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Abstract—Biometric authentication systems are increasingly
needed across a broad range of applications including in smart
city environments (e.g., entering hotels), and in smart home en-
vironments (e.g., controlling smart devices). Traditional methods,
such as face-based and fingerprint-based authentication, usually
incur high costs to be installed in all this kind of environments. In
this paper, we develop a ubiquitous low-effort user authentication
approach, mmPalm, based on palm recognition using millimeter
wave (mmWave) signals. mmWave technology has been adopted
by WiGig and 5G, making mmPalm a low-cost solution that can be
widely adopted in public places. In addition, the high resolution
of mmWave signals allows mmPalm to extract detailed palm
characteristics (e.g., palm geometry, skin thickness, and texture)
that can assemble distinctive palmprints for user authentication.
Our innovative virtual antennas design further increases the
spatial resolution of a commercial mmWave device, enabling it
to fully capture the comprehensive palmprint features. Moreover,
to address the challenge of small-scale environmental changes
(e.g., variations in palm-device distances and palm orientations),
we design a novel palm profile augmentation method, utilizing a
Conditional Generative Adversarial Network (cGAN) to generate
synthetic palm profiles for mitigating palm instability. Further-
more, we design a cross-environment adaptation framework based
on transfer learning to address the challenge of large-scale
environmental changes, including multipath variations introduced
by human bodies and nearby furniture. Extensive experiments
with 30 participants through 6 months demonstrate that mmPalm
achieves 99% authentication accuracy with resilience against
different types of attacks, including random, impersonation, and
counterfeit.

I. INTRODUCTION

Biometric authentication methods have gained immense
popularity due to their enhanced security features and user-
friendliness. Existing biometric authentication methods typ-
ically utilize fingerprints, faces, or palms to differentiate
users [1, 2, 3]. While these systems are generally accurate, their
high costs can hinder widespread implementation, particularly
in smart cities (e.g., accessing high-rise apartments, hotels,
hospitals, and customizing vehicle functions) and in smart
homes (e.g., managing smart devices and enhancing AR/VR
experiences). Consequently, there is a pressing need for a
cost-effective, ubiquitous user authentication method to provide
secure and convenient access in these scenarios. Millimeter
wave (mmWave) technology offers high sensing resolution due
to its high-frequency and short wavelength. It has the potential
to assist user authentication. Furthermore, mmWave has been
integrated into current and next-generation wireless protocols,
such as WiGig (IEEE 802.11ad and 802.11ay) [4] and 5G [5],
making it a suitable candidate for cost-effective and ubiquitous
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Fig. 1. Application scenarios of mmWave-based user authentication via palm
information.

user authentication in daily applications. This inspired us to
explore a new biometric that extracts people’s palm information
through fine-grained mmWave signals for the access control of
smart city, and smart home environments.

Toward this end, we focus on two crucial elements: 1)
the distinctive characteristics of human palms for user au-
thentication, and 2) the low-cost mmWave sensing technology
to accurately capture these fine-grained features of the palm.
Research in biomedical fields has confirmed that the features
of human palms, such as geometry, thickness, and skin distri-
bution, differ significantly across individuals [6, 7]. Moreover,
the texture of each person’s palm, including principal lines,
wrinkles, minutiae, and delta points, is uniquely identifiable [8].
Initial researchers have proposed a prototype to capture palm
biometric information via cameras for customers verification,
which has been tested in a restaurant [3]. Due to the need for
installing cameras, the high costs may impede the widespread
deployment of this system in daily life. Recently, researchers
have shown that when users hold their smart devices, the palm
biometric information can be captured by acoustic signals for
user authentication [9, 10]. These systems require the mobile
devices to actively generate dedicated acoustic signals during
user authentication process. This may limit the application of
these systems in other scenarios (e.g., smart cities). In this work,
we propose to extract these palm characteristics from mmWave
signals reflected by human palms to form distinctive palmprints,
including palm geometry, skin thickness, and texture, for user
authentication. Different from existing palm biometric-based
approaches, our approach uses mmWave, which is low-cost,
low-effort, and can be ubiquitously deployed in many smart
applications, as depicted in Figure 1. For instance, a low-
cost mmWave-enabled WiFi device can be installed in a high-
rise apartment building entrance, where a user just needs to
raise a palm to verify his/her identity and get through the
secured entrance. In the automotive domain, mmWave radars



are frequently integrated to provide assisted driving and colli-
sion avoidance mechanisms. These devices can be leveraged
for palm biometric-based user authentication, automatically
enabling personalized vehicle settings.

The unique characteristics of mmWave technology (i.e., high
frequencies, short wavelengths, and broad bandwidth) make
it more suitable for fine-grained sensing tasks, such as vital
sign monitoring [11], than lower-frequency RF technologies
(e.g., traditional WiFi at 2.4 GHz or 5 GHz). Researchers have
demonstrated that mmWave technology can be utilized for users
identification by capturing distinct gait patterns [12] or signa-
ture movements [13]. Moreover, mmWave has shown potential
for voice authentication by capturing throat vibration during
communication [14]. Additionally, researchers have proposed
using mmWave signals to capture detailed facial information for
user authentication. Xu et al. [15] develop an mmWave-based
face authentication system that relies on virtual registration sig-
nals generated from facial photos. Its complex hardware design
make it less practical for most user authentication scenarios.
In contrast, our approach explores palm biometrics, requiring
users only to raise their hand for authentication. Our work
only employs a low-cost commercial mmWave device to extract
palm biometrics without additional devices. Furthermore, we
envision our approach can complement existing authentication
systems (e.g., face-based authentication) by offering a sec-
ondary factor for enhanced security.

In this paper, we propose mmPalm, which utilizes a commer-
cial mmWave device to capture distinctive palmprint embedded
in the reflected signals from human palms for user authentica-
tion. Particularly, mmPalm emits Frequency-Modulated Contin-
uous Waves (FMCW) that vary in frequency over time and
capture the reflection of these signals from a user’s palm. We
find that the differences between the transmitted and reflected
signals, resulting from their interaction with the palm, directly
correlate with the user’s palmprint, including palm geometry,
skin thickness, and palm texture. (/) The palm geometry (e.g.,
contour and size) can influence the interaction surface area and
angle with the mmWave signals, altering their reflection and
refraction. (2) Skin thickness modulates the mmWave energy
absorption or reflection, and variations of the skin layers can
cause non-uniformities in local electromagnetic fields within
the skin, impacting the intensity and phase of the signals. (3)
The palm texture, characterized by unique patterns of ridges and
valleys, exhibits variations in density and dielectric properties,
which influence the reflection and absorption characteristics
of the mmWave signals. These palmprint features are unique
to individuals, enabling mmPalm to effectively authenticate
users by analyzing the reflected mmWave signals. The core
of mmPalm’s authentication process is utilizing these unique
palmprint features to establish and verify user palm profiles.
During the enrollment stage, mmPalm allows users to establish
unique palm profiles by facing their palms to the mmWave
device. This distinctive palm profile is then utilized for identity
verification during authentication sessions.

However, realizing mmPalm using a commercial mmWave

device faces several challenges. First, the limited number of
antennas on a commercial mmWave device makes it hard
to capture comprehensive palmprint features. This restriction
hinders the ability to produce high-dimensional measurements
from independent antennas and effectively differentiate a large
number of individuals for user authentication. Second, invol-
untary variations in palm orientation and distance during the
authentication phase can result in misalignments between palm
profiles captured during enrollment and those used in authenti-
cation, reducing the authentication accuracy in practical usage.
Third, the presence of environmental reflectors, including arms,
human bodies, furniture, and walls, can cause unpredictable
changes in received multipath signals [16]. Traditional methods
to handle these problems require collecting a huge amount of
training data, which is impractical in real deployment.

To address the aforementioned challenges, we develop mm-
Palm with three main components. (/) To capture comprehen-
sive palmprint features from a commercial mmWave device,
our system exploits multiple virtual antennas to gather reflected
mmWave signals from various angles, allowing for a collection
of more complete and detailed palmprint data. We also de-
sign palm detection and segmentation algorithms to determine
mmWave signals predominately from palm reflections, ensuring
effective extraction of fine-grained palm biometrics. (2) To
handle the challenge of different palm-device distances and
variations in palm orientation, we develop a systematic data
collection method for efficiently collecting palm profiles with
designated positions and orientations. Moreover, to diminish
the efforts required for palm data collection and labeling, we
design a conditional generative-based method to synthesize
virtual palm profiles. (3) To mitigate the influence of multipath
signal reflections in practical scenarios, we develop a robust
feature extractor trained on existing datasets that isolates palm
features impervious to environmental variations. This ensures
that users only need to register their palm profiles once in one
environment, and the system can continue to function effec-
tively in different environmental conditions. Our contribution
can be summarized as follows:

« We develop a low-cost, user-friendly, and ubiquitous palm-
based user authentication approach leveraging a commercial
mmWave device, requiring users only to raise their hand for
authentication.

o We exploit virtual antennas to capture detailed spatial infor-
mation of palmprint, including palm geometry, skin thickness,
and texture. We also develop methodologies for accurate
palm detection and segmentation based on Range-Elevation
heatmap to facilitate effective palm biometric extraction.

« We develop a palm profile augmentation module using a
systematic data collection method and a Conditional Genera-
tive Adversarial Network to enhance the system’s resilience
against variations in palm positions and orientations.

e Our cross-environment adaptation module utilizes an Ad-
versarial Autoencoder with Maximum Mean Discrepancy
regularization to mitigate the multipath impact in dynamic
environments, making our approach to achieve consistent
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Fig. 2. In-phase and Quadrature (IQ) distributions of the reflected mmWave signals from 4 different users.

performance regardless of environmental changes.

e We conduct extensive experiments with 30 users, studying
palm-device distance, palm orientations, and environment
changes to verify the effectiveness and robustness of our
system. Results show that mmPalm recognizes users con-
sistently with around 99% accuracy. We also evaluate our
system under different attacks, which demonstrate that our
system can achieve accurate and robust user authentication
and resistance to spoofing attacks.

II. BACKGROUND AND FEASIBILITY STUDY

A. Sensing User Palm via mmWave Signals

In this work, our basic idea is to use palm-reflected signals
for user authentication. To determine whether the reflected sig-
nals include reflections from the palm, we measure and analyze
the frequency and phase of the reflected signals, allowing us
to detect the presence and further determine the location of the
palm within the sensing area. In particular, the mmWave device
transmits FMCW signals, generating Intermediate Frequency
(IF) signals upon receiving reflections. We use IF signals to
detect the distance of the palm because its frequency shift
is linearly correlated with the distance between the mmWave
device and the palm. The IF signal can also be used to detect
the angle of the palm by analyzing the phase shifts between
multiple antennas in the same mmWave device [17].

B. Modeling the Impact of Palm Biometric Features on
mmWave Signal Propagation

After detecting the palm, we proceed to establish a rela-
tionship between the reflected signal and the palm’s biometric
features. The mmWave signal forms a channel between the
device and the user’s palm as it reflects off the palm and back
to the device. This interaction results in a distinctive channel
response that captures the palm’s biometric features. Specifi-
cally, the palm’s geometry impacts the channel by affecting the
reflected signal’s pattern, introducing specific phase shifts and
amplitude variations in the IF signal. Furthermore, variations
in palm skin thickness and texture can alter the dielectric and
electromagnetic properties of the reflected signal, resulting both
amplitude and phase changes. The combination measurements
of amplitude and phase alterations enable mmPalm to capture
detailed palm biometric features that are embedded in the
channel response.

In particular, we model the impact of palm biometric features
on the palm reflected mmWave signal by establishing a function
that relates the amplitude and phase shifts in the IF signal
to the palm’s biometrics. This function can be described as
(Ag, 0r) = f(G,S,T), where A and ¢ represent the

amplitude and phase shifts of the IF signal. G, S, and T
represent the geometry, skin thickness, and texture of the palm,
respectively. By connecting these palm characteristics to the
measured amplitude and phase shifts, the function f depicts
how palm biometrics impact the mmWave signal propagation.
We train deep neural networks on collected palm reflected
signals to effectively learn this function f.

C. Feasibility of Using Palm-reflected mmWave Signals for
User Differentiation

To demonstrate the feasibility of user differentiation using
mmWave reflected signals, we conducted preliminary experi-
ments to examine palm-reflected signals from different users.
We employ a 77 ~ 81GHz mmWave device (i.e., TI AWR1642).
Specifically, we collect palm-reflected signals from 4 users
and the In-phase and Quadrature (IQ) data collected in 0.1
seconds are visualized in Figure 2. The results indicate that
different users exhibit various distributions of reflection phase
and amplitude. Given the experiments are conducted in the
same environment with the same palm-device distance and ori-
entation, the differences of the received signals are dominated
by the differences in users’ palms. This observation inspires us
to establish a relationship between the original transmitted and
palm-reflected signals to derive users’ palm biometrics.

ITII. ATTACK MODELS

The goal of an adversary is to gain unauthorized access
to specific devices (e.g., smart vehicles, VR/AR devices) or
locations (e.g., hotels, banks, and government agencies) that
are restricted to legitimate users and equipped with palm-based
user authentication system using mmWave signals. Based on
different prior knowledge and techniques that are available to
the adversary, we categorize potential threats into three distinct
attack types, including random attack, impersonation attack,
and counterfeit attack.

Random Attack. The adversary attempts to gain unau-
thorized access without any prior knowledge of the palm
biometrics from legitimate users. During random attack, the
adversary attack can try different random palm positions (e.g.,
distances, postures, orientations), with the expectation that the
palm biometrics embedded in the reflected mmWave signals
will be similar with legitimate users and bypassing the user
authentication provided by mmPalm.

Impersonation Attack. Different from the random attack
without any prior knowledge of user palm information, the
adversary is able to know how the legitimate users place their
palms and their palm biometrics (e.g., palm size). This infor-
mation can be obtained through video surveillance, social engi-
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neering, or even observations during user enrollments. During
impersonation attack, the adversary can try by himself/herself
or recruit other users with similar palm and instruct them to
replicate the palm placements of the legitimate users, thus
attempting to bypass the authentication provided by mmPalm.

Counterfeit Attack. In counterfeit attack, the adversary
might further access to the user’s detailed 3D palm contour.
This fine-grained information might be obtained in medical
institutions, where 3D model of the patient’s body part is built
for medical diagnosis, surgical planning, and other purposes.
Based on the captured palm biometrics, the adversary could
utilize a 3D printing to replicate physical palm models, which
share similar geometry with the legitimate users. Then the
adversary attempts to bypass the user authentication scheme
provided by mmPalm with the palm replica.

IV. MMPALM SYSTEM IMPLEMENTATION

The system has been designed with four modules, includ-
ing palm profile derivation, palm profile augmentation, cross-
environment adaptation via transfer learning, and palm profile-
based user authentication, as illustrated in Figure 3.

A. Palm Profile Derivation

Software-defined TDM-MIMO System Implementation.
To determine reliable mmWave signals for extracting palm-
prints, mmPalm first initiates a transceiving channel between
the user’s palm and mmWave device to collect IF signals. Then
we enhance the spatial capabilities of a commercial mmWave
device by constructing multiple virtual antennas. Specifically,
we implement this virtual antenna design on TI AWRI1642
[18] equipped with 2 transmitter antennas (TXs) and 4 receiver
antennas (RXs). We synthesize a 1 x 8 virtual antenna array
by alternating mmWave chirp signals from TX1 and TX2 in a
Time-Division Multiplexing manner [19]. The signal collected
from each pair (8 pairs in total) of transceivers provides a
unique dimension of the palm profile that facilitates capturing
spatial details of the palmprints.

Palm-reflected Signal Detection and Segmentation. Along-
side the enhanced spatial capability, we develop both a palm
detection algorithm and a dynamic segmentation algorithm to
detect the presence and further determine the palm-reflected
signals. In particular, we leverage range-FFT and angle-FFT
to generate the range-response profile and Range-Elevation
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Fig. 4. The Range-Elevation heatmap helps determine the segment of the palm-
reflected signals. Palm profiles are constructed based on the mmWave signal
segments from 8 transmitter-receiver pairs.

heatmap. As shown in Figure 4, when a human palm is
positioned at 30 cm from the mmWave device, it exhibits an
elliptical high amplitude on the Range-Elevation heatmap. Our
detection algorithm determines the palm position by analysing
the reflection energy in the heatmap, as the palm generally
exhibits the strongest energy due to its proximity to the
mmWave device. Furthermore, based on the detected palm posi-
tion, we develop a dynamic segmentation algorithm to capture
the signals predominately from palm reflections in the range-
response profile. We use a one-dimensional sliding window to
extract signals within its range. The window size is established
through empirical studies. Each antenna’s palm profile is then
constructed based on the segmented signals, incorporating both
the corresponding phase and amplitude information.

B. Palm Profile Augmentation

Systematic Palm Profile Enrollment. To overcome the
performance degradation due to uncertain palm placements
and reduce the data collection cost for enrolling users, we
realize a palm profile augmentation scheme. Inspired by Ap-
ple’s FaceID [20] on capturing different angles of users’ faces,
we instruct the users to slightly move their palms to build
comprehensive palm profiles for each user. Figure 5(a) and (c)
present a dual-coordinate system framework. The device axes
are oriented as follows: x,, is the vertical axis perpendicular
to the wavefront emission plane and y,, is the horizontal
axis. z,, is the depth axis aligned with the direction of wave
propagation. The palm coordinate system is initially aligned
with the mmWave device. Then the users could move their
palm in a predefined way. The movements include rotating
their palms along different directions (x-, y-, and z-axis) and
then moving their palms at varying distances away from the
device as demonstrated in Figure 5(b) and (d). Through col-
lecting users’ palm-reflected signals from different angles and
distances, more palm profiles are efficiently created for each
individual user, which simulates the authentication scenarios
with uncertain palm placements.

Palm Profile Augmentation Based on ¢GAN. Although
collecting diverse palm-reflected signals from slightly different
angles and distances is possible, the variability in users’ palm
placements in practical scenarios complicates this process. It
is unrealistic to expect users to provide palm-reflected signals
for every possible palm placement during the enrollment phase.
To address this challenge, we develop a Conditional Generative
Adversarial Network (cGAN) [21] to synthesize virtual palm
profiles from the limited real ones collected from users. As
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demonstrated in Figure 6, the real palm profiles are first cate-
gorized into 10 classes along each axis using an unsupervised
classification method (i.e., the K-means++ [22]). Each profile
can be classified as a one-hot label with 7 attributes that
correspond to the specific classes for distance and orientation
along each of the three axes (X, y, and z), as well as user ID.

¢GAN Training Procedure. During the training phase of
the cGAN, the generator G(-) takes a random noise vector and
the conditional labels (predicted via K-means++) as inputs and
generate virtual palm profiles that share similar distributions
with the real palm profiles satisfying the specific conditions,
which is realized by minimizing the generation loss L. The
discriminator D(-) is trained to distinguish between real and
synthesized palm profiles, which is achieved by maximizing
the discrimination loss Lp. We train cGAN by optimizing the
trainable parameters 6 and 6p. The generator loss L and the
discriminator loss L p are calculated as:

N
Le = %ng (1 — D(G(ns]c:))),

1 1)

Lp =

2|

N
Z (log(D(piles)) +log(1 — D(G(nilei)))),

argmin Lg, argmaxLp.
9(; 9D

where G (n;|c;) represents the synthesized profiles with random
noise n; and conditional labels ¢; as inputs. D(p;|c;) denotes
the prediction results (e.g., real or synthesized) of the input
profile p; with the conditional label c¢;. N refers the total
number of training profiles, and ¢ denotes the index of each
profile. During the generating phase, the generator synthesizes
virtual palm profiles associated with target labels of palm-
device distances and palm orientations.

C. Cross-Environment Adaptation via Transfer Learning

To mitigate environmental factors in the palm profiles, we
develop a deep learning framework based on Adversarial Au-
toencoder (AAE) with Maximum Mean Discrepancy (MMD)
regularization [23]. As illustrated in Figure 7, we optimize
parameters of the Autoencoder and extract hidden represen-
tations as latent palm features. Meanwhile, we minimize the
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MMD among the latent palm features extracted from different
environments to reduce the environmental variance. We also
develop a discriminator that encourage the latent palm features
whose distribution is aligned with a Laplace prior distribution
without favoring any particular environment’s characteristics
[24]. During the authentication phase, the trained feature ex-
tractor (encoder) can achieve environmental independence and
enable mmPalm to be deployed in new environment without any
training efforts. In addition, mmPalm utilizes the palm profiles
collected by the developer to complete the training process,
ensuring that users are required to register their palms in only
one environment.

Model Training Procedure. We develop a reconstruction
loss L, for the Autoencoder to ensure that the reconstructed
palm profiles p share similar distributions with the original
input p. To minimize the distribution discrepancies among palm
profiles collected from different environments, we apply MMD
regularization. Specifically, MMD measures the differences of
latent palm features between two training environments. During
the training process, we minimize the environment alignment
loss L,, to optimize the trainable parameters of the encoder
E(-) until it generate environment-independent latent palm
features. To make the latent palm feature i aligning with the
Laplace prior distribution [, we involve adversarial loss L,
while optimizing the parameters of the adversarial discriminator.
The optimization process can be described as:

1 Ny 1 Ny
Lm = max(z ||F ZE(pu,i) - F ZE(pv,i)HvO)v
u,v Uoi=1 V=1

N N
1 . 1
L, = N E MSE(pi,pi), Lq= N E MSE(h;, L),

i=1 i=1
argmin Ay, Ly, + ALy + AgLa,
0r.,0z,04D

(2)
where N and ¢ denotes the total number and index of palm
profiles. v and v denote two training environments. M SE(,-)
refers the mean squared error. g, 6z, and 6 4p represents the
trainable parameters of the encoder, decoder, and adversarial
discriminator. \,,, A, and A\, denotes the weights of each
loss function for balancing the total loss and accelerating
convergence.

D. Palm Profile-based User Authentication

After the cross-environment adaptation, we develop a deep-
learning-based user classifier C(-) to authenticate each indi-
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vidual. It takes the latent palm feature h as input and output
user identity C'(h). This output is then compared with the
ground truth user identity g, to either authenticate or reject the
current user. The training process requires two classes of data:
labeled legitimate users and labeled unauthorized adversaries.
Both classes’ palm profiles are initially enhanced with the
proposed palm profile augmentation and processed through the
encoder to mitigate environmental factors. For each registered
user, a specific pair consisting of an encoder and a classifier
is created. During the authentication phase, the testing palm
profile needs to pass through all pairs of encoder and classifier.
The probability that the palm profile belongs to each user is
then computed and used to make an authentication decision.
To grant access, the highest probability among all registered
users must exceed 0.5.

V. OVERALL PERFORMANCE EVALUATION
A. Evaluation Methodology

Device Configuration. We implement mmPalm using a
commercial mmWave device, i.e., TI AWR1642 with a
DCA1000EVM data capture and streaming card. The antennas
provide a field of view (FOV) of 120° in elevation and 30° in
azimuth, with an angular resolution of 15°.

Data Collection. We recruit 30 volunteers including 23
males and 7 females with ages ranging from 21 to 38. We
do not set any restrictions on specific palm sizes or any
other demographic characteristics that may influence the palm
patterns. Necessary consent and IRB approvals are sought for
all experiments. When conducting experiments, we position the
mmWave device on a table with the antennas pointing towards
the ceiling. During the enrollment stage, each participant places
the palms directly above the device at a specific distance
(e.g., 30cm). Then, the palm profile is collected by using
the developed palm profile augmentation approach. Specifically,
each participant places the palm with different distances (e.g.,
move around + 5cm along each axis with mmWave device
as the coordinate origin), and then different orientations (e.g.,
rotate around + 30° along each axis with device plane as 0°).
This process can be done within one minute.

Environmental Setup. To evaluate the user authentication
performance of mmPalm in the presence of large scale changes
between the enrollment and authentication environment, we
conduct experiments at five different rooms: two offices, two
lounges, and one corridor (as shown in Figure 8). The sizes of
office 1 and office 2 are 5m x 3m and 3m x 3m. The size of
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lounge 1 and lounge 2 are 3m X 4m and 4m x 4 m, and the
corridor is 5m X 9m. The heights of all rooms are 2.8 m. In
these varying environments, users could wear different clothes,
and the placement of the mmWave device varies. In addition,
multipath effects arise from both the user’s body and the varied
placements of devices and furniture.

Evaluation Metrics. To evaluate the effectiveness and robust-
ness of mmPalm, we utilize two metrics. (1) Authentication Ac-
curacy (ACC) represents the percentage that user ¢ is correctly
identified as ¢ among all users. (2) Attack Success Rate (ASR)
measures the percentage of instances where mmPalm incorrectly
authenticates an adversary as a legitimate user.

B. Overall User Authentication Performance

In this part, we first evaluate mmPalm’s overall performance
in distinguishing multiple users based on unique palmprints.

Experimental Setup. In our experiments, 30 participants
are involved in collecting the palm-reflected signals in five
environments. During the enrollment phase, we instruct the
participants to place their palms above the device with several
practical distances (i.e., 15cm, 30 cm, 45cm, 60cm). In the
authentication phase, participants are asked to place their palms
in the same position and environment. Each participant is alter-
nately considered the legitimate user with the others as unau-
thorized adversaries to evaluate the authentication performance.
The average ACC associated for each user is summarized to
demonstrate the authentication performance of mmPalm.

Evaluation Results. The average ACC across various dis-
tance (i.e., 15cm, 30cm, 45cm, 60 cm) are 99.96%, 99.97%,
99.83%, and 99.75%, receptively. We observe that the system
achieve optimal performance when the users position their palm
30cm from the device. This distance allows the mmWave
device to effectively capture the reflected signals from the
user’s palm while maintaining robust signal amplitude. The
ACC at 30cm for each participant (denoted as Ul, U2, ...,
U30) is detailed in Figure 9. Notably, mmPalm achieves ACCs
of 100.00% for most participants. The high authentication
accuracy demonstrates that mmPalm can precisely authenticate
legitimate users through palm-reflected mmWave signals and
effectively distinguish them from unauthorized individuals.

C. Impact of Palm-Device Distance and Palm Orientation

To explore the mmPalm’s robustness against variations in

palm-device distance and palm orientation, we evaluate it’s
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Fig. 10. Authentication accuracy before and after involving palm profile
augmentation on different palm-device distances and orientations between the
enrollment and authentication data.
performance when enrollment and authentication signals are
collected under different distances and orientations.

Experimental Setup. We collect palm-reflected signals from
10 participants at the same environment. During the enrollment
phase, we construct palm profile by collecting palm-reflected
signals with the user’s palm approximately 30cm from the
mmWave device. In the authentication phase, participants are
allowed to place their palms at random distances (within 5 cm)
from the original palm location along the x-, y-, and z-axis
to collect signals. We further evaluate mmPalm’s robustness
against variations in palm orientation. In the authentication
phase, the palm is rotated within 30° clockwise along the x-
, Y-, and z-axis relative to the enrollment phase palm position.
The average ACC of 10 participants are measured to evaluate
the system robustness. We show the average ACC before and
after applying palm profile augmentation to demonstrate that
our proposed augmentation approach effectively creates robust
palm profiles for each user.

Evaluation Results. We present the average ACC with differ-
ent palm-device distance during enrollment and authentication
phase in Figure 10(a). Without palm profile augmentation,
mmPalm achieves an ACC of 61.64% (z-axis). After palm
profiles augmentation, the ACC improves to 97.98%. We also
illustrate the average ACC with palm orientation discrepancy in
Figure 10(b). Specifically, mmPalm achieves an ACC of 77.54%
(y-axis) without palm profile augmentation. After applying
palm profile augmentation, the ACC significantly improves to
99.76%. This high authentication accuracy after augmenting
palm profiles indicates that mmPalm can effectively authenticate
users in practical scenarios.

D. Impact of Environment Changes

To evaluate mmPalm under unpredictable multipath arising
from different environments, we conduct experiments in the
aforementioned five different environments.

Experimental Setup. During the enrollment phase, we ran-
domly select 2 environments as enrollment settings. 5 volun-
teers (nonusers) are recruited to provide their palm profiles
in both environments, which helps mitigate the impact of
environmental factors. 10 users are asked to provide palm
profiles in only one of the environments to train the user
classifier. In the authentication phase, we validate mmPalm
by leveraging users’ palm-reflected signals collected from an
environment completely different from those used in the en-
rollment phase. We sequentially select each environment as
the authentication setting and summarize the accuracy (ACC)
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associated with different environments, evaluating the impact
of multipath effects caused by environmental changes.

Evaluation Results. We summarize the evaluation results of
the impact of environmental changes on authentication accuracy
in Figures 11(a) and 11(b). We define each environment as a
authentication scenario where the users provide the palm data
for authentication. And randomly select another environment as
the enrollment scenario, where the legitimate users provide their
palm profile. When the cross-environment adaptation module is
not included in the system, it achieves authentication accuracy
ranging from 76.4% to 83.6%, as shown in Figure 11(a). This
demonstrates that further removal of environmental factors is
necessary to enhance authentication accuracy. Incorporating
the cross-environment adaptation module results in improved
system performance, with accuracy between 85.7% and 95.7%,
and an average accuracy improvement of 10.21%, as illustrated
in Figure 11(b). The consistent and significant improvements
in authentication accuracy across various settings highlight mm-
Palm’s ability to extract environment-independent features from
palmprint, emphasizing the system’s adaptability to dynamic
environments with low training effort.
VI. PERFORMANCE UNDER DIFFERENT SPOOFING ATTACK
A. Performance Under Random Attack

We first evaluate our system against random attacks, where
the attackers attempt to bypass mmPalm without any prior
knowledge of the palm-related biometrics of legitimate users.

Experimental Setup. We recruit 10 participants as legitimate
users. These users are asked to register their palms around
30 cm away from the mmPalm system. We then recruit another
10 participants, who have no prior knowledge of our system,
to act as attackers. These individuals are selected without
consideration of palm size. Each attacker is instructed to simply
place their palm in front of the mmWave device to initiate the
authentication session and simulate an attack on each legitimate
user. Data from both the legitimate users and attackers are
collected under identical environmental conditions.

Evaluation Results. The attack success rate of random
attack is 0%, which supports mmPalm’s capability of rejecting
unauthorized users during authentication. The resilience of
mmPalm against random attacks further validates that the palm
profiles are distinct among different users and hard be replicated
by attackers.
B. Performance Under Impersonation Attack

We then evaluate mmPalm performance under impersonation
attacks, where the attackers attempt to gain unauthorized access
by mimicking the observed palm of legitimate users.
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Experimental Setup. To simulate this impersonation attack,
we involve 24 participants, selecting one at a time as the
legitimate user. Five participants with similar palm sizes to the
legitimate user are chosen to act as attackers, attempting to
mimic the legitimate user’s palm placements. The remaining
participants acted as unauthorized adversaries. The average
ASR of 5 attackers is calculated to evaluate mmPalm’s robust-
ness against impersonation attacks.

Evaluation Results. The average attack success rate of 24
users under impersonation attack is 0.52%. In Figure 12, we
notice that the majority of impersonation attackers achieve an
attack success rate below 1%. This demonstrates our system’s
efficacy in preventing in-person biometric forgeries and con-
firming the robustness of palm biometrics against such attempts
due to the challenge in imitating palm geometry, skin thickness,
and palm texture.

C. Performance Under Counterfeit Attack

An attacker may attempt an intrusion by using a 2D coun-
terfeit palm approximating the target user’s palm dimensions.
A sophisticated adversary could leverage 3D scanning and
printing technologies to create a replica with precise palm
measurements.

Experimental Setup. We designate a volunteer as the victim
and fabricated a 2D imitation palm from cardboard and a 3D
imitation from plaster. These attack scenarios are depicted in
Figure 13. During each authentication attempt, the adversary
positions the faux palm before the mmWave device, maintain-
ing consistent placement and orientation to initial verification.

Evaluation Results. Both the 2D decoy palm and the
3D counterfeit palm achieve 0% attack success rate. These
findings indicate that replicating palm size and contour alone
is insufficient to compromise our system. This observation
confirm that the palmprint characteristics extracted by mmPalm
are sufficiently distinctive, thereby enhancing the system’s
resistance to counterfeit attacks.

VII. RELATED WORK

Authentication via Human Biometrics. Existing authenti-
cation scheme via user biometrics usually rely on users’ physi-
ological traits, including faces [2], fingerprints [1], voices [25],
retina or iris [26], and behaviour-associated features [27]. Al-
though these unique user biometrics enhance the authentication
effectiveness and convenience over traditional approaches (e.g.,
PIN, token), their high implementation costs (e.g., cameras, sen-
sors, or microphones) limit widespread adoptions in ubiquitous
scenarios such as smart cities and smart homes.

Sensing User Palm Characteristics. Recent works have
explored measuring users’ palm geometry via cameras [28, 3]

Human Palm 2 Imitation Palm 3D Imitation Palm

Fig. 13. Physically reproducing palm biometrics using a 2D imitation palm
from cardboard and a 3D imitation palm from plaster.

and acoustic signals [9, 10]. For instance, PalmID [28] employs
cameras to capture palm images, extracts distinct line and ridge
features, and generates a palm profile for each user. Acoustic-
based methods focus on extracting the response patterns of
acoustic signals that propagate through users’ palms to authen-
ticate users. EchoLock [9] senses hand geometry via emitted
acoustic signals on smartphones and differentiates users via
the unique sound reflection patterns. These methods typically
require access to cameras or mobile devices, which may hinder
their widespread implementation.

User Authentication Using mmWave. Previous work
demonstrate the feasibility of mmWave-based user authenti-
cation based on unique human behavior characteristics [13,
12, 29]. For instance, Han et al. develop a signature verifica-
tion system by capturing hand movements during the user’s
signature execution process using mmWave [13]. VocalPrint
exploits unique disturbances of the reflected mmWave signals
caused by vocal vibrations for user authentication [14]. Existing
works have also explored authenticating users via fine-grained
vital sign monitoring based on mmWave signals [11, 30]. For
example, HeartPrint authenticates users using a mmWave radar
by sensing their distinctive heartbeat motions [11]. In addition,
the mmWave signals bounced off the human face carry the
facial biometric features, which allow researchers to develop
face-based authentication. For example, mmFace authenticates
users by matching facial structure features from mmWave
signals with templates created from virtual mmWave signals,
which are generated using facial photos [15]. Hof et al. utilize
a dedicated mmWave radar sensor equipped with a total of
1024 unique antenna element pairs to collect extensive facial
biometric data, which is then used for facial verification [31].
In contrast to these approaches, mmPalm only requires the
users to raise their hands for authentication, which is user-
friendly in practical use. Moreover, mmPalm is not significantly
impacted by users’ physiological status (e.g., stress level),
ensuring consistent and robust user authentication. In addition,
we use a commercial mmWave device to capture distinctive
palmprint embedded in the reflected signals from human palms
without external devices. Our approach is low-cost, low-effort,
and can be ubiquitously deployed in many smart applications.

VIII. CONCLUSION

In this paper, we develop mmPalm, a low-cost and ubiquitous
palm-based user authentication system using a commercial
mmWave device, marking a significant step in contactless
authentication. The core idea of our work is to harness high-
resolution mmWave signals to extract detailed palm character-
istics that can assemble distinctive palmprints for user authen-
tication. To accurately capture these palmprints, we construct



multiple virtual antennas on a commercial mmWave device to
capture detailed palmprint features from various angles. We also
develop palm detection and segmentation algorithms to isolate
mmWave signals primarily reflected from palms, ensuring the
precise extraction of fine-grained palm biometrics. To accom-
modate variations in palm-device distances and orientations,
we develop a systematic data collection strategy and a con-
ditional generative method to synthesize virtual palm profiles,
reducing the need for extensive manual data collection and
labeling. Furthermore, we develop a robust feature extractor,
which effectively ensures that palm features are resistant to
environmental variations. This allows the system to operate
efficiently across various settings with a single registration
of palm profiles. Extensive experiments show that mmPalm
achieves high authentication accuracy with resilience against
different types of attacks.
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