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Abstract

Recently, min-max optimization problems have received
increasing attention due to their wide range of applications
in machine learning (ML). However, most existing min-max
solution techniques are either single-machine or distributed
algorithms coordinated by a central server. In this paper,
we focus on the decentralized min-max optimization for
learning with domain constraints, where multiple agents
collectively solve a nonconvex-strongly-concave min-max
saddle point problem without coordination from any server.
Decentralized min-max optimization problems with domain
constraints underpins many important ML applications, in-
cluding multi-agent ML fairness assurance, and policy evalu-
ations in multi-agent reinforcement learning. We propose an
algorithm called PRECISION (proximal gradient-tracking
and stochastic recursive variance reduction) that enjoys a
convergence rate of O(1/T ), where T is the maximum
number of iterations. To further reduce sample complex-
ity, we propose PRECISION+ with an adaptive batch size
technique. We show that the fast O(1/T ) convergence of
PRECISION and PRECISION+ to an ε-stationary point im-
ply O(ε−2) communication complexity and O(m

√
nε−2)

sample complexity, where m is the number of agents and n
is the size of dataset at each agent. To our knowledge, this is
the first work that achieves O(ε−2) in both sample and com-
munication complexities in decentralized min-max learning
with domain constraints. Our experiments also corroborate
the theoretical results.

1 Introduction

In recent years, machine learning (ML) has achieved a
great success in many areas, including roboticsSiau and
Wang [2018], image recognitionÖzyurt [2020], natural lan-
guage processingNozaki and Nakamoto [2018], recom-
mender systemsDeldjoo et al. [2020], to name just a few.

Traditionally, the training of ML models is deployed in high-
performance computer clusters co-located at large-scale data
centers with easy access to big training datasets. However,
with more diverse ML applications emerging, the deploy-
ment of ML has also been migrating to the edge of com-
puting and communication networks due to the following
reasons: First, in many ML applications, data are gener-
ated and collected through diverse data sources that are ge-
ographically disperse (e.g., smart mobile devices, vehicles,
environmental sensors, satellite imagery). Second, because
of the limited communication capabilities of the devices
and data privacy concerns, it is expensive or even infeasi-
ble to send the data collected at the edge networks to the
cloud for centralized processing. These real-world limita-
tions have spawned the rapid development of decentralized
learning over edge networks in recent years, which can lever-
age highly flexible peer-to-peer edge computing networks
with arbitrary topologies Nedic and Ozdaglar [2009], Lian
et al. [2017]. Also, thanks to the resilience to single-point-
of-failure, data privacy, and simple implementations, decen-
tralized learning has attracted growing interest recently, and
has found various science and engineering applications, such
as distributedrobotics control Ren et al. [2007], Zhou and
Roumeliotis [2011] and network resource allocation Jiang
et al. [2018], Rhee et al. [2012], such as dictionary learning
Chen et al. [2014], multi-agent systems Cao et al. [2012],
Zhou and Roumeliotis [2011], multi-task learning Wang et al.
[2018], Zhang et al. [2019], and information retrieval Ali
and Van Stam [2004].

From a mathematical perspective, conducting decentral-
ized learning over a computing network amounts to solving
an optimization problem distributively and collaboratively
by a group of agents in the network. However, among the
existing literature of decentralized learning, most works are
focused on the standard loss minimization formulation, i.e.,
minx∈Rd f(x), where f(·) denotes the loss objective func-
tion of learning and x denotes the global model parameters
to be learned, and d is the model dimension. While this stan-
dard loss minimization formulation is sufficiently general to

ar
X

iv
:2

30
3.

02
53

2v
1 

 [c
s.L

G
]  

5 
M

ar
 2

02
3



cover a wide range of ML applications (e.g., robotic network
Smart and Kaelbling [2002], Kober et al. [2013], Polydoros
and Nalpantidis [2017]), sensor network Cortes et al. [2004],
Ogren et al. [2004], Rabbat and Nowak [2004]), power net-
work Callaway and Hiskens [2010], Dall’Anese et al. [2013],
Ernst et al. [2004], Glavic et al. [2017]), it has become in-
creasingly apparent that its mathematical structure is not
rich enough to capture new requirements of ever-emerging
ML applications. Notably, many sophisticated ML problems
nowadays necessitates the so-called “min-max” optimization
in the form of minx∈X maxy∈Y f(x,y), where x and y are
both parameters to be learned (may have different dimen-
sionality), and X and Y are some conforming real subspaces
for x and y, respectively. Although min-max optimization
also has a long history that dates back to 1945 Wald [1945],
research on decentralized min-max optimization remains in
its infancy so far and results in this area are surprisingly
limited.

In this paper, rather than studying the unstructured general
decentralized min-max problems as in Liu et al. [2019, 2020],
we focus on a subclass of interesting decentralized min-
max optimization, where multiple agents collectively solve
a domain-constrained nonconvex-strongly-concave (NCX-
SCV) min-max problem. The decentralized constrained
NCX-SCV min-max problem is important because it arises
naturally from many recently emerging multi-agent ML ap-
plications, such as multi-agent fairness constraints in adver-
sarial training Xu et al. [2021], policy evaluation in multi-
agent reinforcement learning (MARL) Qiu et al. [2020],
and multi-agent fairness assurance in ML Baharlouei et al.
[2019], Sattigeri et al. [2018] (see Section 2 for more in-
depth discussions).

However, designing effective and efficient algorithms for
solving decentralized constrained NCX-SCV min-max prob-
lems is highly non-trivial due to the following technical chal-
lenges: First, min-max optimization tackles a composition
of an inner maximization problem and an outer minimiza-
tion problem. This tightly coupled inner-outer mathematical
structure, together with the decentralized nature and the non-
convexity of the outer problem, render the design and theoret-
ical analysis of the algorithms rather difficult. Moreover, the
constrained structures in both the inner and outer problems
impose yet another layer of challenges in the algorithmic
design for decentralized constrained NCX-SCV min-max
problems. Second, the decentralization over edge computing
networks faces two fundamentally conflicting performance
metrics. On one hand, due to the high dimensionality of deep
learning models and large datasets, it is infeasible to exploit
information beyond first-order stochastic gradients to deter-
mine search directions in algorithm design. Although the
variance of stochastic gradients can be reduced by increasing
the number of training samples in mini-batches, doing so in-
curs higher computational costs for the stochastic gradients.

On the other hand, if one uses fewer training samples in each
iteration to trade for a lower computational cost, the larger
variance in the stochastic gradients inevitably leads to more
communication rounds to reach a certain training accuracy
(i.e., slower convergence). The high communication com-
plexity is particularly problematic in wireless edge networks,
where communication connections could be low-speed and
highly unreliable. Third, constrained decentralized min-max
optimization presents a significantly greater challenge than
its unconstrained counterpart. This is primarily due to the
non-smooth nature of the domain constraints and the intri-
cate coupling between these constraints and the min-max
problem structure.

The major contribution of this paper is that we propose
a series of new algorithmic techniques to address the chal-
lenges above and achieve low sample and communication
complexities in decentralized constrained NCX-SCV min-
max problems. Our main technical results and their signifi-
cance are summarized as follows:

• We propose a decentralized constrained min-max op-
timization algorithm called PRECISION (proximal
gradient-tracking and stochastic recursive variance
reduction) and show that, to achieve an ε-stationary point,
PRECISION enjoys a convergence rate of O(1/T ) (T is
the maximum number of iterations). This result further im-
plies an [O(m

√
nε−2),O(ε−2)] sample-communication

complexity scalings, where m is the number of agents,
and n is the size of the local dataset at each agent.

• To relax the full gradient evaluation requirement in
PRECISION, we propose an enhanced algorithm called
PRECISION+ , which is based on an adaptive batch
size technique. PRECISION+ further reduces the sam-
ple complexity of PRECISION, while retaining the
same [O(m

√
nε−2), O(ε−2)] sample-communication

complexity scaling laws as those of PRECISION. More-
over, a lower sample complexity can be obtained in
PRECISION+by slightly trading off its communication
complexity (the trade-off is only reflected in the hidden
Big-O constants).

• We note that both PRECISION and PRECISION+ algo-
rithms integrate two proximal operators for both the inner
and outer constraints (on x and y), variance reduction
techniques for both inner and outer updates, and gradient-
tracking-based updates in both inner and outer variables.
In this sense, both PRECISION-based algorithms can be
viewed as a triple hybrid approach, which necessitates
new performance analysis and proof techniques. It is also
worth pointing out that the proposed algorithmic and proof
techniques in PRECISION could be of independent inter-
est in decentralized min-max learning theory in general.

The rest of the paper is organized as follows. In Sec-
tion 2, we first provide the preliminaries of the decentralized
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min-max optimization problems and discuss related works.
In Section 3, we propose two stochastic variance reduced
algorithms, namely PRECISION and PRECISION+. The
convergence rate, communication complexity, and sample
complexity of PRECISION and PRECISION+ are also pro-
vided in Section 3. Section 4 provides numerical results to
verify our theoretical findings, and Section 5 concludes this
paper.

2 Preliminaries and related work

To facilitate subsequent technical discussions, in Sec-
tion 2.1, we first provide the basics of decentralized min-
max optimization and its consensus formulation. Then, we
formally define the notions of sample and communication
complexities of the consensus form of decentralized min-
max optimization problems. Next, in Section 2.2, we pro-
vide an overview of related work of existing optimization
algorithms for solving min-max learning problems and their
performance in terms of their sample and communication
complexities, thus putting our work in comparative perspec-
tives.

2.1 Preliminaries of Decentralized Min-Max Op-
timization

1) Network Consensus Formulation: Consider an undi-
rected connected network G = (N ,L), where N and L
are the sets of nodes (agents) and edges, respectively, with
|N | = m. Each agent has local computation capability and
is able to communicate with the set of its neighboring agents
defined as Ni , {i′ ∈ N , : (i, i′) ∈ L}. For presentation
simplicity, we assume that each agent i has n data samples
and thus there aremn data samples in total1. In decentralized
min-max optimization, the agents in the network distribu-
tively and collaboratively solve the following decentralized
min-max optimization problem:

min
x∈X

max
y∈Y

[ 1

m

m∑
i=1

Fi(x,y) + h(x)
]
, (1)

where x ∈ X and y ∈ Y are parameters to be trained
for the outer-min and inner-max problems, respectively, the
sets X ⊆ Rp1 and Y ⊆ Rp2 are closed and convex sets,
Fi(x,y), 1

n

∑n
j=1 fij(xi,yi|ξij) denotes the local objec-

tive function, and h(xi) is a proper convex function (possibly
non-differentiable) that usually plays the role of regulariza-
tion. Here, Fi(x,y) is only observable to node i and is as-
sumed to be non-convex with respect to x for a fixed y, and
strongly concave with respect to y for a fixed x. To solve

1We note that with more complex notation, all our proofs and results
continue to hold in cases with unequal sized local datasets.

Problem (1) in a decentralized fashion, a common approach
is to rewrite it in the following equivalent form:

min
{xi∈X ,∀i}

max
{yi∈Y,∀i}

 1

mn

m∑
i=1

n∑
j=1

fij(xi,yi|ξij) + h(xi)

 ,
subject to xi = xi′ ,yi = yi′ , ∀(i, i′) ∈ L, (2)

where xi and yi are the local copies of the original parame-
ters x and y at agent i, respectively. The equality constraints
in (2) ensure that the local copies at all agents are equal to
each other, hence the name “consensus form.” Clearly, Prob-
lems (1) and (2) share the same solution. In the rest of this
paper, we will focus on solving Problem (2), which will be
referred to as a decentralized non-convex-strongly-concave
(NCX-SCV) consensus min-max optimization problem. The
goal of decentralized consensus min-max optimization is to
design an algorithm to attain a collective ε-stationary point
{xi,yi, ∀i} that satisfies the following condition:

1

m

m∑
i=1

‖xi − x‖2︸ ︷︷ ︸
Outer consensus

error

+
1

m

m∑
i=1

‖yi − y‖2︸ ︷︷ ︸
Inner consensus

error

+ E‖y∗−ȳ‖2︸ ︷︷ ︸
Saddle point

error

+ ‖ 1

m

m∑
i=1

∇xFi(x,y)‖2︸ ︷︷ ︸
Global gradient magnitude

≤ ε2,

where x̄ , 1
m

∑m
i=1 xi, ȳ , 1

m

∑m
i=1 yi, and y∗ repre-

sents the maximizer point of F over y, where y∗(x̄) ∈
arg maxy∈Y F (x̄,y),

As mentioned in Section 1, two of the most important per-
formance metrics in decentralized optimization are the sam-
ple and communication complexities. In this paper, we adopt
two definitions of sample and communication complexities
that are widely used in the decentralized optimization litera-
ture (e.g., Sun et al. [2020]) to measure the efficiency of our
algorithms:

Definition 1 (Sample Complexity). The sample complexity
is defined as the total number of incremental first-order ora-
cle (IFO) calls required across all nodes until an algorithm
converges to an ε-stationary point, where one IFO call evalu-
ates a pair of gradients (∇xfij(x,y),∇yfij(x,y)) at node
i.

Definition 2 (Communication Complexity). Let a round
of communications be a time window during which each
node sends a vector to its neighboring nodes while receiving
a set of vectors from all its neighboring nodes. Then, the
communication complexity is defined as the total number
of rounds of communications required until an algorithm
converges to an ε-stationary point.
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2) Motivating Application Examples: With the basics
of decentralized constrained NCX-SCV min-max optimiza-
tion, we provide two examples to further motivate its practi-
cal relevance:

• Multi-Agent Fair ML: Consider a machine learning task
with dataset {bij , [ξ̃>ij , ξ∗>ij ]>} over a multi-agent network,
where bij is the observed label of the j-th sample at the
i-th agent, ξ̃ij ∈ Rd1 denotes the corresponding non-
sensitive features and ξij ∈ Rd2 represents the sensi-
tive features. In the problem of Fair ML, fairness is im-
posed by adding a regularization term that penalizes the
statistical correlation between the learning model out-
put b̂ij and the sensitive attributes ξ∗ij . In binary case,
one example is the Renyi correlation Baharlouei et al.
[2019] as a regularization to impose fairness, under which
the multi-agent fair ML problem can be written as a
decentralized NCX-SCV min-max problem Baharlouei
et al. [2019]: minx∈X maxy∈Y Ei

[
L(Fi(x,y|ξi), bi) −

λl
∑c
j=1 y

2
ijfij(xi, ξi) + λl

·
∑c
j=1 yijS̃fij(x, ξi)

]
, where S̃ = 2S − 1, S = {0, 1},

denotes the sensitive attribute, L is the loss function, λl
is a positive scalar balancing fairness and goodness-of-fit,
c is the class label and fij(x, ξi) represents the vector-
valued output of a neural network after soft-max layer.

• Data Poisoning Attack: Consider a decentralized learning
problem with m agents trying to learn a common model.
An adversary has the ability to inject noise into the train-
ing samples of a subset of agents. Let yi denote the model
parameter and let xi denote the injected poisoned data
parameter. In this problem, the adversary tries to maxi-
mize the loss function while the other agents aim at mini-
mizing the loss function. Thus, the data poisoning attack
problem has the following NCX-SCV min-max problem:
maxx∈X miny∈Y

∑m
i=1

1
|ξi|
∑
`∈ξi log

(
1 + exp

((
−

v`y
T
i

(
w` + xi

)))
, where v` ∈ R and w` ∈ Rd denote the

`-th data point’s label and the feature vector, respectively.

2.2 Related Work

1) Centralized NCX-SCV Min-Max Optimization: In
the literature, the state-of-the-art algorithms for solving
NCX-SCV optimization problems in the centralized set-
ting are GDA Lin et al. [2020a], min-max-PPA Lin et al.
[2020b], and SREDA Luo et al. [2020]. Specifically, Lin
et al. [2020a] proposed a gradient-based GDA method to
find a first-order Nash equilibrium point. In each iteration,
GDA performs gradient descent over the x-variable and
gradient ascent over the y-variable. GDA has an O(1/T )
convergence rate for NCX-SCV min-max optimization prob-
lems, where T is the maximum number of iterations. Also,
it requires a full gradient evaluation in each iteration, which

implies an O(nε−2) sample complexity to achieve an ε con-
vergence error. The Minimax-PPA method is proposed in
Lin et al. [2020b] to solve NCX-NCV problem and achieves
an Õ

(
nε−2

)
sample complexity. These methods have a high

sample complexity in the big-data regime with a large n. To
overcome this issue, several variance reduction methods have
also been proposed. For example, in Luo et al. [2020], a vari-
ance reduction algorithm named SREDA is proposed, which
is further enhanced by Xu et al. [2020] to allow a larger
step-size. SREDA achieves an Õ

(
n+
√
nε−2

)
sample com-

plexity for large n, thus having a lower sample complexity
than GDA and minimax-PPA. However, SREDA can only
handle min-max problems with constraints on x but not on
y. We summarize the above comparisons in Table 1. While
the above algorithms achieve varying degrees of success in
solving NCX-SCV min-max problems, they are developed
for the centralized setting, which is fundamentally different
from our work.

2) Decentralized Min-Max Optimization: As men-
tioned in Section 1, existing results on decentralized min-
max optimization are quite limited. The earliest attempt
is the CSPSG method Mateos-Núnez and Cortés [2015],
which considered the most ideal convex-concave (CX-CV)
setting. Due to its simplistic SGD-type updates, CSPSG has
high sample and communication complexities of O(ε−4).
DPOSG Liu et al. [2020] considered unstructured nonconvex-
nonconave (NCX-NCV) unconstrained decentralized min-
max problems in the context of large-scale GANs, and pro-
posed to leverage the classical DSGD Nedic and Ozdaglar
[2009] approach to decentralize the centralized counterpart
algorithm called OGDA Mokhtari et al. [2020]. Due to the
limitations inherent in DSGD, DPOSG suffers from a high
sample complexity ofO(ε−12). In contrast, DPPSP Liu et al.
[2019] also studied unstructured NCX-NCV decentralized
min-max optimization problems with constraints. Due to the
use of basic proximal SGD-type updates, DPPSP also suffers
high sample and communication complexities of O(ε−4).

Compared to the simplistic algorithmic techniques in Liu
et al. [2019, 2020], our PRECISION algorithms is a triple
hybrid algorithm that integrates proximal operators, variance
reductions, and gradient tracking, thus achieving much lower
sample and communication complexities. We note that al-
though our significantly lower sample and communication
complexities are achieved under the more structured NCX-
SCV setting, we believe our techniques can also be applied
to NCX-NCV to improve the sample and communication
complexities of existing works. This will be left in our future
work.

The most related work to ours is GT-GDA Tsaknakis et al.
[2020], which also studied constrained decentralized NCX-
SCV min-max optimization. The key difference between GT-
GDA and our work is that only one constraint set is imposed
on either x or y, but not on both. In contrast, we consider
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Table 1: Comparisons among algorithms for NCX-SCV min-max problems (m is the number of agents, n is the size of dataset
for each agent, and ε is the convergence error. Our proposed algorithms are marked in bold.

Algorithm∗ Proximal Sample Commun. Decen-
Operator Complex. Complex. tralized

GDA Lin et al. [2020a] y Õ
(
nε−2

)
- 7

Minmax-PPA Lin et al. [2020b] x and y Õ
(
nε−2

)
- 7

SREDA Luo et al. [2020] x Õ
(
n+

√
nε−2

)
- 7

PRECISION
x and y O(m

√
nε−2) O(ε−2) 3

PRECISION+

Table 2: Comparisons among algorithms for decentralized min-max problems.

Algorithm∗ Proximal Sample Commun.
Problem

Operator Complex. Complex.

DPOSG Liu et al. [2020] - O(ε−12) O(log(1/ε)) NCX-NCV

CSPSG Mateos-Núnez and Cortés [2015] x and y O(ε−4) O(ε−4) CX-CV

DPPSP Liu et al. [2019] x and y O(ε−4) O(ε−4) NCX-NCV

GT-GDA Tsaknakis et al. [2020] x or y O(mnε−2) O(ε−2) NCX-SCV

PRECISION
x and y O(m

√
nε−2) O(ε−2) NCX-SCV

PRECISION+

the more complex case where both x and y are constrained.
GT-GDA also requires several inner updates for y and then
performs one update for x, which is similar to alternating
direction method of multipliers Boyd et al. [2011] (ADMM)
update scheme. Also, our algorithms achieve a lower sam-
ple complexity O(m

√
nε−2) than that of O(mnε−2) in GT-

GDA. To conclude this section, we summarize the above
comparisons in Table 2. Another closely related work can be
found in Zhang et al. [2021], where the authors developed
a decentralized optimization method for a multi-agent rein-
forcement learning policy evaluation problem based on the
mean squared projected Bellman error (MSPBE), which can
be formulated as a finite-sum minimax problem. However,
our work differs from Zhang et al. [2021] in the following as-
pects: (i) Unlike Zhang et al. [2021], our method can handle
non-smooth objectives. However, the direct proximal exten-
sion of the algorithm in Zhang et al. [2021] may diverge in
solving the decentralized problem Hong et al. [2022]. To this
end, we propose a specialized proximal operator x̃i (xi,t) to
address this challenge, see detailed discussions in our Re-
mark 1; (ii) Our approach addresses general decentralized
min-max optimization problems, while Zhang et al. [2021]
is limited to RL policy evaluation.

3 Solution Approach

In this section, we first present our PRECISION and
PRECISION+ algorithms in Sections 3.1 and 3.2, respec-
tively. Then, we provide the main theoretical results and
the key insights of the PRECISION and PRECISION+ algo-
rithms in Section 3.3. Due to space limitation and for better
readability, we relegate some proof details of the theoretical
results to our Appendix.

3.1 The PRECISION Algorithm

To solve the consensus form of decentralized min-max
problem in Problem (2), we adopt the network consensus
mixing approach in the literature Nedic and Ozdaglar [2009].
Toward this end, we let M ∈ Rm×m denote the consensus
weight matrix and let [M]ii′ denote the element in the i-th
row and the i′-th column in M. M satisfies the following
properties Nedic and Ozdaglar [2009], Wai et al. [2018]:
(a) Doubly stochastic:

∑m
i=1[M]ii′ =

∑m
i′=1[M]ii′ = 1;

(b) Symmetric: [M]ii′ = [M]i′i, ∀i, i′ ∈ N ;

(c) Network-Defined Sparsity: [M]ii′ > 0 if (i, i′) ∈ L;
otherwise [M]ii′ = 0, ∀i, i′ ∈ N .

5



Note that the above properties imply that the eigenvalues
of M are real and can be sorted as −1 < λm(M) ≤ · · · ≤
λ2(M) < λ1(M) = 1. For notational convenience, we
define the second-largest eigenvalue in magnitude of M
as λ , max{|λ2(M)|, .., |λm(M)|}, which will play an
important role in the step-size selection and analysis of the
algorithm’s convergence rate. With the above notation, we
are now in a position to describe our proposed algorithms.

As mentioned in Section 1, our PRECISION algorithm
can be viewed as a triple hybrid of proximal, gradient track-
ing, and variance reduction techniques. Next, we will see that
these techniques can be organized into three key algorithmic
steps:

• Step 1 (Local Proximal Operations): In each iteration t,
each agent i first performs the following proximal oper-
ations to cope with the constraint sets X and Y for the
outer and inner variables, respectively:

x̃i(xi,t) =arg minxi∈X 〈pi,t,xi − xi,t〉

+
τ

2
‖xi − xi,t‖2 + h(xi), (3)

ỹi(yi,t)=arg minyi∈Y
∥∥yi − (yi,t + αdi,t

)∥∥2, (4)

where pi,t and di,t are two auxiliary vectors for gradient
tracking purposes and will be defined shortly, τ > 0 is
a constant proximal control parameter, and α > 0 is a
constant parameter to control the magnitude of the updates
of y.

• Step 2 (Consensus Update): Next, each agent i updates
the outer and inner model parameters xi,yi:

xi,t+1 =
∑
i′∈Ni

[M]ii′xi′,t︸ ︷︷ ︸
(a)

+ ν (x̃i(xi,t)− xi,t)︸ ︷︷ ︸
(b)

, (5)

yi,t+1 =
∑
i′∈Ni

[M]ii′yi′,t︸ ︷︷ ︸
(a)

+ η(ỹi(yi,t)− yi,t)︸ ︷︷ ︸
(b)

, (6)

where ν and η are the step-sizes for updating x- and y-
variables, respectively. Note that in (5) and (6), component
(a) is a local weighted average at agent i, which is also
referred to as “consensus step,” and component (b) per-
forms a local update in the spirit of Frank-Wolfe given the
proximal points x̃ and ỹ, which is different from the con-
ventional decentralized stochastic gradient updates Nedić
et al. [2018].

• Step 3 (Local Gradient Estimate): In the next step, each
agent i estimates its local gradients using the following

gradient estimators:

vi,t =


∇xFi(xi,t,yi,t), if mod(t, q) = 0,

vi,t−1+ 1
|Si,t|

∑
j∈Si,t

(
∇xfij(xi,t,yi,t)

−∇xfij(xi,t−1,yi,t−1)
)
, o.w.

(7a)

ui,t =


∇yFi(xi,t,yi,t), if mod(t, q) = 0,

ui,t−1+ 1
|Si,t|

∑
j∈Si,t

(
∇yfij(xi,t,yi,t)

−∇yfij(xi,t−1,yi,t−1)
)
, o.w.

(7b)

Here, Si,t is the sample mini-batch in the t-th iteration,
and q is a pre-set inner loop iteration number.

• Step 4 (Gradient Tracking): Each agent i updates pi and
di by averaging over its neighboring tracked gradients:{

pi,t=
∑
i′∈Ni [M]ii′pi′,t−1 + vi,t − vi,t−1,

di,t=
∑
i′∈Ni [M]ii′di′,t−1 + ui,t − ui,t−1.

(8)

Our PRECISION algorithm can be intuitively understood
as follows: In PRECISION, each agent conducts both de-
scent and ascent steps, since Problem (2) minimizes over x
and maximizes over y. Note that vi,t and ui,t in (7) only
contain the gradient information of the local objective func-
tion Fi(x,y). Merely updating with directions vi,t and ui,t
cannot guarantee the convergence of the global objective
function F (x,y). Therefore, we introduce two auxiliary
variables pi,t and di,t for global gradient tracking purposes.
As each agent i updates these two variables by performing
the local weighted aggregation shown in (8), pi,t and di,t
track the directions of the global gradients.

It is insightful to compare PRECISION with our most
related work, the GT-GDA method in Tsaknakis et al. [2020].
In GT-GDA, agent i computes the local full gradients in the
t-th iteration as follows:

vi,t = ∇xFi(xi,t,yi,t), ui,t = ∇yFi(xi,t,yi,t). (9)

Different from GT-GDA Tsaknakis et al. [2020],
PRECISION estimates the local gradients in Eq. (7)
at agent i. In Eq. (7), the algorithm evaluates a full
gradient ∇Fi(xi,t,yi,t) only every q steps. For other
iterations with mod(t, q) 6= 0, PRECISION uses lo-
cal stochastic gradients estimated by a mini-batch

1
|Si,t|

∑
j∈Si,t∇yfij(xi,t,yi,t) and a recursive correction

term ui,t−1 − 1
|Si,t|

∑
j∈Si,t∇yfij(xi,t−1,yi,t−1). Thanks

to the periodic full gradients and recursive correction
terms, PRECISION is able to achieve a convergence rate
of O(1/T ). Moreover, due to the stochastic subsampling
of Si,t, PRECISION has a lower sample complexity than
GT-GDA Tsaknakis et al. [2020]. The full description of
PRECISION is shown in Algorithm 1.
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Algorithm 1: PRECISION/PRECISION+ at Agent i.

If PRECISION :|Ri,t|=n;
If PRECISION+ :

|Ri,t| = min{cγσ2 (γt)
−1
, cεσ

2ε−1, n}.

1: Set prime-dual parameter pair (xi,0,yi,0) = (x0,y0).
2: DrawRi,0 samples without replacement and calculate

local stochastic gradient estimators as

pi,0 =vi,0 =
1

|Ri,0|
∑
j∈Ri,0

∇xfij(xi,0,yi,0);

di,0 =ui,0 =
1

|Ri,0|
∑
j∈Ri,0

∇yfij(xi,0,yi,0);

3: for t = 1, · · · , T do
4: Update local parameters (xi,t+1,yi,t+1) as in Eq. (3)-

(6);
5: Compute local estimators (vi,t+1,ui,t+1) as in

Eq. (7);
6: Track global gradients (pi,t+1,di,t+1) as in Eq. (8);
7: end for

3.2 The PRECISION+ Algorithm

Note that in PRECISION, full gradients are required for
every q steps, which may still incur high computational
costs in some situations. Also, in the initialization phase of
PRECISION (before the main loop), agents need to evaluate
full gradients, which could be time-consuming. To address
these challenges, we enhance the PRECISION with an adap-
tive batch size technique, and this enhanced version is called
PRECISION +. Specifically, we modify the gradient estima-
tors in (7a) and (7b) in iteration t with mod(t, q) = 0 as
follows :

vi,t =
1

|Ri,t|
∑
j∈Ri,t

∇xfij(xi,t,yi,t), (10)

ui,t =
1

|Ri,t|
∑
j∈Ri,t

∇yfij(xi,t,yi,t), (11)

where Ri,t is a subsample set (sampling without replace-
ment), whose size is chosen as

|Ri,t| = min{cγσ2 (γt)
−1
, cεσ

2ε−1, n}. (12)

Here, cγ and cε are problem-dependent constants to be
defined later, σ2 is the variance bound of data hetero-
geneity across agents (also defined later), and γt+1 ,
1
q

∑t
i=(nt−1)q ‖x̃t − 1⊗ x̄t‖2, where ⊗ represents the Kro-

necker product operator.

The selection of |Ri,t| is motivated by the fact that the
periodic full gradient evaluation only plays an important role
in the later stage of the convergence process: in the later
stage of the convergence process, we need more accurate
update direction. Later, we will see that under some mild
assumptions and parameter settings, PRECISION+ has the
same convergence rate as that of PRECISION. The full de-
scription of the PRECISION+ algorithm is also illustrated
in Algorithm 1.

3.3 Theoretical Results of the PRECISION and
PRECISION+ Algorithms

Before presenting the theoretical results of our algorithms,
we first state the following assumptions:

Assumption 1 (Global Objective). The functions F (x,y) =
1
m

∑m
i=1[Fi(xi,yi)] and J(x) = maxy∈Y F (x,y) satisfy:

(a) (Boundness from Below): There exists a finite lower
bound Q∗ = Q(x∗) = infx(J(x) + h(x)) > −∞;

(b) (Strong Concavity in y): Local objective function
Fi(x, ·) is µ-strongly concave for fixed x ∈ Rp1 ,
i.e., there exists a positive constant µ such that
‖∇yFi(x,y)−∇yFi(x,y

′)‖≥µ‖y−y′‖, ∀ x,y,y′∈
Rp2 , i∈ [m].

(c) (Bounded Gradient at Maximum): The partial gradi-
ent at every (x,∇xF (x,y∗(x))) pair is bounded, i.e.,
‖∇xF (x,y∗(x))‖ <∞, ∀ x ∈ Rp1 .

Assumptions 1(a) and 1(b) are standard in the literature.
Assumption 1(c) guarantees that∇J(x) = ∇xF (x,y∗(x)).

Assumption 2 (Lipschitz Smoothness of Local Objec-
tives). The function fij(x, ·) is Lf -Lipschitz smooth, i.e.,
there exists a constant Lf > 0, such that ∇fij(x,y) =
[∇xfij(x,y]>,∇yfij(x,y)>)> satisfies ‖∇fij(x,y) −
∇fij(x′,y′)‖2 ≤ L2

f‖x−x′‖2 +L2
f‖y−y′‖2, ∀ x,x′ ∈

X ,y,y′ ∈ Y, i ∈ [m], j ∈ [n].

Further, we have the following assumption only for the
algorithm PRECISION+:

Assumption 3 (Bounded Variance). There exists a constant
σ2 > 0, such that E‖∇fij(x,y) − ∇Fi(x,y)‖2 ≤ σ2,
∀ x,y,∈ Rp, i ∈ [m], j ∈ [n].

To address the challenges in characterizing the conver-
gence rate for NCX-SCV decentralized constrained min-max
problems, we propose the following new metric, which is
the key to the success of establishing all convergence results
in this paper:

Mt ,E[‖x̃t − 1⊗ x̄t‖2 + ‖xt − 1⊗ x̄t‖2

+ ‖yt − 1⊗ ȳt‖2 + ‖y∗t − ȳt‖2], (13)

7



where y∗t denotes y∗(x̄t) = arg maxy∈Rp F (x̄t,y). The
first two terms in (13) are inspired by the metric in SONATA
Scutari and Sun [2019], which measures the converging
progress of non-convex decentralized minimization problems
(not min-max). The third term in (13) measures the consen-
sus error of local copies on y. The fourth term in (13) quan-
tifies ȳt’s convergence to the point y∗t for F (x̄t, ·). Thus,
as Mt → 0, we have that the algorithm reaches a consen-
sus on a first-order stationary point (FOSP) of the original
decentralized constrained min-max optimization problem.

With the metric in (13), the convergence rates of algo-
rithms PRECISION /PRECISION+ can be characterized as
follows:

Theorem 1 (Convergence of PRECISION). Under As-
sumption 1 (a)-(d) and Assumption 2, suppose that β ≤
min

{
τ
12 ,

1
3

}
,

α ≤ 1
4Lf

, q = |Si,t| = d
√
ne hold and

let c1 = 1−λ2

1+λ2 , if the step-sizes satisfy: η ≤

min
{

1
8 ,

c1mµ
375αL2

f
,

15L2
f

βµα2c1
,

3c21m
10(1+c1)µα

}
, ν ≤ min

{
c1mβ
40L2

f
,

2c1mβ
5τ , 2c1βµ

2m
375L4

f
, 5τ
3mc1

, τ
6m(1+1/c1)

, 3µηατ
17L2

f
, τ
3(Lf+L2

f/µ)

}
,

then the following convergence result for the PRECISION al-
gorithm holds:

1

T

T−1∑
t=0

E[Mt]≤
E[p0 −Q∗]

min{C1, C2, C3, νL2
f/2}(T + 1)

,

where Q∗ = Q(x∗) and pt is a potential function defined
as:

pt , Q(x̄t) +
4νL2

f

βµη2
‖ȳt − y∗t ‖2

+
1

m

m∑
i=1

[‖xi,t − x̄t‖2 + ‖yi,t − ȳt‖2], (14)

and C1, C2, C3 ≥ 0 are constants. Due to space limitation,
detailed definition of these constants are relegated to our
Appendix. Also, in (14), Q(xt) , maxy F (xt,y) + h(xt),
and y∗t = arg maxy F (xt,y).

Theorem 2 (Convergence of PRECISION+). Under As-
sumption 1 (a)-(d), Assumptions 2-3, and the same parame-
ter settings as in Theorem 1, with additional parameters cγ
and cε satisfying the conditions:

cγ ≥ (
75ηα

8µ

1

m
+
ν

β

1

m
)
ντ

12
, cε > 0, (15)

and the potential function as stated in Theorem 1, the follow-
ing convergence result for PRECISION+ holds:

1

T

T−1∑
t=0

E[Mt]≤
E[p0 −Q∗]

(T + 1) min{C1, C ′2, C3, νL2
f/2}

+

(
75ηα

16µ

2

m
+

ν

2β

2

m

)
ε

cε
, (16)

where the constantC ′2 ≥ and the definition ofC ′2 is relegated
to our Appendix.

Remark 1. Compared to existing works on decentralized
min-max optimizationTsaknakis et al. [2020], Zhang et al.
[2021], it is worth noting that the main difficulty in es-
tablishing convergence results in Theorem 1 and Theo-
rem 2 arises from the proximal operator in the outer-level
subproblem. This operator precludes the use of conven-
tional descent lemmas for convergence analysis, as out-
lined in Lemma 3 in the Appendix. Furthermore, unlike
in single-agent constrained bilevel optimization, the direct
proximal extension of the algorithm in Hong et al. [2022]
(x̃i,t = arg minx∈X ‖x− (xi,t − τpi,t)‖2) will diverge for
the decentralized constrained min-max problem in this paper.
To address this challenge, we employ a special proximal
update rule in (3). The proximal operator x̃i,t in (3), consen-
sus updating (5), and the corresponding local update (5) are
the key in addressing the non-smooth objective challenge
encountered in decentralized learning.

Remark 2. In Theorems 1 and 2, the step-sizes and conver-
gence rates depend on the network topology. For a sparse
network, λ is close to (but not exactly) one (recall that
λ = max{|λ2|, |λm|} < 1), the step-size needs to be
smaller as λ gets close to one, which leads to a slower
convergence. Additionally, the convergence performance of
PRECISION+ is affected by constant ( 75ηα

16µ
2
m + ν

2β
2
m ) εcε ,

which depends on the inexact gradient estimation at the t-th
iteration with mod(t, q) = 0. Intuitively, a larger value of cε
allows us to use a larger batch size as shwon in (12), which
in turn leads to faster convergence. Theoretically, we can
observe that a larger value of cε results in a smaller constant
( 75ηα

16µ
2
m + ν

2β
2
m ) εcε in (16), thereby yielding a more accurate

estimation.

Following from Theorems 1 and 2, we immediately have
the sample and communication complexity results for the
PRECISION and PRECISION+ algorithms:

Corollary 3. Under the conditions in Theorems 1 and 2,
and with q =

√
n, to achieve an ε-stationary solution, the

following results for the PRECISION and PRECISION+ al-
gorithms hold:
• Communication Complexity: the numbers of total commu-

nication rounds are upper bounded by O(ε−2)

• Sample Complexity: The total samples evaluated across
the network are upper bounded by O(m

√
nε−2)).

Remark 3. The PRECISION/PRECISION+ algorithms
have the same communication complexity as GT-GDA Tsak-
nakis et al. [2020], but the sample complexity is a

√
n-factor
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Figure 1: Comparisons of algorithms for decentralized NCX-SCV min-max optimization problems.

lower than that of GT-GDA Tsaknakis et al. [2020]. This is
particularly advantageous in “big data” scenarios, where n
is large (i.e., the size of local datasets is large). Although the
theoretical complexity bounds for PRECISION+ is the same
as PRECISION, the fact that PRECISION+ does not need
full gradient evaluations implies that PRECISION+ uses sig-
nificantly fewer samples than PRECISION in practice. Our
numerical results in the next section will also empirically
confirm this.

4 Experimental Results

In this section, we conduct numerical experiments
to demonstrate the performance of our proposed
PRECISION and PRECISION+ algorithms using a
decentralized NCX-SCV regression problem on “a9a"
dataset from LIBSVM repository, which is publicly available
in Chang and Lin [2011]. In the supplementary material, we
also provide additional experiments for environments of
AUC maximization problem on dataset “a9a"Chang and Lin
[2011] and ‘MNIST"LeCun et al. [1998]. Due to the lack
of existing algorithms for decentralized NCX-SCV with
simultaneous outer and inner constraint sets (cf. Section 2.2
for details), we compare our algorithms with two stochastic
algorithms as the baselines in our experiments. These
baselines can be viewed as “stripped-down” versions of
PRECISION /PRECISION+ by removing gradient tracking
or variance reduction techniques. Due to the space limitation,
detailed experimental settings are relegated to our Appendix.

1) Logistic Regression Model and Datasets: We use
the following decentralized NCX-SCV min-max regression
problem with datasets {(aij , bij)}nj=1, where aij ∈ Rd is
the feature of the j-th sample of agent i and bij ∈{1,−1} is
the associated label:

min
xi∈X

max
yi∈Y

1

m

m∑
i=1

Fi(xi,yi), (17)

where Fi(xi,yi) is defined as:

Fi(xi,yi) ,
1

n

n∑
j=1

(yij lij(xi)− V (yi) + g(xi)) . (18)

In (18), the loss function is lij(xi) ,
log
(
1 + exp

(
−bija>ijxi

))
and g(xi) is a non-convex

regularizer defined as: g(xi) , λ2
∑d
k=1

αx2
ik

1+αx2
ik
, where

V (yi) = 1
2λ1‖nyi − 1‖22 and we set the constraints

X = [0, 10]d,Y = [0, 10]n. We choose constants
λ1 = 1/n2, λ2 = 10−3 and α = 10. We test the conver-
gence performance of our algorithms using the “a9a" dataset
from LIBSVM repository, which is publicly available at
Chang and Lin [2011].

2) Algorithms comparision: Due to the very limited re-
sults of decentralized constrained min-max optimization in
the literature, in our experiments, we adopt the following
algorithms as our baselines for performance comparisons:

• Prox-DSGDA (proximal decentralized stochastic
gradient descent ascent): This algorithm is mo-
tivated by DSGD Nedic and Ozdaglar [2009],
Jiang et al. [2017]. Each agent updates its lo-
cal parameters as θi,t+1 =

∑
j∈Ni [M]ijθj,t −

γ 1
|Si,t|

∑
j∈Si,t ∇θfij(θi,t,ωi,t) and ωi,t+1 =∑

j∈Ni [M]ijωj,t − η 1
|Si,t|

∑
j∈Si,t ∇ωfij(θi,t,ωi,t).

• Prox-GT-SGDA (proximal gradient-tracking-based
stochastic gradient descent ascent): This algorithm is
motivated by the GT-SGD algorithm Xin et al. [2020], Lu
et al. [2019]. GT-SGDA has the same structure as that of
GT-GDA, but it updates vi,t and ui,t using stochastic gra-
dients as follows: vi,t = 1

|Si,t|
∑
j∈Si,t ∇θfij(θi,t,ωi,t)

and ui,t = 1
|Si,t|

∑
j∈Si,t ∇ωfij(θi,t,ωi,t).

3) Results: From Fig. 1(a) and 1(b), we can see
that our proposed PRECISION+ algorithm converges
much faster than other algorithms (PRECISION, Prox-
GT-SGDA and Prox-DSGDA) in terms of the total num-
ber of first-order oracle evaluations. We can also ob-
serve that both PRECISION and PRECISION+ have lower
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sample complexities than those of the other two algo-
rithms. As shown in Figs. 1(c) and 1(d), PRECISION and
PRECISION+ have much lower communication costs than
those of Prox-DSGDA and Prox-GT-SGDA. Our exper-
imental results thus verify our theoretical analysis that
PRECISION /PRECISION+ have both low sample and com-
munication complexities in decentralized constrained min-
max optimization problems.

5 Conclusion

In this paper, we studied the decentralized con-
strained non-convex-strongly-concave (NCX-SCV) min-
max optimization and developed two algorithms called
PRECISION and PRECISION+. We showed that, to
achieve an ε-stationary point of a decentralized con-
strained NCX-SCV min-max problem, PRECISION and
PRECISION+ achieve the communication complexity of
O(ε−2) and sample complexity of O(m

√
nε−2), where m

is the number of agents and n is the size of dataset for
each agent. Our numerical studies also verified the theo-
retical performance of our proposed algorithms. We note
that decentralized constrained min-max learning remains an
under-explored area, and our work opens up several interest-
ing directions for future research. For example, the agents
need to send outer and inner model parameter pairs to their
neighbors in our algorithm, both of which could be high
dimensional. In our future work, it would be interesting to
adopt communication-efficient mechanisms (e.g., compres-
sion techniques) to further reduce the communication cost,
especially for large-scale deep learning models.
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A Proof Sketch of Main Results

Due to space limitation, we outline the key steps of the
proofs of Theorems 1 and 2. The complete version of our
proofs is available in our Appendix. Before diving in our
theoretical analysis, we first provide the following notations:

• x̄t = 1
m

∑m
i=1 xi,t and xt = [x>1,t, · · · ,x>m,t]> for any

vector x;

• ∇xFt=[∇xF (x1,t,y1,t)
>, · · · ,∇xF (xm,t,ym,t)

>]>;

• ∇yFt=[∇yF (x1,t,y1,t)
>, · · · ,∇yF (xm,t,ym,t)

>]>;

• E(xt)= 1
m

∑m
i=1 ‖xi,t − x̄t‖2 for any vector x.

Also, the result below is useful for our subsequent analy-
sis.

Lemma 1. Under Assumption 1, the funciton J(x) =
F (x,y∗(x)) w.r.t x is Lipschitz smooth, i.e., there exists
a positive constant LJ , such that

‖∇J(x)−∇J(x′)‖ ≤ LJ‖x− x′‖, ∀x,x′ ∈ Rd, (19)

where the Lipschitz constant is LJ = Lf + L2
f/µ for Algo-

rithm 1. This lemma follows immediately from Lemma 4.3 in
Lin et al. [2020a].

Lemma 2. Under Assumption 1, y∗(x) =
arg maxy F (x,y) is Lipschitz continuous, i.e., there
exists a positive constant Ly , such that

‖y∗(x)− y∗(x′)‖ ≤ Ly‖x− x′‖, ∀x,x′ ∈ Rd, (20)

where the Lipschitz constant is Ly = Lf/µ.

A.1 Important Lemmas for Proving Main Theo-
rems

We first show the following descent property of
PRECISION algorithm on the function Q(·), which is stated
in the following lemma:

Lemma 3 (Descent Inequality on Q(x)). Under Assump-
tion 1, the following descent inequality holds:

Q(x̄t+1)−Q(x̄t) ≤
νL2

F

2β
‖y∗t − ȳt‖2

+
ν

2β
‖∇xF (x̄t, ȳt)− p̄t‖2 +

ντ

2βm
‖xt−1⊗ x̄t‖2

−
(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1⊗ x̄t‖2 . (21)

where Q(xt) = maxy F (xt,y) + h(xt) and y∗t =
arg maxy F (x̄t,y).

Proof Sketch of Lemma 3. Let J(xt) = maxy F (xt,y).
According to the algorithm update, Lipschitz continuous
gradients of J and optimal conditions of h(x), we have:

J(x̄t+1)− J(x̄t)

≤ ν

m

∑
i

〈∇J (x̄t)− pi,t, x̃i,t − x̄t〉

+
ντ

m

∑
i

〈xi,t − x̄t, x̃i,t − x̄t〉+
ν2LJ
2m

‖x̃t − 1⊗ x̄t‖2

− ντ

m
‖x̃t − 1⊗ x̄t‖2 − h (x̄t+1) + h (x̄t) . (22)

From triangle inequality and the definition ofQ(x), we have:
From triangle inequality and the definition of Q(x), we ar-
rive at the result stated in Lemma 3.
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Next, consider the error bound ‖ȳt − y∗t ‖
2 in Lemma 3,

we have the following Lemma:

Lemma 4 (Error Bound on y∗(x)). Under As-
sumption 1, the following inequality holds for
PRECISION/PRECISION+ :∥∥ȳt+1−y∗t+1

∥∥2≤(1−µηα
4

)
‖ȳt − y∗t ‖

2

− 3η

4
‖ỹt − 1⊗ ȳt‖2 +

75ηα

16µ

∥∥d̄t −∇yF (x̄t, ȳt)
∥∥2

+
17L2

yν
2

2µηαm
‖x̃t − 1⊗ x̄t‖2 . (23)

Proof Sketch of Lemma 4. Similar to Qiu et al. [2020],
Lemma B.2, B.3 and due to the optimality condition for
the constrained optimization on y and the µ-strongly con-
cavity, we have

‖ȳt+1 − y∗t ‖
2 ≤ 4η2

µ

∥∥∇yF (x̄t, ȳt)− d̄t
∥∥2

+

(
1− η2µ

2

)
‖ȳt − y∗t ‖

2 − 3η

4
‖ỹt − 1⊗ ȳt‖2 . (24)

Furthermore, we have∥∥ȳt+1 − y∗t+1

∥∥2 ≤ (1 +
µη2

4

)
‖ȳt+1 − y∗t ‖

2

−
(

1 +
4

µη2

)
L2
yν

2

∥∥∥∥∥ 1

m

∑
i

x̃i,t − x̄t

∥∥∥∥∥
2

. (25)

From triangle inequality and the definition of Q(x), we
have:

Q (x̄t+1) ≤ Q (x̄t) +
ν

m

∑
i

1

2β
‖∇J (x̄t)−∇xF (x̄t, ȳt)‖

2

+
ν

m

∑
i

β

2
‖x̃i,t − x̄t‖2 + ν

1

2β
‖∇xF (x̄t, ȳt)− p̄t‖2

+
ν

m

∑
i

β

2
‖x̃i,t − x̄t‖2 +

ντ

m

1

2β

∑
i

‖x̄t − xi,t‖2

+
ντ

m

∑
i

β

2
‖x̃i,t − x̄t‖2 −

(
ντ

m
− ν2LJ

2m

)
‖x̃t − 1⊗ x̄t‖2 .

After some rearrangements of the above inequality, we arrive
at the result stated in Lemma 4.

By telescoping the combined results of previous lemmas
from 0 to T + 1 and after some rearrangements, we arrive at
the following results:

Lemma 5. Under Assumption 1 and condition
η ≤ 1/2Lf , the following inequality holds for
PRECISION/PRECISION+ :

Q(x̄T+1)−Q(x̄0)+
4νL2

F

βµη2
[
‖ȳT+1−y∗T+1‖2−‖y∗0−ȳ0‖2

]

≤4νL2
F

βµηα

{
− 3η

4
‖ỹt − 1⊗ ȳt‖2 +

17L2
yν

2

2µmηα
‖x̃t − 1⊗ x̄t‖2

}
+

75ηα

16µ

2

m
‖∇yF (xt,yt)− d̄t‖2

+
ν

2β

2

m
‖∇xF (xt,yt)− p̄t‖2

+
ντ

2βm
‖xt − 1⊗ x̄t‖2 −

(ντ
m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
· ‖x̃t−1⊗ x̄t‖2+

[ ν
β

L2
F

m
+

4νL2
F

βµηα

75ηα

16µ

2L2
F

m

]
·
m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2]

− νL2
F

2β
‖ȳt − y∗t ‖

2
. (26)

Next, we bound the iterates contraction of ‖xt−1⊗ x̄t‖2
and ‖yt − 1⊗ ȳt‖2 in (26).

Lemma 6 (Iterates Contraction). The following contraction
properties of the iterates hold:

‖xt − 1⊗ x̄t‖2 ≤ (1 + c1)λ2‖xt−1 − 1⊗ x̄t−1‖2

+ (1 +
1

c1
)ν2‖x̃t−1 − xt−1‖2,

‖yt − 1⊗ ȳt‖2 ≤ (1 + c2)λ2‖yt−1 − 1⊗ ȳt−1‖2

+ (1 +
1

c2
)η2‖ỹt−1 − yt−1‖2, (27)

where c1 and c2 are arbitrary positive constants. Addition-
ally, we have

‖xt − xt−1‖2 ≤ 8E(xt−1) + 2ν2‖x̃t−1 − xt−1‖2,
‖yt − yt−1‖2 ≤ 8E(yt−1) + 2η2‖ỹt−1 − yt−1‖2. (28)

Next, we bound the gradient tracking errors
∑T
t=0 ‖d̄t −

∇xFt‖2 and
∑T
t=0 ‖p̄t −∇yFt‖2 in (26).

Lemma 7 (Error of Gradient Estimator). Under Assump-
tion 2, we have the following error bounds for the gradient
trackers:

T∑
t=0

‖d̄t −∇xFt‖2

≤
T∑
t=1

E‖d̄(nt−1)q −∇xF (x(nt−1)q,y(nt−1)q)‖
2

+ L2
f

(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)
, (29)

T∑
t=0

‖p̄t −∇yFt‖2

≤
T∑
t=1

E‖p̄(nt−1)q −∇yF (x(nt−1)q,y(nt−1)q)‖
2
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+ L2
f

(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)
, (30)

where nt is the largest positive integer satisfing (nt − 1)q ≤
t.

Proof Sketch of Lemma 7. Define

Ai,t =d̄i,t−∇xFi,t; Bi,t =
1

|Si,t|
∑
j∈Si,t

∇xfi,t(xi,t,yi,t)

−∇xfi,t(xi,t−1,yi,t−1)+∇xFi,t−1−∇xFi,t. (31)

Note that Et[Bi,t] = 0, where the expectation is taken over
the randomness of data sampling at the t-th iteration. Thus,

Et‖Ai,t‖2 = ‖Ai,t−1‖2 + Et‖Bi,t‖2. (32)

Also, with |Si,t| = q, we have

Et‖Bi,t‖2 ≤
L2
f

q

(
‖xi,t−xi,t−1‖2 + ‖yi,t−yi,t−1‖2

)
.

(33)

Taking full expectation and telescoping (33) over t from
(nt − 1)q + 1 to t, where t ≤ ntq − 1, we have E‖At‖2 ≤
E‖A(nt−1)q‖2+

∑t
r=(nt−1)q+1

L2
f

q E
(
‖xr−xr−1‖2+‖yr−

yr−1‖2
)
. Thus,

∑t
k=0 E‖Ak‖2 ≤

∑t
r=0 ‖A(nr−1)q‖2 +∑t

r=1 L
2
f

(
‖xr−xr−1‖2 +‖yr−yr−1‖2

)
.We have similar

result while Ai,t = p̄i,t−∇yFi,t. This completes the proof
of of Lemma. 7.

A.2 Proof Sketch of Theorem 1

Proof. Following the defined potential function p and the
result of Lemma 3-7, we have

EpT+1−p0≤νLf 22
T∑
t=0

‖ȳt − y∗t ‖
2

− C1

T∑
t=0

m∑
i=1

‖x̄t − xi,t‖2 −C2

T∑
t=0

‖x̃t − 1⊗ x̄t‖2

− C3

T∑
t=0

m∑
i=1

[‖ȳt−yi,t‖2]−C4

T∑
t=0

‖ỹt − 1⊗ ȳt‖2 , (34)

where

C1 =
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm

− (1 + c1)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
,

C2 =
(
− 2ν2L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 +

1

c1
)ν2

−
17L2

yν
2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
,

C3 =
[
1−8L2

f

(75ηα

16µ

2

m
+
ν

2β

2

m

)
−(1+c2)λ2

− ν
β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
,

C4 =
4νL2

f

βµηα

3η

4

− (1 +
1

c2
)η2 − 2ηαL2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
.

Suppose that β ≤ min
{
τ
12 ,

1
3

}
,

α ≤ 1
4Lf

hold and let c1 = 1−λ2

1+λ2 , if step-sizes satisfy
Thm. 1 to ensure C1, C2, C3, C4 ≥ 0. We can conclude that

1

T + 1

T∑
t=0

Mt ≤
E[p0 −Q∗]

min{C1, C2, νL2
f/2}(T + 1)

. (35)

This completes the proof Theorem 1.

A.3 Proof Sketch of Theorem 2

Proof. For PRECISION+ , we have

E‖d̄(nt−1)q −∇xF(nt−1)q‖
2

= E‖p̄(nt−1)q −∇yF(nt−1)q‖
2 =

I(Ns<M)

Ns
σ2. (36)

Recall that Ns = min{cγσ2(γ(k))−1, cεσ
2ε−1,M}, we

have

I(Ns<M)

Ns
≤ max{ γ

(k)

cγσ2
,
ε

cεσ2
} ≤ γ(k)

cγσ2
+

ε

cεσ2
. (37)

Since γt+1 = 1
q

∑t
i=(nt−1)q ‖x̃t − 1⊗ x̄t‖2. Plugging (37)

to Lemma 5, we have the following result, with additional
parameter setting

cγ ≥ (
75ηα

8µ

1

m
+
ν

β

1

m
)
ντ

12
.

For PRECISION+, following the defined potential function
p and the result of Lemma 3-7, with pT+1 ≥ Q∗, we reach
the conclusion:

1

(T + 1)

T∑
t=0

Mt ≤ (
75ηα

16µ

2

m
+

ν

2β

2

m
)
ε

cε

+
E[p0 − pT+1]

(T + 1) min{C1, C ′2, νL
2
f/2}

, (38)

where C1, C
′
2 ≥ 0. This completes the proof Theorem 2.
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B Further experiments and additional results

In the followings, we provide the detailed settings for our experiments:
1) AUC Maximization Model and Datasets:
We apply the following AUC maximization problem with a given dataset {aij , bij}nj=1 where aij denotes a feature vector

and bij ∈ {−1,+1} indicates the corresponding label. With function hx of a classification model parameterized by xi ∈ X ,
the AUC is defined as

max
xi∈X

1

e+e−

∑
bij=+1,bij=−1

I{hxi
(aij)≥hxi

(ajj)}, (39)

where e+ (e−) indicates the number of positive (negative) samples and I denotes the indicator function. The above optimization
problem has the following equivalent minimax formulation:

min
xi,c1,c2

max
yi

1

m

m∑
i=1

Fi(xi, c1, c2, λ)

:=
1

m

m∑
i=1

{
(1− τ) (hxi (aij)− c1)

2 I{bij=1} − τ(1− τ)y2i + τ (hxi (aij)− c2)
2 I{bij=−1}

+2(1 + yi)τhxi
(aij) I{bij=−1} − 2(1 + yi)(1− τ)hxi (aij) I{bij=1}

}
,

where τ := e+/ (e+ + e−)is the ratio of positive data.
We test the convergence performance of our algorithms using the “a9a" dataset from LIBSVM repository, which is publicly

available at Chang and Lin [2011] and ‘MNIST"LeCun et al. [1998].
2) Decentralizednetworks: We use a five-node multi-agent system, with the communication graph G being generated

by the Erdös-Rènyi graph, where the edge connectivity probability is pc = 0.6. The network consensus matrix is chosen as
W = I− 2

3λmax(L)L, where L is the Laplacian matrix of G, and λmax(L) denotes the largest eigenvalue of L. The generated
topology is shown in Figure 2.

Figure 2: Network topology

B.1 Algorithms comparison

In this subsection, we provide an additional experiment on the algorithms’ comparison. We run all algorithms for solving
optimization problem over AUC maximization problem under a9a dataset and mnist dataset. In this experiment, we initialized
the parameters from the normal distribution for all the algorithms and fixed learning rates as γ = 10−1, η = 10−1. From
Figure 3, we observe our proposed algorithms PRECISION/PRECISION+ enjoy low sample and communication complexities
on solving AUC maximization problem under both “a9a” dataset and “MNIST” dataset.

B.2 Learning rate setting

We use a 5-node multi-agent system with a generated topology as shown in Figure 2. In this experiment, we choose the
datasize n = 2000, mini-batch size q = d

√
ne. Figs. 4 illustrate the convergence metric M performance of PRECISION with
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(a) Algorithms comparison on “a9a” dataset. (b) Algorithms comparison on “MNIST” dataset.

Figure 3: Algorithms Comparision on AUC maximization problem .

different learning rates γ and η. We fix a relatively small learning rate γ = 10−1 while comparing η; and set η = 10−1 while
comparing γ. In this experiment, we observe that methods with a smaller learning rate have a smaller slope in the figure, which
leads to a slower convergence.
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(a) Step-size comparison on Regression.
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(b) Step-size comparison on AUC maximization.

Figure 4: Algorithm(PRECISION ) performance with different step-size.

B.3 Topology setting

(a) Topology sparsity pc = 0.3. (b) Topology sparsity pc = 0.6. (c) Topology sparsity pc = 0.9. (d) Topology sparsity pc = 0.5 with 20 nodes.

Figure 5: Topology.

We use a 5-node multi-agent system and experiment on three different topologies. The generated topology with different
sparsity are shown in Fig. 5. The datasize for each agent is n = 100 and we set the constant learning rate γ = 0.1, η = 0.1
and mini-batch size q = d

√
ne. We observe that the convergence metric M is insensitive to the network topology. The subplot

in Fig. 6(a) and Fig. 6(b) show that M slightly increase as pc decreases.
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B.4 Node setting

We test the following experiments on different multi-agent systems. The generated topology with a 20-node system
are shown in Figs. 5(d). The constant learning rate γ = 0.1, η = 0.1 and mini-batch size q = d

√
ne. We compare our

proposed algorithm PRECISION/PRECISION+ with two baseline algorithms Prox-GT-SGDA and Prox-DSGDA in terms of
the convergence metric in (13). We observe similar results as shown in Section 4. Thus, we can conclude that our proposed
algorithms PRECISION/PRECISION+ enjoy low sample and communication complexities in general.
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Figure 6: Algorithms Comparision.

C Proof of Lemmas

Before diving in our theoretical analysis, we first define the following notations:

• x̄t = 1
m

∑m
i=1 xi,t and xt = [x>1,t, · · · ,x>m,t]> for any vector x;

• ∇xFt = [∇xF (x1,t,y1,t)
>, · · · ,∇xF (xm,t,ym,t)

>]>;

• ∇yFt = [∇yF (x1,t,y1,t)
>, · · · ,∇yF (xm,t,ym,t)

>]>;

• E(xt) = 1
m

∑m
i=1 ‖xi,t − x̄t‖2 for any vector x.

C.1 Proof of Lemma 3:

Our first step is to show the descent property of PRECISION algorithm on the function Q(·) as shown in Lemma 3.

Proof. Let J(xt) = maxy F (xt,y). According to the algorithm update, we have:

J(x̄t+1)− J(x̄t)
(a)

≤ 〈∇J(x̄t), x̄t+1 − x̄t〉+
LJ
2
‖x̄t+1 − x̄t‖2

≤

〈
∇J (x̄t) , ν

(
1

m

∑
i∈M

x̃i,t − x̄t

)〉
+
ν2LJ

2

∥∥∥∥∥ 1

m

∑
i

x̃i,t − x̄t

∥∥∥∥∥
2

≤ ν 1

m

∑
i

〈∇J (x̄t) , x̃i,t − x̄t〉+
ν2LJ

2

1

m
‖x̃t − 1x̄t‖2

≤ ν 1

m

∑
i

〈∇J (x̄t)− pi,t − τ (x̄t − xi,t) , x̃i,t − x̄t〉+
ν2LJ

2

1

m
‖x̃t − 1x̄t‖2

− ντ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t)
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≤ ν

m

∑
i

〈∇J (x̄t)− pi,t, x̃i,t − x̄t〉+
ντ

m

∑
i

〈xi,t − x̄t, x̃i,t − x̄t〉

+
ν2LJ
2m

‖x̃t − 1x̄t‖2 −
ντ

m
‖x̃t − 1x̄t‖2 − h (x̄t+1) + h (x̄t) , (40)

where (a) is because of Lipschitz continuous gradients of J .

Q (x̄t+1) ≤ Q (x̄t) +
ν

m

∑
i

〈∇J (x̄t)− pi,t, x̃i,t − x̄t〉+
ντ

m

∑
i

〈xi,t − x̄t, x̃i,t − x̄t〉

+
ν2LJ
2m

‖x̃t − 1x̄t‖2 −
ντ

m
‖x̃t − 1x̄t‖2

≤ Q (x̄t) +
ν

m

∑
i

〈∇J (x̄t)−∇xF (x̄t, ȳt), x̃i,t − x̄t〉

+
ν

m

∑
i

〈∇xF (x̄t, ȳt)− p̄t, x̃i,t − x̄t〉

+
ντ

m

∑
i

〈xi,t − x̄t, x̃i,t − x̄t〉+
ν2LJ
2m

‖x̃t − 1x̄t‖2 −
ντ

m
‖x̃t − 1x̄t‖2

≤ Q (x̄t) +
ν

m

∑
i

1

2β
‖∇J (x̄t)−∇xF (x̄t, ȳt)‖

2
+
ν

m

∑
i

β

2
‖x̃i,t − x̄t‖2

+ ν
1

2β
‖∇xF (x̄t, ȳt)− p̄t‖2 +

ν

m

∑
i

β

2
‖x̃i,t − x̄t‖2

+
ντ

m

1

2β

∑
i

‖x̄t − xi,t‖2 +
ντ

m

∑
i

β

2
‖x̃i,t − x̄t‖2 −

(
ντ

m
− ν2LJ

2m

)
‖x̃t − 1x̄t‖2

≤ Q (x̄t) +
νL2

F

2βm

∑
i

‖y∗t − ȳt‖2 +
ν

2β
‖∇xF (x̄t, ȳt)− p̄t‖2

+
ντ

2βm
‖xt − 1x̄t‖2 +

(
βν

m
+
ντβ

2m

)
‖x̃t − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m

)
‖x̃t − 1x̄t‖2

≤ Q (x̄t) +
νL2

F

2β
‖y∗t − ȳt‖2 +

ν

2β

∑
i

‖∇xF (x̄t, ȳt)− p̄t‖2

+
ντ

2βm
‖xt − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1x̄t‖2 , (41)

C.2 Proof of Lemma 4

Note that in the RHS of Lemma 3, there is an error term ‖y∗t − ȳt‖2. Here, Lemma 4 states the contraction property of this
error term.

Proof. Recall that y∗t = y∗(x̄t) = arg maxy F (x̄t,y). We have:

‖ȳt+1 − y∗t ‖
2

=

∥∥∥∥∥ȳt + η

(
1

m

∑
i∈M

ỹi − ȳt

)
− y∗t

∥∥∥∥∥
2

= ‖ȳt − y∗t ‖
2

+ 2η

〈
ȳt − y∗t ,

1

m

∑
i∈M

ỹi − ȳt

〉
+ η2

∥∥∥∥∥ 1

m

∑
i∈M

ỹi − ȳt

∥∥∥∥∥
2

≤ ‖ȳt − y∗t ‖
2

+ 2η

〈
ȳt − y∗t ,

1

m

∑
i∈M

ỹi − ȳt

〉
+ η2 ‖ỹt − 1ȳt‖2 . (42)
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From the projection operation, we have

ỹi(yi,t)=argminyi∈Y
∥∥yi − (yi,t + αdi,t

)∥∥2. (43)

Due to the optimality condition for the constrained convex optimization, we have

〈ỹi − (yi,t + αdi,t) ,y − ỹi〉 ≥ 0, ∀y ∈ Y, i ∈M. (44)

Thus, we have

〈−di,t + α−1 (ỹi − yi,t) ,y − ỹi〉 ≥ 0, ∀y ∈ Y, i ∈M. (45)

Moreover, we have

F (x̄t,y)− F (x̄t, ȳt)− 〈∇yF (x̄t, ȳt) ,y − ȳt〉 ≤ −
µ

2
‖y − ȳt‖2 (46)

Rearranging the terms in the above inequality, we have

F (x̄t,y) +
µ

2
‖y − ȳt‖2 ≤F (x̄t, ȳt) + 〈∇yF (x̄t, ȳt) ,y − ȳt〉

≤F (x̄t, ȳt) +
1

α

〈
ỹt − 1ȳt,y −

1

m

∑
i∈M

ỹi

〉
+

〈
∇yF (x̄t, ȳt)− d̄t,y −

1

m

∑
i∈M

ỹi

〉

+ 〈∇yF (x̄t, ȳt) , ỹt − 1ȳt〉 −
1

2α
‖ỹt − 1ȳt‖2 +

1

2α
‖ỹt − 1ȳt‖2 . (47)

Since F (x,y) is gradient Lipschitz and due to the condition in this lemma

α ≤ 1

2LF
≤ 1

LF
,

we have

− 1

2α
‖ỹt − 1ȳt‖2 ≤ −

LF
2
‖ỹt − 1ȳt‖2

≤ F (xt, ỹt)− F (x̄t, ȳt)− 〈∇yF (x̄t, ȳt) , ỹt − 1ȳt〉 . (48)

F (x̄t,y) +
µ

2
‖y − ȳt‖2 ≤F (xt, ỹt) +

1

α
〈ỹt − 1ȳt,y − ỹt〉

+
〈
∇yF (x̄t, ȳt)− d̄t,y − ỹt

〉
+

1

2α
‖ỹt − 1ȳt‖2 . (49)

Note that in the last inequality, we have

1

α
〈ỹt − 1ȳt,y − ỹt〉+

1

2α
‖ỹt − 1ȳt‖2

=
1

α
〈ỹt − 1ȳt, ȳt − ỹt〉+

1

α
〈ỹt − 1ȳt,y − ȳt〉+

1

2α
‖ỹt − 1ȳt‖2

=
1

α
〈ỹt − 1ȳt,y − ȳt〉 −

1

2α
‖ỹt − 1ȳt‖2 , (50)

which thus leads to

F (x̄t,y) +
µ

2
‖y − ȳt‖2 ≤ F (x̄t, ỹt) +

1

α
〈ỹt − 1ȳt,y − ȳt〉

+
〈
∇yF (x̄t, ȳt)− d̄t,y − ỹt

〉
− 1

2α
‖ỹt − 1ȳt‖2 . (51)
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We let y = y∗t and obtain

F (x̄t,y
∗
t ) +

µ

2
‖y∗t − ȳt‖2 ≤F (x̄t, ỹt) +

1

α
〈ỹt − 1ȳt,y

∗
t − ȳt〉

+
〈
∇yF (x̄t, ȳt)− d̄t,y

∗
t − ỹt

〉
− 1

2α
‖ỹt − 1ȳt‖2 , (52)

which further yields

µ

2
‖y∗t − ȳt

∥∥∥∥2 +
1

2α

∥∥∥∥ ỹt − 1ȳt‖2

≤ 1

α
〈ỹt − 1ȳt,y

∗
t − ȳt〉+

〈
∇yF (x̄t, ȳt)− d̄t,y

∗
t − ỹt

〉
. (53)

F (x̄t,y
∗
t ) ≥ F (x̄t, ỹt) is due to strong concavity and y∗t = argmaxy∈Y F (x̄t,y) . In addition, for the last term of the

above inequality, we further bound it as follows〈
∇yF (x̄t, ȳt)− d̄t,y

∗
t − ỹt

〉
≤ 2

µ

∥∥∇yF (x̄t, ȳt)− d̄t
∥∥2 +

µ

4
‖y∗t − ȳt‖2 +

µ

4
‖ỹt − 1ȳt‖2 . (54)

Then, we have

2η 〈ỹt − 1ȳt, ȳt − y∗t 〉

≤ −ηαµ
2
‖ȳt − y∗t ‖

2 − 2α− ηαµ
2

‖ỹt − 1ȳt‖2 +
4ηα

µ

∥∥∇yF (x̄t, ȳt)− d̄t
∥∥2 , (55)

which gives the upper bound of the second term on the right-hand side of 42. Then, we have

‖ȳt+1 − y∗t ‖
2 ≤ 2− ηαµ

2
‖ȳt − y∗t ‖

2 − 2η − ηαµ− 2η2

2
‖ỹt − 1ȳt‖2 +

4ηα

µ

∥∥∇yF (x̄t, ȳt)− d̄t
∥∥2 .. (56)

Thus, according to the condition of this lemma that η ≤ 1/8 and α ≤ (4LF )
−1 ≤ (4µ)−1 by the fact LF ≥ µ > 0, we have

−2η − ηαµ− 2η2

2
≤ −3η

4
, (57)

which eventually leads to

‖ȳt+1 − y∗t ‖
2 ≤

(
1− ηαµ

2

)
‖ȳt − y∗t ‖

2 − 3η

4
‖ỹt − 1ȳt‖2 +

4ηα

µ

∥∥∇yF (x̄t, ȳt)− d̄t
∥∥2 . (58)

Denoting y∗ (xt) and y∗ (xt+1) as y∗t and y∗t+1 for abbreviation, we start the proof by decomposing the term∥∥ȳt+1 − y∗t+1

∥∥2 as follows∥∥ȳt+1 − y∗t+1

∥∥2 =
∥∥ȳt+1 − y∗t + y∗t − y∗t+1

∥∥2
≤
(

1 +
µηα

4

)
‖ȳt+1 − y∗t ‖

2
+

(
1 +

4

µηα

)∥∥y∗t − y∗t+1

∥∥2
≤
(

1 +
µηα

4

)
‖ȳt+1 − y∗t ‖

2
+

(
1 +

4

µηα

)
L2
y ‖x̄t+1 − x̄t‖2 . (59)

Next, plugging the updating rule x̄t+1 = x̄t + ν
(

1
m

∑
i x̃i,t − x̄t

)
into the above inequality, we obtain

∥∥ȳt+1 − y∗t+1

∥∥2 ≤ (1 +
µηα

4

)
‖ȳt+1 − y∗t ‖

2
+

(
1 +

4

µηα

)
L2
yν

2

∥∥∥∥∥ 1

m

∑
i

x̃i,t − x̄t

∥∥∥∥∥
2

. (60)
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Furthermore, we have

‖ȳt+1 − y∗t ‖
2

≤
(

1− ηαµ

2

)
‖ȳt − y∗t ‖

2 − 3η

4
‖ỹt − 1ȳt‖2 +

4ηα

µ

∥∥∇yF (x̄t, ȳt)− d̄t
∥∥2 . (61)

According to the conditions 0 < α ≤ (4LF )
−1
, 0 < η ≤ 1/8 and due to LF ≥ µ > 0, we have

α ≤ 1

4LF
≤ 1

4µ
, and ηα ≤ 1

32µ
, (62)

which yield (
1 +

µηα

4

)(
1− µηα

2

)
= 1− µηα

2
+
µηα

4
− µ2η2α2

4
≤ 1− µηα

4
(63)

−
(

1 +
µηα

4

) 3η

4
≤ −3η

4
,

4ηα

µ

(
1 +

µηα

4

)
=

4ηα

µ
+ η2α2 <

75ηα

16µ
(64)

and
(

1 +
4

µηα

)
L2
yν

2 ≤ 129

32

L2
yν

µηα
<

17L2
yν

2

2µηα
(65)

We eventually obtain

∥∥ȳt+1 − y∗t+1

∥∥2 ≤(1− µηα

4

)
‖ȳt − y∗t ‖

2 − 3η

4
‖ỹt − 1ȳt‖2

+
75ηα

16µ

∥∥d̄t −∇yF (x̄t, ȳt)
∥∥2 +

17L2
yν

2

2µηαm
‖x̃t − 1x̄t‖2 . (66)

which completes the proof.

C.3 Proof of Lemma 5

Next, by combining the results from Lemmas 3-4, we have the descent result shown in Lemma 5.

Proof. From Lemmas 3-4, we have

Q(x̄t+1)−Q(x̄t) +
4νL2

F

βµηα

[
‖ȳt+1 − y∗t+1‖2 − ‖y∗t − ȳt‖2

]
≤4νL2

F

βµηα

[ (
−µηα

4

)
‖ȳt − y∗t ‖

2 − 3η

4
‖ỹt − 1ȳt‖2 +

75ηα

16µ

∥∥d̄t −∇yF (x̄t, ȳt)
∥∥2

+
17L2

yν
2

2µmηα
‖x̃t − 1x̄t‖2

]
+
νL2

F

2β
‖ȳt − y∗t ‖

2
+

ν

2β
‖∇xF (x̄t, ȳt)− p̄t‖2

+
ντ

2βm
‖xt − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1x̄t‖2

=
4νL2

F

βµηα

[
− 3η

4
‖ỹt − 1ȳt‖2 +

75ηα

16µ

∥∥d̄t −∇yF (x̄t, ȳt)
∥∥2

+
17L2

yν
2

2µmηα
‖x̃t − 1x̄t‖2

]
− νL2

F

2β
‖ȳt − y∗t ‖

2
+

ν

2β
‖∇xF (x̄t, ȳt)− p̄t‖2

+
ντ

2βm
‖xt − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1x̄t‖2 . (67)

Note that

‖∇xF (x̄t, ȳt)− p̄t‖2
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=‖∇xF (x̄t, ȳt)−
1

m

m∑
i=1

∇xFi(xi,t,yi,t) +
1

m

m∑
i=1

∇xFi(xi,t,yi,t)− p̄t‖2

≤2‖∇xF (x̄t, ȳt)−
1

m

m∑
i=1

∇xFi(xi,t,yi,t)‖2 + 2‖ 1

m

m∑
i=1

∇xFi(xi,t,yi,t)− p̄t‖2

≤ 2

m

m∑
i=1

‖∇xF (x̄t, ȳt)−∇xFi(xi,t,yi,t)‖2 + 2‖ 1

m

m∑
i=1

∇xFi(xi,t,yi,t)− p̄t‖2

≤2L2
F

m

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2] + 2‖ 1

m

m∑
i=1

∇xFi(xi,t,yi,t)− p̄t‖2. (68)

Similarly, we have:

‖∇yF (x̄t, ȳt)− d̄t‖2 ≤
2L2

F

m

m∑
i=1

[‖x̄t − xi,t‖2+‖ȳt − yi,t‖2]

+ 2‖ 1

m

m∑
i=1

∇yFi(xi,t,yi,t)− d̄t‖2. (69)

Thus, we have

Q(x̄t+1)−Q(x̄t) +
4νL2

F

βµηα

[
‖ȳt+1 − y∗t+1‖2 − ‖y∗t − ȳt‖2

]
≤4νL2

F

βµηα

{
− 3η

4
‖ỹt − 1ȳt‖2 +

75ηα

16µ

[2L2
F

m

m∑
i=1

(‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2) + 2‖ 1

m

m∑
i=1

∇yFi(xi,t,yi,t)− d̄t‖2
]

+
17L2

yν
2

2µmηα
‖x̃t − 1x̄t‖2

}
+

ν

2β

{2L2
F

m

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2] + 2‖ 1

m

m∑
i=1

∇xFi(xi,t,yi,t)− p̄t‖2
}

+
ντ

2βm
‖xt − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1x̄t‖2 −

νL2
F

2β
‖ȳt − y∗t ‖

2

(a)

≤ 4νL2
F

βµηα

{
− 3η

4
‖ỹt − 1ȳt‖2 +

75ηα

16µ

[2L2
F

m

m∑
i=1

(‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2) +
2

m
‖∇yF (xt,yt)− d̄t‖2

]
+

17L2
yν

2

2µmηα
‖x̃t − 1x̄t‖2

}
+

ν

2β

{2L2
F

m

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2] +
2

m
‖∇xF (xt,yt)− p̄t‖2

}
+

ντ

2βm
‖xt − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1x̄t‖2 −

νL2
F

2β
‖ȳt − y∗t ‖

2

=
4νL2

F

βµηα

{
− 3η

4
‖ỹt − 1ȳt‖2 +

75ηα

16µ

2

m
‖∇yF (xt,yt)− d̄t‖2

+
17L2

yν
2

2µmηα
‖x̃t − 1x̄t‖2

}
+

ν

2β

2

m
‖∇xF (xt,yt)− p̄t‖2

+
ντ

2βm
‖xt − 1x̄t‖2 −

(
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
‖x̃t − 1x̄t‖2

+
[ ν
β

L2
F

m
+

4νL2
F

βµηα

75ηα

16µ

2L2
F

m

] m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2]− νL2
F

2β
‖ȳt − y∗t ‖

2
, (70)

where (a) due to ‖ 1
m

∑m
i=1 xi,t − x̄t‖2 ≤ 1

m

∑m
i=1 ‖xi,t − x̄t‖2.

Telescoping the above inequality, we have the stated result.
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C.4 Proof of Lemma 6

Next, we prove the contraction of iterations in the following lemma, which is useful in analyzing the decentralized gradient
tracking algorithms.

Proof. First for the iterates xt, we have the following contraction:

‖M̃xt − 1x̄t‖2 = ‖M̃(xt − 1x̄t)‖2 ≤ λ2‖xt − 1x̄t‖2. (71)

This is because xt − 1xt is orthogonal to 1, which is the eigenvector corresponding to the largest eigenvalue of M̃, and
λ = max{|λ2|, |λm|}. Hence,

‖xt − 1x̄t‖2 = ‖M̃xt−1 + ν(x̃t−1 − xt−1)− 1[x̄t−1 + ν(
1

m

∑
i

x̃i − xt−1)]‖2

≤ (1 + c1)λ2‖xt−1 − 1x̄t−1‖2 + (1 +
1

c1
)ν2‖x̃t−1 − xt−1‖2. (72)

For yt, we have

‖yt − 1ȳt‖2 ≤ (1 + c2)λ2‖yt−1 − 1ȳt−1‖2 + (1 +
1

c2
)η2‖ỹt−1 − ȳt−1‖2. (73)

According to the update, we have

‖xt − xt−1‖2 = ‖M̃xt−1 + ν(x̃t−1 − xt−1)− xt−1‖2

=‖(M̃− I)xt−1 + ν(x̃t−1 − xt−1)‖2 ≤ 2‖(M̃− I)xt−1‖2 + 2ν2‖x̃t−1 − xt−1‖2

=2‖(M̃− I)(xt−1 − 1x̄t−1)‖2 + 2ν2‖x̃t−1 − xt−1‖2

≤8‖(xt−1 − 1x̄t−1)‖2 + 2ν2‖x̃t−1 − xt−1‖2

≤8E(xt−1) + 2ν2‖x̃t−1 − xt−1‖2 (74)

and also

‖yt − yt−1‖2 ≤ 8E(yt−1) + 2η2‖ỹt−1 − yt−1‖2 (75)

Lemma 8 (Differential Bound on Estimator). Under Assumption 1, the following inequalities hold:

T∑
t=1

E‖vt − vt−1‖2 ≤
T∑
t=1

3L2
FE‖xt−1 − xt‖2 + 3L2

FE‖yt−1 − yt‖2, (76)

T∑
t=1

E‖ut − ut−1‖2 ≤
T∑
t=1

3L2
FE‖xt−1 − xt‖2 + 3L2

FE‖yt−1 − yt‖2. (77)

Proof. For ‖vt − vt−1‖2, we have

E‖vt − vt−1‖2 = E‖vt −∇xFt +∇xFt −∇xFt−1 +∇xFt−1 − vt−1‖2

≤3E‖vt −∇xFt‖2 + 3E‖∇xFt −∇xFt−1‖2 + 3E‖∇xFt−1 − vt−1‖2

≤3LFE‖xt−1 − xt‖2 + 3L2
FE‖yt−1 − yt‖2. (78)

Thus, we have:
∑T
t=1 E‖vt − vt−1‖2 ≤

∑T
t=1 3L2

FE‖xt−1 − xt‖2 + 3L2
FE‖yt−1 − yt‖2, and similarly,

∑T
t=1 E‖ut −

ut−1‖2 ≤
∑T
t=1 3L2

FE‖xt−1 − xt‖2 + 3L2
FE‖yt−1 − yt‖2.
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C.5 Proof of Lemma 7

Next, we bound the error of the gradient estimators as the follows:

Proof. From the algorithm update, we have:

‖ d̄i,t−∇xFi,t︸ ︷︷ ︸
Ai,t

‖2 =‖d̄i,t−1+
1

|Si,t|
∑
j∈Si,t

∇xfi,j(xi,t,yi,t)−∇xfi,j(xi,t−1,yi,t−1)−∇xFi,t‖2

=‖ d̄i,t−1−∇xFi,t−1︸ ︷︷ ︸
Ai,t−1

+
1

|Si,t|
∑
j∈Si,t

∇xfi,t(xi,t,yi,t)−∇xfi,t(xi,t−1,yi,t−1)+∇xFi,t−1−∇xFi,t︸ ︷︷ ︸
Bi,t

‖2

=‖Ai,t−1‖2 + ‖Bi,t‖2 + 2〈Ai,t−1, Bi,t〉. (79)

Note that Et[Bi,t] = 0, where the expectation is taken over the randomness in tth iteration. Thus,

Et‖Ai,t‖2 = ‖Ai,t−1‖2 + Et‖Bi,t‖2. (80)

Also, with |Si,t| = q, we have

Et‖Bi,t‖2 =Et‖
1

|Si,t|
∑
j∈Si,t

∇xfi,j(xi,t,yi,t)−∇xfi,j(xi,t−1,yi,t−1)−∇xFi,t+∇xFi,t−1‖2

≤ 1

|Si,t|2
∑
j∈Si,t

Et‖∇xfi,j(xi,t,yi,t)−∇xfi,j(xi,t−1,yi,t−1)−∇xFi,t +∇xFi,t−1‖2

≤
L2
f

q

(
‖xi,t − xi,t−1‖2 + ‖yi,t − yi,t−1‖2

)
. (81)

Taking full expectation and telescoping (81) over t from (nt − 1)q + 1 to t, where t ≤ ntq − 1, we have

E‖At‖2 ≤ E‖At−1‖2 +
L2
f

q
E
(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)
≤ E‖A(nt−1)q‖

2 +

t∑
r=(nt−1)q+1

L2
f

q
E
(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
. (82)

Thus, we have:

t∑
k=0

E‖Ak‖2 =

q−1∑
k=0

E‖Ak‖2 + · · ·+
t∑

k=(nt−1)q

E‖Ak‖2

≤q‖A0‖2 +

q−1∑
k=1

k∑
r=1

L2
f

q

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
+ · · ·

+
(
t− (nt − 1)q

)
‖A(nt−1)q‖

2 +
t∑

k=(nt−1)q+1

k∑
r=(nt−1)q+1

L2
f

q

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
≤q‖A0‖2 +

q−1∑
r=1

q−1∑
k=r

L2
f

q

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
+ · · ·

+
(
t− (nt − 1)q

)
‖A(nt−1)q‖

2 +
t∑

r=(nt−1)q+1

t∑
k=r

L2
f

q

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
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≤q‖A0‖2 +

q−1∑
r=1

L2
f

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
+ · · ·

+
(
t− (nt − 1)q

)
‖A(nt−1)q‖

2 +
t∑

r=(nt−1)q+1

L2
f

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
=

t∑
r=0

‖A(nr−1)q‖
2 +

t∑
r=1

L2
f

(
‖xr − xr−1‖2 + ‖yr − yr−1‖2

)
. (83)

Thus, we have:

T∑
t=0

‖d̄t−∇xFt‖2≤
T∑
t=0

E‖d̄(nt−1)q−∇xF(nt−1)q)‖
2+

T∑
t=1

L2
f

(
‖xt−xt−1‖2+‖yt−yt−1‖2

)
(84)

Similarly, we have:

T∑
t=0

‖p̄t−∇yFt‖2≤
T∑
t=0

E‖p̄(nt−1)q−∇yF(nt−1)q)‖
2+

T∑
t=1

L2
f

(
‖xt−xt−1‖2+‖yt−yt−1‖2

)
. (85)

This completes the proof.

D Proof for Theorem 1 and Theorem 2

With Lemmas 1-8 and the defined potential function, we have:

Q(x̄T+1)−Q(x̄0) +
4νL2

F

β

[
‖ȳT+1 − y∗T+1‖2 − ‖y∗0 − ȳ0‖2

]
≤ 75ηα

16µ

2

m

T∑
t=0

‖∇yF (xt,yt)− d̄t‖2 +
ν

2β

2

m

T∑
t=0

‖∇xF (xt,yt)− p̄t‖2︸ ︷︷ ︸
R1

−νLF
2

2

T∑
t=0

‖ȳt − y∗t ‖
2

+
ντ

2βm

T∑
t=0

‖xt − 1x̄t‖2 +
[ ν
β

L2
F

m
+

4νL2
F

βµηα

75ηα

16µ

2L2
F

m

] T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2]

−

(
−

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
T∑
t=0

‖x̃t − 1x̄t‖2 −
4νL2

F

βµηα

3η

4
‖ỹt − 1ȳt‖2 , (86)

With the defined potential function p, we have

EpT+1 − p0 ≤
75ηα

16µ

2

m

T∑
t=0

‖∇yF (xt,yt)− d̄t‖2 +
ν

2β

2

m

T∑
t=0

‖∇xF (xt,yt)− p̄t‖2︸ ︷︷ ︸
R1

−νLf
2

2

T∑
t=0

‖ȳt − y∗t ‖
2

+
ντ

2βm

T∑
t=0

‖xt − 1x̄t‖2 +
[ ν
β

L2
f

m
+

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

] T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2]

−

(
−

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
T∑
t=0

‖x̃t − 1x̄t‖2 −
4νL2

f

βµηα

3η

4

T∑
t=0

‖ỹt+1 − ȳt‖2 , (87)

For the term R1, we have

75ηα

16µ

2

m

T∑
t=0

E‖∇yFt − d̄t‖2 +
ν

2β

2

m

T∑
t=0

E‖∇xFt − p̄t‖2
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≤75ηα

16µ

2

m
E
( T∑
t=0

‖d̄(nt−1)q −∇xF(nt−1)q‖
2 +

T∑
t=1

L2
f

(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

))
+

ν

2β

2

m
E
( T∑
t=0

‖p̄(nt−1)q −∇yF(nt−1)q‖
2 +

T∑
t=1

L2
f

(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

))
=L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

) T∑
t=1

E
(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)
+

75ηα

16µ

2

m

T∑
t=0

E‖d̄(nt−1)q −∇xF(nt−1)q‖
2 +

ν

2β

2

m

T∑
t=0

E‖p̄(nt−1)q −∇yF(nt−1)q‖
2. (88)

Plugging the above results, we have

EpT+1 − p0 ≤ −
νLf

2

2

T∑
t=0

‖ȳt − y∗t ‖
2

+
ντ

2βm

T∑
t=0

‖xt − 1x̄t‖2

−
[
1− (1 + c1)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

] T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2]

−
[
1− (1 + c2)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

] T∑
t=0

m∑
i=1

[‖ȳt − yi,t‖2]

−

(
−(1 +

1

c1
)ν2 −

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
T∑
t=0

‖x̃t − 1x̄t‖2

− [
4νL2

f

βµηα

3η

4
− (1 +

1

c2
)η2]

T∑
t=0

‖ỹt+1 − ȳt‖2

+ L2
f

(75ηα

16µ

2

m
+

ν

2β

2

m

) T∑
t=1

E
(
‖xt − xt−1‖2 + ‖yt − yt−1‖2

)
+

75ηα

16µ

2

m

T∑
t=0

E‖d̄(nt−1)q −∇xF(nt−1)q‖
2 +

ν

2β

2

m

T∑
t=0

E‖p̄(nt−1)q −∇yF(nt−1)q‖
2

= −νLf
2

2

T∑
t=0

‖ȳt − y∗t ‖
2

−
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm
− (1 + c1)λ2 − ν

β

L2
f

m
−

4νL2
f

βµη2
75ηα

16µ

2L2
f

m

]
︸ ︷︷ ︸

C1

T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2]

−

(
−2ν2L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 +

1

c1
)ν2 −

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
︸ ︷︷ ︸

C2

T∑
t=0

‖x̃t − 1x̄t‖2

−
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 + c2)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
︸ ︷︷ ︸

C3

T∑
t=0

m∑
i=1

[‖ȳt − yi,t‖2]

− [
4νL2

f

βµηα

3η

4
− (1 +

1

c2
)η2 − 2ηαL2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
]︸ ︷︷ ︸

C4

T∑
t=0

‖ỹt − ȳt‖2 (89)

For PRECISION , the outer loop calculates the full gradients. Thus, we have E‖d̄(nt−1)q−∇xF(nt−1)q‖2 = E‖p̄(nt−1)q−
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∇yF(nt−1)q‖2 = 0.
Choosing c1 = c2 = 1−λ2

1+λ2 , we have

C1 =
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm
− (1 + c1)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm
− (1− c1)− ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥ c1 −

c1
5
− c1

5
− c1

5
− c1

5
− c1

5
= 0 (90)

C2 =

(
−2ν2L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 +

1

c1
)ν2 −

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
≥ − ντ

6m
− ντ

6m
− ντ

6m
+
ντ

m
− ντ

6m
− ντ

12m
− ντ

6m
> 0 (91)

C3 =
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 + c2)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1− c2)− ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥ c2 −

c2
5
− c2

5
− c2

5
− c2

5
− c2

5
= 0 (92)

C4 = [
4νL2

f

βµηα

3η

4
− (1 +

1

c2
)η2 − 2ηαL2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
] ≥

4νL2
f

βµηα

3η

4
−

4νL2
f

βµηα

3η

8
−

4νL2
f

βµηα

3η

8
= 0 (93)

With parameters

η ≤ min{ c1mµ

375αL2
f

,
15L2

f

βµα2c1
,

3c21m

10(1 + c1)µα
}

ν ≤ min{c1mβ
40L2

f

,
2c1mβ

5τ
,

2c1βµ
2m

375L4
f

,
5τ

3mc1
,

τ

6m(1 + 1/c1)
,

3µηατ

17L2
f

,
τ

3(Lf +
L2
f

µ )
}

β ≤ min{ τ
12
,

1

3
}, (94)

we have the stated result for PRECISION :

T∑
t=0

(
E[‖x̃t − 1x̄t‖2 + ‖xt − 1x̄t‖2] + E‖y∗t − ȳt‖2

)
≤ E[p0 − pT+1]

min{C1, C2, νL2
f/2}

. (95)

For PRECISION+, we have that

E‖d̄(nt−1)q −∇xF(nt−1)q‖
2 = E‖p̄(nt−1)q −∇yF(nt−1)q‖

2 =
I(Ns<M)

Ns
σ2 (96)

Recall that Ns = min{cγσ2(γ(k))−1, cεσ
2ε−1,M}. Then we have

I(Ns<M)

Ns
≤ 1

min{cεσ2(ε)−1, cγσ2(γ(k))−1}

= max{ γ
(k)

cγσ2
,
ε

cεσ2
} ≤ γ(k)

cγσ2
+

ε

cεσ2
. (97)
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Thus, we have

Q(x̄T+1)−Q(x̄0) +
4νL2

F

β

[
‖ȳT+1 − y∗T+1‖2 − ‖y∗0 − ȳ0‖2

]
≤ 75ηα

16µ

2

m

T∑
t=0

‖∇yF (xt,yt)− d̄t‖2 +
ν

2β

2

m

T∑
t=0

‖∇xF (xt,yt)− p̄t‖2︸ ︷︷ ︸
R1

−νLF
2

2

T∑
t=0

‖ȳt − y∗t ‖
2

+
ντ

2βm

T∑
t=0

‖xt − 1x̄t‖2 +
[ ν
β

L2
F

m
+

4νL2
F

βµηα

75ηα

16µ

2L2
F

m

] T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2]

−

(
−

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
T∑
t=0

‖x̃t − 1x̄t‖2 −
4νL2

F

βµηα

3η

4
‖ỹt − 1ȳt‖2

≤(
75ηα

16µ

2

m
+

ν

2β

2

m
)
T∑
t=0

(
γ(t)

cγ
+

ε

cε
)− νLF

2

2

T∑
t=0

‖ȳt − y∗t ‖
2

+
ντ

2βm

T∑
t=0

‖xt − 1x̄t‖2 +
[ ν
β

L2
F

m
+

4νL2
F

βµηα

75ηα

16µ

2L2
F

m

] T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2 + ‖ȳt − yi,t‖2]

−

(
−

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
T∑
t=0

‖x̃t − 1x̄t‖2 −
4νL2

F

βµηα

3η

4
‖ỹt − 1ȳt‖2

(98)

Since γt+1 = 1
q

∑k
i=(nk−1)q ‖x̃t − 1x̄t‖2.

EpT+1 − p0 ≤ −
νLf

2

2

T∑
t=0

‖ȳt − y∗t ‖
2

−
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm
− (1 + c1)λ2 − ν

β

L2
f

m
−

4νL2
f

βµη2
75ηα

16µ

2L2
f

m

]
︸ ︷︷ ︸

C1

T∑
t=0

m∑
i=1

[‖x̄t − xi,t‖2]

−

(
cγ(

75ηα

16µ

2

m
+

ν

2β

2

m
)− 2ν2L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 +

1

c1
)ν2 −

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
︸ ︷︷ ︸

C2

T∑
t=0

‖x̃t − 1x̄t‖2

−
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 + c2)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
︸ ︷︷ ︸

C3

T∑
t=0

m∑
i=1

[‖ȳt − yi,t‖2]

− [
4νL2

f

βµηα

3η

4
− (1 +

1

c2
)η2 − 2ηαL2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
]︸ ︷︷ ︸

C4

T∑
t=0

‖ỹt − ȳt‖2 (99)

Choosing c1 = c2 = 2λm(M)
λ , we have

C1 =
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm
− (1 + c1)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− ντ

2βm
− (1− c1)− ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
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≥ c1 −
c1
5
− c1

5
− c1

5
− c1

5
− c1

5
= 0 (100)

C ′2 =

(
cγ(

75ηα

16µ

2

m
+

ν

2β

2

m
)− 2ν2L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 +

1

c1
)ν2 −

17L2
yν

2

2µmηα
+
ντ

m
− ν2LJ

2m
− νβ

m
− ντβ

2m

)
≥ − ντ

12m
− ντ

6m
− ντ

6m
− ντ

6m
+
ντ

m
− ντ

6m
− ντ

12m
− ντ

6m
= 0 (101)

C3 =
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1 + c2)λ2 − ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥
[
1− 8L2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
− (1− c2)− ν

β

L2
f

m
−

4νL2
f

βµηα

75ηα

16µ

2L2
f

m

]
≥ c2 −

c2
5
− c2

5
− c2

5
− c2

5
− c2

5
= 0 (102)

C4 = [
4νL2

f

βµηα

3η

4
− (1 +

1

c2
)η2 − 2ηαL2

f

(75ηα

16µ

2

m
+

ν

2β

2

m

)
] ≥

4νL2
f

βµηα

3η

4
−

4νL2
f

βµηα

3η

8
−

4νL2
f

βµηα

3η

8
= 0 (103)

With parameters

cγ ≥ (
75ηα

8µ

1

m
+
ν

β

1

m
)
ντ

12

η ≤ min{ c1mµ

375αL2
f

,
15L2

f

βµα2c1
,

3c21m

10(1 + c1)µα
}

ν ≤ min{c1mβ
40L2

f

,
2c1mβ

5τ
,

2c1βµ
2m

375L4
f

,
5τ

3mc1
,

τ

6m(1 + 1/c1)
,

3µηατ

17L2
f

,
τ

3(Lf +
L2
f

µ )
}

β ≤ min{ τ
12
,

1

3
}, (104)

Thus, for PRECISION+, we have the following convergence results:

1

(T + 1)

T∑
t=0

(
E[‖x̃t − 1x̄t‖2 + ‖xt − 1x̄t‖2] + E‖y∗t − ȳt‖2

)
≤ E[p0 − pT+1]

(T + 1) min{C1, C ′2, νL
2
f/2}

+ (
75ηα

16µ

2

m
+

ν

2β

2

m
)
ε

cε
. (105)

With pT+1 ≥ Q∗, we reach the conclusion.

E Supporting lemmas

Lemma 9. Under Assumption 1, y∗(x) = arg maxy F (x,y) is Lipschitz continuous, i.e., there exists a positive constant Ly ,
such that

‖y∗(x)− y∗(x′)‖ ≤ Ly‖x− x′‖, ∀x,x′ ∈ Rd, (106)

where the Lipschitz constant is Ly = Lf/µ.

Proof. See Lemma 4.3 in Lin et al. [2020a].

Lemma 10. Under Assumption 1, the function J(x) = F (x,y∗(x)) satisfies that∇J(x) = ∇xF (x,y∗(x)).
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Proof. Since J(x) = F (x,y∗(x)), by chain rule, we have

dJ(x) =
∂F (x,y)

∂x

∣∣∣
y=y∗(x)

· dx+
∂F (x,y)

∂y

∣∣∣
y=y∗(x)

· ∂ω
∗(x)

∂x
· dx, (107)

where ∂F (x,y)/∂x and ∂F (x,y)/∂y are respectively the partial differential of F w.r.t the first variate x and the sec-
ond variate y. Note that y∗(x) is the unique optimal point such that F (x,y) reaches the maximums. So, it follows that
∂F (x,y)
∂y |y=y∗(x) = 0 for all x. Also, from Lemma 9, we have ∂ω∗(x)/∂x is bounded. Thus, it follows that

dJ(x) =
∂F (x,y)

∂x

∣∣∣
y=y∗(x)

· dx, (108)

which is∇J(x) = ∇xF (x,y∗(x)).
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