.29 0.00 97.36

DBLP 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

PubMed 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.22 0.00 99.89

T
ra

n
sd

u
ctiv

e

Cora 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

CiteSeer 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

Amazon 100.00 0.00 0.00 100.00 99.63 0.82 0.00 99.59 98.15 3.51 2.03 97.73 98.21 0.87 4.12 97.51

DBLP 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 98.33 1.46 0.00 99.27

PubMed 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 92.04 16.38 0.00 91.81 91.67 16.76 0.00 91.62

TABLE 7. FALSE POSITIVE RATES OF OUR METHOD ON INDEPENDENT

MODELS INTRODUCED IN OUR EXTENDED STUDY. ªINDUC.º AND

ªTRANS.º ARE SHORT FOR INDUCTIVE AND TRANSDUCTIVE.

Dataset Training Setting I (%) Setting II (%) Setting III (%) Setting IV (%)

Cora
Induc. 0.00±0.0 0.00±0.0 0.00±0.0 0.0±0.0

Trans. 0.00±0.0 0.00±0.0 0.00±0.0 0.0±0.0

CiteSeer
Induc. 0.00±0.0 0.00±0.0 0.00±0.0 0.0±0.0

Trans. 0.00±0.0 0.00±0.0 0.00±0.0 0.0±0.0

Amazon
Induc. 0.00±0.0 2.27±0.8 0.18±0.6 3.87±1.9

Trans. 0.00±0.0 0.15±0.9 1.88±2.4 0.26±0.7

DBLP
Induc. 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0

Trans. 0.00±0.0 0.00±0.0 0.00±0.0 2.06±4.5

PubMed
Induc. 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0

Trans. 0.00±0.0 0.00±0.0 12.59±18.4 15.68±15.6

the target model uses GraphSage while the independent
models and the surrogate models use other architectures.
Presumably, this is because PubMed has fewer features (only
500). To reach a sufficient number of features to influence
the model behaviors, a higher ratio is needed.

Extended Studies I: In the evaluations above, we only
considered independent models trained using the same train-
ing dataset as the target model. While this represents a
more challenging scenario where the independent models
and the target model are closer, it falls short of proving
our generality regarding training data. To this end, we
extend the evaluations to include more independent models
trained on varying data. Specifically, for each combination
of architecture and hidden layer number, we further train
20 independent models with 30% of nodes randomly picked
from the entire graph (the node picking is re-done for each
model). In total, we create 60 extra independent models
under Setting I and Setting II and 40 under Setting III and
Setting IV. We also picked the masking ratio to drop the
target model accuracy by about (but not over) 5%.

Table 7 shows the results of the extended study. Our
method maintains its performance on those models. The
false positive rate is zero in nearly all cases, showing no
difference from the previous evaluations. Only in the case
of PubMed under Setting III and Setting IV, our method
presents a 10%+ false positive. This is also caused by
the cases where the target model uses GraghSAGE. If we
increase the masking to drop the target model accuracy by

about 10%, all false positives disappear.

Extended Studies II: Further, the evaluation above only
considered a fixed number of local models to train the
ownership verification classifier. We extend it to vary the
number of local models from 120 to 30, 60, 90, 120, and
150 under all different settings.

Table 14 summarizes the results of our extended study.
The number of local models indeed has an impact on owner-
ship verification: more local models increase the verification
accuracy to a small extent. When we increase the local
model number from 30 to 150, the increase of accuracy
stays below 1% in most cases.

6.4. Adversarial Robustness

In practice, adversaries may attempt to evade the detec-
tion of our ownership verification method. To this end, the
third question we aim to answer is the robustness of our
method against adversarial evasions. Previous research [49]
introduced four model-retraining techniques to evade own-
ership verification. One technique, named distribution-shift,
ªcould not successfully modifyº the extracted model, which
we skip accordingly. In this evaluation, we measure the
robustness of our method against the other three evasion
techniques: fine-tuning, double extraction, and pruning.

Given an evasion technique, we apply it to the surrogate
model to derive a new model and re-evaluate the accuracy
of our ownership verification classifier on the new model.
One factor affecting our verification method is the ratio
of features we mask. As a validating evaluation, we focus
on the masking ratio contributing to optimal verification
accuracy. Specifically, we pick a masking ratio to drop the
target model accuracy by about but not exceeding 5% (i.e.,
the point on the far right in Figure 3). Further, we focus on
the most challenging case: Setting IV without Condition A.

❶ Fine-tuning [5], [17], [52], in the context of machine
learning, refers to adjusting a pre-trained model on another
dataset to improve its performance. Following [49], we per-
form end-to-end fine-tuning to Fs by retraining it on Dtest

(the dataset for testing the target model). The fine-tuning
updates both the intermediate output (e.g., embedding) and
the final output (e.g., posterior probability) of Fs.

TABLE 8. ADVERSARIAL ROBUSTNESS RESULTS: IMPACT OF DOUBLE EXTRACTION ON THE ACCURACY OF OUR VERIFICATION METHOD.

Dataset

Setting I Setting II Setting III Setting IV

Ori. ACC (%)
Double Extraction (%)

Ori. ACC (%)
Double Extraction (%)

Ori. ACC (%)
Double Extraction (%)

Ori. ACC (%)
Double Extraction (%)

FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC

In
d

u
ctiv

e

Cora 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

CiteSeer 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

Amazon 100.00 0.00 0.00 100.00 98.40 2.12 0.00 98.94 99.81 0.21 0.00 99.90 97.53 3.12 0.00 98.14

DBLP 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

PubMed 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.12 0.00 99.94

T
ra

n
sd

u
ctiv

e

Cora 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

CiteSeer 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00

Amazon 100.00 0.00 0.00 100.00 99.63 0.23 0.00 99.89 98.15 1.64 1.17 98.60 98.21 0.26 2.99 98.38

DBLP 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 98.33 1.23 0.00 99.38

PubMed 100.00 0.00 0.00 100.00 100.00 0.00 0.00 100.00 92.04 14.81 0.00 92.59 91.67 14.81 0.00 92.59

In Table 6, we present the evaluation results. In all
settings and on all datasets, the accuracy of our ownership
verification method is barely affected, indicating the robust-
ness of our method against fine-tuning. This is not surpris-
ing. In principle, fine-tuning amends rather than eliminating
the existing behaviors of Fs. Thus, the behaviors Fs inherits
from the target model, including those introduced by feature
masking, remain and still enable ownership verification.
To effectively evade ownership verification, the fine-tuning
must be intensive enough to significantly erase the inherited
behaviors, which, however, would offset the value of model
extraction and make the attack meaningless.

❷ Double extraction means the adversaries perform two
rounds of model extraction attacks, with the first round
against the target model to derive an intermediate model
Ft and the second round against the intermediate model
to produce the surrogate model Fs. The intention is to
make Fs further distinct from the target model. In this
evaluation, we experiment with double extraction by running
the model extraction attack presented in §4.2 twice. The first
attack follows §4.2 exactly to produce Ft. The second attack
launches extraction against Ft using the same query dataset.
It further configures Fs to use the same architecture as Ft

to reduce the impact on model accuracy.
We present the evaluation results in Table 8. Similar

to fine-tuning, double extraction has a marginal impact on
the accuracy of our verification method. Fundamentally, for
double or further duplicated extractions to preserve usable
model accuracy, they must remain approximating or inher-
iting the behaviors of the target model, which inevitably
leaves over fingerprinting for ownership verification.

❸ Pruning [28], [40], [67] removes certain weights from
the extracted model. The intended goal of pruning is to
decrease the computational complexity. However, since it
alters model behaviors and output, previous research [49]
considers it beneficial for evading ownership verification.
Following [49], we randomly prune a certain ratio of weights
from the extracted model Fs and rerun ownership verifica-
tion. Specifically, we enumerate the pruning ratio from 0.1
to 0.5 until Fs accuracy drops by 10%.

The evaluation results are presented in Figure 5. In
all cases except for Amazon, pruning presents negligible
impacts on our verification accuracy even though it already

reduces the model accuracy. This demonstrates the robust-
ness of our method against pruning. Given Amazon, pruning
20% of the weights starts visibly decreasing the accuracy of
our verification method (by about 5%) under the transductive
paradigm. However, it concurrently decreases the model
accuracy by 10%. This shows that to evade our ownership
verification, heavy pruning must be performed, which in turn
will hurt the model accuracy significantly and diminish the
benefits of model extractions.

❹ Adaptive attacks [59] assume powerful adversaries who
have the full knowledge of the verification system, in-
cluding the verification classifier and the verification data.
Accordingly, the adversaries optimize the surrogate mod-
els to produce outputs confusing the verification classifier
when given the same verification data. We believe such
adversaries can be less realistic under our threat model.
First, the V erifier, a trusted agent, has no incentive to
release the verification classifier since doing so has no extra
benefits yet compromises the intellectual property of the
classifier itself. Second, releasing the verification data also
has no necessity in our verification scheme while offering
the adversaries a universal way to bypass the verification:
by sending arbitrary responses to the verification data, the
adversaries will certainly interrupt any verification classifier.
Nevertheless, we extend two studies as follows.

(1) We assume the adversaries have the verification
classifier but not the verification data and follow the methods
presented in [59] to optimize the surrogate model. Following
our previous experimental setup (see §6.1), we show the
false negative rates of our verification under Setting I-IV
and transductive learning in Table 10. Our method is robust
in this scenario.

(2) We assume the adversaries have both the verification
classifier and the verification data. We repeat the study
and show the results in Table 10. The attack evades our
verification. This is anticipated as we explained above:
The optimization ºensuresº the surrogate model produces
outputs that confuse the verification classifier. The method
presented in [59] cannot resist the attack, either. Instead, they
switched to a different, less-accurate, randomness-enabled
method as mitigation.

55.060.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1
0.2

0.3
0.4

55.060.0
Model Acc. (Set. II)

96

98

100
0.0

0.1
0.2

0.3
0.4

55.060.0
Model Acc. (Set. III)

96

98

100
0.0

0.1

55.060.0
Model Acc. (Set. IV)

96

98

100
0.0

0.1

Inductive

65.070.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1

0.2

0.3
0.4

0.5

65.070.0
Model Acc. (Set. II)

96

98

100
0.0

0.1

0.2

0.3
0.4

0.5

65.070.0
Model Acc. (Set. III)

96

98

100
0.0

0.1
0.2

65.070.0
Model Acc. (Set. IV)

96

98

100
0.0

0.1
0.2

Transductive
(a) Cora

55.060.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1
0.2

0.3
0.4

55.060.0
Model Acc. (Set. II)

96

98

100
0.0

0.1
0.2

0.3
0.4

55.060.0
Model Acc. (Set. III)

96

98

100
0.0

0.1

55.060.0
Model Acc. (Set. IV)

96

98

100
0.0

0.1

Inductive

82.585.087.5
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1

0.2

0.3
0.4

0.5

84.086.088.0
Model Acc. (Set. II)

96

98

100
0.0

0.1

0.2

0.3
0.4

86.088.0
Model Acc. (Set. III)

96

98

100
0.0

0.1

84.086.088.0
Model Acc. (Set. IV)

96

98

100
0.0

0.1

Transductive
(b) CiteSeer

80.085.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1
0.2

0.3

80.085.0
Model Acc. (Set. II)

94

96

98

100
0.0

0.1

0.2

0.3

75.080.0
Model Acc. (Set. III)

94

96

98

100 0.0

0.1

75.080.0
Model Acc. (Set. IV)

92

95

97

100
0.0

0.1

Inductive

85.087.5
Model Acc. (Set. I)

95

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1 0.2

85.087.5
Model Acc. (Set. II)

95

100 0.0

0.1 0.2

80.085.0
Model Acc. (Set. III)

95

100
0.0

0.1

80.085.0
Model Acc. (Set. IV)

95

100 0.0

0.1

Transductive
(c) Amazon

66.068.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1

0.2

0.3
0.4

0.5

66.068.0
Model Acc. (Set. II)

96

98

100
0.0

0.1

0.2

0.3
0.4

0.5

60.065.0
Model Acc. (Set. III)

96

98

100
0.0

0.1
0.2

0.3

60.065.0
Model Acc. (Set. IV)

96

98

100
0.0

0.1
0.2

0.3

Inductive

65.070.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1

0.2

0.3
0.4

0.5

67.570.072.5
Model Acc. (Set. II)

96

98

100
0.0

0.1

0.2

0.3
0.4

0.5

67.570.072.5
Model Acc. (Set. III)

96

98

100
0.0

0.1
0.2

67.570.072.5
Model Acc. (Set. IV)

95

97

1000.0

0.1
0.2

Transductive
(d) DBLP

80.081.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.1
0.2

0.3

80.081.0
Model Acc. (Set. II)

96

98

100
0.0

0.1
0.2

0.3

77.580.0
Model Acc. (Set. III)

96

98

100
0.0

0.1
0.2

75.080.0
Model Acc. (Set. IV)

96

98

100
0.0

0.1
0.2

Inductive

74.075.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.1

0.0
0.2

0.3

74.075.0
Model Acc. (Set. II)

96

98

100
0.0

0.1
0.2

0.3

70.075.0
Model Acc. (Set. III)

90

95

100

0.0
0.1

0.2

70.075.0
Model Acc. (Set. IV)

85

90

95

100

0.0

0.1
0.2

Transductive
(e) PubMed

Figure 5. Adversarial robustness results: impact of model pruning on the accuracy of our ownership verification method. The value above/below each
point represents the ratio of pruning (e.g., 0.1 indicates 10% of weights are pruned). The point with ª0.0º indicates no pruning is applied.

6.5. Efficiency

We finally assess the efficiency of our method consid-
ering that time cost is important in practice. Our method
involves two phases: an offline phase which trains the own-
ership verification classifier and an online phase which tests
a suspect model. We separately measure the time cost of the
two phases. All our evaluations are performed on machines
with Intel(R) Core(TM) i9-12900K (16 cores), NVIDIA
GeForce RTX 4090 (24GB GPU memory), and 64GB RAM.

Table 9 in Appendix shows our evaluation results. Most
of the time (over 99%) is spent in the offline phase, which
only needs to run once. In the online phase, our method only
requires less than 0.5 seconds to verify a suspect model,
presenting high efficiency for practical deployment.

7. Discussion: Motivation and Generalization

GNNs are gaining high popularity and importance in
various domains (social network analysis [8], [50], recom-
mendation systems [9], [56], cybersecurity [35], [66], etc.).
However, our studies unveil that practical while effective

black-box model ownership verification remains missing for
GNNs, despite the threats posed by model extraction attacks.

Our high-level idea can be applied to other neural
networks, but our method exploits a unique property of
graphs: the node features are less important than the graph
structures for GNN decisions. Thus, we can ªinjectº extra
fingerprinting into the nodes without hurting model accuracy
much (see Section 5.2).

8. Related Work

Model Extraction Attacks. Model extraction has been
extensively explored across various fields. Tramèr et. al. [43]
introduce the initial work on extracting machine learning
models by solely querying APIs. They proposed two at-
tack typesÐequation-solving attacks and path-finding at-
tacksÐto extract logistic regressions and decision trees,
respectively. Subsequent studies expanded these attacks
to more intricate models like Convolutional Neural Net-
works [20], [32]. To reduce the dependency on origi-
nal training data, Papernot et. al. [34] propose Jacobian-
Based Dataset Augmentation (JBDA), which constructs a

synthetic dataset by augmenting a seed dataset iteratively.
Orekondy et. al. [32] further present an attack without
knowledge about training/testing data used by the target
model. Simply speaking, they adopt random images from
a different distribution (or a surrogate dataset) to query the
target model to enable the attack. Several recent works [27],
[38], [44] can even extract models without data. For exam-
ple, Truong et. al. [44] develop a data-free model extraction
that leverages generative adversarial networks to craft query
samples and train the surrogate model to mimic the outputs
of the target model.

Earlier works, as described above, primarily focus on
the image domain. More recent research introduces model
extractions to the context of graphs. DeFazio et. al. [6] pro-
posed the first GNN extraction by iteratively perturbing the
target model’s training graph to derive multiple subgraphs
for querying and extracting the target model. Shen et. al. [41]
proposed the first model stealing attacks against inductive
GNN by querying the target model with a surrogate dataset.
More systematically, Wu et. al. [54] formalize the threat
model of GNN extraction attacks and classify the threats
into seven categories by considering different background
knowledge of the attacker (e.g., attributes and/or neighbor
connections of the nodes known by the attacker).

Model Ownership Verification. To protect the intellectual
property of the model owners, researchers have explored
various approaches for model ownership verification. Adi et.
al. [2] and Zhang et. al. [61] adopt backdoor attacks to
watermark the target model. If a suspect model presents
the backdoors (usually determined by its accuracy on back-
door data), it is considered stolen from the target model.
Uchida et. al. [45] propose a different strategy where they
embed bit messages into the model weights as the wa-
termark. To run ownership verification, they compare the
bit message in a suspect model and the target model. To
apply this method, white-box access to the suspect model
is required. However, follow-up research unveils that these
methods may not work well against models extracted via
API queries. Fundamentally, as claimed by Jia et. al. [18],
the backdoors are not sampled from the task distribution
and thus, can be easily removed during model extraction.
To this end, they introduce entangled watermark embedding
to enable the model to concurrently learn the watermarks
and how to classify samples from the task distribution.

In the context of GNNs, model ownership verification
has also raised early interest. Xu et. al. [57] and Zhao et.
al. [64] insert backdoors as a watermark to enable ownership
verification. In contrast, Waheed et. al. [49] proposes to use
the embedding output of GNN models as the fingerprint to
identify the ownership of a suspect model, which, however,
requires white-box access to the target model. As unveiled
in §4, these methods either mandate unrealistic conditions
or present unsatisfactory accuracy in the black-box setting,
motivating our research presented in this paper.

9. Conclusion

In conclusion, this paper proposed a novel method that
leverages local independent models and shadow surrogate
models for GNN ownership verification. This method in-
corporates two key insights: a consideration of the overall
behaviors of a suspect model for decision-making, and
an enhancement of fingerprinting by masking a subset of
features in the training data. Our evaluations demonstrate the
effectiveness of the proposed method in improving accuracy
under black-box scenarios.

10. Acknowledgment

We thank the anonymous reviewers and shepherd for
their valuable feedback. This work was supported by Na-
tional Science Foundation (NSF) awards CNS-2029038,
CNS-2135988, and OAC-2319880. Any opinions, findings,
and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views
of the US government or NSF.

References

[1] ªGrove: Ownership verification of graph neural networks using em-
beddings.º https://github.com/ssg-research/GrOVe, 2023.

[2] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, ªTurning
your weakness into a strength: Watermarking deep neural networks
by backdooring,º in 27th USENIX Security Symposium (USENIX

Security 18), 2018, pp. 1615±1631.

[3] X. Cao, J. Jia, and N. Z. Gong, ªIpguard: Protecting intellectual
property of deep neural networks via fingerprinting the classification
boundary,º in Proceedings of the 2021 ACM Asia Conference on

Computer and Communications Security, 2021, pp. 14±25.

[4] L. Charette, L. Chu, Y. Chen, J. Pei, L. Wang, and Y. Zhang, ªCosine
model watermarking against ensemble distillation,º in Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 36, no. 9, 2022,
pp. 9512±9520.

[5] K. W. Church, Z. Chen, and Y. Ma, ªEmerging trends: A gentle
introduction to fine-tuning,º Natural Language Engineering, vol. 27,
no. 6, pp. 763±778, 2021.

[6] D. DeFazio and A. Ramesh, ªAdversarial model extraction on graph
neural networks,º arXiv preprint arXiv:1912.07721, 2019.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst, ªConvolutional
neural networks on graphs with fast localized spectral filtering,º
Advances in neural information processing systems, vol. 29, 2016.

[8] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, ªGraph
neural networks for social recommendation,º in The world wide web

conference, 2019, pp. 417±426.

[9] C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang,
D. Jin, X. He et al., ªA survey of graph neural networks for
recommender systems: Challenges, methods, and directions,º ACM

Transactions on Recommender Systems, vol. 1, no. 1, pp. 1±51, 2023.

[10] C. L. Giles, K. D. Bollacker, and S. Lawrence, ªCiteseer: An au-
tomatic citation indexing system,º in Proceedings of the third ACM

conference on Digital libraries, 1998, pp. 89±98.

[11] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
ªNeural message passing for quantum chemistry,º in International

conference on machine learning. PMLR, 2017, pp. 1263±1272.

[12] X. Gong, Y. Chen, W. Yang, G. Mei, and Q. Wang, ªInversenet:
Augmenting model extraction attacks with training data inversion.º
in IJCAI, 2021, pp. 2439±2447.

[13] X. Gong, Q. Wang, Y. Chen, W. Yang, and X. Jiang, ªModel extrac-
tion attacks and defenses on cloud-based machine learning models,º
IEEE Communications Magazine, vol. 58, no. 12, pp. 83±89, 2020.

[14] J. Guan, J. Liang, and R. He, ªAre you stealing my model? sample
correlation for fingerprinting deep neural networks,º Advances in

Neural Information Processing Systems, vol. 35, pp. 36 571±36 584,
2022.

[15] W. Hamilton, Z. Ying, and J. Leskovec, ªInductive representation
learning on large graphs,º Advances in neural information processing

systems, vol. 30, 2017.

[16] S. Hochreiter and J. Schmidhuber, ªLong short-term memory,º Neural

computation, vol. 9, no. 8, pp. 1735±1780, 1997.

[17] J. Howard and S. Ruder, ªUniversal language model fine-tuning for
text classification,º in Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 2018.

[18] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot,
ªEntangled watermarks as a defense against model extraction,º in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
1937±1954.

[19] M. Juuti, S. Szyller, S. Marchal, and N. Asokan, ªPrada: protecting
against dnn model stealing attacks,º in 2019 IEEE European Sympo-

sium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 512±527.

[20] S. Kariyappa, A. Prakash, and M. K. Qureshi, ªMaze: Data-free
model stealing attack using zeroth-order gradient estimation,º in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 13 814±13 823.

[21] M. Kesarwani, B. Mukhoty, V. Arya, and S. Mehta, ªModel extraction
warning in mlaas paradigm,º in Proceedings of the 34th Annual

Computer Security Applications Conference, 2018, pp. 371±380.

[22] T. N. Kipf and M. Welling, ªSemi-supervised classification with graph
convolutional networks,º arXiv preprint arXiv:1609.02907, 2016.

[23] J. Lee, I. Lee, and J. Kang, ªSelf-attention graph pooling,º in Inter-

national conference on machine learning. PMLR, 2019, pp. 3734±
3743.

[24] T. Lee, B. Edwards, I. Molloy, and D. Su, ªDefending against neural
network model stealing attacks using deceptive perturbations,º in
2019 IEEE Security and Privacy Workshops (SPW). IEEE, 2019,
pp. 43±49.

[25] A. Leman and B. Weisfeiler, ªA reduction of a graph to a canon-
ical form and an algebra arising during this reduction,º Nauchno-

Technicheskaya Informatsiya, vol. 2, no. 9, pp. 12±16, 1968.

[26] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, ªGated graph
sequence neural networks,º arXiv preprint arXiv:1511.05493, 2015.

[27] Z. Lin, K. Xu, C. Fang, H. Zheng, A. Ahmed Jaheezuddin, and J. Shi,
ªQuda: Query-limited data-free model extraction,º in Proceedings of

the 2023 ACM Asia Conference on Computer and Communications

Security, 2023, pp. 913±924.

[28] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, ªRethinking the
value of network pruning,º arXiv preprint arXiv:1810.05270, 2018.

[29] N. Lukas, Y. Zhang, and F. Kerschbaum, ªDeep neural network
fingerprinting by conferrable adversarial examples,º arXiv preprint

arXiv:1912.00888, 2019.

[30] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, ªImage-
based recommendations on styles and substitutes,º in Proceedings

of the 38th international ACM SIGIR conference on research and

development in information retrieval, 2015, pp. 43±52.

[31] D. Oliynyk, R. Mayer, and A. Rauber, ªI know what you trained
last summer: A survey on stealing machine learning models and
defences,º ACM Computing Surveys, 2023.

[32] T. Orekondy, B. Schiele, and M. Fritz, ªKnockoff nets: Stealing
functionality of black-box models,º in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 2019, pp.
4954±4963.

[33] S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, ªTri-party deep
network representation,º Network, vol. 11, no. 9, p. 12, 2016.

[34] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, ªPractical black-box attacks against machine learning,º in
Proceedings of the 2017 ACM on Asia conference on computer and

communications security, 2017, pp. 506±519.

[35] X. Pei, L. Yu, and S. Tian, ªAmalnet: A deep learning framework
based on graph convolutional networks for malware detection,º Com-

puters & Security, vol. 93, p. 101792, 2020.

[36] Z. Peng, S. Li, G. Chen, C. Zhang, H. Zhu, and M. Xue, ªFingerprint-
ing deep neural networks globally via universal adversarial perturba-
tions,º in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2022, pp. 13 430±13 439.

[37] B. Perozzi, R. Al-Rfou, and S. Skiena, ªDeepwalk: Online learning
of social representations,º in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining,
2014, pp. 701±710.

[38] S. Sanyal, S. Addepalli, and R. V. Babu, ªTowards data-free model
stealing in a hard label setting,º in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp.
15 284±15 293.

[39] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, ªCollective classification in network data,º AI magazine, vol. 29,
no. 3, pp. 93±93, 2008.

[40] S. Sen, N. Moha, B. Baudry, and J.-M. JÂezÂequel, ªMeta-model
pruning,º in International Conference on Model Driven Engineering

Languages and Systems. Springer, 2009, pp. 32±46.

[41] Y. Shen, X. He, Y. Han, and Y. Zhang, ªModel stealing attacks
against inductive graph neural networks,º in 2022 IEEE Symposium

on Security and Privacy (SP). IEEE, 2022, pp. 1175±1192.

[42] T. Takemura, N. Yanai, and T. Fujiwara, ªModel extraction attacks
on recurrent neural networks,º Journal of Information Processing,
vol. 28, pp. 1010±1024, 2020.

[43] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
ªStealing machine learning models via prediction {APIs},º in 25th

USENIX security symposium (USENIX Security 16), 2016, pp. 601±
618.

[44] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, ªData-free model
extraction,º in Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, 2021, pp. 4771±4780.

[45] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, ªEmbedding water-
marks into deep neural networks,º in Proceedings of the 2017 ACM

on international conference on multimedia retrieval, 2017, pp. 269±
277.

[46] L. van der Maaten and G. Hinton, ªVisualizing data using
t-sne,º Journal of Machine Learning Research, vol. 9, no. 86,
pp. 2579±2605, 2008. [Online]. Available: http://jmlr.org/papers/v9/
vandermaaten08a.html

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, è. Kaiser, and I. Polosukhin, ªAttention is all you need,º
Advances in neural information processing systems, vol. 30, 2017.

[48] P. VeličkoviÂc, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, ªGraph attention networks,º arXiv preprint

arXiv:1710.10903, 2017.

[49] A. Waheed, V. Duddu, and N. Asokan, ªGrove: Ownership verifi-
cation of graph neural networks using embeddings,º in 2024 IEEE

Symposium on Security and Privacy (SP). Los Alamitos, CA, USA:
IEEE Computer Society, may 2024, pp. 50±50.

[50] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, ªAt-
tributed graph clustering: A deep attentional embedding approach,º
in Proceedings of the 28th International Joint Conference on Artificial

Intelligence, ser. IJCAI’19. AAAI Press, 2019, p. 3670±3676.

[51] S. Wang and C.-H. Chang, ªFingerprinting deep neural networks-
a deepfool approach,º in 2021 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE, 2021, pp. 1±5.

[52] Y.-X. Wang, D. Ramanan, and M. Hebert, ªGrowing a brain: Fine-
tuning by increasing model capacity,º in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp.
2471±2480.

[53] B. L. Welch, ªThe generalization of ‘student’s’problem when several
different population varlances are involved,º Biometrika, vol. 34, no.
1-2, pp. 28±35, 1947.

[54] B. Wu, X. Yang, S. Pan, and X. Yuan, ªModel extraction attacks on
graph neural networks: Taxonomy and realisation,º in Proceedings of

the 2022 ACM on Asia Conference on Computer and Communications

Security, 2022, pp. 337±350.

[55] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, ªSim-
plifying graph convolutional networks,º in International conference

on machine learning. PMLR, 2019, pp. 6861±6871.

[56] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, ªGraph neural networks
in recommender systems: a survey,º ACM Computing Surveys, vol. 55,
no. 5, pp. 1±37, 2022.

[57] J. Xu, S. Koffas, O. Ersoy, and S. Picek, ªWatermarking graph neural
networks based on backdoor attacks,º in 2023 IEEE 8th European

Symposium on Security and Privacy (EuroS&P). IEEE, 2023, pp.
1179±1197.

[58] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, ªHow powerful are graph
neural networks?º arXiv preprint arXiv:1810.00826, 2018.

[59] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li,
ªDetecting ai trojans using meta neural analysis,º in 2021 IEEE

Symposium on Security and Privacy (SP). IEEE, 2021, pp. 103±
120.

[60] Z. Yang, W. Cohen, and R. Salakhudinov, ªRevisiting semi-supervised
learning with graph embeddings,º in International conference on

machine learning. PMLR, 2016, pp. 40±48.

[61] J. Zhang, Z. Gu, J. Jang, H. Wu, M. P. Stoecklin, H. Huang, and
I. Molloy, ªProtecting intellectual property of deep neural networks
with watermarking,º in Proceedings of the 2018 on Asia conference

on computer and communications security, 2018, pp. 159±172.

[62] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, ªAn end-to-end deep
learning architecture for graph classification,º in Proceedings of the

AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[63] J. Zhao, Q. Hu, G. Liu, X. Ma, F. Chen, and M. M. Hassan, ªAfa:
Adversarial fingerprinting authentication for deep neural networks,º
Computer Communications, vol. 150, pp. 488±497, 2020.

[64] X. Zhao, H. Wu, and X. Zhang, ªWatermarking graph neural networks
by random graphs,º in 2021 9th International Symposium on Digital

Forensics and Security (ISDFS). IEEE, 2021, pp. 1±6.

[65] Y. Zheng, S. Wang, and C.-H. Chang, ªA dnn fingerprint for non-
repudiable model ownership identification and piracy detection,º
IEEE Transactions on Information Forensics and Security, vol. 17,
pp. 2977±2989, 2022.

[66] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, ªDevign: Effective
vulnerability identification by learning comprehensive program se-
mantics via graph neural networks,º Advances in neural information

processing systems, vol. 32, 2019.

[67] M. Zhu and S. Gupta, ªTo prune, or not to prune: exploring
the efficacy of pruning for model compression,º arXiv preprint

arXiv:1710.01878, 2017.

Appendix A.

Experimental Results

TABLE 9. TIME COST OF OUR OWNERSHIP VERIFICATION METHOD.
OFFLINE INDICATES THE AVERAGE TIME NEEDED TO TRAIN THE

CLASSIFIER, WHICH IS DONE ONCE FOR ALL. ONLINE SHOWS THE

AVERAGE TIME COST OF VERIFYING ONE MODEL.

Dataset Offline Online Online Ratio

Cora 18.13s 0.12s 0.67%

CiteSeer 14.99s 0.13s 0.87%

Amazon 29.44s 0.19s 0.65%

DBLP 52.53s 0.39s 0.74%

PubMed 35.25s 0.28s 0.79%

TABLE 10. FALSE NEGATIVE RATES OF OUR METHODS AGAINST

ADAPTIVE ATTACKS IN TRANSDUCTIVE LEARNING

Attackers only have the verification classifier

Dataset Cora CiteSeer Amazon DBLP PubMed

Setting I (%) 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0 0.00±0.0

Setting II (%) 0.00±0.0 0.00±0.0 1.46±0.2 0.00±0.0 0.00±0.0

Setting III (%) 0.00±0.0 0.00±0.0 2.59±1.2 0.00±0.0 0.00±0.0

Setting IV (%) 0.00±0.0 0.00±0.0 4.20±2.4 0.00±0.0 0.00±0.0

Attackers have the verification classifier and the verification data

Dataset Cora CiteSeer Amazon DBLP PubMed

Setting I (%) 100.00±0.0 100.00±0.0 99.63±1.1 98.64±7.1 99.88±0.6

Setting II (%) 100.00±0.0 100.00±0.0 99.51±2.0 96.54±16.0 99.75±0.9

Setting III (%) 50.00±0.0 50.00±0.0 94.69±14.2 49.51±2.6 80.74±25.4

Setting IV (%) 53.21±6.2 64.69±4.4 99.51±1.2 47.28±10.6 78.02±23.0

TABLE 11. ACCURACIES OF TARGET MODELS AND INDEPENDENT

MODELS IN SETTING III AND IV, T AND I REPRESENT

TRANSDUCTIVE AND INDUCTIVE

Architectures Paradigm Cora CiteSeer Amazon DBLP PubMed

GCN+GAT+SAGE(%)
T 82.17 93.57 93.05 81.71 84.89

I 66.58 79.36 88.08 70.89 82.56

GIN+SGC(%)
T 75.21 91.26 89.66 79.78 83.75

I 59.00 77.41 82.60 68.34 81.47

TABLE 12. EVALUATION RESULTS OF FINGERPRINTING-BASED OWNERSHIP VERIFICATION (GROVE) WITH AND WITHOUT CONDITION A. SETTINGS

I, II, III, AND IV ARE EXPLAINED IN §4.2. THE TABLE SHOWS 3 METRICS OF OWNERSHIP VERIFICATION: FPR (FALSE POSITIVE RATE), FNR (FALSE

NEGATIVE RATE), AND ACC (ACCURACY). FPR AND FNR ABOVE 10% ARE MARKED AS RED. THE NUMBERS FOLLOW THE FORMAT OF Avestd

WHERE Ave MEANS AVERAGED VALUE AND std MEANS STANDARD DEVIATION ACROSS ALL CONFIGURATIONS AND REPEATED TESTS.

.

With Condition A Satisfied (both Fs and F∗
s are extracted with Dsurr)

Dataset
Setting I (%) Setting II (%) Setting III (%) Setting IV (%)

FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC

Cora 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0 1.67±2.9 0.00±0.0 99.17±1.4 0.00±0.0 0.00±0.0 100.00±0.0

CiteSeer 8.89±7.7 0.00±0.0 95.56±3.9 8.89±5.1 22.22±19.2 84.44±9.5 15.00±13.2 0.00±0.0 92.50±6.6 21.67±15.3 33.33±28.9 72.50±21.8

Amazon 0.00±0.0 0.00±0.0 100.00±0.0 1.11±1.9 0.00±0.0 99.44±1.0 1.67±2.9 0.00±0.0 99.17±1.4 31.67±12.6 0.00±0.0 84.17±6.3

DBLP 0.00±0.0 0.00±0.0 100.00±0.0 3.33±5.8 0.00±0.0 98.33±2.9 6.67±11.6 0.00±0.0 96.67±5.8 5.00±8.7 0.00±0.0 97.50±4.3

PubMed 0.00±0.0 0.00±0.0 100.00±0.0 1.11±1.9 0.00±0.0 99.44±1.0 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0

With Condition A Not Satisfied (Fs are extracted with Dsurr and F∗
s are extracted with Dshadow surr)

Dataset
Setting I (%) Setting II (%) Setting III (%) Setting IV (%)

FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC

Cora 8.89±15.4 0.00±0.0 95.56±7.7 14.44±17.1 0.00±0.0 92.78±8.6 15.00±21.8 16.67±28.9 84.17±14.2 18.33±20.2 0.00±0.0 90.83±10.1

CiteSeer 18.89±10.2 0.00±0.0 90.56±5.1 22.22±13.5 22.22±19.2 77.78±8.6 30.00±22.9 0.00±0.0 85.00±11.5 23.33±2.9 16.67±28.9 80.00±13.0

Amazon 0.00±0.0 0.00±0.0 100.00±0.0 3.33±0.0 0.00±0.0 98.33±0.0 20.00±15.0 0.00±0.0 90.00±7.5 38.33±11.6 0.00±0.0 80.83±5.8

DBLP 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0 1.67±2.9 0.00±0.0 99.17±1.4 0.00±0.0 0.00±0.0 100.00±0.0

PubMed 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0 0.00±0.0 0.00±0.0 100.00±0.0 3.33±2.9 0.00±0.0 98.33±1.4

TABLE 13. FPR AND FNR OF OUR METHOD UNDER DIFFERENT MASKING RATIOS WITH/WITHOUT CONDITION A. WE ONLY REPORT THE RESULTS

CORRESPONDING TO THE POINTS IN FIGURE 3 AND FIGURE 6. ALL THE NUMBERS FOLLOW THE FORMAT OF [MASKING RATIO, FPR, FNR].

With Condition A Satisfied (both Fs and F∗
s are extracted with Dsurr)

Dataset Setting Inductive (%) Transductive (%)

Cora

I [0.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

II [0.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

III [0.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

IV [0.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

CiteSeer

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

II [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

III [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

IV [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

Amazon

I [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0] [0.0, 0.86, 0.25], [0.05, 0.74, 0.74], [0.1, 0.0, 0.12], [0.2, 0.74, 0.0]

II [0.0, 8.27, 0.0], [0.05, 2.96, 0.0], [0.1, 3.33, 0.0] [0.0, 0.0, 1.48], [0.05, 0.49, 0.62], [0.1, 0.0, 0.37], [0.2, 0.74, 0.0]

III [0.0, 8.27, 0.0], [0.05, 2.96, 0.0], [0.1, 3.33, 0.0] [0.0, 7.16, 2.22], [0.05, 6.67, 1.6], [0.1, 6.67, 0.86], [0.2, 6.53, 0.0]

IV [0.0, 7.53, 0.0], [0.05, 5.19, 0.0], [0.1, 4.94, 0.0] [0.0, 15.31, 3.58], [0.05, 10.74, 3.21], [0.1, 7.35, 1.11], [0.2, 6.53, 0.0]

DBLP

I [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0] [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0], [0.2, 0.0, 0.0], [0.4, 0.0, 0.0]

II [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0] [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0], [0.2, 0.0, 0.0], [0.4, 0.0, 0.0]

III [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0] [0.0, 1.6, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0], [0.2, 0.0, 0.0], [0.4, 0.0, 0.0]

IV [0.0, 0.0, 0.0], [0.05, 0.0, 0.0], [0.1, 0.0, 0.0] [0.0, 29.75, 0.0], [0.05, 13.58, 0.0], [0.1, 6.42, 0.0], [0.2, 2.22, 0.0], [0.4, 0.12, 0.0]

PubMed

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

II [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 5.56, 0.0], [5.0, 2.22, 0.0], [10.0, 0.49, 0.0]

III [0.0, 1.6, 0.0], [5.0, 0.62, 0.0] [0.0, 50.0, 0.0], [5.0, 28.52, 0.0], [10.0, 18.02, 0.0]

IV [0.0, 0.12, 0.0], [5.0, 0.0, 0.0] [0.0, 34.94, 0.0], [5.0, 24.69, 0.0], [10.0, 18.77, 0.0]

With Condition A Not Satisfied (Fs are extracted with Dsurr and F∗
s are extracted with Dshadow surr)

Dataset Setting Inductive (%) Transductive (%)

Cora

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

II [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

III [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

IV [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 6.54, 0.0], [5.0, 3.83, 0.0], [10.0, 0.12, 0.0], [20.0, 0.0, 0.0], [40.0, 0.0, 0.0]

CiteSeer

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.49], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

II [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 2.59], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

III [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.86], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

IV [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.86], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

Amazon

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0] [0.0, 0.0, 1.73], [5.0, 0.0, 1.98], [10.0, 0.0, 1.23], [20.0, 0.0, 1.11], [40.0, 0.0, 0.0]

II [0.0, 3.7, 0.0], [5.0, 3.21, 0.0], [10.0, 3.21, 0.0] [0.0, 0.0, 4.2], [5.0, 0.74, 1.85], [10.0, 0.0, 2.22], [20.0, 0.74, 0.0], [40.0, 0.37, 0.37]

III [0.0, 6.54, 0.0], [5.0, 2.47, 0.0], [10.0, 0.37, 0.0] [0.0, 0.37, 14.81], [5.0, 2.35, 3.95], [10.0, 3.21, 1.48], [20.0, 1.98, 0.74], [40.0, 2.22, 1.48]

IV [0.0, 11.6, 0.12], [5.0, 6.3, 0.0], [10.0, 4.94, 0.0] [0.0, 3.7, 18.15], [5.0, 2.35, 7.41], [10.0, 3.7, 5.06], [20.0, 2.59, 3.21], [40.0, 0.37, 3.21]

DBLP

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

II [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

III [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0] [0.0, 2.47, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

IV [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0], [20.0, 0.0, 0.0] [0.0, 29.88, 0.0], [5.0, 14.57, 0.0], [10.0, 3.33, 0.0]

PubMed

I [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.0, 0.0], [10.0, 0.0, 0.0]

II [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 0.0, 0.0], [5.0, 0.12, 0.0], [10.0, 0.0, 0.0]

III [0.0, 0.0, 0.0], [5.0, 0.0, 0.0] [0.0, 48.52, 0.0], [5.0, 18.89, 0.0], [10.0, 15.93, 0.0]

IV [0.0, 0.12, 0.0], [5.0, 0.0, 0.0] [0.0, 33.33, 0.0], [5.0, 18.64, 0.0], [10.0, 16.67, 0.0]

TABLE 14. IMPACT OF THE NUMBER OF LOCAL MODELS ON VERIFICATION ACCURACY

Transductive Inductive

Dataset local model numbers 30 60 90 120 150 30 60 90 120 150

Cora

Setting I (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting II (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting III (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting IV (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

CiteSeer

Setting I (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting II (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting III (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting IV (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Amazon

Setting I (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting II (%) 99.81 99.87 99.87 99.81 99.81 97.61 97.42 97.42 98.36 98.25

Setting III (%) 96.59 96.76 96.99 97.66 97.76 97.28 97.47 98.28 99.28 99.28

Setting IV (%) 96.00 96.72 97.38 97.65 97.82 96.60 97.06 97.14 98.09 98.30

DBLP

Setting I (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting II (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting III (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting IV (%) 97.9 97.84 98.21 98.33 98.77 100.00 100.00 100.00 100.00 100.00

PubMed

Setting I (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting II (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Setting III (%) 90.11 90.75 91.84 91.85 91.98 100.00 100.00 100.00 100.00 100.00

Setting IV (%) 90.56 90.77 91.2 91.42 91.25 100.00 100.00 100.00 100.00 100.00

6570
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

6570
Model Acc. (Set. II)

96

98

100
0.0

6570
Model Acc. (Set. III)

96

98

100
0.0

6570
Model Acc. (Set. IV)

96

98

100
0.0

Inductive

80.082.5
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

0.2
0.4

80.082.5
Model Acc. (Set. II)

96

98

100
0.0

0.05
0.1

0.2
0.4

80.082.5
Model Acc. (Set. III)

96

98

100
0.0

0.05
0.1

0.2
0.4

80.082.5
Model Acc. (Set. IV)

96

98

100
0.0

0.05
0.1

0.2
0.4

Transductive
(a) Cora

75.077.5
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05

75.077.5
Model Acc. (Set. II)

96

98

100
0.0

0.05

75.077.5
Model Acc. (Set. III)

96

98

100
0.0

0.05

75.077.5
Model Acc. (Set. IV)

96

98

100
0.0

0.05

Inductive

90.092.5
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

0.2
0.4

90.092.5
Model Acc. (Set. II)

96

98

100
0.0

0.05
0.1

0.2
0.4

90.092.5
Model Acc. (Set. III)

96

98

100
0.0

0.05
0.1

0.2
0.4

90.092.5
Model Acc. (Set. IV)

96

98

100
0.0

0.05
0.1

0.2
0.4

Transductive
(b) CiteSeer

8688
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c.

0.0

0.05

0.1

8688
Model Acc. (Set. II)

94

96

98

100

0.0
0.05

0.1

8688
Model Acc. (Set. III)

90

95

100

0.0

0.05

0.1

8688
Model Acc. (Set. IV)

92

95

97

100

0.0

0.05
0.1

Inductive

93.093.5
Model Acc. (Set. I)

94

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05

0.1

0.2

93.093.5
Model Acc. (Set. II)

94

96

98

100 0.0
0.05

0.1

0.2

93.093.5
Model Acc. (Set. III)

90

95

100

0.0
0.05

0.1
0.2

93.093.5
Model Acc. (Set. IV)

85

90

95

100

0.00.05

0.1
0.2

Transductive
(c) Amazon

70.072.5
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

70.072.5
Model Acc. (Set. II)

96

98

100
0.0

0.05
0.1

70.072.5
Model Acc. (Set. III)

96

98

100
0.0

0.05
0.1

70.072.5
Model Acc. (Set. IV)

96

98

100
0.0

0.05
0.1

Inductive

788082
Model Acc. (Set. I)

95

100

Ve
ri

fic
at

io
n

Ac
c.

0.0

0.05

0.1

0.2

0.4

788082
Model Acc. (Set. II)

95

100
0.0

0.05

0.1

0.2

0.4

788082
Model Acc. (Set. III)

95

100 0.0
0.05

0.1

0.2

0.4

788082
Model Acc. (Set. IV)

80

100

0.0 0.05

0.1

0.2

0.4

Transductive
(d) DBLP

8283
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05

8283
Model Acc. (Set. II)

96

98

100
0.0

0.05

8283
Model Acc. (Set. III)

94

96

98

100 0.0
0.05

8283
Model Acc. (Set. IV)

94

96

98

100
0.0

0.05

Inductive

82.585.0
Model Acc. (Set. I)

96

98

100

Ve
ri

fic
at

io
n

Ac
c. 0.0

0.05
0.1

82.585.0
Model Acc. (Set. II)

92

95

97

100
0.0 0.05

0.1

82.585.0
Model Acc. (Set. III)

70

80

90

100

0.0
0.05

0.1

82.585.0
Model Acc. (Set. IV)

80

90

100

0.0 0.05

0.1

Transductive
(e) PubMed

Figure 6. Change of target model accuracy and ownership verification accuracy with the increase of masking level. The value above/below each point
represents the ratio of features getting masked (e.g., 0.05 indicates 5% of all features are masked). The point with ª0.0º indicates no masking is
applied. All the results are obtained with Condition A, namely the shadow surrogate models and the real surrogate models are extracted using different
data samples. ªModel Acc.º refers to target model accuracy and ªSet.º is short for Setting.

Appendix B.

Meta-Review
The following meta-review was prepared by the program

committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper introduces a black-box ownership verification
method for graph neural networks, which draws from white-
box methods by training a verification classifier. Empirical
results demonstrate the effectiveness of the method with
strong performance across variation in models, datasets, and
settings.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

B.3. Reasons for Acceptance

1) The empirical results presented in this paper illustrate
the shortcomings of previous approaches that fail to
meet the needs of realistic scenarios.

2) The proposed approach can reportedly reach nearly
optimal results in black-box ownership verification for
graphical deep networks across a range of architectural,
data, and hyperparameter configurations.

B.4. Noteworthy Concerns

1) For the adaptive attacks you mentioned, It is a note-
worthy point. In addition to the numbers you provided,
please also explain why the setting ºEspecially when
attacker has the meta classifier and verification dataº is
not realistic.

2) Please also add a discussion on the generalization of
the proposed method.

3) More ablation study on the different factors (e.g., num-
ber of local model, model complexity and so on)

4) Improving the motivation of the work.

