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ABSTRACT

Federated learning (FL) is an emerging machine learning paradigm,
in which clients jointly learn a model with the help of a cloud server.
A fundamental challenge of FL is that the clients are often hetero-
geneous, e.g., they have different computing powers, and thus the
clients may send model updates to the server with substantially
different delays. Asynchronous FL aims to address this challenge
by enabling the server to update the model once any client’s model
update reaches it without waiting for other clients’ model updates.
However, like synchronous FL, asynchronous FL is also vulnerable
to poisoning attacks, in which malicious clients manipulate the
model via poisoning their local data and/or model updates sent to
the server. Byzantine-robust FL aims to defend against poisoning
attacks. In particular, Byzantine-robust FL can learn an accurate
model even if some clients are malicious and have Byzantine be-
haviors. However, most existing studies on Byzantine-robust FL
focused on synchronous FL, leaving asynchronous FL largely unex-
plored. In this work, we bridge this gap by proposing AFLGuard,
a Byzantine-robust asynchronous FL method. We show that, both
theoretically and empirically, AFLGuard is robust against various
existing and adaptive poisoning attacks (both untargeted and tar-
geted). Moreover, AFLGuard outperforms existing Byzantine-robust
asynchronous FL methods.
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1 INTRODUCTION

Background and Motivation: Federated learning (FL) [27, 32] is
an emerging distributed learning framework, which enables clients
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(e.g., smartphone, IoT device, edge device) to jointly train a global
model under the coordination of a cloud server. Specifically, the
server maintains the global model and each client maintains a local
model. In each iteration, the server sends the current global model
to the clients; a client trains its local model via fine-tuning the
global model using its local data, and the client sends the model
update (i.e., the difference between global model and local model)
to the server; and the server aggregates the clients’ model updates
and uses them to update the global model.

Most existing FL methods are synchronous (7, 9, 22, 33, 35, 56].
Specifically, in each iteration of a synchronous FL, the server waits
for the model updates from a large number of clients before aggre-
gating them to update the global model. However, synchronous
FL faces two key challenges. The first challenge is the so-called
straggler problem. Specifically, due to clients’ unpredictable com-
munication latency and/or heterogeneous computing capabilities,
some clients (i.e., stragglers) send their model updates to the server
much later than others in each iteration, which substantially de-
lays the update of the global model. Simply ignoring the stragglers’
model updates would waste clients’ computing resources and hurt
accuracy of the global model [44]. The second challenge is that syn-
chronous FL is difficult to implement due to the high complexity in
maintaining a perfectly synchronized global common clock.

Asynchronous FL aims to address the challenges of synchronous
FL. Specifically, in asynchronous FL, the server updates the global
model immediately upon receiving a client’s model update with-
out waiting for other clients’ model updates. Due to the advan-
tages of asynchronous FL, it has been widely incorporated in deep
learning frameworks such as TensorFlow [3] and PyTorch [38],
as well as deployed by industries, e.g., Meta [26, 36]. However,
like synchronous FL, asynchronous FL is also vulnerable to poi-
soning attacks [17, 53, 55], in which malicious clients poison their
local data and/or model updates to guide the training process to
converge to a bad global model. Specifically, in untargeted poison-
ing attacks [6, 7, 18, 41], the bad global model simply has a large
error rate for indiscriminate testing inputs. In targeted poisoning
attacks [5, 14, 40, 43], the bad global model predicts attacker-chosen
label for attacker-chosen testing inputs, but its predictions for other
testing inputs are unaffected. For instance, in backdoor attacks (one
type of targeted poisoning attacks) [5, 37, 43, 49, 51], the attacker-
chosen testing inputs are inputs embedded with a backdoor trigger.

Byzantine-robust asynchronous FL aims to defend against
poisoning attacks. However, it is highly challenging to de-
sign Byzantine-robust asynchronous FL. To date, most existing
Byzantine-robust FL methods (e.g., [7, 9, 12, 33, 35, 56]) are de-
signed for synchronous FL. Compared to synchronous FL, the key
challenge in designing Byzantine-robust asynchronous FL stems
from the fact that noisy model updates are inevitable. Specifically,
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Figure 1: Synchronous vs. asynchronous FL. “Download” means downloading the global model from the server. “Compute”
means training a local model. “Upload” means sending the model update to the server.

when a client sends its model update calculated based on a global
model to the server, other clients may have already sent their model
updates calculated based on the same global model to the server
and thus the global model could have already been updated several
times. As a result, delayed model updates are inevitably noisy with
respect to the current global model. This asynchrony makes it diffi-
cult to distinguish between poisoned model updates from malicious
clients and the “noisy” model updates from benign clients.

Our Work: In this work, we propose AFLGuard, a Byzantine-robust
asynchronous FL framework that addresses the aforementioned
challenges. In AFLGuard, our key idea to handle the asynchrony
complications is to equip the server with a small but clean training
dataset, which we call trusted dataset. The server (e.g., Meta, Google)
can manually collect the trusted dataset for the learning task. When
receiving a model update from a client, the server computes a model
update (called server model update) based on its trusted dataset and
the current global model. The server accepts the client’s model
update only if it does not deviate far from the server model update
with respect to both direction and magnitude. In particular, if the
magnitude of the difference vector between the client and server
model updates is less than a certain fraction of the magnitude of
the server model update, then the server uses the client’s model
update to update the global model. The updated global model is
then sent to the client.

Interestingly, we show that this simple intuitive idea of AFL-
Guard enjoys strong theoretical guarantees. Specifically, under mild
assumptions widely adopted by the Byzantine-robust FL commu-
nity, we prove that the difference between the optimal global model
parameters under no malicious clients and the global model param-
eters learnt by AFLGuard under an arbitrary number of malicious
clients can be bounded. We also empirically evaluate AFLGuard and
compare it with state-of-the-art Byzantine-robust asynchronous
FL methods on a synthetic dataset and five real-world datasets.
Our experimental results show that AFLGuard can defend against
various existing and adaptive poisoning attacks when a large frac-
tion of clients are malicious. Moreover, AFLGuard substantially
outperforms existing Byzantine-robust asynchronous FL methods.

We summarize our main contributions as follows:

e We propose a Byzantine-robust asynchronous FL framework
called AFLGuard to defend against poisoning attacks in asyn-
chronous FL.

e We theoretically show that AFLGuard is robust against an
arbitrary number of malicious clients under mild assumptions
commonly adopted by the Byzantine-robust FL community.

e We conduct extensive experiments to evaluate AFLGuard and
compare it with state-of-the-art Byzantine-robust asynchro-
nous FL methods on one synthetic and five real-world datasets.

2 PRELIMINARIES AND RELATED WORK
2.1 Background on Federated Learning

Notations: We use ||-|| to denote £,-norm. For any natural number
n, we use [n] to denote the set {1,2,---,n}.

Setup of Federated Learning (FL): Suppose we have n clients.
Client i has a local training dataset X;, where i = 1,2,--- ,n. For
simplicity, we denote by X = [JI_; X; the joint training dataset
of the n clients. An FL algorithm aims to solve an optimization
problem, whose objective function is to find an optimal global
model 8* that minimizes the expected loss F(0) as follows:
0" = argmin F() £ argminE,_p [f(6,x)], (1)
6co 6eco
where © C RY is the model-parameter space, d is the dimension
of the model-parameter space, f is a loss function that evaluates
the discrepancy between an output of a global model and the cor-
responding ground truth, the expectation E is taken with respect
to the distribution of a training example x (including both fea-
ture vector and label), and D is the training data distribution.
In practice, the expectation is often approximated as the average
loss of the training examples in the joint training dataset X, i.e.,
Brop [F(0.0)] % 1 Seex £(6.).

In FL, the clients iteratively learn a global model with the coordi-
nation of a cloud server. In each iteration, synchronous FL waits for
the information from multiple clients before using them to update
the global model, while asynchronous FL updates the global model
once the information from any client reaches it. Fig. 1 illustrates
the difference between synchronous FL and asynchronous FL [2].
Synchronous FL: Synchronous FL performs three steps in each
iteration. In the first step, the server sends the current global model
to the clients or a selected subset of them. In the second step, a
client trains its local model via fine-tuning the global model using
its local training data, and it sends the model update (i.e., the differ-
ence between the global model and the local model) to the server.
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Algorithm 1 AsyncSGD.

Server:

1: Initializes global model #° € © and sends it to all clients.

2: fort=0,1,2---,T-1do

3 Upon receiving a model update gl.t_fi from client i, updates
o+l — gt _ lef_ri~

4 Sends *! to client i.

5. end for
Client i, i € [n]:

6: repeat

7: Receives a global model 87 from the server.

8 Computes stochastic gradient gl.t based on 8¢ and a random
mini-batch of its local training data.

9 Sends gl.t to the server.

10: until Convergence

When all the selected clients have sent their model updates to the
server, the server aggregates them and uses the aggregated model
update to update the global model in the third step. For instance,
in FedAvg [32], the server computes the weighted average of the
clients’ model updates and uses it to update the global model in the
third step.

Asynchronous FL: Synchronous FL requires the server to wait
for the model updates from multiple clients before updating the
global model, which is vulnerable to the straggler problem and
delays the training process. In contrast, asynchronous FL updates
the global model upon receiving a model update from any client [13,
15, 26, 36, 46, 52, 54]. Specifically, the server initializes the global
model and sends it to all clients. Each client trains its local model
via fine-tuning the global model based on its local training data,
and sends the model update to the server. Upon receiving a model
update, the server immediately updates the global model and sends
the updated global model back to the client.

Formally, we denote by 87 the global model in the tth iteration.

Moreover, we denote by gl.t the model update from client i that
is calculated based on the global model 8. Suppose in the tth
iteration, the server receives a model update gl.t_T" from client i that
is calculated based on an earlier global model 8°~% in an earlier
iteration t — 7;, where 7; is the delay for the model update. The
server updates the global model as follows:

9[+1 — 9[ _ Ug?—T,’, (2)

1

where 7 is the global learning rate.
Asynchronous stochastic gradient descent (AsyncSGD) [58] is the

most popular asynchronous FL method in non-adversarial settings.

In AsyncSGD, a client simply fine-tunes the global model using
one mini-batch of its local training data to obtain a local model. In
other words, a client computes the gradient of the global model with
respect to a random mini-batch of its local training data as the model
update. Formally, gl.’ = ﬁ Y e V(0 x), where Bis a mini-batch
randomly sampled from X;. Algorithm 1 shows AsyncSGD, where
T is the number of iterations. Note that for simplicity, we assume in
all the compared FL methods and our AFLGuard, a client uses such
gradient with respect to a random mini-batch of its local training
data as the model update.
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2.2 Byzantine-robust FL

Poisoning Attacks to FL: Poisoning attacks have been inten-
sively studied in traditional ML systems, such as recommender
systems [19, 21, 31], crowdsourcing systems [20, 34] and anomaly
detectors [39]. Due to its distributed nature, FL is also vulnerable to
poisoning attacks [5, 6, 10, 18], in which malicious clients poison
the global model via carefully manipulating their local training data
and/or model updates. The malicious clients can be fake clients
injected into the FL system by an attacker or genuine clients com-
promised by an attacker. Depending on the attack goal, poisoning
attacks can be categorized into untargeted and targeted. In untar-
geted attacks, a poisoned global model has a large error rate for
indiscriminate testing examples, leading to denial-of-service. In
targeted attacks, a poisoned global model predicts attacker-chosen
labels for attacker-chosen testing inputs, but its predictions for
other testing inputs are unaffected.

For instance, label flipping attack [56], Gaussian attack [7], and
gradient deviation attack [18] are examples of untargeted attacks.
In particular, in the label flipping attack, the malicious clients flip
the label y of a local training example to C — 1 — y, where C is
the total number of labels and the labels are 0,1,--- ,C — 1. In the
Gaussian attack, the malicious clients draw their model updates
from a Gaussian distribution with mean zero and a large standard
deviation instead of computing them based on their local training
data. In the gradient deviation attack, the model updates from the
malicious clients are manipulated such that the global model update
follows the reverse of the gradient direction (i.e., the direction where
the global model should move without attacks).

Backdoor attack [5, 51] is a popular targeted attack. For instance,
in the backdoor attack in [5], each malicious client replicates some
of its local training examples; embeds a trigger (e.g., a patch on the
right bottom corner of an image) into each replicated training input;
and changes their labels to an attacker-chosen one. A malicious
client calculates its model update based on its original local train-
ing data and the replicated ones. Moreover, the malicious client
scales up the model update by a scaling factor before sending it to
the server. The poisoned global model would predict the attacker-
chosen label for any input embedded with the same trigger, but the
predictions for inputs without the trigger are not affected.

Byzantine-Robust Synchronous FL: Byzantine-robust FL aims
to defend against poisoning attacks. Most existing Byzantine-robust
FL methods focus on synchronous FL [7, 9, 56]. Recall that a synchro-
nous FL method has three steps in each iteration. These Byzantine-
robust synchronous FL methods adopt robust aggregation rules in
the third step. Roughly speaking, the key idea of a robust aggrega-
tion rule is to filter out “outlier” model updates before aggregating
them to update the global model. For example, the Krum aggrega-
tion rule [7] outputs the model update with the minimal sum of
distances to its n — m — 2 neighbors, where n and m are the numbers
of total and malicious clients, respectively. Since these methods are
designed to aggregate model updates from multiple clients, they
are not applicable to asynchronous FL, which updates the global
model using one model update. Other defenses for synchronous FL
include provably secure defenses to prevent poisoning attacks [11]
and methods to detect malicious clients [57].
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Byzantine-Robust Asynchronous FL: To the best of our knov
edge, the works most related to ours are [17, 53, 55]. Specifical
Kardam [17] maintains a Lipschitz coefficient for each client base
on its latest model update sent to the server. The server uses a mod
update from a client to update the global model only if its Lipschi
coeflicient is smaller than the median Lipschitz coefficient of ¢
clients. BASGD [55] is a non-conventional asynchronous FL methc
that uses multiple clients’ model updates to update the global mod
Specifically, the server holds several buffers and maps each client
model update into one of them. When all buffers are non-empty;, t
server computes the average of the model updates in each buff
takes the median or trimmed-mean of the average model update
and uses it to update the global model. In Zeno++ [53], the server
filters clients’ model updates based on a trusted dataset. The server
computes a server model update based on the trusted dataset. After
receiving a model update from any client, the server computes the
cosine similarity between the client model update and server model
update. If the cosine similarity is positive, then the server normal-
izes the client model update. Note that FLTrust [9], a synchronous
FL method, uses the similar technique as in Zeno++ to filter out
malicious information.

Differences between AFLGuard and Zeno++: Both our AFL-
Guard and Zeno++ use a trusted dataset on the server. However,
they use it in different ways. Zeno++ simply treats a client’s model
update as benign if it is positively correlated with the server model
update. Due to delays on both client and server sides and the dis-
tribution shift between the trusted and clients’ training data, the
server’s and benign clients’ model updates may not be positively
correlated. In AFLGuard, a client’s model update is considered be-
nign if it does not deviate substantially from the server’s model
update in both direction and magnitude.

3 PROBLEM FORMULATION

Threat Model: The attacker controls some malicious clients, which
could be genuine clients compromised by the attacker or fake clients
injected by the attacker. The attacker does not compromise the
server. The malicious clients could send arbitrary model updates
to the server. The attacker could have different degree of knowl-
edge about the FL system [9, 18], i.e., partial knowledge and full
knowledge. In the partial-knowledge setting, the attacker knows
the local training data and model updates on the malicious clients.
In the full-knowledge scenario, the attacker has full knowledge of
the FL system. In particular, the attacker knows the local training
data and model updates on all clients, as well as the FL method and
its parameter settings. Note that the attacker in the full-knowledge
setting is much stronger than that of partial-knowledge setting [18].
Following [9], we use the full-knowledge attack setting to evaluate
the security of our defense in the worst case. In other words, our
defense is more secure against weaker attacks.

Defense Goals: We aim to design an asynchronous FL method
that achieves the following two goals: i) the method should be as
accurate as AsyncSGD in non-adversarial settings. In other words,
when all clients are benign, our method should learn as an accurate
global model as AsyncSGD; and ii) the method should be robust
against both existing and adaptive poisoning attacks in adversarial

t—T;
t—7i _ t—T. i
T —glm /
‘\ t—7i oty
t—r; I3 gs

9i g5 95
(a) (b)
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Figure 2: Illustration of our acceptance criteria. gl.t " and

gﬁ‘fs are client model update and server model update, re-
spectively. (a) the direction of gl.t_ri deviates substantially
from that of g: ™. (b) the magnitude of gl.t ~" deviates sub-

stantially from that of g. ™. The server rejects the client
model update in both cases.

settings. Adaptive poisoning attacks refer to attacks that are tailored
to the proposed method.

Server’s Capability and Knowledge: We assume the server holds
a small clean dataset, which we call trusted dataset. This assumption
is reasonable in practice because it is quite affordable for a service
provider to collect and verify a small trusted dataset for the learning
task. For instance, Google uses FL for the next word prediction in
a virtual keyboard application called Gboard [1]; and Google can
collect a trusted dataset from its employees. The trusted dataset
does not need to follow the same distribution as the joint training
dataset X. As our experimental results will show, once the trusted
dataset distribution does not deviate substantially from the joint
training data distribution, our method is effective. We acknowledge
that the trusted dataset should be clean, and our method may not
be robust when the trusted dataset is poisoned.

4 AFLGUARD

Intuitions: The key of our AFLGuard is a criteria to decide whether
the server should accept a client’s model update to update the global
model or not. Ideally, if a model update is from a malicious client
performing poisoning attacks, then the server should not use it to
update the global model. Our key observation is that, in poisoning
attacks, malicious clients often manipulate the directions and/or
the magnitudes of their model updates. Therefore, we consider
both the direction and magnitude of a client’s model update when
deciding whether it should be accepted to update the global model
or not. Specifically, the server computes a model update (called
server model update) based on its own trusted dataset. When a
client’s model update deviates substantially from the server model
update with respect to direction and/or magnitude, it is rejected.

Acceptance Criteria: Suppose in the tth iteration, the server re-
ceives a model update git_f" from a client i € [n], where 7; is the
delay. Client i calculated the model update git_ri based on the global
model 8777 i.e., the server previously sent the global model §7~%
to client i in the (¢ — 7;)th iteration. Moreover, in the tth iteration,
the server has a model update gﬁ‘fs based on its trusted dataset,
where 7 is the delay (called server delay) for the server model up-
date. Specifically, the server trains a local model via fine-tuning the
global model 8?~% using its trusted dataset, and the model update
g.™ is the difference between the global model 8/~ and the local
model. We note that we assume the server model update can have
a delay g, i.e., the server is not required to compute the model
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Algorithm 2 Our AFLGuard.

Server:

1: Initializes global model #° € © and sends it to all clients.
2: fort=0,1,2---,T-1do
3 Upon receiving a model update gl.t_Ti from a client i, re-

s

trieves the server model update g:~ ™.
¢ if Hgit_ri —gi < Hgé_rs then
Updates the global model 8+! = 9% — r]git_f".

5
6 else

7: Does not update the global model, i.e., 7! = 6.
8

9

end if
Sends the global model 8*! to client i.
end for

-
@ X

update using the global model 6 in the tth iteration. Instead, the
server can compute a model update in every 7 iterations.

The server accepts git ~T if i) the direction of gl.t ~* does not
deviate dramatically from that of gﬁffs
gl.t_Ti is similar to that of g~ . Formally, the server accepts gl.t_Ti

if the following inequality is satisfied:

and ii) the magnitude of

t—7; t—7s

”gi —9s

t—7s

< Allgs

; ®)

where the parameter A > 0 can be viewed as a control knob: if 1 is
too small, the server could potentially reject some model updates
from benign clients; on the other hand, if 1 is too large, the server
could falsely accept some model updates from malicious clients.
Fig. 2 illustrates our acceptance criteria. Once a client’s model
update is accepted, the server uses it to update the global model
based on Eq. (2).

Algorithm of AFLGuard: We summarize our AFLGuard algo-
rithm in Algorithm 2. Note that Algorithm 2 only shows the learning
procedure of AFLGuard on the server side. The learning procedure
on the client side is the same as that of Algorithm 1 and thus we
omit it for brevity. In the tth iteration, the server decides whether
to accept a client’s model update or not based on Eq. (3). If yes, the
server uses it to update the global model and sends the updated
global model back to the client. Otherwise the server does not up-
date the global model and sends the current global model back to
the client.

5 THEORETICAL SECURITY ANALYSIS

We theoretically analyze the security/robustness of AFLGuard. In
particular, we show that the difference between the optimal global
model 8 under no malicious clients and the global model learnt
by AFLGuard with malicious clients can be bounded under some
assumptions. We note that simple models like regression can satisfy
these assumptions, while more complex models like neural net-
works may not. Therefore, in the next section, we will empirically
evaluate our method on complex neural networks.

For convenience, we define V as the d-dimensional unit vector

def
space V.= {ve R : |l =1}, Vf(6.X) = 57 Zxex Vf(6.%),

and q(6,X) def V£(0,X) — Vf(6*,X). We use X; to denote the
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trusted dataset at the server. Next, we first state the assumptions in
our theoretical analysis and then describe our theoretical results.

AssuMPTION 1. The expected loss F(0) has L-Lipschitz continuous
gradients and is p-strongly convex, i.e., V0,0’ € O, the following
inequalities hold:

|VF(6) - VF(0)|| < L|6-¢’|

>

F(0)+(VF(6).0' - 0) + L|lo" - o] < F(0).

AsSUMPTION 2. There exist constants a1 > 0 and p1 > 0 such that
foranyv € V, (Vf(0* X),v) is sub-exponential. That is, ¥ |p| <
1/p1, we have:

sup E [exp (¢ (VF(6%,X),v))] < V"),
veV

AssuMPTION 3. There exist constants az > 0, pa > 0 such that for
anyveV,0 € ©®and0 # 0*.(q(0,X) —E [q(0,X)],v) /||6 — 6%||
is sub-exponential. That is, ¥V |¢| < 1/p2, we have:

" 2,2
sup E [exp (¢ (q(6,X)~E [q(6,X)],v)/[|6 — 67[|)] < e%2¢"/2.
0ecO,veV
ASSUMPTION 4. For any f € (0,1), there exists a constant H > 0
such that the following inequality holds:

P sup %Z (V£(0,x)-Vf(6',x)) SH”O—O'”

0.0 o020 || 1Xs| S
>1- /3.

AssuMPTION 5. Clients’ local training data are independent and
identically distributed (i.i.d.). The trusted dataset held by the server
and the overall training data are drawn from the same distribution,
and the server delay s = 0.

REMARK. Assumption 1 is satisfied in many learning models
(e.g., linear regression and quadratically regularized models). Note
that we only assume that the expected loss is strongly-convex,
while the empirical loss could still be non-convex. Assumptions 2-3
characterize sub-exponential properties on the gradient vectors.
Assumption 2 is a standard assumption in the literature on conver-
gence analysis, while Assumptions 2 and 3 are also widely used in
Byzantine-robust FL community (see, e.g., [16, 42, 56]). Assump-
tion 4 is satisfied if the model/loss function is Lipschitz-smooth (e.g.,
regressions, neural networks). Assumption 5 is a sufficient condi-
tion only needed in our theoretical analysis, which characterizes
the statistical relations between the server’s trusted dataset and the
overall training data. Note that we only need these assumptions to
provide theoretical analysis of our proposed AFLGuard, and these
assumptions are commonly used in the machine learning and secu-
rity communities in order to establish the convergence of the FL
methods [9, 16, 56]. In practice, some of these assumptions may not
hold, e.g., clients’ local training data could be non-i.i.d., trusted data
held by the server and the overall training data may come from
different distributions. In Section 6, we will first use a synthetic
dataset that satisfies all assumptions to evaluate the performance
of our AFLGuard. Then, we will show that AFLGuard can still ef-
fectively defend against poisoning attacks in real-world datasets
and complex models when some assumptions are violated. As a
concrete example, the following lemma shows that linear regression
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models satisfy Assumptions 1-4 with appropriate parameters, and
the proof is shown in Appendix A.1.

LEMMA 5.1. Let x; = (u;, y;) be the input data and define the loss
function as f(0,x;) = M Suppose that y; is generated by
a linear regression model y; = (u;, 0*) + e;, where 0 is the unknown
true model, u; ~ N(0,I), e, ~ N(0,1) and e; is independent of
u;. The linear regression model satisfies Assumptions 1-4 with the
following parameters: i) Assumption 1 is satisfied withL = 1, = 1;
ii) Assumption 2 is satisfied with ay = V2, p1 = V2; iii) Assumption 3
is satisfied with ay = V8, ps = 8; and iv) Assumption 4 is satisfied

with H = 2log(4/p) + 2+/dlog(4/p) +d.

The following theorem shows the security of AFLGuard:

THEOREM 1. Suppose Assumptions 1-5 are satisfied. If the global
learning rate in Algorithm 2 satisfiesn < % and each client uses
one mini-batch to calculate the model update, then for any number
of malicious clients, with probability at least 1 — 3, we have:

lof -6 < 1-aflo* - e[|+ a2+ nja @)

whereq = 1—(4/1 - 2}:7T”LL+r]L/1+8nA(A+1)),F = a1\2K1 /| Xs|, A =
a21/2(Kz + K3) /|, K1 = dlog 6 +log(3/B), Kz = dlog(18R/az2),
K3 = 1dlog(|Xs|/d) +log (%),R =max{L,H},e > 0isa
constant, d is the dimension of 6, and |X;| is the trusted dataset size.

Proor. Please see Appendix A.2. O

REMARK. Our Theorem 1 shows that the convergence of AFL-
Guard does not require the trusted dataset size to depend on the
number of model parameters, the client dataset sizes, and the num-
ber of malicious clients. The trusted dataset size affects the conver-
gence neighborhood size (the second term on the right-hand-side
of Eq. (4)). The larger the trusted dataset size, the smaller the con-
vergence neighborhood.

6 EMPIRICAL EVALUATION

6.1 Experimental Setup

6.1.1 Compared Methods. We compare our AFLGuard with the
following asynchronous methods:

1) AsyncSGD [58]: In AsyncSGD, the server updates the global
model according to Algorithm 1 upon receiving a model update
from any client.

2) Kardam [17]: In Kardam, the server keeps an empirical Lips-
chitz coeflicient for each client, and filters out potentially malicious
model updates based on the Lipschitz filter.

3) BASGD [55]: In BASGD, the server holds several buffers. Upon
receiving a model update from any client, the server stores it into
one of these buffers according to a mapping table. When all buffers
are non-empty, the server computes the average of model updates
in each buffer, takes the median of all buffers, and uses it to update
the global model.

4) Zeno++ [53]: In Zeno++, the server has a trusted dataset. Upon
receiving a client’s model update, the server computes a server
model update based on the trusted dataset. If the cosine similarity
between the server model update and the client’s model update is
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positive, then the server normalizes the client’s model update to
have the same magnitude as the server model update and uses the
normalized model update to update the global model.

6.1.2  Datasets. We evaluate AFLGuard and the compared methods
using one synthetic dataset and five real-world datasets (MNIST,
Fashion-MNIST, Human Activity Recognition (HAR), Colorectal
Histology MNIST, CIFAR-10). The synthetic dataset is for linear
regression, which satisfies the Assumptions 1-4 in Section 5 and
is used to validate our theoretical results. Other datasets are used
to train complex models, which aim to show the effectiveness of
AFLGuard even if the Assumptions 1-4 are not satisfied. The details
of these datasets are shown in Appendix A.3 due to limited space.

6.1.3  Poisoning Attacks. We use the following poisoning attacks
in our experiments.

1) Label flipping (LF) attack [56]: In the LF attack, the label y
of each training example in the malicious clients is replaced by
C — 1 — y, where C is the total number of classes. For instance, for
the MNIST dataset, digit “1” is replaced by digit “8”.

2) Gaussian (Gauss) attack [7]: In the Gauss attack, each model
update from malicious clients is drawn from a zero-mean Gaussian
distribution (we set the standard deviation to 200).

3) Gradient derivation (GD) attack [18]: In the GD attack
adapted from [18], a malicious client computes a model update
based on its local training data and then scales it by a negative
constant (—10 in our experiments) before sending it to the server.

4) Backdoor (BD) attack [5, 9, 23]: BD attack is a targeted poison-
ing attack. We use the same strategy in [23] to embed the trigger in
MNIST, Fashion-MNIST and Colorectal Histology MNIST datasets.
Following [9], the target label is set to “WALKING UPSTAIRS” and
the trigger is generated by setting every 20th feature to 0 for the
HAR dataset. For the CIFAR-10 dataset, the target label is set to
“bird” and we use the same pattern trigger as suggested in [5].

5) Adaptive (Adapt) attack: In [18], a general adaptive attack
framework is proposed to attack FL with any aggregation rule. We
apply this attack framework to construct an adaptive attack to
our AFLGuard. In particular, the attack framework is designed for
synchronized FL, in which the server aggregates model updates
from multiple clients to update the global model. The key idea
is to craft model updates at the malicious clients such that the
aggregated model update deviates substantially from the before-
attack one. To apply this general attack framework to AFLGuard,
we assume that the server accepts or rejects a client’s model update
based on AFLGuard and computes the average of the accepted
model updates. Then, we craft the model updates on the malicious
clients based on the attack framework.

6.1.4  Evaluation Metrics. For the synthetic dataset, we use the
following two evaluation metrics since it is a regression prob-
lem: i) Mean Squared Error (MSE): MSE is computed as MSE =
N% Zl{i’l (§; — yi)?, where 7; is the predicted value, y; is the true
value, and N; is the number of testing examples; ii) Model Estima-
tion Error (MEE): MEE is computed as MEE = 16 - 0*||2, where  is
the learnt model and 0* is the true model. MEE is commonly used
in measuring the performance of linear regression [24, 45]. The five
real-world datasets represent classification tasks, and we consider
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Table 1: MSE and MEE of different defenses under different attacks on synthetic dataset. The results are in the form of “MSE /
MEE”. “> 1000” means the value is larger than 1000.

AsyncSGD Kardam BASGD Zeno++ | AFLGuard

No attack 0.03/0.18 0.03/0.18 0.09/1.43 0.03/0.40 | 0.03/0.18
LF attack 21.05/25.75 0.04 / 0.60 16.71/ 22.70 0.03/0.40 | 0.03/0.18
Gauss attack 0.78 / 4.82 0.03/0.36 0.85/5.32 0.03/0.40 | 0.03/0.18
GD attack “>1000” / “> 1000” 30.14 / 30.65 “>1000” / “> 1000” | 0.03/0.40 | 0.03/0.18
Adapt attack | “> 1000” / “> 1000” | “> 1000” / “> 1000” | “> 1000” / “> 1000” | 0.03/0.42 | 0.03/0.18

Table 2: Test error rates and attack success rates of different
defenses under different attacks on real-world datasets. The
results of BD attack are in the form of “test error rate / attack
success rate”.

(a) MNIST
AsyncSGD | Kardam | BASGD | Zeno++ |AFLGuard
No attack 0.05 0.12 0.19 0.08 0.06
LF attack 0.09 0.15 0.26 0.09 0.07
Gauss attack 0.91 0.39 0.27 0.09 0.07
GD attack 0.90 0.90 0.89 0.09 0.07
BD attack | 0.90/1.00 {0.91/1.00|0.91/1.00{0.09/0.01| 0.07 / 0.01
Adapt attack 0.91 0.91 0.90 0.10 0.07
(b) Fashion-MNIST
AsyncSGD | Kardam | BASGD | Zeno++ |AFLGuard
No attack 0.15 0.29 0.24 0.26 0.17
LF attack 0.19 0.29 0.24 0.29 0.21
Gauss attack 0.90 0.29 0.35 0.28 0.19
GD attack 0.90 0.90 0.90 0.29 0.21
BD attack | 0.90/1.00 {0.90/1.00|0.90/ 1.00 |0.29 / 0.05| 0.20 / 0.04
Adapt attack 0.90 0.90 0.90 0.29 0.21
(c) HAR
AsyncSGD | Kardam | BASGD | Zeno++ |AFLGuard
No attack 0.05 0.06 0.07 0.06 0.05
LF attack 0.19 0.22 0.08 0.08 0.05
Gauss attack 0.30 0.23 0.24 0.07 0.05
GD attack 0.83 0.48 0.67 0.08 0.05
BD attack | 0.18/0.47 [0.17/0.02|0.41/0.28|0.07 / 0.01| 0.05/0.01
Adapt attack 0.93 0.52 0.90 0.08 0.05
(d) Colorectal Histology MNIST
AsyncSGD | Kardam | BASGD | Zeno++ |AFLGuard
No attack 0.21 0.28 0.29 0.31 0.22
LF attack 0.29 0.37 0.40 0.39 0.23
Gauss attack 0.65 0.44 0.61 0.43 0.22
GD attack 0.87 0.68 0.87 0.39 0.32
BD attack | 0.75/0.84 |0.67 / 0.02|0.85/0.84|0.44 / 0.02| 0.27 / 0.02
Adapt attack 0.88 0.88 0.88 0.64 0.33
(e) CIFAR-10
AsyncSGD | Kardam | BASGD | Zeno++ |AFLGuard
No attack 0.26 0.29 0.47 0.41 0.26
LF attack 0.40 0.52 0.54 0.53 0.34
Gauss attack 0.88 0.63 0.81 0.52 0.33
GD attack 0.90 0.90 0.90 0.60 0.30
BD attack | 0.76/0.99 {0.82/1.00(0.74 / 0.98 | 0.49 / 0.06| 0.29 / 0.01
Adapt attack 0.90 0.90 0.90 0.82 0.36

the following two evaluation metrics: 1) test error rate, which is
the fraction of clean testing examples that are misclassified; and 2)
attack success rate, which is the fraction of trigger-embedded testing
inputs that are predicted as the attacker-chosen target label. Note
that attack success rate is only applicable for targeted poisoning
attack (i.e., BD attack in our experiments). The smaller the error
(MSE, MEE, or test error rate) and attack success rate, the better the
defense. Note that we do not consider targeted poisoning attacks
on synthetic dataset since there are no such attacks designed for
linear regression.

6.1.5 Parameter Setting. We assume 100 clients (n = 100) for syn-
thetic, MNIST, and Fashion-MNIST datasets, and 40 clients (n = 40)
for Colorectal Histology MNIST and CIFAR-10 datasets. The HAR
dataset is collected from smartphones of 30 real-world users, and
each user is considered as a client. Thus, there are 30 clients (n = 30)
in total for HAR. By default, we assume 20% of the clients are mali-
cious. We train a convolutional neural network (CNN) on MNIST
and Fashion-MNIST datasets, and its architecture is shown in Ta-
ble 4 in Appendix. We train a logistic regression classifier on HAR
dataset. We train a ResNet-20 [25] model for Colorectal Histology
MNIST and CIFAR-10 datasets. We set 2,000, 2,000, 6,000, 1,000,
20,000 and 20,000 iterations for synthetic, MNIST, Fashion-MNIST,
HAR, Colorectal Histology MNIST and CIFAR-10 datasets, respec-
tively. The batch sizes for the six datasets are 16, 32, 64, 32, 32 and 64,
respectively. The learning rates are set to 1/1600, 1/320 for synthetic
and HAR datasets, respectively; and are set to 1/3200 for the other
four datasets. We use different parameters for different datasets be-
cause they have different data statistics. In the synthetic dataset, we
assume the clients’ local training data are i.i.d. However, the local
training data non-i.i.d. across clients in the five real-world datasets.
In particular, we use the approach in [18] to simulate the non-ii.d.
setting. The non-i.i.d. degree is set to 0.5 for MNIST, Fashion-MNIST,
Colorectal Histology MNIST, and CIFAR-10 datasets. Note that each
user is a client in HAR dataset, and thus the clients’ local training
data are already heterogeneous for HAR.

In AFLGuard, the trusted dataset size is set to 100 for all six
datasets. By default, for the synthetic data, we assume that the
trusted dataset held by the server and the overall training data are
generated from the same distribution. For the real-world datasets,
we do not make this assumption. We will empirically show that our
method works well even if the distribution of trusted data deviates
from that of the overall training data, i.e., there exists a distribution
shift (DS) between these two datasets. The larger the DS, the larger
the deviation between the trusted and overall training datasets. In
our experiments, we simulate DS in the following way: a fraction
of samples in the trusted dataset are drawn from one particular
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Figure 3: Test error rates and attack success rates of different defenses under different attacks with different fraction of mali-

cious clients on MNIST dataset.

class (the first class in our experiments) of the overall training
data, and the remaining samples in the trusted dataset are drawn
from the remaining classes of the overall training data uniformly
at random. We use this fraction value as a proxy for DS. Note that
when the trusted and overall training datasets are drawn from the
same distribution, DS is equal to 1/C, where C is the total number of
classes. By default, we set DS to 0.5 for the five real-world datasets.
In our experiments, we use a separate validation dataset to tune
the parameter A in AFLGuard. Note that this validation dataset is
different from the trusted dataset held by the server. We use the val-
idation dataset to tune the hyperparameter of AFLGuard, while the
server in AFLGuard uses the trusted dataset to filter out potential
malicious information. The size of the validation dataset is 200. The
validation data and the overall training data (the union of the local
training data of all clients) are from the same distribution. For exam-
ple, there are 10 classes in MNIST dataset. We sample 20 training ex-
amples from each class of the overall training data uniformly at ran-
dom. After fine tuning the parameter, we set A = 1.5 for synthetic,
MNIST, and HAR datasets, and A = 1.8 for the other three datasets.
The server updates g5~™ every 10 (r; = 10) iterations by default.
We use the approach in [53] to simulate asynchrony. We sample
client delay from the interval [0, Timax | uniformly at random, where
Tmax 1S the maximum client delay. We set tmax = 10 by default.

6.2 Experimental Results

AFLGuard is Effective: We first show results on the linear regres-
sion model for synthetic dataset, which satisfies Assumptions 1-4
in Section 5 to support our theoretical results. The MSE and MEE
of different methods under different attacks on synthetic dataset
are shown in Table 1. We observe that AFLGuard is robust in both
non-adversarial and adversarial settings. In particular, the MSE and
MEE of AFLGuard under various attacks are the same as those of
AsyncSGD without attacks. Moreover, we also observe that AFL-
Guard outperforms the compared methods. For instance, the MSE
and MEE of BASGD are both larger than 1,000 under the GD and
Adapt attacks.

Next, we show results on the five real-world datasets. The test
error rates and attack success rates of different methods under
different attacks are shown in Table 2. “No attack” in Table 2 rep-
resents the test error rate without any attacks. For the untargeted
poisoning attacks (LF attack, Gauss attack, GD attack, and Adapt
attack), the results are the test error rates; and for the targeted
poisoning attacks (BD attack), the results are in the form of “test
error rate / attack success rate”. We note that only using the trusted
data held by the server to update the global model can not achieve
satisfactory accuracy. For instance, the test error rate is 0.21 when
we only use the trusted data of the server to update the global
model on the MNIST dataset. We also remark that our asynchro-
nous AFLGuard algorithm achieves a performance similar to its
synchronous counterpart. For instance, on MNIST, the test error
rates of synchronous AFLGuard under LF, Gauss, and GD attacks
are all 0.05.

First, we observe that AFLGuard is effective in non-adversarial
settings. When there are no malicious clients, AFLGuard has similar
test error rate as AsyncSGD. For instance, on MNIST, the test error
rates without attacks are respectively 0.05 and 0.06 for AsyncSGD
and AFLGuard, while the test error rates are respectively 0.12 and
0.19 for Kardam and BASGD. Second, AFLGuard is robust against
various poisoning attacks and outperforms all baselines. For in-
stance, the test error rate of Kardam increases to 0.90 under the GD
attack on the MNIST and Fashion-MNIST datasets, while the test
error rates are 0.07 and 0.21 for AFLGuard under the same setting.
Likewise, the attack success rates of AFLGuard are at most 0.04 for
all real-world datasets, while the attack success rates of AsyncSGD,
Kardam, and BASGD are high. Note that in Table 1, we use synthetic
data that satisfies Lemma 5.1 to evaluate the performance of our
AFLGuard. Since the variance of the synthetic data is small, Zeno++
and AFLGuard have similar MSE and MEE. However, Table 2 shows
that, for real-world datasets, AFLGuard significantly outperforms
Zeno++.

Impact of the Fraction of Malicious Clients: Fig. 3 illustrates
the test error rates and attack success rates of different methods
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Figure 4: Test error rates and attack success rates of different defenses under different attacks with different client delays on
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Figure 5: Test error rates and attack success rates of Zeno++ and AFLGuard under different attacks with different server delays
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under different attacks on the MNIST dataset, when the fraction
of malicious clients increases from 0 to 45%. Note that Fig. 3(e)
shows the attack success rates of different defenses under BD attack,
while other figures are the test error rates of different defenses
under untargeted and targeted poisoning attacks. We observe that

]

1.0 =1.0
9 —— AsyncSGD w/o attacks = —— AsyncSGD w/o attacks
© 0.8 _._ |Fattack a 0.81 — Bp attack
50.6 Gauss attack 206
fud o
b 0.4 GD attack 20.4
2 —— BD attack ~
R 0.2 Ko Adapt attack 2 0.2

0.0 £0.0
50 100 150 200 300 400 < 50 100 150 200 300 400
Size of trusted dataset Size of trusted dataset
(a) Test error rate (b) Attack success rate

Figure 7: Test error rates and attack success rates of AFL-
Guard under different attacks with different size of trusted
dataset on MNIST dataset.

AFLGuard achieves a test error rate similar to that of AsyncSGD
without attacks, when 45% of clients are malicious. This shows that
AFLGuard is robust against a large fraction of malicious clients.

Impact of the Number of Clients: Fig. 8 in Appendix shows the
results of different defenses under different attacks, when the total



ACSAC °22, December 5-9, 2022, Austin, TX, USA

Minghong Fang, Jia Liu, Neil Zhenqgiang Gong, and Elizabeth S. Bentley

Table 3: Test error rates and attack success rates of Zeno++ and AFLGuard under different attacks with different distribution
shifts (DSs) between the trusted data and overall training data on MNIST dataset. The results of BD attack are in the form of

“test error rate / attack success rate”.

DS 0.1 0.5 0.6 0.8 1.0
Attack Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard
No attack 0.05 0.05 0.08 0.06 0.06 0.55 0.06 0.88 0.11
LF attack 0.07 0.05 0.09 0.07 0.07 0.86 0.07 0.89 0.11
Gauss attack 0.07 0.05 0.09 0.07 0.07 0.59 0.07 0.89 0.12
GD attack 0.07 0.06 0.09 0.07 0.07 0.78 0.08 0.89 0.12
BD attack 0.06 /0.01 | 0.05/0.01 | 0.09/0.01 | 0.07/0.01 | 0.11/0.01 | 0.07/0.01 | 0.55/0.03 | 0.08/0.01 | 0.90/0.01 | 0.11/0.01
Adapt attack 0.07 0.06 0.10 0.07 0.08 0.88 0.10 0.90 0.12

number of clients n varies from 50 to 500. The fraction of malicious
clients is set to 20%. We observe that our AFLGuard can effectively
defend against various poisoning attacks for different number of
clients. In particular, AFLGuard under attacks achieves test error
rates similar to AsyncSGD without attack.

Impact of the Client Delay: A challenge and key feature in asyn-
chronous FL is the delayed client model updates. In this experiment,
we investigate the impact of the maximum client delays zmax on
the test error rate of different defenses under different attacks on
the MNIST dataset, where the server delay is set to 10. The results
are shown in Fig. 4. We observe that AFLGuard is insensitive to
the delays on the client side, and the test error rates remain almost
unchanged when the client delay varies from 5 to 50. However, Kar-
dam and BASGD are highly sensitive to client delays. For example,
under the Gauss attack, the test error rate of Kardam increases from
0.14 to 0.39 when the client delay increases from 5 to 10. Moreover,
under the GD and Adapt attacks, the test error rates of Kardam and
BASGD are both 0.90 when the client delay is only 5.

Impact of the Server Delay: In both Zeno++ and our AFLGuard,
the server uses server model update. In this experiment, we inves-
tigate the impact of server delays on the performance of Zeno++
and AFLGuard under different attacks, where the maximum client
delay is set to 10. The results are shown in Fig. 5. We observe that
AFLGuard can effectively defend against various poisoning attacks
with different server delays. AFLGuard under attacks has test error
rates similar to those of AsyncSGD under no attacks when the
server delay ranges from 10 to 200. However, Zeno++ is highly
sensitive to server delays. For instance, Zeno++ can only resist the
Adapt attack up to 80 server delays.

Impact of A: Fig. 6 shows the test error rates and attack success
rates of AFLGuard under different attacks with different A values on
the MNIST dataset. We observe that if A is too small (e.g., A = 0.5),
the test error rate of AFLGuard is large since the server rejects
many benign model updates. When A is large (e.g., A = 5.0), the test
error rates of AFLGuard under the GD and Adapt attacks are large.
This is because the server falsely accepts some model updates from
malicious clients.

Impact of the Trusted Dataset: The trusted dataset can be char-
acterized by its size and distribution. Therefore, we explore the
impact of both its size and distribution. Fig. 7 shows the results
of AFLGuard under different attacks on the MNIST dataset, when
the size of the trusted dataset increases from 50 to 400 (other pa-
rameters are set to their default values). We find that AFLGuard

only requires a small trusted dataset (e.g., 100 examples) to defend
against different attacks.

Table 3 shows the results of Zeno++ and AFLGuard under differ-
ent attacks when the DS value between the trusted data and overall
training data varies on the MNIST dataset. The results on the other
four real-world datasets are shown in Table 5 in Appendix. Note
that, for the synthetic data, we assume that the trusted data and the
overall training data are generated from the same distribution. Thus,
there is no need to study the impact of DS on synthetic data. First,
we observe that AFLGuard outperforms Zeno++ across different DS
values in most cases, especially when DS is large. This is because
Zeno++ classifies a client’s model update as benign if it is not nega-
tively correlated with the (delayed) server model update. However,
when the trusted dataset deviates substantially from the overall
training dataset, it is very likely that the server model update and
the model updates from benign clients are not positively correlated.
Second, AFLGuard outperforms Zeno++ even if the trusted data has
the same distribution as that of overall training data (corresponding
to DS being 0.1 for MNIST, Fashion-MNIST and CIFAR-10 datasets,
0.167 for HAR dataset, and 0.125 for Colorectal Histology MNIST
dataset). Third, AFLGuard can tolerate a large DS value, which
means that AFLGuard does not require the trusted dataset to have
similar distribution with the overall training data.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a Byzantine-robust asynchronous FL
framework called AFLGuard to defend against poisoning attacks
in asynchronous FL. In AFLGuard, the server holds a small and
clean trusted dataset to assist the filtering of model updates from
malicious clients. We theoretically analyze the security guarantees
of AFLGuard. We extensively evaluate AFLGuard against state-of-
the-art and adaptive poisoning attacks on one synthetic and five
real-world datasets. Our results show that AFLGuard effectively
mitigates poisoning attacks and outperforms existing Byzantine-
robust asynchronous FL methods. One interesting future work is
to investigate the cases where the server has no knowledge of the
training data domain.
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A APPENDIX

A.1 Proof of Lemma 5.1

The proof of Lemma 5.1 is mainly from [16, 42]. We first check
Assumption 1. Consider the linear regression model defined in
Lemma 5.1, that is y; = (u;, 0*) + e;, where 0™ is the unknown true
model parameter, u; ~ N(0,I), e; ~ N(0, 1), e; is independent of u;.
The population risk of (1) is given by ming % o — 6|2 +%. F(0) &
E[f(6,X)] =B [3((u,0) -y)*] =E[5((u0) - (u,0%) —¢)*] =
% llo — 6%|1 + % Then the gradient of population risk is VF(0) =
0 — 0*. We can see that the population risk F(-) is L-Lipschitz
continuous with L = 1, and p-strongly convex with p = 1.

We then check Assumption 2. Letu ~ N(0,I), e ~ N(0,1) and
e is independent of u, then one has Vf(6,X) = u (u, 0 — 0*) — ue.
Let v € V be the unit vector, we further have that:

<Vf(0*,X),v> =—e(u,v). (5)

Since u ~ N(0,I), v is the unit vector and u is independent
of e, so we have (u,v) ~ N(0,1) and (u,v) is independent of e.
According to the standard conditioning argument, for ¢® < 1, one
has:

E [exp (¢ (Vf(e*,X),v>)] @ E [exp (—¢pe (u,v))]

=E[E [exp (—py (w.V)) l¢ = yl]
@ e fexp (s2e/2)] € (1- wz)_w e, ®)

where (a) is because of Eq. (5); (b) is obtained by applying the
moment generating function of Gaussian distribution; (c) is because
for the moment generating function of y? distribution, we have
E [exp (t(pz)] =(1- 2t)_1/2 for t < 1/2; (d) is due to the fact that
1-¢% 2 e 20" for l¢] < 1/¥2. Therefore, Assumption 2 holds
when a1 = V2 and p1= V2.

Next, we check Assumption 3. As Vf(6,X) =
u(u,0—-0") — ue, Vf(0*,X) = -—ue, so q(6,X) =
VF(0,X)-Vf(O"',X)=u(u,6—-0"). AsE[q(0,X)] =6 - 6%, so
(q(6,X) —E[q(6,X)],v) = (u,0 - 6) (u,v) — (0 - 6", v).

For a fixed @ € ©,0 # 0%, weletd = || —0%|]] > 0. We
further decompose 0 — 0* as 0 — 6" = \/c1V + 4/c2¥, where ¥ is
an vector perpendicular to v, ¢; + ¢y = 2. We further have that
{u,v) ~ N(0,1) and:

<u, 0 - 9*> (u, vy — <0 - 0*,V>
= e (<u, w2 - 1) + ez (w9 (w,v) . )

One also has E [(u, V) (u,v)] = E [VTuuTv] =v'E [uuT] v =
0, where u" is the transpose of u. Hence, (u, ¥) and (u, v) are mu-
tually independent. For any ¢ satisfies p+/c] < 1/4 and ¢?cz < 1/4,
we have:

E [exp (¢ (q(6,X) —E [¢(6,X)],v))]

@ B exp (pver ()2 1) + e (w9) (wv))|

(é) \/E [62<p\ﬁ(<u,v)2_1)] E [egw\/cj(u,v)(u,v)]

_ e_(P\/a\/E [62<p\/a(<u,v)2>] E I:eZ(p\/a<u,{7><u,V>j|
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-1/4
© e~ PVer (1- 4¢\/E)‘1/4 (1 - 4<p202) / , (8)

where (a) holds by plugging in Eq. (7); (b) is true by applying
the Cauchy-Schwartz’s inequality; (c) is true by applying the mo-
ment generating function of y? distribution. Since 1 — ¢t > e™#
for0 <t <1/2,and e ?/V1-2t < e’ for [t| < 1/4. Thus, for
@? < 1/(640%), one has E [exp (¢ (q(0,X) —E [q(8,X)],v))] <
exp (4¢%(c1 +¢2)) < exp (4¢?0?) . Therefore, Assumption 3 holds
with az = V8 and p2 =38.

Last, we check Assumption 4. As Vf(0,X) = u(u, 0 — 0*) — ue,
then V2£(6,X) = uu”, thus it suffices to show the following

Xs
P ‘ﬁ Trex, sz(o,x)H <t} =P {| 25wl < 1) >
1-/3.LetU = [ul,uz,,.,,u|xs|] C Rdxlxs‘,one has Z}lfsll uju-.r =

UUT and P {Hﬁ sl < H} =P {||U|| < VIXs] H} Since

U is an ii.d. standard Gaussian matrix, then according to [47],
for t > 0, we have that: P{||U|| < \/|Xs|+\/3+t} > 1 -

2
exp (—12/2) . Setting H = (\/|xs| +Vd+ ,/zlog(4/ﬁ)) /1Xs| and
t = +/2log(4/p) to complete the proof.

A.2 Proof of Theorem 1

Since we assume that the server delay 7; is zero, i.e., 7s = 0. Then
in the following, we use g’ to denote the server model update.

If server updates the global model following the AFLGuard algo-
rithm, i.e., Algorithm 2, then for any t > 0, 7; > 0, we have:

ot - 0| = ”0’ _ Ugit—n _ o

g T
u]uj

<||6" - nVF(6") - 6*|| + 1

‘g.t_ri - VF(ef)H

1

(2) |6t - nVF(8") - 6*

+nA||VF(6") — VF(8")]|

* *
+n(A+1)]gt - VF(8")||
————— —
*

+L
+4nT(A + 1), 9)

b
¢ ( 1- IZI"—”L +nLA+8nA(A+ 1)) le* - 6|

where (a) uses VF(0*) = 0 and Lemma 1, (b) is true by plugging in
Lemma 2, Assumption 1 and Lemma 3 into &, %, and #, respectively.

Telescoping, one has ||9t - 0*” <(1-¢)? ||(90 - 9*||+4171"(/1+1)/q,

whereg=1- (\/l —2npL/(u+L) +nLA+8nA(A + 1))

Next, we proof Lemma 1, Lemma 2 and Lemma 3 one by one.

LEMMA 1. Ifthe server uses the AFLGuard algorithm to update the
global model, then for arbitrary number of malicious clients, one has:

loi = vren)| < A+ 1 |lgt - VECON]| + 2 [[vF(0")] .

1
Proor.
i o)

< |lgi - gt + llgt - vF(o")|
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)
< Agtll +llgt - VF@Y)|
< Allgt - VE(8)|| + A||VF(0")| + ||gs - VF(6")|

= (A+1) [lgf - VE(O")|| + 2[|vF(01)]. (10)
where (a) is because for the AFLGuard algorithm, we have that
ot - gt]| < llgtll o

LEMMA 2. Suppose Assumption 1 holds, if the global learning rate
satisfies < ﬁ, then we have the following:

|67 - nVF(6") - 0%|| < V1 —2nuL/(u+1L)||6" - 67| .
Proor. |67 - pVF(6') - 0*|° = ||6* - 0%|]° + n?|[VE(6)| -
2n <0t - 0*,F(0t)>. According to [8], if F(0) is L-smooth and
p-strongly convex, for any 0,0’ € ©, one has ;flTLL o —6’|1? +
;ﬁ IVF(8) — VF(8")||? < (VF(8)—VF(6’),0 —0"). Setting
0 =6', 0’ = 6%, since VF(6*) = 0, we have that ||9t 9*” +
lﬁ ||VF(9t)|| S VF(Ot), o - > . Thus one has.

o = nvF@") = 07| < 0" = 0"+ 1* |V (0"

_ uL t |2 1 112
on (A o -0+ L foron)]

= (1= 2npL/(u+ D) ||6* = 07" + 1 (n = 2/(u+ L)) |[VE(0")

(a) P
< (1-2npL/(u+1L)) |6 - 6%, (11)
where (a) is because 0 <5 < 2/(p + L). HOt - nVF(6?) - 9*” <

Vi-2nul/(p+1L)|6 - 6*||. O

The proof of Lemma 3 is mainly motivated from [9, 16]. To
simplify the notation, we will ignore the superscript ¢ in g£. Define

VA(9) = i Sxex, VF(0,2).

LEmMma 3. If Assumptions 2-4 hold and © c
{0: 16 - 6%|| < eVd} holds for some parameter € > 0. For
any p € (0,1), if T < af/pl and A < a%/pg, we have that:

P{llgs — VF(0)|| < 8A[|60 — 6%|| +4T} > 1- B,
where T, A are defined in Theorem 1.

Proor. We defi = 24 d let d/&|. Th

e define ¢ 2,l‘xlan ety = [e\/_/g-‘ en
for any integer 1 < [ < i/, we define ©; = {6 : |6 — 0%|| < ¢l}.
For a given integer I, we let 0y,---,0; be an w-cover of @,
where w = azgl \/d/|Xs|, where R = max {L, H}. From [47], we
know that logg dlog(3¢l/w). For any 0 € ©y, there exists a
1 < ¢ £ w such that || - 99|| < w holds. Then, based on the trian-
gle inequality, one has ||V£ () — VF(0)|| < [|[VF(8) — VF(6,)]| +
(V£ (0) = VE (8| + ||VFs(6e) — VF(6c)|| . By Assumption 1, one
has ||[VF(6) — VF(6.)|| < L||0 — 6.|| < Lw. We define event E; as:

V(0)-Vi(0)| <H|o-6'}. (12

2

Ey={supg g co.0+0 |
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According to Assumption 4, we have P {E1} > 1 - /3. One also

has su Vfs(0) = Vfs(6.)|| < Hw. By the triangle inequalit
again, ggﬁ%ﬂcé&se E[q 0 Xc) ” =VF(0) - Y VF(6%), %ve hav(elz Y

[Vfs(6e) - VF(8e)| < ||[Vf(6%) - VF(6")||
+||Vf(6e) - V£ (67) - (wwc) - VF(6"))||

Dex, 10 ~Elg (ec,X)JH .

< ZF} and E; as:

< ||V£:(6) - VF(0")|| +

IX |
Define events Ep = {”st

E = {SuPlsksN 'ﬁ ZxEXs q(0r, x) —E[q (6, X)]|| < 2A§l} .

By Proposition 1, Proposition 2, since I' < (xf /p1, A < a%/pz,
we have P{Ez} > 1 — /3, P{E;} > 1 — /(3¢). Thus, on event
E1 N Ez N Ep, one has supgeg, Hst(O) - VF(H)” < Lw+Ho +
2T + 2A¢l < 4A¢l + 2T. Thus, we have at least 1 — f that event
E=EiNnEn (“}//:1}51)' Also, on event E, for any 0 € Oy, there
exists an 1 < I < ¢ such that (I - 1)¢& < ||6 — 6*|| < &l holds. If
=1, wehave||[V£(0) — VF(0)| < 4Aé+2l < 4T;and2(1-1) > I
if | > 2. Thus, one has ||V£;(8) — VF(0)|| < 8A /6 — 67| +2T. On
E, one has Supgee,, ||st(0) - VF(0)|| < 8A0 — 6% +4T. o

The following proof of Proposition 1 is mainly motivated from [9,
16].

PROPOSITION 1. Suppose Assumption 2 holds. For any ff € (0,1),

0e€0,letl = \/Eal\/(dlogé+log(3/ﬁ))/|XS|. IfT < af/pl, then
we have:

1 * *
P {”m erx V(6% x) — VF(6*)

> 2r} < B/3.

Proor. We let B = {vy,---,vc} be one %-cover of
the unit sphere V. By [47], one has logg¢ < dlog6 and
V£ (6*) = VF(6*)|| < 2supyep {(VF:(0%) — VF(6*),v)} . If As-
sumption 2 and the condition T < 0{% /p1 satisfy, and accord-
ing to the concentration inequalities for sub-exponential random
variables [48], we have that P {<st(9*) - VF(G*),V) > F} <
exp (- |Xs|T?/(2a?)) . One has P {||V£(6*) - VF(6")|| > 2I'} <
exp(— |X;] 1"2/(2(xf) + dlog 6) by the union bound. Put in T finishes
the proof. O

PROPOSITION 2. Suppose Assumption 3 holds. For any ff € (0,1),
00, letA= \/Eagx/(dlog() +log(3/B))/I1Xs|- If A < a%/pg, then
we have:

X7 D Va0 -

x€Xs

E[q(6,X)]

< BJ3.

Proor. The proof of Proposition 2 is similar to that of Proposi-
tion 1, and is omitted here for brevity. O



ACSAC °22, December 5-9, 2022, Austin, TX, USA

Minghong Fang, Jia Liu, Neil Zhenqgiang Gong, and Elizabeth S. Bentley

—— AsyncSGD w/o attacks —= AsyncSGD Kardam -== BASGD —— Zeno++ --=-- AFLGuard
o 1.0 o 1.0 o 1.0
g g I Y EEp P S E, g I S S S S
C 0.8 C 0.8 C 0.8
S0.6f S0.6f oy S0.6f
3 0.4 pmmmmee =] 804p =TT Ss_od4 5 04)
B 02F=2T=S 22 $0.2

o '

2 0.2f . = $0.2p

R -—_..—(‘\;;zf,,—————— Tree rreeres: R —
0'%0 100 150 200 300 400 500 0'%

Number of clients

(a) LF attack

¥ $ s ¥ $ [ ¥ $
0 100 150 200 300 400 500 0'%0 100 150 200 300 400 500
Number of clients
(b) Gauss attack

Number of clients
(c) GD attack

coooowr

Test error rate

WO NDO®O

O]
fr
©
—
[92]
1%
]
O
O
=]
9]
X
1%
©
i}
p=}
<

P
0 100 150 200 300 400 500
Number of clients

(d) BD attack

N == ——rreereerrr oo e rreeT
0 100 150 200 300 400 500 O'%O 100 150 200 300 400 500
Number of clients
(e) BD attack

Number of clients
(f) Adapt attack

Figure 8: Test error rates and attack success rates of different defenses under different attacks with different number of clients

on MNIST dataset.

Table 4: The CNN architecture.

Layer Size
Input 28x28x%x1
Convolution + ReLU 3 %3 %30
Max Pooling 2%x2
Convolution + ReLU 3 X3 %50
Max Pooling 2%x2
Fully Connected + ReLU 100
Softmax 10

A.3 Datasets

1) Synthetic Dataset: We randomly generate 10,000 data samples
of dimensions d = 100. Each dimension follows the Gaussian distri-
bution N (0, 1) and noise e; is sampled from N (0, 1). We use N (0, 25)
to generate each entry of 6*. We generate y; according to the linear
regression model in Lemma 5.1. We randomly draw 8,000 samples
for training and use the remaining 2,000 samples for testing.

2) MNIST [30]: MNIST is a 10-class handwritten digits image clas-
sification dataset, which contains 60,000 samples for training and
10,000 examples for testing.

3) Fashion-MNIST [50]: Fashion-MNIST is a dataset containing
images of 70,000 fashion products from 10 classes. The training set
has 60,000 images and the testing set has 10,000 images.

4) Human Activity Recognition (HAR) [4]: The HAR dataset
aims to recognize 6 types of human activities and the dataset is
collected from smartphones of 30 real-world users. There are 10,299
examples in total and each example includes 561 features. We ran-
domly sample 75% of each client’s examples as training data and
use the rest as test data.

5) Colorectal Histology MNIST [28]: Colorectal Histology
MNIST is an 8-class dataset for classification of textures in hu-
man colorectal cancer histology. This dataset contains 5,000 images
and each image has 64x64 grayscale pixels. We randomly select
4,000 images for training and use the remaining 1,000 images for
testing.

6) CIFAR-10 [29]: CIFAR-10 consists of 60,000 color images. This
dataset has 10 classes, and there are 6,000 images of each class. The
training set has 50,000 images and the testing set has 10,000 images.
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Table 5: Test error rates and attack success rates of Zeno++ and AFLGuard under different attacks with different distribution

shifts (DSs) on Fashion-MNIST, HAR, Colorectal Histology MNIST and CIFAR-10 datasets. The results of BD attack are in the
form of “test error rate / attack success rate”.

(a) Fashion-MNIST

DS 0.1 0.5 0.6 0.8 1.0
Attack Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard
No attack 0.25 0.16 0.26 0.17 0.31 0.18 0.58 0.21 0.90 0.22
LF attack 0.25 0.18 0.29 0.21 0.32 0.21 0.72 0.22 0.90 0.22
Gauss attack 0.26 0.18 0.28 0.19 0.34 0.19 0.58 0.22 0.90 0.23
GD attack 0.26 0.18 0.29 0.21 0.35 0.21 0.58 0.21 0.90 0.23
BD attack 0.26 /0.04 | 0.17/0.04 | 0.29/0.05 0.20/0.04 | 0.33/0.04 | 0.20/0.04 | 0.58/0.03 | 0.20/0.03 | 0.90/0.01 0.22/0.02
Adapt attack 0.26 0.19 0.29 0.21 0.36 0.21 0.72 0.22 0.90 0.25
(b) HAR
DS 0.167 .5 0.6 0.8 1.0
Attack Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard
No attack 0.06 0.05 0.06 0.05 0.08 0.05 0.10 0.07 0.43 0.12
LF attack 0.07 0.05 0.08 0.05 0.09 0.05 0.10 0.09 0.43 0.36
Gauss attack 0.07 0.05 0.07 0.05 0.09 0.05 0.10 0.07 0.43 0.36
GD attack 0.07 0.05 0.08 0.05 0.09 0.06 0.12 0.09 0.43 0.42
BD attack 0.06 /0.07 | 0.05/0.01 0.07 / 0.01 0.05/0.01 0.09/0.02 | 0.05/0.01 0.10/0.01 0.07 / 0.01 0.43/0.01 0.36 / 0.01
Adapt attack 0.07 0.05 0.08 0.05 0.09 0.06 0.14 0.09 0.55 0.54
(c) Colorectal Histology MNIST
DS 0.125 ) 0.6 0.8 1.0
Attack Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard
No attack 0.25 0.18 0.31 0.22 0.49 0.29 0.62 0.32 0.71 0.34
LF attack 0.31 0.21 0.39 0.23 0.53 0.37 0.63 0.41 0.88 0.41
Gauss attack 0.35 0.21 0.43 0.22 0.59 0.32 0.70 0.35 0.86 0.35
GD attack 0.29 0.21 0.39 0.32 0.66 0.36 0.74 0.49 0.88 0.58
BD attack 0.42/0.02 0.22/0.02 0.44/0.02 0.27 /0.02 | 0.57/0.01 0.31/0.02 | 0.62/0.01 0.32/0.01 0.82/0.24 | 0.51/0.03
Adapt attack 0.44 0.29 0.64 0.33 0.72 0.43 0.77 0.51 0.88 0.62
(d) CIFAR-10
DS 0.1 0.5 0.6 0.8 1.0
Attack Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard Zeno++ AFLGuard
No attack 0.32 0.24 0.41 0.26 0.54 0.29 0.68 0.31 0.90 0.31
LF attack 0.33 0.34 0.53 0.34 0.64 0.35 0.71 0.35 0.90 0.38
Gauss attack 0.33 0.32 0.52 0.33 0.72 0.33 0.76 0.35 0.90 0.35
GD attack 0.32 0.27 0.60 0.30 0.83 0.31 0.85 0.33 0.90 0.32
BD attack 0.32/0.95 | 0.28/0.01 | 0.49/0.06 | 0.29/0.01 | 0.62/0.00 | 0.32/0.02 | 0.80/0.01 | 0.34/0.01 | 0.90/0.00 | 0.36/0.04
Adapt attack 0.77 0.32 0.82 0.36 0.90 0.36 0.90 0.36 0.90 0.39
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