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Abstract

In recent years, decentralized bilevel optimiza-
tion has gained significant attention thanks to
its versatility in modeling a wide range of multi-
agent learning problems, such as multi-agent rein-
forcement learning and multi-agent meta-learning.
However, one unexplored and fundamental prob-
lem in this area is how to solve decentralized
stochastic bilevel optimization problems with do-
main constraints, while achieving low sample and
communication complexities. This problem of-
ten arises from multi-agent learning problems
with safety constraints. As shown in this pa-
per, constrained decentralized bilevel optimiza-
tion is far more challenging than its unconstrained
counterpart due to the complex coupling struc-
ture, which necessitates new algorithm design
and analysis techniques. Toward this end, we
investigate a class of constrained decentralized
bilevel optimization problems, where multiple
agents collectively solve a nonconvex-strongly-
convex bilevel problem with constraints in the
upper-level variables. We propose an algorithm
called Prometheus (proximal tracked stochastic
recursive estimator) that achieves the first O(e~!)
results in both sample and communication com-
plexities for constrained decentralized bilevel op-
timization, where ¢ > 0 is a desired stationarity
error. Collectively, the results in this work con-
tribute to a theoretical foundation for low sample-
and communication-complexity constrained de-
centralized bilevel learning.
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1. Introduction

In recent years, decentralized bilevel optimization has
gained signifiant attention thanks to its versatility in mod-
eling a wide range of multi-agent learning problems, such
as multi-agent reinforcement learning (MARL) and multi-
agent meta learning. However, one unexplored and fun-
damental problem in this area is how to solve decentral-
ized stochastic bilevel optimization with domain constraints,
while achieving low sample and communication complex-
ities. This problem often arises from, but is not limited
to, safety-constrained(Mansoor et al., 2023; 2021) MARL
for autonomous driving (Bennajeh et al., 2019), sparsity-
regularized multi-agent meta-learning (Poon & Peyré, 2021),
and rank-constrained matrix completion for recommender
systems (Pochmann & Von Zuben, 2022), etc. As shown
later in this paper, constrained decentralized bilevel opti-
mization is far more challenging than its unconstrained coun-
terpart due to the non-smoothness and complex coupling be-
tween domain constraints and the bilevel problem structure.
Also, as its name suggests, a defining feature of constrained
decentralized bilevel optimization is “decentralized,” which
implies that all agents must rely on communications to reach
a consensus on an optimal solution without any coordina-
tion from a server. Due to the potentially unreliable network
connections and the limited computation capability at each
agent, such consensus-based approaches call for low sample
and communication complexities. To our knowledge, none
of the existing works in the literature has considered solving
domain-constrained decentralized bilevel optimization with
low sample and communication complexities (e.g., (Gao
et al., 2022; Yang et al., 2022; Lu et al., 2022a; Chen et al.,
2022b;c; Huang et al., 2023) see Section 2 for detailed dis-
cussions). This motivates to fill in important gap in the
literature in light of the growing importance of constrained
decentralized bilevel optimization.

Specifically, we focus on a class of constrained decentral-
ized multi-task bilevel optimization problems, where we aim
to solve a decentralized nonconvex-strongly-convex bilevel
optimization problem with i) multiple lower-level problems
and ii) consensus and domain constrains on the upper level.
Such problems naturally arise in security-constrained bilevel
model for integrated natural gas and electricity system (Li
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et al., 2017), multi-agent actor-critic reinforcement learn-
ing (Zhang et al., 2020) and constraint meta-learning (Liu
et al., 2019). In the optimization literature, a natural ap-
proach for handling domain constraints is the proximal
operator. However, proximal algorithm design and the-
oretical analysis for constrained decentralized bilevel op-
timization problems is far from a trivial extension of their
unconstrained counterparts. In fact, in the literature, the
proximal operator for constrained bilevel optimization has
been under-explored even in the single-agent setting, not to
mention the more complex multi-agent settings. The most
related works in terms of handling domain constraints can
be found in (Hong et al., 2020; Chen et al., 2022a; Ghadimi
& Wang, 2018), which rely on direct projected (stochas-
tic) gradient descent to solve the constrained single-agent
bilevel problem. In contrast, our work considers general
domain constraints that require evaluation of proximal op-
erators in each iteration for mutli-agent settings. Actually,
until this work, it remains unclear how to design proximal
algorithms to handle domain constraints for decentralized
bilevel optimization.

The main contribution of this paper is that we propose
a series of new proximal-based algorithmic techniques
to overcome the aforementioned challenges and achieve
low sample and communication complexities for domain-
constrained decentralized bilevel optimization problems.
The main results of this work are summarized below:

* We propose a decentralized optimization approach
called Prometheus (proximal tracked stochastic recursive
estimator), which is a cleverly designed hybrid algorithm
that integrates proximal operations, recursive variance
reduction, lower-level gradient tracking, and upper-level
consensus techniques. We show that, to achieve an e-
stationary point, Prometheus enjoys a convergence rate
of O(1/T), where T is the maximum number of itera-
tions. This implies O(e~!) communication complexity
and O(y/nKe~! 4+ n) sample complexity per agent.

* We reveal a new and interesting insight that the recursive
variance reduction technique in Prometheus is not only
sufficient but also necessary for achieving O(1/T") con-
vergence rate in the sense that: a “non-variance-reduced”
special version of Prometheus could only achieve a much
slower O(1/+/T) convergence to a constant error-ball
rather than an e-stationary point with arbitrarily small
e-tolerance. This insight advances our understanding and
state of the art of algorithm design for constrained decen-
tralized bilevel optimization.

 To further lower sample complexity, we propose a new
hyper-gradient estimator for the upper-level function in-
spired by (Agarwal et al., 2016) in the single-level opti-
mization literature. This new estimator leads to a more ac-
curate stochastic estimation than the conventional stochas-

Table 1. Comparisons among algorithms for bilevel optimization
problems. Sample complexities (both upper and lower) as defined
in the sense of achieving an e-stationary point defined in (2), n is
the size of dataset at each agent. Algorithms shown in shaded are
decentralized learning algorithms.

Algorithms Constriants (JS:nIrll[l))ll:x. (é?)::l;lllel:
SUSTAIN (Khanduri et al., 2021) X O(e™19)
RSVRB (Guo & Yang, 2021) X O(e™19)
VRBO (Yang et al., 2021) X O(e™ %)
AID-BiO /ITD-BiO (Ji etal., 2021) X O(ne™?)
TTSA (Hong et al., 2020) v O(e=5/?)
STABLE (Chen et al., 2022a) v/ O(e™?)
DSBO (Yang et al., 2022) X O(e™?)  0(e7?)
SPDB (Lu et al., 2022a) X O(e™?) 0O ?)
DSBO (Chen et al., 2022b) X O(e™?) 02
VRDBO (Gao et al., 2022) X O(e™'%) 0@ ')
INTERACT (Liu et al., 2022) X O(ne 1) O(e™h)
INTERACT-VR (Liuetal,, 2022) X O(yv/nKe ' +n) O(e 1)
Prometheus [Ours.] v/ O(/nKe '+ n) O

tic estimator used in (Khanduri et al., 2021; Ghadimi &
Wang, 2018; Hong et al., 2020; Liu et al., 2022). We show
that our new hyper-gradient stochastic estimator outper-
forms existing estimators both theoretically (cf. Lemma
1) and experimentally (cf. Fig. 3, Fig. 8).

2. Related Work

In this section, we first provide a quick overview of the state-
of-the-art on single-agent constrained bilevel optimization
as well as decentralized bilevel optimization.

1) Constrained Bilevel Optimization in the Single-Agent
Setting: As mentioned in Section 1, various techniques
have been proposed to solve single-agent bilevel optimiza-
tion, such as utilizing full-gradient-based techniques (e.g.,
AlID-based methods (Rajeswaran et al., 2019; Franceschi
et al., 2018; Ji et al., 2021), ITD-based methods (Pedregosa,
2016; Maclaurin et al., 2015; Ji et al., 2021)), stochastic
gradient-based techniques (Ghadimi & Wang, 2018; Khan-
duri et al., 2021; Guo & Yang, 2021), STORM-based tech-
niques (Cutkosky & Orabona, 2019), and VR-based tech-
niques (Yang et al., 2021). However, none of these existing
works have considered domain constraints. To our knowl-
edge, the only works that considered domain constraints in
the single-agent setting can be found in (Hong et al., 2020;
Chen et al., 2022a; Ghadimi & Wang, 2018). In (Ghadimi
& Wang, 2018), the authors proposed a double-loop algo-
rithm called BSA, where in the inner loop the lower level
problem is solved to sufficient accuracy, while in the outer
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loop projected (stochastic) gradient descent is utilized to
update the model parameters. The double-loop structure of
BSA led to slow convergence. To achieve the e-stationary
point, the BSA Algorithm requires O(¢~3) samples of the
inner function and O(e~2) samples of the outer function,
respectively. In (Hong et al., 2020), a two-timescale sin-
gle loop stochastic approximation (TTSA) algorithm based
on projected (stochastic) gradient descent was proposed to
solve the constrained bilevel optimization problems. How-
ever, TTSA has to choose step-sizes of different orders
for the upper and lower level problems to ensure conver-
gence, which leads to suboptimal complexity results. Later
in (Chen et al., 2022a), an algorithm called STABLE al-
gorithm is proposed to utilize a momentum-based gradient
estimator and combines the Moreau-envelop-based analysis
to achieve an O(e~2) sample-complexity. As mentioned
in Section 1, however, the methods in (Ghadimi & Wang,
2018; Hong et al., 2020; Chen et al., 2022a) considered only
simple constraints. Moreover, the aforementioned methods
are not applicable in the decentralized setting.

2) Decentralized Bilevel Optimization: Decentralized
bilevel optimization has also received increasing attention
in recent years. For example, Yang et al. (2022), (Lu et al.,
2022a), (Lu et al., 2022b) and Chen et al. (2022b) respec-
tively proposed stochastic gradient (SG)-type decentralized
algorithms for bilevel optimization and achieve an O(e~2)
sample-communication complexity. The VRDBO method in
(Gao et al., 2022) employed momentum-based techniques
to achieve better O(e~1-5) complexity results. However,
VRDBO updates upper- and lower-level variables in an alter-
nating fashion. As will be shown later, our Prometheus al-
gorithm updates upper-level and lower-level variables si-
multaneously, which renders a much lower implementation
complexity than VRDBO. Besides, Prometheus achieves
O(y/nKe™ ! + n) sample complexities, which is a near-
optimal and outperforms existing decentralized bilevel algo-
rithms. It is worth noting that, the in aforementioned works,
consensus is required at both lower- and upper-levels. Such
a formulation can be viewed as multiple agents collabora-
tively solving the same bilevel optimization problem. In
contrast, consensus is required in the upper-level subprob-
lem in our work, which allows multiple different lower-level
tasks. This is a more practically-relevant formulation for
many MARL and multi-agent meta-learning applications.

The most related work on decentralized bilevel optimization
is (Liu et al., 2022), which also considered multiple lower-
level tasks. However, our work differs from (Liu et al., 2022)
in the following two key aspects: (i) The INTERACT-VR
method in (Liu et al., 2022) is unconstrained and cannot
handle non-smooth objectives considered in our work. As
a result, using a straightforward proximal extension of the
INTERACT-VR would not work. As shown in (Hong et al.,
2022), the direct proximal extension of the algorithm may

diverge in solving the decentralized minimization problem.
Since conventional minimization can be viewed as a spe-
cial case of bilevel optimization, following a similar line
of analysis, we can conclude that the INTERACT-VR may
diverge if we use the direct proximal extension method. To
tackle this challenge, we propose a special proximal opera-
tor &;(x;,.). We show that this special-structured proximal
operator not only makes our Prometheus algorithm numer-
ically efficient but also renders the convergence analysis
of Prometheus theoretically tractable. (ii) Our Prometheus
algorithm integrates a new stochastic gradient estimator. We
show that this new hyper-gradient stochastic estimator is
superior to existing estimator, as demonstrated both theoreti-
cally through Lemma 1 and experimentally through Figures
3 and 8. For clearer comparisons, we summarize and com-
pare the complexity results of all algorithms mentioned
above in Table 1.

3. Problem Formulation and Applications

1) Problem Formulation: Consider an undirected con-
nected network G = (N, £) that represents a peer-to-peer
network, where N and L are the sets of agents (nodes) and
edges, respectively, with |[N'| = m. Each agent 7 has local
computation capability and can share information with its
neighboring agents denoted as \; = {i’ € N : (i,i') € L}.
Each agent 7 has access to a local dataset of size n. All
agents in the network collaboratively solve the following
constrained decentralized bilevel optimization problem:
min e i[ﬁ(xz) + h(x;)]
x;€XM =1
1

mn

m n

DO I (%0 yi (x0): €5)) + hi(x)]

i=1 j=1

1 n
A
s.t. Yz(xv)*a;jgeggng X17Y7 :E; X’LaY'I)C’L]

X; = X, if (Z,Z ) S ;C, (1)

where X C RP! is a convex constraint set, and x; € X and
y: € RP? are parameters to be trained for the upper-level
and lower-level subproblems at agent ¢, respectively. Here,
Uxi) £ f(xiyi(x) = 52000 f (xi,¥7 (xi): &) s
the local objective function, and h(x;) is a convex proxi-
mal function (possibly non-differentiable) for regularization.
The equality constraints x; = X,/ ensure that the local
copies at connected agents 7 and i’ are equal to each other,
hence the name “consensus form.” As shown in Eq. (1), the
upper-level subproblem is to optimize the objective function
LS [0(x%4) + h(x;)], where x; is the decision variable.
The lower-level subproblem is to obtain the optimal y;-
solutions by minimizing the objective function g(x;,y;)
given a set x;-values. In both upper and lower levels, m
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is the total number of agents and n is the size of dataset at
each agent.

In the context of our decentralized bilevel optimization prob-
lem in Eq. (1), the sample and communication complexities
can be formally defined as follows:

Definition 1 (Sample Complexity). : The sample complex-
ity is defined as the total number of incremental first-order
oracle (IFO) calls required for all agents to converge to
an e-stationary point. Each IFO call evaluates a pair of
(Vf(xit,¥it), Vg(xi,yie)) at agent 4.

Definition 2 (Communication Complexity). : The com-
munication complexity is defined as the total number of
communication rounds needed to converge to an e-stationary
point. In each round, every node can send and receive vector-
valued information to and from its neighboring nodes.

Next, we define the notion of e-stationarity point for Prob-
lem (1) for convergence performance characterization. We
say that {x;,y;, Vi € [m]} is an e-stationarity point if

E|lx-10%|*+E[x-10x|*+Elly—y*|* <€ (2

Saddle point
error

Consensus error lower problem error

! yml", and y* £
[y}‘T7 ...y;T]T, and x is a proximal point that will be de-
fined later in Section 4. The first term in (2) quantifies the
convergence of the x to a proximal point of stationarity of
the global objective. The second term in (2) measures the
consensus error among local copies of the upper variable,
while the last term in (2) quantifies the (aggregated) error in
the lower problem’s iterates across all agents. Thus, € — 0
implies that the algorithm achieves three goals simultane-
ously: i) consensus of upper variables, ii) stationary point
of Problem (1), and iii) solution to the lower problem. As
mentioned in Section 1, two of the most important perfor-
mance metrics in decentralized optimization are the sample
and communication complexities.

_ A
where x £ LY x;, y £

2) Motivating Applications: Problem (1) arises naturally
from many real-world applications. Here, we present two
motivating applications to showcase its practical relevance:

 Sparsity-Regularized Multi-agent Meta-Learning (Tian
et al., 2020): Sparsity-regularized optimization is widely
seen in the machine learning community, which is one of
the promising tools for high-dimensional machine learn-
ing with guaranteed statistical efficiency and robustness
to overfitting. Meta-learning can naturally be formulated
as a bilevel optimization problem because it involves op-
timizing two levels of learning simultaneously: i) the
training of a down-stream model for a specific task based
on a base model, and ii) the training to improve the per-
formance of the base model. As a result, the optimization

process of meta-learning is a nested optimization prob-
lem, where the lower-level problem corresponds to opti-
mizing the down-stream task-specific models while the
upper-level problem corresponding to training the base
model. In a decentralized multi-agent setting, the sparsity-
regularized multi-agent meta-learning can be written as:

m

1 " .
min — ; [ (xi,y7 (%)) + h(x:);

s.t.y; (xi) € arg min g (xi,yi),i=1,...,m. (3)

Here, agent ¢ has a local dataset with n samples, x € X’
denotes the base model parameters shared by all agents
(hence consensus is needed), and y; are task-specific
model parameters computed by each agent 7.

Decentralized Rank-Constrained Matrix Completion
for Recommender Systems (Panagoda, 2021): Rank-
Constrained Matrix Completion (RCMC) is a technique
commonly used in recommender systems to predict miss-
ing values in a sparse user-item matrix. The goal of
RCMC is to find a low-rank matrix that best approxi-
mates the observed data. In a decentralized setting, the
rank-constrained matrix completion can be rewrite as:

1 m
in — i Yi) + h(x:);
gggm;f(x yi) + h(x:)
s.t. ming(x;,y:),i = 1,...,m, 4)
Yi

Here, f() is the objective function that measures the
quality of the recovered matrix, and g(-) is specified by
the user (e.g., selecting the optimal values of the hyper-
parameters that govern the behavior of the upper level
problem), and h(+) is the sparsity regularization which
are often used in RCMC to prevent the low-rank matrix
approximation from overfitting.

4. Solution Approach

In this section, we first present the Prometheus algorithm
for solving the constrained decentralized bilevel optimiza-
tion problems in Problem (1) in Sections 4.1-4.2. Then,
we provide its theoretical convergence guarantees in Sec-
tion 4.3. Lastly, we will reveal a key insight on the benefit
of using the proposed variance reduction techniques in Sec-
tion 4.4. Due to space limitation, we relegate the proofs to
supplementary material.

4.1. Preliminaries

To present the Prometheus algorithm, we first introduce
several basic components as preparation.

1) Network-Consensus Matrix: Our Prometheus algo-
rithm is based on the network-consensus mixing approach:
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in each iteration, every agent exchanges and aggregates
neighboring information through a consensus weight matrix
M € R™*™. We define A as the second largest eigen-
value of the matrix M. Let [M];;» represent the element
in the i-th row and the ¢’-th column in M. The choice
of M should satisfy the following properties: (a) doubly
stochastic: Y70 My = 3770 My = 15 (b) sym-
metric: (Ml = [M];,Vi,i" € N and (c) network-
defined sparsity: [M];;; > 0 if (i,4") € L; otherwise
[M}ii’ =0, Vi, i’ eN.

2) Stochastic Gradient Estimators: In Prometheus, we
need to estimate the stochastic gradient of the bilevel prob-
lem using the implicit function theorem. We note that in the
literature of bilevel optimization with stochastic gradient, a
commonly adopted stochastic gradient estimator is of the
form (Khanduri et al., 2021; Ghadimi & Wang, 2018; Hong
et al., 2020; Liu et al., 2022):

VXt Vit &ij) = Vi (Xit, ¥ini &)
1

- fviyg(xi,t7 Vit )ik Vy f (i 0, ¥i3€0), (5)
9

s 2 Xit5i,65C)
where H; , 2 K []E00 (1 — Yot Oyl gere | ¢
N is a predefined parameter and k(K) ~ U{0,..., K — 1}

is an integer-valued random variable uniformly chosen from
{0,..., K — 1}. It can be shown that H, j is a biased

: . -1
estimator for the Hessian inverse (V2 g (x,y;()] = =

2
S (X— M)i. However, this estimator has the
limitation that it gnly incorporates the first term in the Tay-
lor approximation, thus resulting in a large variance and
could eventually increase the communication complexity of

decentralized bilevel optimizaiton.

To address this issue, in this paper, we propose a new
stochastic gradient estimator inspired by (Koh & Liang,
2017) from conventional single-level optimization:

vf(xi,h Yit; gzg) = fo(Xi,m Yits fio)
1

- fviyg (%16, ¥its ) Hi 1 Vy f(Xi0, ¥i:60), (6)
9

where H; o = I and

A ity Vit CF
Hi’k -1 +<I— yyg (XLt Yit Cl )) Hi7k71
g
k(K) j' 2 P
v g(xitvyitag')
— YY ) 5 [
0y 1 <I i e
Jj'=1p=1

Compared to the conventional estimator, the key difference
in our new estimator lies in the matrix H; . In particular,
our H; ;. is in a recursive form that is able to capture the
entire Taylor series at once without increasing the sample

complexity. Thanks to this recursive form, H; ; utilizes
O(k?) samples, as opposed to only O(k) samples in the
conventional I:L r-Hessian inverse estimator, thus leading
to a much smaller variance and eventually much lower com-
munication complexity. It is worth noting that although our
H; ;, estimator leverages more training samples, the compu-
tation cost is the same as that of }AIL & due to the recursive
structure in (6).

As mentioned earlier, our Hessian inverse estimator is
inspired by ideas in stochastic second-order optimiza-
tion (Agarwal et al., 2016). Interestingly, similar technique
to estimate the Hessian inverse also appeared in (Koh &
Liang, 2017). However, (Koh & Liang, 2017) and (Agarwal
et al., 2016) are only designed for solving a conventional
single-level minimization problem. In comparison, our pro-
posed stochastic estimator can be used in bilevel learning,
particularly for solving non-smooth regularizers in upper-
level problems, which are far more complicated and require
new proof techniques and performance analysis. More im-
portantly, the Hessian inverse estimator technique was used
in (Koh & Liang, 2017) and (Agarwal et al., 2016) as a
heuristic without any performance analyis. In contrast, we
theoretically and numerically demonstrate that our new esti-
mator outperforms the conventional one in Sections 4.3 and
5. Our theoretical analysis (cf. Lemma 1) shows that the
Lipschitz constant of our estimator is smaller compared to
the conventional one. Our experimental results (cf. Fig. 3
and the Appendix) further confirm that our estimator has a
small variance.

4.2. The Prometheus Algorithm

The algorithm design and analysis for solving Problem (1)
faces a number of challenges: (i) the objective function
x is non-convex; (ii) the objective function is non-smooth
due to the proximal function; (iii) the constraint set on x-
variables; (iv) the decentralized bilevel problem structure.
The main challenge comes from the coupling between prox-
imal operation (for addressing challenges (ii) and (iii)) and
the decentralized bi-level structure), which renders the theo-
retical analysis of algorithm design extremely challenging
in proving our proposed algorithm to be both sample- and
communication-efficient. To address these challenges, our
proposed Prometheus algorithm carefully integrates proxi-
mal, gradient tracking, and variance reduction techniques,
which can be viewed as a triple-hybrid approach. The proce-
dure of Prometheus can be organized into three key steps:

e Step 1 (Local Proximal Operations): In each iteration ¢,
each agent i performs proximal operations to cope with
the domain constraint set X” for the upper-level variables:

Xip =Xi(Xi) = argminge (i, x = Xi)

+elx —xid? + A, ®)
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where 7 > 0 is a proximal control parameter and u; ; is
an auxiliary vector. The proximal update rule is motivated
by the SONATA method (Scutari & Sun, 2019) used in a
decentralized minimization.

e Step 2 (Consensus Update in Upper-Level Variables):
Next, each agent 7 updates the upper and lower model
parameters X;,y; as follows:

Xit+1 = Z MJiirxirp + (X (Xi0) —Xig),  (9)
i’ eN;

=Yii — Bvig, (10)

Yit+1
where « and [ are constant step-sizes for updating x-
and y-variables, respectively. Note that updating X; ;1
in Eq. (9) is a local weighted average at agent ¢ and
plus a local update in the spirit of Frank-Wolfe given
a proximal point. Eq. (10) performs a local stochastic
gradient descent update for the y-variable at each agent :.

It is worth pointing out that the auxiliary proximal op-
erator X;; in (8) and (9) and the resultant local update
a(X;(xi+) — X;,¢) in the consensus step play an impor-
tant role in helping us tackle the non-smooth objective
challenge. This successive convex approximation (SCA)
technique is dramatically different from the conventional
algorithm design in ordinary single-level stochastic op-
timization. Without this new SCA technique, it will be
difficult, if not entirely impossible, to achieve conver-
gence guarantees. Moreover, the use of the above new
SCA technique also necessitates many proof techniques
that are quite different from the proofs in ordinary single-
level stochastic optimization (see the proof details of our
Lemma 5 and Lemma 7 in the Appendix).

e Step 3 (Local Variance-Reduced Stochastic Gradient Es-
timate): In the local gradient estimator step, each agent ¢
estimates its local gradients using the following stochastic
gradient estimators:

V(X 0yit)== Z?Zl Vit yie; i)
if mod(t,q) =0,
Pi(Xit—1,¥it—1) + ﬁ dies,
(Va5 ¥it: &)~V f (X1, ¥ie15 &ig)»
V9(Xin¥it)=r 2 5—1 V(Xits Yit; Cis)s
if mod(t,q) =0,
di(Xit-1,yie—1) + ﬁ > jesi,
(Vo(%i,t: Vit &)V g (X1, i1, Gig) -

Pi(Xit, Yit)= (11a)

d; (i, yit)= (11b)

Here, S; ; is the sample mini-batch in the ¢-th iteration,
and ¢ is a pre-determined inner loop iteration number.
The local stochastic gradient estimation is a recursive
estimator that shares some structural similarity with those
in SARAH (Nguyen et al., 2017), SPIDER (Fang et al.,

Algorithm 1 The Prometheus Algorithm at i" agent.

Set parameter pair (x;,0,y:,0) = (x°,y°).
Calculate local gradients: w; 0 = V f(X;,0,¥i.0); Vio =
Vy9(Xi,0,¥:,0);
fort=1,---,T do
Update local models (x; ¢1, ¥4 11) as in Egs. (8)-(10);
if Prometheus: then
Compute the (p;(Xi 1, Yi 1), di(Xi o1, Yier1))
local estimator as in Eq. (11);
end if
if Prometheus-SG: then
Compute the (p;(Xs,e1,Yi,er), di(Xi o1, Yiyt01))
local estimators as in Eq. (13);
end if
Track global gradients (u; ¢4+1, Vit41) as in Eq. (12);
end for

2018), and PAGE (Li et al., 2021) used for traditional
minimization problems.

 Step 4 (Gradient Tracking in Upper-Level Parameters):
Each agent i updates u; ; and v; ; by averaging over its
neighboring tracked gradients:

ui,t:Z M1 +Pi (Xit, Yie) = Pi(Xiye—1, Yi, 1)
i’ eN;
Vit =di(Xi,¥it) (12)

We summarize the Prometheus algorithm in Algorithm 1.

4.3. Convergence Analysis of the
Prometheus Algorithm

Now, we focus on the convergence performance analysis
for the proposed Prometheus algorithm. Before presenting
the main convergence results, we first state several needed
technical assumptions:

Assumption 1. For all ¢ € supp (7,) where supp() is the
support of 7, x € X, X C RP1 y € RP2, the lower-level
function g has the following properties :

D) g(x,y;¢) is pg-strongly convex with p, > 0,
Vy9(x,y;¢) is Lg-Lipschitz continuous with Ly > 0;

2
2) HV,%yg(x,y; ()H < C,, for some Cy, > 0,
Viy9(X,¥;¢) and V2 g(x,y; () are Lipschitz continu-
ous with constants L, > Oand L, > 0, respectively.

Assumption 2. For all £ € supp (7;) where supp() is the
support of 7, x € X', & C RP?, the upper-level function f
has the following properties : Vi f(x,y;&), Vy f(x,¥;&)
are Lipschitz smooth continuous with constant Ly >
0,Ls, >0.[|Vyf(x,y;6)l <Cy,, forsome Cy, > 0.



Prometheus: Taming Sample and Communication Complexities in Constrained Decentralized Stochastic Bilevel Learning

Assumption 3. i) the stochastic gradient estimate of
the upper-level function satisfies: Eg[||Vf(x,y;¢) —
Ee[VI(x,y:)I?] < oF; and ii) the stochastic gra-
dient estimate of the lower-level function satisfies:
E¢[[[Vyg(x,y:¢) = Vyg(x,y)|?] < o7

We note that Assumptions.1, 2 and 3(b) are standard in the
literatures of bilevel optimization (see, e.g., (Ghadimi &
Wang, 2018; Khanduri et al., 2021). In addition, Assump-
tion 3(a) has been verified in (Khanduri et al., 2021).

To establish the convergence result of Prometheus, we first
prove the Lipschitz-smoothness of the new gradient estima-
tor proposed in (6), which is stated as follows:

Lemma 1. (Lipschitz-smoothness of the new stochastic gra-
dient estimator in (6)). If the stochastic functions f(x,y; &)
and g(x,y;() satisfy Assumptions 1-3, then we have (i)
for a fixed y € RP2, va (xl,y;g) —-Vf ( xz,y;é_)H2 <
L2|x1— x2|*.V x1, xo € RPY; and (ii) for a
fixed x € RP1, H@f (X,yl;f) - Vf (x,yg;f)H2 <
L7 ly1 - voll> Vy1,y2 € RPe In the above
expressions, Ly > 0 is defined as: Lfc =

2 2 2 K 2 12 K

2fo + 6CszLfy (Q,ungf/_Lg) + 6C ng:L‘y (Q;Lngf,ug) +
2 M K K -2 pg\2G—1) 1 72

GngnyyTE jzlj (1 - Tz) fngyy'

We note that the Lipschitz-smoothness constant Ly of
Lemma 1 is smaller than that of the conventional estimator
in (5), which we denote as L¢op, here, i.e., Ly < Leopy.
This also shows superiority of our new estimator. Due
to space limitation, we state the definition of L.y, in
Lemma 4 in the appendix.

Next, we need the following Lipschitz-continuity proper-
ties of the approximate gradient V f(x, y), the lower level
solution y*, and the true gradient V/(x), which have been
proved in the literature:

Lemma 2. (Ghadimi & Wang, 2018) Under Assump-
tions 1-2, we have |V f(x,y)—VI{(x)|[|< L|y*(x)—y],
[y* (1) =y (%2)l| <Ly |31 =2l [V (x1)-VE (x2) | <
Ly ||x1—x2|| forall x,x1,%x3 € RP!,y € RP2, where the
Lipschitz constants are defined as: L £ Ly, + L“’HA +
g
L Ty L ’yycgwy 2 Lc‘wy 2 C(Slm'y
Cr, (gt + =27=4), Le & Lo =50, and Ly £ =f
Lemma 2 establishes the smoothness of the implicit function
in Problem (1), which only relies on the Assumptions 1 and
2 to hold. Lastly, following the same token as in (Hong
et al., 2020), we show a critical fact on the exponentially
fast decay of the bias of our stochastic estimator in (6),
which is stated as follows.

Lemma 3 (Exponentially Decaying Bias). Under Assump-
tions 1-3, the stochastic gradient estimate of the upper level
objective in (6) satisfies ||V f(x,y) — E[Vf(x,y;&)]|| <

ngy ny

Hg \K
2Ot () K,

L.‘?
The assumptions above and Lemmas 1-3 lead to the main
convergence result of Prometheus as follows.

Theorem 1. Under Assumptions1-3, if the step-sizes o <
min{C ;(\,m, L;, Ly, L, L, ug,7,8),¢ = 1,...,10}
and B < min{Cs;(Ly, L, A\, pug),i = 1,...,4, where
C1,(-) and Co;(-), Vi, signify that these terms are con-
stants that depend on the problem-specific parameters in (-)
and their exact expressions can be found in the Appendix,
then the sequence {x;} outputs by Prometheus satisfies:

~

1 _ - _
7 2Bl —1ox|* +Elx - 1@
t

Il
=3

1

+Ely - ¥il7) = 0 ):
It is worth noting that, compared to existing works on
decentralized bilevel optimization, the major challenge
in proving the convergence results in Theorem 1 stems
from the proximal operator needed to solve the upper-level
subproblem, which prevents the use of conventional de-
scent lemma for convergence analysis (see Eq. (36) in the
appendix). Also, compared to single-agent constrained
bilevel optimization, one cannot provide theoretical con-
vergence guarantee by using the direct projection method
X;¢= argmin,c y[x — (x;+ — 7u;,¢)||? as in (Hong et al.,
2020; Chen et al., 2022a) due to the gradient tracking pro-
cedure in the decentralized learning. Instead, we use a
different proximal update rule as shown in (8). If we do
not use this SCA technique and use the direct proximal op-
erator in (Hong et al., 2020; Chen et al., 2022a), we will
numerically show in Section 5 that the algorithm would only
converge to a neighborhood of a stationary point.

As mentioned earlier, the auxiliary proximal operator X; ; in
(8) and (9) and the resultant local update c(X;(X;,1) — Xi.t)
help us tackle the non-smooth objective challenge. This
successive convex approximation (SCA) technique is critical
for achieving convergence guarantees. However, the use of
the above new SCA technique also necessitates many proof
techniques that are dramatically different from the proofs in
ordinary single-level stochastic optimization (see the proof
details of our Lemmas 5 and 7 in the Appendix. Fig.5).

We note that the graph structure of the underlying network
does not change the order of convergence rate of our algo-
rithms theoretically (i.e., the T'-dependence in the Big-O
result in Theorem 1). The step sizes « and 5 depend on the
network topology through A, where X is the second largest
eigenvalue in magnitude of the network consensus matrix
M (e, A = max{|A2|,|An|} € (0, 1)), which is in turn
determined by the network graph topology. For a sparse
network, A is close to 1, while for a dense network, A is
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close to 0. As a result, for a sparse network with A being
close to 1, Theorem 1 implies smaller step sizes « and 3
(@ = O(1 = X), B = O((1 — \)*), which can then lead
to a slower convergence. But theoretically, these smaller
step sizes only affect the hidden constants in the O(1/T)
convergence result in Theorem 1, but not the 7-dependence.
Also, experimentally, we observe that the graph structure
only has a small impact on the convergence as shown in our
appendix. Further, Theorem 1 implies the following sample
and communication complexity results:

Corollary 2 (Sample and Communication Complexities
of Prometheus). Under the conditions of Theorem 1, to
achieve an e-stationary solution, Prometheus requires that:
i) the total number of communication rounds is O(e~1), and
ii) the total number of samples is O(y/nKe~! +n).

4.4. Discussion: Variance Reduction in Prometheus

Since the variance reduction in (11) in Step 3 of
Prometheus requires full gradient evaluation, it is tempt-
ing to ask what is the benefit of using the variance reduction
technique. In other words, could we relinquish variance
reduction (VR) in Step 3 to avoid full gradient evaluation?
To answer this question, consider changing Step 3 to the
following basic stochastic gradient estimator without VR:

Pi(Xit,yit) = VI (Xit,¥it,Ei0);
d;i(xi,yie) = Vg(Xie, Yies Gio)- (13)

Interestingly, the following convergence result states that
there always exists a non-vanishing constant independent of
m, n, and « if Eq. (13) is used in Step 3 of Prometheus (i.e.,
a constant only dependent on problem instance and cannot
be made arbitrarily small algorithmically).

Under
min{

Proposition 3. Assumptions1-3, with
11— T (1-=X)m T

step-sizes o < SAT; " 300 3B 1T) 5157
B r(1-x) Q=Npip'® _1y (1-\)m
6m(1-X)’ 48mLZ3’ 23040L%L2 ,O(T2), 4B LB <

cor1oa (=Nl _1 .
mln{m,m,O(T 3)}, we have the fOHOWlng

result if Eq. (13) replaces Step 3 in Prometheus,

T-1
1 _ - -
T (]E”Xt—1®Xt||2+EHXt—1®Xt”2>
t=0
= O< ! ) + C;
vT .
where the constant C/ is defined as CJ

A
27(1=N)  pL°
2,

9(6+3 Cyay Cr,
(6437) (( Cazu Oy (1-&)1()2—}—0']%)4—740(8+4QQ)L§ —

T2 Hg Lg
A key insight of Proposition 3 is in order. The SG-type
update in (13) is similar to the SG-type update in uncon-
strained bilevel optimization in the single-agent setting (Ji

et al., 2021). However, unlike the SG-type method in (Ji
et al., 2021) that can approach zero at an O(1/v/T) con-
vergence rate, the SG-type method can only approach a
constant error C”, at an O(1/+/T') convergence rate in the
constrained decentralized setting. The non-vanishing con-
stant error C/, is caused by the variance O'J% and org of the
stochastic gradient. Proposition 3 highlights the benefit
of using the variance reduction techniques to eliminate the
{0, 04}-variance in order to approach zero asymptotically.

5. Numerical Results

In this section, we will first

conduct experiments to demon- 12 v
strate the small variance of our 10
new stochastic gradient estima-
tor. Then, we will compare
Prometheus’ convergence I\?vith z a:_
several baselines. Conventional New

Estimator Estimator
K=10 K=10

Variance

1) New estimator vs. conven-
tional estimator: Note that the
major difference between the
new and conventional estima-
tors lies in how they estimate
the Hessian inverse of the matrix A. Thus, it suffices to
compare the Hessian inverse approximations. The conven-
tional estimator to estimate the A~! can be denoted as

Al =K H’;g)(l — A), while the new estimator can

conv

be denoted as A1 = Z?,(fl) ;/:1(1 — A,). To see the
benefits of our estimator and due to the high complexity of
computing matrix inverse, here we consider a small example
A =[[0.25,0.0],[0.0,0.25]], so that A},}_ = [[4,0], [0, 4]].
Let A be a random matrix obtained from A plus Gaussian
noise. We use A} and A~! to estimate A~!, respec-
tively. We run 10000 independent trials with K = 10 and
the results are shown in Fig. 3. We can see from Fig. 3
that the new Hessian inverse estimator has a much smaller
variance than the conventional one. Additional experimen-
tal results on varying K and with different matrix A are

relegated to our Appendix.

Figure 3. Hessian inverse
estimator comparison.

2) Convergence Performance: We verify our theoretical
results of Prometheus by conducting experiments on a meta-
learning problem tested on MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky et al., 2009) datasets. Due to space
limitation, we provide additional experiments on hyper-
parameter optimization in the appendix. Due to the lack of
existing algorithms for solving constrained decentralized
bilevel optimization problem, we compare the convergence
performance of Prometheus against several stripped-down
version of Prometheus:

¢ Prometheus with Stochastic Gradient (Prometheus-
SG): Prometheus-SG is the SG-type algo-
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MNIST CIFAR-10

—— Prometheus-SG

—— Prometheus

—— Prometheus-dir
Prox-DSGD

| —— Prometheus-SG
—— Prometheus
Prox-DSGD ol |l
0 . ]
10 \ —— Prometheus-dir

200 400 600 800 1000
Communication round

0 200 400 600 800 1000 0
Communication round

Figure 1. Five-agent network.

rithm discussed in Section 4.4: pi(Xi, Yit) =
Vf(Xi it &i0)i di(Xie, Yie) = V9(Xit, ¥ie; Cio)-

Prometheus with Direct Proximal Method (Prometheus-
dir): Instead of performing X; ; = argmin, »[(u;+,x—
Xit) + Zlx — x> + h(x;)] in Prometheus,
Prometheus-dir directly adds the constraints on x: X; ; =
argmin, v ||x — (x;¢ — Tu; ) ||%

Proximal Decentralized Stochastic Gradient Descent
(Prox-DSGD): This algorithm is motivated by the DSGD
algorithm, which can be viewed as Prometheus with-
out using gradient tracking. Specifically, we updates

local gradient as w;; = Vf(XitYit&io);Vie =
Vy(Xit, ¥iti Gio)-

We also note that the Prox-DSGD algorithm can be seen as
a generalization of DSBO (Yang et al., 2022), SPDB (Lu
et al., 2022a), DSBO (Chen et al., 2022b) with the proximal
operator. Prometheus-dir can also be seen as an extension
of the algorithm INTERACT (Liu et al., 2020) to handle
the constrained decentralized bilevel optimization problem.
We compare Prometheus with these baselines using a two-
hidden-layer neural network with 20 hidden units. The
consensus matrix is chosen as M = I — ﬁL(L), where
L is the Laplacian matrix of G and Ay (L) denotes the
largest eigenvalue of L. Due to space limitation, we rel-
egate the detailed parameter choices of all algorithms to
the appendix. In Fig. 1, we compare the performance of
Prometheus, Prometheus-SG, Prometheus-dir, and Prox-
DSGD on the MNIST and CIFAR-10 datasets with with
a five-agent network. The network topology can be seen
in Fig. 4 in Appendix D. We note that Prometheus con-
verges much faster than than all other algorithms in terms
of the total number of communication rounds. In Fig. 2,
we also observe similar results when the number of tasks
(and agents) is increased to 10. Our experimental results
thus verify our theoretical analysis that Prometheus has the
lowest communication complexity.

6. Conclusion

In this paper, we studied the constrained decentralized
nonconvex-strongly-convex bilevel optimization problems.
First, we proposed an algorithm called Prometheus with a

MNIST CIFAR-10

—— Prometheus-SG

—— Prometheus

—— Prometheus-dir
Prox-DSGD

—— Prometheus-SG

—— Prometheus

—— Prometheus-dir
Prox-DSGD

0 200 400 600 800 1000 0
Communication round

200 400 600 800 1000
Communication round

Figure 2. Ten-agent network.

new stochastic estimator. We then showed that, to achieve an
e-stationary point, Prometheus achieves a sample complex-
ity of O(Ky/ne~!+n) and a communication complexity of
O(e™1). Our numerical studies also showed the advantages
of our proposed Prometheus and verified the theoretical
results. Collectively, the results in this work contribute
to the state of the art of low sample- and communication-
complexity constrained decentralized bilevel learning.
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Variable Definition

Set of nodes.
Set of edges.
Number of agents.
i-th agent.
j-th local sample at each agent.
Total iteration numbers.
t-th iteration.

K € Nis a predefined parameter.
k is an integer-valued random variable uniformly chosen from {0, ..., K — 1}.
Upper-level step-size.
Lower-level step-size.
Proximal control parameter.

Constant from the strongly-convex assumption, see details in Assumption. 1.
Constant from the Lipschitz continuous assumption, see details in Assumption. 1.
Cy., Constant from the bounded gradient assumption, see details in Assumption. 1.
Constant from the gradient Lipschitz continuous assumption, see details in Assumption. 1.

T R NS s3I nZ

=
S

Ly, , Ly,  Constant from the Lipschitz smooth continuous assumption, see details in Assumption. 2.
Cy, Constant from the bounded gradient assumption, see details in Assumption. 2.
0f,0g Constant from the bounded variance assumption, see details in Assumption. 3.
M Consensus weight matrix M € R™*™,
A Second largest eigenvalue of matrix M.

Table 2. Notation Table.

A. Additional Theoretical Results

Lemma 4. (Lipschitz-smoothness of conventional stochastic gradient estimator). With the conventional
. . . = : k(K
stochastic gradient estimator Vf(Xi ¢, yit;&5) = Vxf(Xie,yi: &) — %Viyg(xiyt,yu;(?) . Hp(zl)(_f _

i WV f(Xit,yie:€Y). If the stochastic functions f(x,y; €) and g(x,y; () satisfy Assumptions 1-3, then we

have

(i) For a fixed y € RP?, E¢ HVf(xl,y;g) — Vf(xQ,y;g)H2 < L%, llx1— ><2||2 VX1, Xg € R,
(ii) For a fixed x € RP*, E¢ |V f (x,y1;€) — Vf (x,y2;5)||2 < L2, lly1 — y2|® . Vy1,y2 € RP2.

We have

K K
L2 :=21% ++6C% 2 (—— ) 4+6C2 12 ([—
conv fa ++ Jzy y QHng — 2 + fy ™ 9ay QIUng — :U‘?y

Hg
2(k(K)—1
2 u><())12

K
+6C2 0% — max{k(K)? (1 -2 }ﬁng.
g

C% (14)
9wy~ fy Lg k(K) L,

In the above expressions, Lcony > Ly, Ly is the Lipschitz constant for our proposed stochastic gradient estimator and can
be found in Lemma. 1.

B. Proof of Main results

Before diving in our theoretical analysis, we first introduce the following notations:

)

X :lix. x :[XT ceooxt }T
t m < 1,ty 1,t» v mt
i=1
T
Pt = [pl(xl,hyl,t)—ra' o 7pm(Xm,taym7t)T]

)

12
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T
dt = [dl(xl ty Y1, t)Ta"' 7d (Xm tyYm t)T]

)

pt:*sz thayzt a Zd thayzt (15)

To prove Theorem 1, we structure our proof into the following key steps:
Step 1:

Lemma 5 (Descending Inequality for upper function). Under the stated assumptions, the following descending inequality
holds for Prometheus:

aly aT 212 + arr  o®’Ly ar 9
—_ -1 —_— 4+ — - — -1

2mr 2Tm)||xt 2% ( + 2m + 2m m I %

m

U(Xpp1) — (%) <(5—

3a 3a
L=y —viellP+ o—w — 1@ 0> - h( h (%
+ 2rm 2= lyis— Vil +27,m||ut @ | (Xet1) + 7 (Xe)
TrmHEva Xit, Yie) — Wl (16)

where y?, = argming g(x;+,y).
Proof.

_ . T
Xi¢ = argmin (W, 4, X — X;¢) + 3 x —xi.6]|* + h(x), a7
XEX

_ _ LS.
Xt41 =X+« <m Z;Xi,t _Xt> ) (18)
i—

It follows form the optimal conditions of h(x;) that

0> (we+7 (X —Xip) +0h (Xig) , Xip — Xe)
> (Wi + 7 (X — Xip) , Xip — Xg) + 7 || Xie — 5<t||2 + (Oh (Xi), Xie — X¢)

Z <117;,t —+ 7 ()7(75 — X,ﬁ) ,iiﬂg — it> + 7 ||)Aii,t — it”z + h (ii,t) — h (it) . (19)

From convexity, we have:
h( ) (1 — )h( + ah —1 E X —1 gm )) (20)
X « X (o X;, x7 .
b+l t m 4 - m ] t

Therefore, it follows that
—1 E ( + 7 (X — ), X Xt) + a |Ix 1x ||2 +h(Xep1) —h(x) <0 21
« u; T(Xe — Xit),Xit — — ||Xit — Xit1) — .
m t t N’ N’ t m N’ t t+1 t

Then, we have

(a) L
(1) = £(%e) < (VUK K1 = %) + o [Ke1 = %l

(b)<V£ < Zx”—xt>> oLy me—xt
€em

m

1 - _
SO{E Z <V€ (it) ,Xiﬂt, — Xt> —+

=1

2

— % — 1%

13
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(0 1 & _ _ N _ a?L, 1
SOZE Z (VE(Ry) —wip — 7 (X — Xip) Xt — Xe) + ‘

i=1

T | . _ _ _
- % — 1%]|” — h (Reg1) + D (%e)

— |[% — 1%¢|?
m

a & _ . _ arT & L _
= Z (VO (X¢) — 044, Xip — Xe) + g (Xip — K¢, X — Xp)
i=1 i=1
042Lg 2 aT 2
% — 1%, — T % — 15,))° — h (% h(x
+ o [[%: — 1% || m [[%: — 1% || (Xit1) + h(Xe)
& 1 &
=— VE(xy) — — i,t), Xijp — X
- < (%e) = — Z V(i 1), Xit Xt>
i=1 i1=1
a m 1 m
— — ) VX ¢) =i, X — X
+m¢z_;<mz_1 (Xiy,t) = Wies Xt Xt>

OéQLg
2m

aT . _ ~ _ oT | . _ _ _
T i = KK = %) g %= 1% = R = 1l (%) o+ (%0)

m
1 T _
> IVE () — Vel + 53 L i — P

@
T m 4~ 2r )
i=1 =1
ae-1l,1 & A e~ |
F = == D Vi) —widlP =D SRl — Y =l — X
m — 2r'm = m 2 et 2r
arT =1 o’L T
~ - 12 {1~ - 12 ~ - 2 - _
— —||x;: — X Xt — 1x||" — — ||x¢ — 1x¢||" — h(x h(x
+ m ;2” it — Xe||” + 5 [[x: al m [ al (Xe41) + P (Xt)
QoS L p g xaal? + 230 Dy P+ T3 s —
s — L[ Xe — Xt — SIXie — Xt — S IXit — Xt
m 2r m — 2 P 2r
@ m 3 1 m 1 m
+ > ol > VUi, 0) - o > Vaiy 6 yi )l
i=1 =1 =1
a <=3 1 & a e
= (=D V& Yie) — Wl + 10— )+ = SR — x|
mi 2 mi= m i 2
aT 1 oL aT
. _ - _ _
+—> S lIxie = x| * + e — 1% = — [[%¢ — 1% = 2 (Re41) + 7 (%)
=1
(f) alL, oT 5 ar  arr oLy ar 5
(8B T Vi, — 1@ % e ~ )% - 1@
O T e (4 O Ol Ty e

m

3a * 3o _ N B
o ; Iyl = yiel® + 5 —llu = 1@ @||* = h (%ep1) + (%)

n 3o ||1
2rm - m

> OV (xinyie) - we?, (22)
=1

where (a) is because of Lipschitz continuous gradients of [, (b) is because of the updating rules. (c) is from 19. (d) and (e)
are because of the triangle inequality. (f) is from the definition of u; ¢, £;(x; 1) .

O

Step 2:
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1

Lemma 6 (Error Bound on y*(x)). Under the stated Assumptions 1-3, letting o« < i ve have

gl
llyit+1 — y;‘,t+1”2 <-4

# 96
L Yie =i ’+ ﬂ”vyg(xi,tay'i,t) —vidl?
g
B. B2 5L2
= (4 B vl + s = x| (23)
Proof.
Y1 = Yiall® = yie — Bvie — yiall® = lyie — yil® 4+ B2lviell® = 28{yie — yis, Vi) (24)
Under the Assumption 1.(a), we have:
I
9(Xit,y) — 9(Xit, Vi) — ?gHy —¥itll? > (Vya(Xit, ¥it) ¥ — Vi)
:<Vi,ta y—Yi,t+1> + <Vyg(xi,t7 Yi,t) —Vit,y — Yi,t+1> + <Vy9(Xz‘,t, Yi,t), Yit+1 — Yz‘,t>
=(Vi,t, Y =Yii+1) + (Vyg(Xit, Yit) = Vi, ¥ — Yier1) + (Vy9(Xit, Yire), Yitr1 — Yioe)
1 1
- E||Yi,t+l - yi,t||2 + @H}’z‘,t-;—l — Yi,t||2~ (25)
With 8 < 1/2Lg, it follows that
1 L
@HYM-H — Vil 2> ?gHyi,t+1 - Yi,t||2
> 9(Xit, Yig+1)—9(Xit, Yit) — (Vyg(Xi t,Yit), Yig+1 — Yit)- (26)

Combining (25) and (26), with the update y; 111 — yi,+ = —/V; ¢, we have:
, A Hg 2
9, ¥) = 9K, Yierr) = 5 Iy = yial
1
>(Vit, ¥ = Yip+1) F(Vyg(Xit, ¥it) — Vi, ¥ — Yig+1) — E”}’i,ﬂrl — yill?
B
:<Vi,t>y - Yi,t> + <Vi,t»Yi,t - Yi,t+1> + <vyg(xi,taYi,t) —Vit, Y — Yi,t+1> - ZHvi,tHQ

B
=(Vit,y — Vit) + BlIViill? + (Vyg(Xit, ¥it) — Vi, ¥ — Yit1) — Z”Vi,tHQ

33
=(Vit, ¥ —¥Vit) + (Vy9(Xit,¥it) — Vits ¥ — YVie+1) + I||Vi,t||2-

(27)
Lety =y, we have
* Mg * 2
g(xi,tayi,t) —9(Xit, Yitt+1) — 7‘|yi,t — Vil
* * 35 2
>(Vit,¥ie — Yit) T (Vy9(Xit, ¥it) = Vi, Yig — Yier1) + I”Vzt”
(@) . 2 0 3
> <Vi,t7Yi,t - Yz',t> - 7||vyg(xi,t7}’i,t) — Vit |2 - 7g||y;:t - y@‘,t+1|\ + 7||Vi,t| 2
Hg 8 4
(b) * 2 2
>(Vits i = Vit) — ;”Vyg(xi,ta}’i,t) — Vil
g
g i 1 3
- ZgHYi,t —yisll® - f”yz‘,t —Yierl?+ Z”V’i,t”Q
© . 2 [ 38 peB®
=(Vit,¥is — Vi) — ;||vyg(xi,t;y1,t) —vidl? - f”}it — vyl + (o~ 94 )Iviell?, (28)
g
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where (a) follows from —(x,y) < 5-[|x||> + £[ly[[* and ¢ = &, (b) is due to [|x + y||* < 2||x|* + 2[|y||*, and (c) is from

Yit+1 —Yit = —ﬁVz‘,t-
Since g(x; ¢, y;it) < g(X;¢,¥i+1) and mutiplying 25 on both sides of Egs. 28, we have

« 45 38 peB®
2> 2B(Vit, Yit—Yit) — ;Hvyg(xi,tayz',t) viel?+ (5 5 I [[viel® (29)
g

kB
g ||th

Then, we have

46 36°  pgB?
IVt v Vel = g = vl GO
g9

. _hgB
—2B(Vit, Vit — Yit ) < g ||Yz t—

Next, combining (24) and (30) and setting /3, we have

* Pl 45
lyies1 —yiell® <1 - g Wyis = viel® + M—Ilvyg(xi,t,yi,t) —viul?
g

/32 ,Ugﬁ 2

+ (5 =2 vl

thgf3 3

g My — yzf||2+*||Vyg(X7t7yzf) V7t||2+7HVi,t”2~ (3D

<(1-

Then, it holds that

||Yi t+1 — y;'kt+1||2 = ||yi,t+1 - Y:,t + yz‘,t - YZ‘,m H2

) * 4 * *
<+t 1 Mol v or — yidl?+ 1+ O Vienl?
g
( ) ] y 4
<(1 + £ 4 Vi —yil?+ (1 + W)Lzﬂxi,t — Xi 41|
g

(€) B 5 B.48
< (10 500 = Elyie =yl + 0+ 50 IV g, via) = Vil

1gf3\ B 4
= (L4 =) viell® + (1+7)L§||Xi,t_xi,t+1”2
g

O pgB B
<(==)lyi— yzt||2+—|\Vyg(x,t,y”) vidl? = (1 + 5
5L2
+ —2 %t = xi e ], (32)
Hg
where (a) follows from [|x + y||* < (14 1/¢)||x||* + (1 + ¢)|ly||* and ¢ = p,y/3/4, (b) follows from Assumption 3, (c)
follows from plugging (31), and (d) due to the facts that:

Y NP P BT R T

(HT 2 4 2 8 — 4
N R S LR T
Hg Hg Hg Mg
4 1 4
_ 5 (33)

1+ —< —+— = .
Ugﬁ ,ugﬁ Ugﬁ ,Ugﬁ

Plugging (33) into (32) yields:
i1 = Vil = lyie — vael?
Kl 98
<- g lyie —yiell® + 2 IVyg(Xit:yie) = Vil
g
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5L2
— 0 2 o o — il (34)
Hg
This completes the proof of the lemma. O

Step 3:
Lemma 7 (Iterates Contraction). The following contraction properties of the iterates hold:
_ _ 1 -
Ixe = 1@ %2 <1+ )N xi1 = 1@ %o+ (14 —)a?Re1 = xia?,
1
Juy — 1@ ul|? <(1+ )N [lugmy — 1@ w4

1
+ 1+ P =Pl (35)
where c; and ¢, are arbitrary positive constants. Additionally, we have

% = xe—1[* < 8[[(xe-1 = 1@ %e—1)[|* + 40®[(xp-1 = 1@ %) ||
+ 402 (Xem1 — 1@ %)
lye — ye—1ll* < B%|lvea|?, (36)

Proof. Define M=M ® I,,,. First for the iterates x;, we have the following contraction:
[Mx, — 1@ %)% = [M(x: — 1@ %,)||2 < A% — 1 @ % |2, (37)

This is because x; — 1 ® x; is orthogonal 1, which is the eigenvector corresponding to the largest eigenvalue of I\N/I, and
A = max{| Az, |A\m|}- Hence,

1 m
-1 2= M - —1] 7§ X
[Ix: @ Xe|® = IMxyp—1 + a(Xym1 — x-1) — 1[Reo1 + o m 2 Xi — X¢—1)
_ 1 .
<A +e)Nxi1 —1@% ]2+ (1 + C—)a2||xt,1 — x4~ (38)
1

For u;, we have
Ju — 1@
=||1\N/Iut71 +p:—pPi-1—1® (l_lt71 +P(Xit,Yit) — I_)(Xi,tflvy@tfl)) &
<A+ e)N | uey —1@u|?+ (1+ é)”pt ~ Pi-1
—1® (P(xit,¥it) — P(Xi—1,¥ie-1)) |1
<(1+4 02))\2Hut 11— 1@

+(1+ )H( (11T)®I)(pt*pt )lI?
(@) 9 B ~ ) 1 B )
ST+ )M upy =1 @u || + (1 + CQ)IIPt Pt (39)

where (a)isdueto [I - L (117) @ I| < 1.

m

According to the update, we have

Ix¢ — %1 ]1? = [IMx—1 + a(Feo1 — x4-1) — X1

JI(M — Dxio1 + @i — 30 )I” < 2 (M = Do |? + 202 %01 — x|

17
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—2|(M = T)(xt-1 — 1@ %;-1)|> + 202 | %e1 — X1 |
<8||(x¢-1 — 1@ % 1)||* + 203 %1 — x¢1 ||

<8|(x¢—1 — L@ Re1)||* + 407 (x¢—1 — L@ X)) ||” + 40”1 — 1@ %4—1) |7, (40)
Iy — yii—1ll® < B2lIvie—1*. 41)
O

Step 4: With the results from Step 1, we have

O(Xp11) — (%)

aL, ot 2 arr oL, ar 9
<&t ~1 ar o & —1
(g T g lxe — 1% ( ~+ oy T o~ o IKe - 1@
3a _
+L° ZH}’M il +7||ut—1®utH h(Xe41) + b (X¢)
Trm”ﬁzvf Xt Yie) — U (42)

With the results from Step 2, we have

lyier1 — yi‘,m\lz = yie — Yf,t||2

pgB 93
< - g lyis— y@‘,t||2+72u Vyg(Xit,yit) — Vil
g
I5; 5 52
-1+ B0 v Vil + - i = el 43)
g

Combing (42) and (43) and telescoping the inequality, we have

% < = . pg(1—A) ) i}
U(x741) — £(X0) + h (X741) — b (X0) + m\/ﬂnyipﬂ — il = lys = vol?]
T
aly 2 arr oLy ot 5 -
< -1 - - _ -1
<Gt ant @I + (S + T+ m)gnxt ® %)
o m T
LY > i - ytH2+—ZHut—1®ut||
i=1 t=0
T
3o Mﬂ 2 pg(1=A)
= v _ 2 g g 2
+2Tm2\| Z; Fxerye) = we)” 20(8+4a2)L2;nyt yill
T
Mg(l_A) 95 2 :ugﬂ 52 2
T 508 £ 402\ 2 Vyg(xe,y1) = v 1+ o\
208 + 4z V7| uggn 90y =il = (14 5 3 v
L 5L a
ZHXt*XtHH
- 2m7° 2rm ¢ Xt 2m 2m m’ = t t
3a “
L ZZIIyt ytH2+—ZHut—1®ut||
i=1 t=0
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T
3a 2 2 Mgﬁg/z pg(1 —A) * 2
2rm - H ;W xeye) =Wl == 20(8 + 40?)L2 ;” ¢ il
T
ug(l—)\) 983 ) ol 5 2
AN (1 [
+ 20(8+4 )LQ\/7 /Jg tz;”vyg Xtvyt) Vf” + 4 2 ;Hvt”
502 L
5 2Bl — 1o %) + 4 — L %) P+ 40% (e = 1@ %)), (44)
97 =0

where the last inequality follows from Eqgs. (36).
Proof of Theorem 1
From the variance technique in Prometheus, we have
BV (%6, ¥it) — Pi(Xits yi) IP
:Etva(Xi,t, Vi) — Pi(Xit, ¥ie) + ]Egm Pi(Xit, ¥ie)] — ]Eg,»,,t [Pi (X, yi,t)]”Z
=Ei||pi(%it, ¥it) — B, [Pi(Xit, yi I I? + BV f (Xits yir) — g, [Pi(Xi0, yi)] P

2 ngucfu Hg K 2
<Et[|pi(xi,t,yit) — Eg, , [Pi(xit, yie)|[|” + (7# “\1-7) )% (45)
g g

Moreover, with ¢ € ((ny — 1) ¢, nt:q — 1] N Z, we have

E¢l|pi(xit, yit) — Eg, , [pz‘(Xz’ 6 yan)lll?

=E¢[|pi(xit—1,¥i,6-1) pA Z V(% ks Yiki Eit) = V(Xik—1,Vik—1; )]

\S
— Eg, , [Pi(xit, i) + ]Egu [pi(xz}tfl; Vii—1)] — Eg, , [Pi(Xii—1, vii—1)]|?

=E¢|lpi (X1, Yie—1) — ]Efm[pi(xi,t—layi,t—l)]||2 + HE Z (Vi yis €it)
i1

— Vg(Xik-1,Yik-1:&it)] — Ee, ,[Pi(xit,yit)] + Eg, , [Pi(xi,e-1, yie—1)]|?
(b
<Eil|pi(xi,t—1,¥i,t—1) — Eg, , [Pi(Xi -1, Yi,t71)]||2
1
+ EL?Et(HXi,t =i P+ lyie = i l?), (46)
where the last inequality use the mean variance theorem.
Telescoping over ¢ from ((n; — 1)g + 1 to ¢, where t < nyq — 1, we obtain that
Eillpi(xie, yit) — Eg, , [Pi(Xit, ¥, Dl|I?
<Et||pz( Xi,(ne—1)g) Yi,(nt—1)q ) Eglt[p ( i,(ne—1)q> Yi,(ng—1) )]”2
1 t—1
- EL? > Eelllxin — xiaal® + [yie — yieal? (47)
t=(ni—1)q
Next, for |p; — 2, we have the following cases:
Case l:t € ((ny—1)q,mq — 1] NZ:
2
Ellp; — pr1 ZE Z Vx f Xits Yi t;fg t) - Vxf (Xz‘,t—layl',tq%f_j,t) (48)

jES
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— Z SN BV (it ¥ia36e) = Vi (Xiee1¥ 5413 610) || (49)

B |51t| = jes

m

9 m 9
L?f Z]E 1,61 = %" + L?f Z]E ||Yi,t—1 - yi,t”
i=1 i=1
<LH(|lx: = %11 + B[ Vi1 ). (50)

Case 2: t = n4q:

Elp: — pi—1®

=E|p: — Pt—1 — E¢, ,Pi(Xi 1, Vit) + Eg, ,Pi(Xit, ¥it)
—Eg, , [Pi(%i,t-1,¥it—1) + Eg, , Pi(Xi -1, Vii—1)|?

<3E[|lp: — Eg,, [Pi (%6, Vi) |I* + 3Elpi—1 — Eg,, [Pi(Xie-1,¥iu—1)|?
+ 3LFE(|Ix¢ — xe—1[* + B2[|ve—1]?)

< 3E ‘ Pniq — E& tpl(Xl neqs Yimneq) ‘ +3L ﬁQE Vg1 ||
2
+ 3E p(Xi,(ntfl)qayi,(ntfl)q - Egiﬁtpi(xi,(ntfl)qvya(ntfl)q) ‘
i SL? 2 2 2
2 e B (e el e =yl +BL3E g — Xl (51

r’'=(nt—1)q+1
where (a) is from (47) and set t = n;q.

Telescoping from r = (n; — 1) ¢ + 1 to n.q and set |S| = ¢, we have

ntq

Z ]E”pr - pr71H2
r:(ntfl)q+1

2
2
+ 3(q + 1)E Hp(nt_l)q — Efi,,,pi(xh(m—l)q’ Yi,(nt—l)q) ’
neq 4L2
Y IR (el e - vealP)
r=(n¢—1)g+1 q
nyq 4L2
= Y IR -5l lye - yeal?). (2

r=(n¢{—1)q+1

Since E ‘
have

2 2
Pn:q — Eéivtpi(xi,ntmyantq)H =K Hp(nt—l)q - E.fi’tpi(xi,(m—l)qa yi,(nt—l)q)H = 0, and with eqS-(48),W€

T T
2 2
S b — el <D [ALIE % — x| + 4L [lye — yeoa|*] (53)
1 -
Since Bt || pi(Xi,(n,—1)gs Yi,(ni—1)q) — Eg, , [Pi (X4, (ny—1)q> Vi, (ne—1)q)] |2 =0, |S| = ¢, we can conclude that

T

1 m
Z EZ th:th _utH

t=0
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T m T
1 _ ~ _
= Z I~ Zl Vi yia) = el = D IVFie yin) = Pi(xin, yie) |12
— M

IA

h

BNV I
gk

C,. Cf K
(%t = xe-1 ]| + llye — yeoa||?) + (Z22=te <1 a Zg) )T
9 g

T
<L2Y (8l (ke ~ 1@ %) |2 + 402 (xemr — 1@ %)

t=0
m C Cf " K
ey =10 ) 823 vl (2 (1 B ) e (54)
i=1 g g
where the last inequality follows from (36).
Similarly, we have
T 1 m
ZO EZ Xm,}’zt _Vzt”
T
<L3 Y (e = %ol + lye = yer]l?)
t=0
T
<L} Y (ll(xem1 — 1@ %) * + | (xem1 — 1@ %o
t=0
+40? (Ko — 1@ % )P+ 82D Iviaal?). (55)

i=1
Besides, with the results from Step 3, the update rule of p;(x; ¢,y;) and (53) , we have
2 2 L o). 2
It = 1@ %2 < (14 c)Xxios = 1@ R + (14 —)a[Ris = xea [,
1
Ju -1 atn? e — 1@ P < (14 )N~ Dluy — 1@

m

+ (1~ )4L2(||xt—xt 2+ 872> vieal®)

=1
(a) 1
ST+ )X = 1)flumy — 1@ |*+ (1 + 2 )4L2 (8ll(xt—1 — 1@ %17
+ 407 (x¢m1 — L@ Re—1) || + 40?|| (K1 — 1@ %e1) || + 5° Z [vie—1?), (56)
1=1

where (a) follows from eqs.(40).

Then, we have

X741 — 1@ X4 ||* — [lx0 — 1 ® Xo|?

T4+1 T+1
<((A+e)A?—1) ZHXt 1 —1®%4|? + Z”Xt 1 —1e% 4|2 (57)
=1

[lurss — 1@ arg|* — lug — 1@ G|

T+1 1 T+1
<((T+ )X = 1) ; ey — 1@ q|? + (1 + 0—2)4L} ;(8|\(th1 —1®%1)?
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+4a®|[(xe-1 = 1@ %) |* +40®|[(Rem1 = 1@ %e1) |2 + B2 {|ver]?). (58)
Combing (57), (58), and (44), we have

1—A
E{l(Xr41) — €(%X0) + h(X7+1) — h(X0) + M@FW))LQ\/B[yT‘f’l —yirall? = llys — voll?]
Y

1 _ _ _ _
+ ﬁ[HXTJrl —1@xrq1l]” = lx0 — 1@ %o|*] + Blllursr — 1 & pya || — lup — 1 ® 6ol|*]}

al arr oL aT )
4 2 J4 ~ — 12
(G + e ant—l@xtn e S DI L L

3o 3o A _
2 ZZHYt yell” + %ZHEZVJ”(X“%) — y|?
t=0 =1

zltO

T
gl pg(1
zrmZH*ZVgxt,Yt —ve|? - Zm 5Z||)’t yell?

T
Mg(l 2 2 - 2
+—20(8+4a2 7z Z (L} ; 8l[(xt—1 =1 @ X¢—1)[|” + 4" (xp—1 — 1 @ X¢—1) |

m T
N _ NS
402 (Fer — L@ % )P+ 8D Vel — (4 2225 2
t=0

i=1
502 &
+ 2 (8 — 1@ %)[? +40®||(x¢ — 1@ %)[* + 4a®|[(% — 1@ %,)|1%)]
,ug,B t=0
] T+1 ] T+1
+ =1+ e)A =1) Y Ellxir = 1@ %1 |? + —( 1+ El|%;—1 — x¢—1]?
73 b3 VAP
T+1
+ B((1 + ca)A? — 1) Z Ellui—y — 1@ 4 ]?
t=1
1 T41
+(1+ a)ﬂL? Z(SE”(Xt—l —1®%1)|
t=1
+4aB] -1~ 1 -l +40°Bl (ocs — 1 0o+ Bl
(@) aly 2 aTr o Le ar
S(er 27’m Z||xt—1®xt|| ( to. T ZHXt—l@XtH

T
3a
L? ZZHyt yil® + mL D Bll(xi-1 — 1@ %1)|? + 40| (xp-1 — 1@ %e1)|?

i=1 t=0 t=0

y c, C K
F40?|(Re — 1@ %) +622 [Vie—1l?) + (ng (1 - Zj) )?-T)

i=1 9
T T
(L7 (8]l -1 2 140 -1 2
- (810~ 1@ %) + 0% (e — 1@ %))
t=0  t=0
32 - ﬂgﬂ pg(1 2
+40®|[(Xe-1 — 1@ Xp-1) ;H"zt 1)) 4 W[ZH% =ell
T
pg(1—=A) 2 2 - 2
_ L (8]I( -1 4 1—1 _
+20(8—|—40¢2)L2 ut - ; ” Xt—1 ® X¢— 1)” + 4o ||(Xt 1 ® Xy 1)”
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g _ G 5 52
+40%)|(Reo1 — 1@ % )P+ 82D [vieal?) - uq Z [[vell?
=1
2 T
7; Z 8[|(xt — L@ Xy)||” + 40®||(x¢ — 1 @ %) || + 40”|| (% — 1 @ %¢)||?)]
=0
1 T+1 1 T+1
+ —=((14c1)N? Elxi—1 —1@ %> + —=( 1+ El%:—1 — x|
SRIRRR > L b
T+1
+B((1+ )V =1 Elluy — 1@
t=1
1 T+1
+(1+ g)ﬁL? Z(SEH(Xt—l —1®%1)|?
t=1
+40°E[|(x1-1 — 1@ %1)|]? + 40°E||(X—1 — 1@ %—1) || + BB ve1|?), (59)

where (a) follows from (54) and (55). Next, choosing ¢; = ¢35 = % — 1, we have

S < < < H 1—A - * * <
UXry1) — U(Xo) + h(Xr41) — h(Xo) + 20(55:—40?))[@2/\/5[YT+1 - YT+1||2 - ||YO - YO||2]

1 B _ _ _
+ W[HXT-H —1@xrl]” = %0 — 1@ %o*] + Blllursr — 1@ arya || — lug — 1 ® 6ol|?]
T T T
<CY ke —1@ %+ Cy Z I%e — 1@ %[>+ C5 > llye — yilI?
t=0 = t=0

+CQZ [ — 1 @ wy|? +OéZ [ve|?

t=0 t=0
3a ,Cy, Ct o\
Ty y 1 _ g 2 . T 60
2rm( g < Ly ) ’ (60)

where the constants are

L 512 1—A 1—A 9
O{ :(24,7) (8+4a2)[—y ,Ll,g( )Lg\/B+ 20”’9( )L \/EL2£

2mr ' 2rm 1193 20(8 + 4a?) L2 (8+4a2)L2 V" Top

bty i/\Lfcﬁ]Jr()\—l)%, (61)
R e e

+2—L§+ Lifl+ 1 2\/13 62)
Cs :LQ;% - Miﬂ20g+14a2 )L2 VB (65)

L=+ (A= 1)5, (64)

C5=- 202?114_ ;\))LQ VBL+ Zﬁ) +B37/\L2

+52(mf $on+ e ) (65)
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To ensure C] < %, we have

y_ale ot 5Ly pg(1— ) pg(1—A) 298
=(—= 4 o\ ) _HBe\e N /Rr2ZE
S R el 1143 20(8 + 4a2) L2 Ghs 20(8 + 4a2)L2 VA Tou

3, 1 1
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al, | ar LY py( (L= = 598

S(Tmﬁrm« )+ 8+ o) 9220(89—1—4042 LQ\[ 160L2 \/BLfﬂ
1 , 1

1—>\+(1—)\+1—)\+1—)\+1—)\)+()\_1)i]

4B V4B T 8YB | 16vB | 168

1—A 1—XA 1-X 1-XA 1-2x 1. 1-a1

_[4\/B+4\/B+8\/B+16\/B+16\/B+(>\71) — (66)

+

<[

(1-=X\)m T (1-=X\)m _
where o < mln{Qf(LpLT) 6437 st? 753 b0 < min{ Y 3Lf 716Lf} "= &3

To ensure CY < 0, we have

f2’u

2m  2m  m tig320(8 +4a?)L32
3a 1 1 1
7[/ I 2_—

orm T LBl B

ar arr o*L, ar 1(1-=X) (1-=X) 94
< (&rer Ty L4 222
T Al I BT VB + 160L§\/Bf2

3a 1 1,1
% L
T TR T
T aT T T aT aT T aT aT aT

<(—F— ) — — — — = 67
_(12m+12m)+6m m+12m+12m+12m+6m+12m 6m’ 67

2 2
r_ g arr a’Ly ot 29Ly  pg(1 =2 pg(1 —A) 298

2
; T 8VBT 20L, 7 T(1=A) 7VB(A-X)) _ T
where o < min{ 57, 2m(1-X)’ 27(1-NBISL2m’ 24mL23° ~ 12m b= 64ar

To ensure C4 < 0, we have

2rm 4 20(8+4a?)L2

2
BB pg(1 =)
<5 240L2\/B T é§q+4a2)L2\//§

Ugﬁ Mg (1 Mgﬁ :ug(l A)
8 20(8+4O&2L2\/B 4 20(8 4 4a? )Lz\/B

Cy = 12 3 Pl Ng(l - ) \/B

Ngﬁ pg(l—A) <_ﬁug(1_/\)
- 8 20(8+4O¢2)L2\[_ 8 240L§ ’ (68)

2 .5
ﬁ (1-X)
where « < WOLZLZ-

To ensure Cj; < 0, we have
Ci=5—-+OM-1B<0, (69)
m
where o < (1 — N) B2 ol = -
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To ensure Cf, < 0, we have

9ﬁ
C/ ( ) 1 Ngﬁ 3 L 2 lu’g 2 L
5 20(8+4 )L 3\/3( )T +ﬂ /\ +h (20(8+4 LQ\[ 120 2rm 1)
pg(1 =X B*° | 5 298
- - 30 po
24002 2 T f+ﬁ 160L2 \f > T orm )
,ug(l_ )ﬁQ Mq(l_ )6 Mg(l_ )/625 ,ug(l_ )B <
S AV SO A SAVN O | SN IS | 70
- 240L2 2 + 240L2 6 + 24OL32/ 6 + 240L2 6 — (70)
: 1-))? 2 1-)) g2 T
where 3 < mm{(%)% 81’%},& < ”SiOLg)ng Msi5: T = 513+
With the above conditions, we have
1 T — 12 ~ S 12 * 12
T (Ellx: —1@%]” + El|%: — 1@ %> + Elly: — y711?)
t=0
E [po — p* .
< [Po = ¥’] v = 0T), (71)

12X ar lBlup (1-=X)
Tmm{TT’%’ § 51002 }
where p, = ((%) + h(%:) + stz VBT — ¥ilP + Blle — 1@ wl? + Flx — 10 x?),0; =
2r nLCQT'quZ (17%)”(

ar L5 RZ(=X) "
VB 6m> 8 240L%

. . . _ (1-X)m aA=X)m 1 _
The exact expressions of the constants shown in Theorem 1 are: C; = ENGIPES) 6+3T,C'1 9 = SILQ 5130 Cis =
(A=Nuip'? . . 20L%T o r(1=N) om T .
3L/ Cra = 23040L2 L7 Crs = 12m(1 ,\)’C1 6 = 271—N)BT 5L2m>CL6 - 24mL25’Cl 7= (1-2) T6+37‘70178 -
pg(1=X) g2° _ 7V/B(A=)) Ly 1-=X _ (pe(d )2
240L% 9L% 6+3erl 9= "o C21 = 1 C20 = 16Lf 1 Cr3 = (1440L§L2) Coa = 81L2 :

We would like to note that the term C decays exponentially fast with respect to K. To show the sample complexity, we

note that the number of sample complexity per agent in the outer loops can be calculated as: (%] - n. Also, the number of

samples using in the inner loop can be calculated as T'S. Hence, the total sample complexity can be calculated as:

[§1n+T s<m T K= TR +n+T- Kvn = O(/nKe +n).

Thus, the overall SFO complexity is O(y/nKe~! + n). This completes the proof.
Proof of Proposition 3

Based on stochastic gradient estimator, we have

1 & _ 1 & 1 &
Eell— Z V(i yie) = wl* = Eel|— > VExinyie) - - > pilxie yidll
] =1 =1
m

1 _
—EgII*ZVf Xit: Yit) EZ Fitsyins &o)l?

:E ZEéva(Xi,ty Yit) — vf(Xi,n Yit; fiz‘o)H2
i=1
1 - - - - - -
= ZEgﬂvf(Xi,t, Vi) = Be[Vf (Xi s ¥it: &0)] + Be [V f (%0, it €0)] = V. (%i0, Vi €)1
a) 9 m - ~
= D Eel|V (i yin) = Be[VF(Xi, i Go)llI?

i=1
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2 - - - .
+— > B[V (it yias &0)] — VF (Xie yiei o)l

i=1

Cy,,Cy K : 2 2
< ( Jou y(l—g) )% + 202, (72)
Hg Ly !

where (a) follows from the triangle inequality and (b) is from Assumption 3(b) and Lemma 3.

Besides, with the results from Step 3 and the update rule of p;(x;+,y;+), we have

1 -
e — 1@ %el|2 < (14 )N 3ot — 1@ K1 |2+ (14 —)o? %oy — x|,
C1
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(a) 1
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i=1
where (a) follows from Eq. (40).

Additionally, we have
Ecl|Vg(xi,y:) = viel® = Vg(xi, y:) — 9(xi, y4; Go) I = o (74)

Thus, combing (44)-(73), we can conclude that
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+HA4%E (x¢-1 — 1@ Xe1)|I* +40%E| (Re—1 — 1 @ Xe—n)|I* + B2E[ve1 ).

Choosing ¢; = ¢ = + — 1, we have
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20m(8 + 4a?)L2

— |lxo — 1 @ Xo*] + Blllur41 — 1 ® arpq] — [lug — 1@ 1o *]}

+

T T T
<O Ellx —1@0% |2 +Co Y El& — 10 %>+ C3 Y Ellye — yi|?
t=0 t=0 t=0
T T
+Cy Y Elu —1@ a4+ Cs Y Ellve]?
t=0 t=0

K
+[7( (C.‘hycfy <1_'u'-‘7> )2+2O.]20)+% p’g(l*A) E \/BO_E]T
Y

2rm Ly L, 2114 20m(8 + 4a2)

where the constants are

L 5L2 1—X
ﬂ+£)+(8+4a2)[ y\/B g ( 2) _
pgBB 20m(8 +4a?)L2

1
Cr = ( + LBl + (A

2mr  2rm

2
ar atr oL, ar
Co=(—+—+ -—
2 (m 2m 2m m)

5L2 (1 1
4 g 2. 2 -
Hia [ugﬁ20m(8—|—4a2 L2f+ Lifl+ 13" 75

3a pgB pg(l =)
Cy=L"—-"9-__1F
ST rm 4 20m(8 +402)L2 VB,

C4:2iiam+(>‘_1)ﬂv
Y 18 Seb\ A 1yl 34444, 2
5= 20m(g8+4<12)L§\/B(1+ ) +5 b
To ensure C; < 4 , we have
L aly  ar o DLZVB g (1= \) 2
1= Gy * o)+ B4 e Soms v dar T 1A
L aly aT
=G T 2
2 5L2\/B Ng(l_/\) 2 2 1
+(8+4a%)] ,uz;ﬁ 20m(8+4a2)L73}+(8+4a )[ﬁLfﬁH( 1)ﬁ
1—A 11— 1-X 1-X 1
§[4\/B+4\/Bm+( % T 16ﬁ)+(’\_1)ﬁ]
FEED W P S e S S SURIPHE IS e S
T 4V/B O 4/B 8B 8VB VB 4 B
where o < min{ 2\(}(223) o5 s 1B S ST T = o

To ensure Cy < 0, we have

ar arr o?L, ar
C = — —_— [ —
2= ( m + 2m 2m m )

27

,1)

- * * — 1 =
ﬂpvﬁmyﬂa—ymﬂf—HW—WMWY+Q%WMw1—1®XTHW

)

-

(75)

(76)

(77)

(78)

(79)

(80)

81)

(82)



Prometheus: Taming Sample and Communication Complexities in Constrained Decentralized Stochastic Bilevel Learning

5L pg(1—N) 1
4 2177y g L _
el 20m(8+4a2)L2\/B+ e f
ar arr OéQLg art o 1 (1=X) 4
< (— —_— 7[}2
<O om T )T [\F om 1Al
<£+£+ﬂ_ﬂ+( or , ot o or
—12m  12m  6m 2m  12m’  6m — 3m’
: T T T(1—X T
where o < mln{m, 6(1@), 48(mL?)B},r = &3
To ensure C3 < 0, we have
3a pgB pg(1=A)
Co— 220 Kb ML —A)
s 2rm 4 20m(8 + 4a2)L2 'z
“g BgB  pg(1—A)
< P SV
- 8 240L2 \/B 4 20m(8 +4a?)L2 \/B
Nqﬁ M(] (1- Mgﬁ fg(1—A)
< - g 7
- 8 20(8+ 4a2 L2 \/B 4 20m(8+4a?)L2 \/B

8 20m(8 +4a?)L2

2,61 5 (1-x)

where a < WOLZL?

To ensure Cy < 0, we have

Ngﬁ fg(1—A) < _ﬁﬂz(l -
\f - 8 240mL§ 0

3a
Cy = A-1B<0
4 2rm + ( )6 -7
where o < (1 — \)B22.
To ensure Cs < 0, we have
prg(1—=N) MGB 3 2
Cy=— — 2 "~ 1 7L
20m(8+4a2)L2 VBU+ TS 5 Y
Mg 8? 3 2
7L <
- 240m L2 \[ +5 =0,
1—A 4 2
where § < W

With the above conditions, we have
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Then, we can conclude that:
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C. Supporting Lemmas

C.1. Proof of Lemma 1

IV (x1,¥:8) = VI (x2,5:) |
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9
where (a) follows from triangle inequality and the definition of V f ( X,y; 5_) (b) follows from the gradient Liptichz
assumption.
For the last term, we have
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< 305, 75 Iz ( - g) L} %1 — x| +3CF = ( - g) 2 llx1 = xoff?

Lg fvL2 L,
) 2(j-1) 1
ract o> (1- ) L, el o)
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where (a) and (d) follow from Assumption 1-2 and the triangle inequality and the Lemma A.1 in (Khanduri et al., 2021), and
(b) follows from Ly, -Lipschitz continuity assumption and expanding j to k, (c) is because of the triangle inequality, and (d)
follows from L, -Liptichz continuity assumption.

On both sides taking expectation w.r.t k, we have
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Thus, we have
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Further, By, ||V f (x,y1:€) — Vf (%, y2:€) H2 < Ly|ly1 — y2l? follows the same procedure.

C.2. Proof of Lemma 3
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This completes the proof.

C.3. Proof of Lemma 4

(94)

Similar to Egs. (90)—(91), and with the conventional stochastic gradient estimator V f (X; 1, ¥i.; &) = Vo f (Xit, i3 €Y) —
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Since we are aiming at finding a constant L., which satisfied the Liptichz inequality for all k, Eq. (95) needs to hold with

2(k(K)—1)
the maximum value of k(K)? (1 - %) .
g

Thus, we have

K K
L?OM :—2L2 + 4602 L2 <) +6C2 ()
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g

=
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Since max s {k(K)? (1 - 52 b A2 ()
Thus, we can conclude that Loy, > Ly.

Further, E,, HVf ( X,V1; f_) -Vf ( X,y2; 5_) H2 < Leonw||ly1 — y2||? follows the same procesure.

D. Further Experiments and Additional Results
D.1. Topology setting

We test three different topologies on a 10-agent system. The datasize for each agent is n = 100. We set the constant learning
rate « = 0.5, 8 = 0.5 and mini-batch size ¢ = [y/n] = 10, pre-defined parameter K = 10. As shown in Fig. 5, we can
observe that Prometheus is insensitive to the network topology, but the convergence metric 91 slightly increases as p.
decreases.
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Figure 4. Network topology. Figure 5. Network probability comparison.

D.2. Learning rate setting

We use a 10-agent system with a generated topology as shown in Fig. 4. In this experiment, the dataset size for each agent is
n = 100, mini-batch size ¢ = [y/n]| = 10, pre-defined parameter K = 10. Fig. 6 illustrates the convergence metric 91 of
Prometheus with different learning rates o and 5. We fix a relatively small learning rate 5 = 0.5 while comparing «; and
set &« = 0.5 while comparing g. In this experiment, we observe that methods with a smaller learning rate have a smaller
slope in the figure, which implies a slower convergence.
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Figure 6. MNIST dataset. Figure 7. CIFAR-10 dataset.

D.3. Additional experiments on our new stochatic estimator

Recall that the conventional estimator to estimate the A1 can be denoted as A 1

o = K H];(:If)(l — A,), while the new
estimator can be denoted as A~ = Z?,(fl) Hi),:l (I— Ay). Here we consider a 4-dimension matrix example A = 0.25x 14
and 10-dimension matrix example A = 0.1 x I;. Let A, be a random matrix obtained from A plus Gaussian noise. We
use A(jo%w and A~ to estimate A1, respectively. We run 10000 independent trials and the results are shown in Fig. 8
and Fig. 9. We can see from Fig. 8 and Fig. 9 that the new Hessian inverse estimator has a much smaller variance than the

conventional one.
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Figure 8. Variance comparisons on varying K.

D.4. Additional experiments on decentralized hyper-parameter

Next, we compare Prometheus with other baseline algorithms using the logistic regression problem (Grazzi et al., 2020;
Jietal., 2021) with the same formulation as in (1), where f;(x,y}(x)) = |'D71]| Z(aj,cj)eDw,,j Qalyr,c;). gi(x,y:) =
ITlr-l > (ay.0)€ D0 s Q(alyi,c;) + > 1L, YV exp(X,)y2y- Dr.i denotes the the training dataset and Dy ; is the

q1p
validation dataset for agent i, respectively, () indicates the cross-entropy loss, ¢; denotes the number of classes, and p
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Figure 9. Variance comparisons on different level of noise G.

is the number of features. We use the “a9a" dataset from LIBSVM repository, which is publicly available at (Chang
& Lin, 2011). We divide the a9a dataset into training, validation, and testing sets, which contain 40%, 40%, and 20%
samples, respectively. We compare the proposed Prometheus algorithm in terms of test accuracy and loss, using ten-agent
communication networks, with the network connection probability p, = 0.5, step sizes « = = 0.01. As shown in Fig. 10,
Prometheus performs better than all other algorithms in terms of the total number of communication rounds.
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Figure 10. Hyper-parameter experiment on a ten-agent network.
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